Supplementary Text
Detecting and defining homology in a pangenome

A crucial element underlying construction of a pangenome is being able to identify and group
homologous genes. Within a group of closely related genomes, amino acid sequences of
homologous genes are likely to be largely conserved across genomes while non-homologous
genes both within and across genomes are distinct. Thus, clusters for a species- or genus-level
pangenome may be unambiguous. Nonetheless, ambiguous homology and errors in clustering
may occur. We used two methods to investigate the overall robustness and validity of our
homology definitions — first, determining the robustness of the pangenome to various amino
acid similarity thresholds, and second, assessing the level of functional heterogeneity within our

gene clusters.

The pangenome construction approach we used compares amino acid sequences for all gene
pairs, prunes weak hits, and resolves the network of hits with the Markov Cluster Algorithm
(MCL) to determine gene clusters (Delmont & Eren 2018; http://www.merenlab.org/p). MCL
uses a hyperparameter, “inflation,” to adjust the clustering sensitivity, i.e., the tendency to split
clusters. To gauge robustness of the pangenome to the inflation parameter of the MCL
algorithm, we varied the inflation parameters by £ 2. The resultant number of gene clusters
was quantitatively similar (Table S1), differing by <0.5% for H. parainfluenzae and <2.5% for
Rothia, and the pangenome arrangement was qualitatively similar in that the overall pattern
and relative size of the genus core (in the case of Rothia), species cores, and accessory genome

remained nearly identical (Additional file 1: Fig. S7).

Gene clusters are defined purely by amino acid sequence similarity. Although functional
similarity is not part of the definition, nevertheless, intuitively one expects to produce gene
clusters that are composed of genes with similar function. We assessed the validity of this
expectation by assessing the fraction of gene clusters whose constituent genes were annotated
with different COG functions. Heterogeneity of functional annotation within a gene cluster was

rare in our data; for H. parainfluenzae, only 2.6% (75 out of 2892 gene clusters with predicted



COG functions) of gene clusters had within-cluster functional heterogeneity, and Rothia was

comparably low at 3.5% (96 of 2757 gene clusters with COG annotation).

For the specific gene clusters that we focused on in this manuscript, we used two additional
tests to assess the internal consistency of the gene clusters — functional annotation and

manually inspection of sequence alignments.

Gene clusters may be legitimately split according to amino acid sequence, and yet still
represent homologous genes carrying out the same function. For gene clusters identified as
unique to a group of interest, our functional annotation test consisted of comparing the
predicted function of that gene cluster to functions of gene clusters characteristic of other
groups. For example, of the gene clusters that were shared exclusively to Rothia sp. strains EQ4
and CO3 (the two genomes enriched in buccal mucosa metagenomes), three had functional
annotation. However, other gene clusters with identical predicted functions were found in
other Rothia genomes; therefore we did not hypothesize that these three gene clusters
conferred functions potentially important for differential survival in the buccal mucosa
environment. The sequence divergence within those gene clusters may confer differential
fitness between habitats, however, we do not feel confident enough to put forward that

hypothesis given this data.

Additionally, the internal consistency of a gene cluster can be investigated by inspecting the
alignment of its constituent amino acid sequences. An alignment of homologs should produce
clearly conserved regions across the majority of the sequence with few gaps. For instance, in
our investigation of the Haemophilus parainfluenzae, we noticed that the TD-abundant strains
were characterized by three gene clusters encoding the three subunits of oxaloacetate
dehydrogenase. A single non-TD strain (Haemophilus parainfluenzae C2004002729) also
contained one of the three gene clusters. By inspecting the sequence alighnment, which can be
obtained from the aa_sequence column of Additional file 3 by searching for “oadA” or

“GC_00001928” in Additional file 3, we discovered that the sequence from the non-TD genome



was aberrant relative to the other sequences with numerous gaps and many mismatches.
Based on the poor alignment, the inclusion of this non-TD gene sequence in the gene cluster
likely reflects mis-assignment to this gene cluster. We therefore consider the oxaloacetate

decarboxylase operon as exclusive to the genomes of TD-abundant strains.

Functions of the core and accessory genome for H. parainfluenzae and Rothia
In addition to comparing differences between genomes based on gene content, we also investigated
functional differences between core and accessory genes and between species of Rothia and strains of

H. parainfluenzae.

To investigate functional similarities and differences between core and accessory genes, we assessed
the frequencies of each COG category in core, singleton accessory, and intermediate accessory genes as
identified based on the pangenome. For simplicity we compared only genes assigned an single COG
category and omitted genes that were assigned multiple COG categories. For H. parainfluenzae, the core
consisted of gene clusters shared by all 33 genomes; the singleton accessory genome, gene clusters
found in exactly one genome; and the intermediate accessory genome, gene clusters occurring in 2-32
genomes. Overall, each portion of the pangenome contained genes belonging to each COG category
(Additional file 1: Fig. S3A) but the frequencies differed. For example, genes involved in translation (J)
and nucleotide metabolism (F) were both more numerous and proportionally more enriched in the core
genome. On the other hand, defense mechanisms (V) and the mobilome (X) were more abundant in

both the singleton and the intermediate accessory genome.

