Supplementary Information

Tables

Supplementary Table 1: Vigna species used in this study.

				Genbank accession					
Species	Section	Status	Origin	No.					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
unguiculata (IT86D-1010)	Catiang	cultivated	Nigeria	IT86D-1010					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
unguiculata (IT97K-499-35)	Catiang	cultivated	Nigeria	IT97K-499-35					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr. biflora	Catiang	cultivated	France	PHASEO NI147					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
unguiculata (NI5)	Catiang	cultivated	USA	PHASEO NI5					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
unquiculata (NI22)	Catiang	cultivated	Congo	PHASEO NI22					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
unquiculata (NI139)	Catiang	cultivated	Cameroon	PHASEO NI139					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
unquiculata (NI784)	Catiang	cultivated	India	PHASEO NI784					
Vigna unquiculata L. Walp, subsp, unquiculata cvgr.									
unquiculata (NI1183)	Catiang	cultivated	China	PHASEO NI1183					
Vigna unquiculata L. subsp. alba	Catiang	wild	Congo	PHASEO NI1656					
Vigna unguiculata L. Walp. subsp. unguiculata var.									
spontanea	Catiang	wild	Kenya	PHASEO NI2210					
Vigna unguiculata L. Walp. subsp. baoulensis	Catiang	wild	Ghana	PHASEO NI933					
Vigna unguiculata L. Walp. subsp. stenophylla	Catiang	wild	Botswana	PHASEO NI1419					
Vigna unguiculata L. Walp. subsp. pawekiae	Catiang	wild	Malawi	PHASEO NI1638					
Vigna unguiculata L. Walp. subsp. unguiculata cvgr.									
sesquipedalis	Catiang	cultivated	Guyana	PHASEO NI126					
Vigna aconitifolia (Jacq.) Maréchal	Aconitifoliae	cultivated	India	PHASEO NI41					
Vigna angularis (Willd.) Ohwi & H.Ohashi var. angularis	Angulares	cultivated	China	PHASEO NI615					
Vigna mungo Hepper var. mungo	Ceratotropis	cultivated	Australia	PHASEO NI515					
Vigna radiata R.Wilczek var. radiata	Ceratotropis	cultivated	Iran	PHASEO NI4					
Vigna reflexo-pilosa Hayata var. glabra (4x)	Angulares	cultivated	Philippines	PHASEO NI532					
Vigna reflexo-pilosa Hayata var. reflexo-pilosa (4x)	Angulares	wild	Japan	PHASEO NI1684					
Vigna trilobata Verdc.	Aconitifoliae	wild	Sri Lanka	PHASEO NI453					
Vigna vexillata A.Rich.	Plectotropis	cultivated	Indonesia	PHASEO NI1859					
Vigna umbellata (Thunb.) Ohwi & H.Ohashi var. umbellata	Angulares	cultivated	Congo	PHASEO NI204					
Transgenic cownea (IT86D-1010) AtDD45:dsPED-Evpress	Catiang	Transgeni	Australia	Gursanscky et al.					
Transgenie cowpea (Troop-Toto) Albbrogro.dstCLD-Express	Sudding	c plant		2020					

Supplementary Table 2: Primers and TaqMan based probes used in this study.

Name	5'-3' Sequence
Vigna CENH3F	ATGGCGAGAGTGAAGCACACGCCAGCTTCGC
Vigna CENH3R	TCACCAAGGCCTTCCTATTCCTCCAAGCCTCCGAGCC
V.ungCENH3F	ACAGACTCAGGGAAGGAAGA
V.ungCENH3R	GGCAGCCGGGATAAGAAG
CENH3.1Probe	HEX-GGAACA+G+C+GGCG-IABkFQ
CENH3.2Probe	FAM-G+GAACA+A+T+GG+CG-IABkFQ
Ubiquitin28F	GATTCTGAAGGAGCTCAAGGAC
Ubiquitin28R	CCCATTATAGTTGCTTGCCAATG
Ubiquitin28Probe	ROX-AGAAAGACCCTCCAACCTCTTGCA-BBQ
GAPDH-F	CAATGATAGCTGCACCACCAACTG
GAPDH-R	CTAGCTGCCCTTCCACCTCTCCA
455 bp tandem repeats	Cy5-CAACGTGTGTTGATCCTTCT
pVuKB2F	CATGCATACACCAAGAAAGATC
pVuKB2R	TGTGCCTACTTTTGCTTGAGTC
721-bp tandem repeats	GGCTCACAACATTGTTTTCGC
721-bp tandem repeats	TTGGTATTCAGAGYCTGGST
1600-bp tandem repeats	CCGTCGATAAGAAGCAAATTCGT
1600-bp tandem repeats	ACTTGATATTTGTTACTTTCCAATGGT
PPT F1	AGGAAAGGCCATCGTTGAAGAT
PPT_R1	TGTCTCGATGTAGTGGTTGACG
CAS9 F1	ACCTACCACGATCTCCTCAAGA
CAS9 R1	CTGAAACCTGAGCCTTCTGGAT
AtU6 26 F1	TGAACCGTAGCTTTCGTTTTCT
AtU6 26 R1	CAAGAAAGCTGGGTCTAG
Sa5CENH3 1E	
Sq5CENH3.2E	TGTGATTGAAGCCTGTGACTAGAAGTAA
Sg5CENH3 common R	CTGAAAATGACGAATCTCGCG
Sg3CENH3 1E	TTTCACTTCTCAAAACCAAACCCT
Sg3CENH3 1R	TCAACTCAAACGAAGAACGCG
Sg4CENH3.1F	TCACTTCTCAAAACCAAACCCTG
Sg4CENH3 1R	TCAGAACACCAAAAATGAATCAGCA
Sg4CENH3.2F	CACTCAAAGCCAGTCGCG
Sg4CENH3 2R	TCAGAACACCAAAAATGTATCAGCA
Drop off probe Sg3CENH3.1	HEX-TGAGCCCTTCTACGACTTCTTGTCG-BHQ1
Reference probe Sa3CENH3.1	FAM-ACGTACCCTGCGGCTCCTCTT-IABkEQ
Drop off probe Sq4CENH3.1	FAM-ACGTACCCTGCGGCTCCTCTT-IABkFQ
Reference probe Sa4CENH3.1	HEX-TCAACTCAAACGAAGAACGCGTTT-BHQ1
Drop off probe Sq4CENH3.2	FAM-ACGTACCCTGCGGCTCCTCTT-IABkFQ
Reference probe Sq4CENH3.2	HEX-TCAACTCAAACGAAGAAACGCAGTTT-BHQ1
Drop off probe	
Sa5CENH3 Common	
Reference probe Sq5CENH3 1	
Drop off probe	
SafeCENH2 Common	
SgSCENH3_Common	HEX-TICCTICCCTGAGTCTGTGGCG-BHQ1
Reference probe_	
Sg5CENH3.2	
npul_F1	
PDEST_R4R3_F1	
NUS_R1	
At_pDD45_F2	TCTCGTAACTCAATCATCGC

Supplementary Table 3: Characterization of sequence CENH3.1 and CENH3.2 induced by CRISPR/Cas9 based genome editing.

Gener ation	Line name	CENH3.1	Allele	Sequence	CENH3.2	Allele	Sequence						
		Wild type		GAAGAAGCAGCAGCAGCAGCGCCACAGA CTCAGGGAAGGAAGAA	Wild type		AAGAAGAAGCAGCAGCGCCACAGACTCAGC AGGAAGAA						
		-1		GAAGAAGCAGCAGCAGCAGCGCCACAGA C-CAGGGAAGGAAGAA	1		AAGAAGAAGCAGCAGCGCCACAGACCTCAGGG AAGGAAGAA						
		-1]	GAAGAAGCAGCAGCAGCAGCGCCACAGA- TCAGGGAAGGAAGAA	-4]	AAGAAGAAGCAGCAGCGCCAC TCAGGGAAGGAAGAA						
то	#5B1	1	Chimera	GAAGAAGCAGCAGCAGCAGCAGCACAGA	Chimera	AAGAAGAAGCAGCAGCGC TCAGGGAAGGAAGAA							
		-4	1	GAAGAAGCAGCAGCAGCAGCGCCAC TCAGGGAAGGAAGAA	1	AAGAAGAAGCAGCAGCGCCA CAGGGAAGGAAGAA							
					-6	1	AAGAAGAAGCAGCAGCGCC						
					-9	1	AAGAAGAAGCAGCAGC TCAGGGAAGGAAGAA						
	#5B1- 12	-1		GAAGAAGCAGCAGCAGCAGCGCCACAGA- TCAGGGAAGGAAGAA	Wild type		AAGAAGAAGCAGCAGCGCCACAGACTCAGGGA AGGAAGAA						
		-4	Chimera	GAAGAAGCAGCAGCAGCAGCGCCAC TCAGGGAAGGAAGAA	-6	Heterozy gous	AAGAAGAAGCAGCAGCGCCACAG GGAAGGAAGAA						
		-48	1	GAAGAAGCAGCAGCAGCAGCG		J							
T1		Wild type		GAAGAAGCAGCAGCAGCAGCGCCACAGA CTCAGGGAAGGAAGAA	1		AAGAAGAAGCAGCAGCGCCACAGACCTCAGGG AAGGAAGAA						
	#5B1-	1	1	GAAGAAGCAGCAGCAGCAGCGCCACAGA CCTCAGGGAAGGAAGAA	-9	1	AAGAAGAAGCAGCAGC TCAGGGAAGGAAGAA						
		-1	Chimera	GAAGAAGCAGCAGCAGCAGCGCCACAGA C-CAGGGAAGGAAGAA		Biallelic							
	13	-3	oniniora	GAAGAAGCAGCAGCAGCAGCGCCAC CTCAGGGAAGGAAGAA	gous								
		-9	1	GAAGAAGCAGCAGCAGCAGC TCAGGGAAGGAAGAA		1							
		-34	1	GAAGAAACAA		1							
	Cenh3. 1 KO	-1	Homozygou	GAAGAAGCAGCAGCAGCAGCGCCACAGA- TCAGGGAAGGAAGAA	Wild type	Heterozy	AAGAAGAAGCAGCAGCGCCACAGACTCAGGGA AGGAAGAA						
	#5B1- 12.2		s		-6	gous	AAGAAGAAGCAGCAGCGCCACAG GGAAGGAAGAA						
		Wild type		GAAGAAGCAGCAGCAGCAGCGCCACAGA CTCAGGGAAGGAAGAA	Wild type		AAGAAGAAGCAGCAGCGCCACAGACTCAGGGA AGGAAGAA						
T2	#5B1-				-6	Chiman	AAGAAGAAGCAGCAGCGCCACAG GGAAGGAAGAA						
	12.3		vviid type		1	Chimera	AAGAAGAAGCAGCAGCGCCACAGACCTCAGGG AAGGAAGAA						
			1		-4	1	AAGAAGAAGCAGCAGCGCCAC TCAGGGAAGGAAGAA						
	#5B1-	-1	Biallelic	GAAGAAGCAGCAGCAGCAGCGCCACAGA- TCAGGGAAGGAAGAA	-6	Biallelic	AAGAAGAAGCAGCAGCGCCACAG GGAAGGAAGAA						
	12.4	A to T substitution	s neterozygou	GAAGAAGCAGCAGCAGCAGCGCCACAGT CTCAGGGAAGGAAGAA	-2	gous	AAGAAGAAGCAGCAGCGCCACAGAC AGGGAAGGAAGAA						
Т3	Cenh3. 2 KO	A to T substitution	Heterozygo us	GAAGAAGCAGCAGCAGCAGCGCCACAGT CTCAGGGAAGGAAGAA	-2	Homozy gous	AAGAAGAAGCAGCAGCGCCACAGAC AGGGAAGGAAGAA						

Genotype	Plant number	Number of pla	pods per nt	Seed weight per plant (in g)	Length of selected high quality pods, n=5 (in cm)						Number of seeds per high quality pods, n=5 Normal seeds Shriveled seeds												
		High quality	Low quality	Seeds	1	2	3	4	5	average	1	2	3	4	5	average	1	2	3	4	5	average	Seeds
	1	17	0	20.4	17	14	14.5	12	14	14.3	10	9	10	7	9	9	2	0	0	1	4	1.4	8.1
	2	15	4	25.7	16.5	17.5	20	16	18	17.6	11	12	13	11	12	11.8	0	2	0	2	0	0.8	10.8
Cenh3.2 KO 4-3	3	16	2	23.1	14.5	16.5	17	16.5	18	16.5	8	14	12	13	11	11.6	1	0	2	0	2	1	10
(T4 generation)	4	13	0	21	19	17	17.5	18.5	18	18	14	12	12	13	13	12.8	1	1	1	0	0	0.6	11.7
	5	12	2	19.1	16	18	20	15.5	17	17.3	10	12	15	12	9	11.6	4	3	0	2	4	2.6	10
	average	14.6	1.6	21.86						16.74	-					11.36						1.28	10.12
Cenh3.2 KO 4-	1	16	0	20.6	16.5	15.5	16	16	17.5	16.3	11	10	12	9	12	10.8	1	1	0	5	2	1.8	9.2
	2	12	5	24.5	18	16	16	18	19	17	10	10	11	11	14	11.2	2	0	1	1	0	0.8	12.9
	3	18	1	18.3	18	18.5	18	16	15	17.1	11	11	12	11	9	10.8	0	4	0	3	1	1.6	7.5
generation)	4	11	4	25.5	15	18	17	19	19	17.6	8	13	13	12	15	12.2	3	0	0	2	0	1	11.2
	5	15	1	19.4	16.5	18	17	16	14.5	16.4	15	12	11	8	9	11	0	0	0	4	1	1	10.8
	average	14.4	2.2	21.66						16.88			-			11.2			•		•	1.24	10.32
Wild type	1	17	5	22.1	18	16	15.5	16	18	18.3	14	10	11	10	11	11.2	0	0	2	3	1	1.2	10
	2	22	5	25	17	15.5	13.5	16	15	15.4	12	10	9	10	9	10	0	0	0	1	0	0.2	9.1
	3	16	6	24.2	15.5	17	18	16.5	17	16.8	10	11	14	11	13	11.8	1	2	0	0	0	0.6	11.4
	4	18	0	24.9	16.5	18.5	17.5	17	15	16.9	12	15	12	11	11	12.2	2	0	0	4	0	1.2	10.5
	average	18.25	4	24.05				-		16.35						11.3						0.8	10.25

Supplementary Table 4: Characterization of *Cenh3.2* KO plants of cowpea induced by CRISPR/Cas9 based genome editing.

Supplementary Fig. 1: Schematic illustration of the cowpea CENH3 gene exon and intron structure.

a Alignment of CENH3.1 and CENH3.2 amino acid sequences. **b** Green, red and black boxes indicate the position of the peptides used for the generation of CENH3.1, CENH3.2 and CENH3 common antibody, respectively.

Supplementary Fig. 2: Phylogenetic tree based on the CENH3 amino acid sequence, with a scheme of the chromosomal *CENH3* gene locus on the right of each species.

a Genome duplication events and node ages are based on (Lavin et al. 2005; Cannon et al. 2010; Kang et al. 2014). **b** Schemata of possible mechanism of CENH3 duplication in cowpea genome. Blue arrows indicate *CENH3* gene locus and nearby genes indicated by different colours as A: Rhodanese-like domain-containing protein, B: WRKY transcriptional factor, C: unknown (exosome complex exonuclease), D: unknown, E: calcium-dependent lipidbinding domain-contained protein, F: 60S ribosomal protein L18A, respectively.

Supplementary Fig. 3: Primer design for *CENH3* genes.

a Multiple alignments of cDNA sequence from *Phaseolus vulgaris, Vigna radiata* and *Vigna angularis* for designing of RT-PCR primer sequences for cloning of *CENH3* sequences from *Vigna* species. **b** RT-PCR products from six *V. unguiculata* accessions and two V. reflex-pilosa accessions confirm the *CENH3* amplification. **c** Multiple alignments of cDNA sequences of cowpea *CENH3.1, CENH3.2,* primers for qRT-PCR (V.ungCENH3F and R), and TaqMan probes (CENH3.1Probe and CENH3.2Probe) and annealing temperature calculation of probes.

Supplementary Fig. 4: Diversity of CENH3 in Vigna species.

Multiple alignments of CENH3 proteins from different cowpea genotypes of different origin (*V. unguiculata* -Cameroon, -China, -Congo, -India, -IT86D-1010, -IT97K-499-35 and -USA), different subspecies or varietas of *V. unguiculata* (*alba, biflora, baoulensis, pawekiae, sesquipedalis, spontanea* and *stenophylla*), different diploid *Vigna* species (*V. aconitifolia, V. angularis, V. mungo, V. radiata, V.trilobata, V. umbellate* and *V. vexillata*), and different tetraploid *V. reflexo-pilosa genotypes* (*V. reflexo-pilosa var glabra* and *V. reflexo-pilosa var. reflexo-pilosa*). Conserved CENH3 domains are indicated with red-boxes. CENH3.1 and CENH3.2 amino acid mutations in cowpea accessions indicated with green- and blue-boxes, respectively.

Supplementary Fig. 5: Gene expression patterns of *CENH3.1* and *CENH3.2* in different tissue and cell types of cowpea.

a qRT-PCR analysis using RNA isolated from different tissues of cowpea. Transcript levels of each gene were normalized to *Ubiquitin28* using the $\Delta\Delta$ Ct-method (Schmittgen and Livak, 2008). Relative quantification values are calculated by fold change to root *CENH3.2*. **b** RNA-sequencing using RNA isolated from laser capture microdissected cell types of cowpea. Leaf, MMC-megaspore mother cell, fTET-female tetrads, ES2n-embryo sac (2 nuclei), ES4n-embryo sac (4 nuclei), CenC-central cell, egg, PMC.E-early pollen mother cell, PMC.L-late pollen mother cell, mTET-male tetrads, MIC-microspore, sperm. Significant difference between *CENH3.1* and *CENH3.2* within tissue types was indicated *: p< 0.05, **< 0.01 (t-test). Significant difference compares to root with different tissue types was indicated for *CENH3.1* (1*: p< 0.05, 1**< 0.01) or *CENH3.2* (2*: p< 0.05, 2**< 0.01). Indicate SD in figure (**a**).

Supplementary Fig. 6: Identification of cowpea CENPC.

Alignment of partial CENPC proteins of *A. thaliana, G. max, M. truncatula, V. angularis, V. radiata* and *V. unguiculata* (a). Phylogenetic tree based on the full length CENPC proteins of *A. thaliana, G. max, H. vulgale, M. truncatula, S. bicolor, V. angularis, V. radiata* and *V. unguiculata*.

Supplementary Fig. 7: Uncropped comparative Western blots.

Western blots of isolated nuclear proteins from wild type, *Cenh3.1* and *Cenh3.2* KO plants with anti-CENH3.1, anti-CENH3.2 and anti-histone H3. Regions used for Figure 2c, d are indicated.

Supplementary Fig. 8: Distribution of CENH3.1 and CENH3.2 immunosignals in isolated nuclei from leaf and root tissues of cowpea.

a Two categories are determined based on the configurations of CENH3 signals. Category I: Centromeric CENH3.1 and CENH3.2 signals colocalize and nuclei reveal disperse immunosignals. Category II: Centromeric CENH3.1 and CENH3.2 signals colocalize without dispersing signals. Typical examples are shown in (a). **b** Quantification of categorized leaf (n=208) and root (n=210) nuclei. Black bar: leaf nuclei, grey bar: root nuclei.

Supplementary Fig. 9: Centromeric CENH3.1 and CENH3.2 colocalize during all stages of male meiosis in cowpea.

Distribution of CENH3.1 (green) and CENH3.2 (red) are shown in pachytene, diakinesis, anaphase I, prophase II and tetrad cells.

Supplementary Fig. 10: Distribution of CENH3.1 and CENH3.2 during female meiosis of cowpea tissue sections.

a CENH3.2 immunostaining signals (green) at leptotene, zygotene and pachytene. Nuclei were counterstained with propidium iodide (red). **b** Frequency of observed CENH3.1 and CENH3.2 signals in leptotene, zygotene and pachytene cells. Bars equal 10 μm.

Supplementary Fig. 11: CENPC localization in matured pollen.

The generative nucleus of mature cowpea pollen shows colocalizing CENH3.1 (red) and CENPC (green)-specific immunosignals. The vegetative nucleus is free of centromeric immunomarks.

Supplementary Fig. 12: The centromeres of embryonic cells at early heart stage contain CENH3.1 and CENH3.2.

a and **b** CENH3.1 (green) and CENH3.2 (red) immunosignals colocalize in interphase (**a**) and prometaphase (**b**) cells. Structured Illumination Microscopy by SIM shows that both CENH3 variants occupy different centromeric subdomains (further enlarged inserts).