To investigate functional enrichment in one set of genomes compared to another, we recorded the
proportion of genomes containing each TIGRFAM function. From this proportional data, the enrichment
of each function in each group was determined using a logistic regression by the method of Shaiber et
al. (2020). The full enrichment data is presented in Additional file 4 for each gene. To obtain a high-level
view of which group(s) were more similar based on shared functions, we aggregated the enrichment
scores by subtracting the mean proportional occurrence of each function in the group(s) in which it was
not enriched from the mean of its proportional occurrence in the group(s) in which the TIGRFAM was
enriched (Additional file 1: Fig. S3B). For example, if a function was enriched in Groups 1 and 2 with a

proportional occurrence of 1 and 0.8 in Groups 1 and 2 but also 0.1 in Group 3, the aggregate



enrichment would be (0.8 + 1)/2 — 0.1 = 0.8. This aggregate enrichment of each function is shown in
Additional file 1: Fig. S3B. The three genes of the oxaloacetate operon unique to Group 2 stand out
clearly, but more broadly the functional similarity between groups can be estimated. Group 2 and Group
3 share more genes with higher enrichment than do Group 1 and Group 2, or Group 1 and Group 3. This
observation agrees with the arrangement of genomes based on gene cluster content shown as the

dendrogram arranging genome layers in Figure 2, which places Group 2 sister to Group 3.

Functional enrichment analysis indicated that Rothia species with similar gene cluster content also
contained similar functions. Predicted TIGRFAM functions were used to apply the same functional
enrichment analysis as for H. parainfluenzae, but this time the groups were the three Rothia species
(Additional file 1: Fig. S3C, Additional file 6). Unlike the H. parainfluenzae analysis, the number of
genomes per group varied much more substantially, with 48 R. mucilaginosa, 15 R. dentocariosa, and 4
R. aeria genomes. Yet, R. dentocariosa and R. aeria were still more functionally similar than either were
to R. mucilaginosa based on aggregate enrichment scores (Additional file 1: Fig. S3C), agreeing with the

similarity of R. dentocariosa and R. aeria genomes based on gene cluster content (Figure 3 dendrogram).

The functions enriched in each species also revealed possible sources of niche differentiation. Two
functions were found in all 15 R. dentocariosa genomes but no other Rothia species, a PTS-system
sucrose transporter component and a transcription repressor gene (Additional file 6). Further, of the 13
functions core to all R. dentocariosa and R. aeria genomes but absent from all R. mucilaginosa genomes,
three were cytochrome related (Additional file 6). As both R. dentocariosa and R. aeria appear most
abundant in plaque (Figure 3 heatmap), these cytochrome differences relative to R. mucilaginosa could
potentially reflect selection by the different oxygen conditions of their respective microhabitats within

tongue and plaque habitats.



Supplementary Figure Legends

Fig. S1. Flowchart of key methods and bioinformatic analyses performed. Boxes represent datasets
(color coded by category / filetype), and arrows show the programs used to connect or transform the
data. The shaded portion on the right (starting with “Individual metagenomes”) was performed for each
oral site independently (i.e. once each for tongue dorsum, buccal mucosa, and supragingival plague),
and then the habitat-specific metapangenomes were combined onto a single pangenome, as described
in the Methods.

Fig. S2. Gene detection in metagenomes is largely bimodal. For all metagenomes covering at least half
the nucleotides in a genome, the detection (fraction of each gene receiving any coverage at all) of all
genes that genome was counted. For A) H. parainfluenzae and B) Rothia spp., the number of
metagenomes (y axis) providing each observed gene detection is plotted as a histogram. The genes were
split into two categories (colors) — those determined to be environmentally accessory genes (EAG) or
environmentally core genes (ECG) by having a median coverage less than or at least 0.25x the parent
genome’s median coverage, respectively. C) and D) show the probability density function for H.
parainfluenzae and Rothia, respectively, using the same gene detection data shown in A and B.
Detection is shown on the x-axis, and the y-axis shows the probability of the metagenomes producing
that detection. The distribution of detections for EAGs are shown in orange and ECG in blue.

Fig. S3. Functional similarities in the pangenome. A) COG categories of the different H. parainfluenzae
pangenome fractions (x-axis). The pangenome was apportioned into the core genome (gene clusters
found in all genomes), the singleton accessory genome (gene clusters in exactly one genome), and the
intermediate accessory genome (the remaining gene clusters). The height of each bar shows the number
of COG-annotated gene clusters per pangenome portion, colored by COG category. Only gene clusters
annotated with a single COG category, or none, were included. B) Enrichment of TIGRFAM functions in
by group of H. parainfluenzae genomes detected in the pangenome (Figure 2). Each group or
combination of groups is listed along the x axis. The y-axis is the count of TIGRFAM genes enriched by
group, with each gene colored by its aggregate proportional enrichment. Aggregate enrichment was
calculated for each TIGRFAM by subtracting the mean proportional occurrence of each function in the
group(s) in which it was not enriched from the mean of its proportional occurrence in the group(s) in
which the TIGRFAM was enriched. C) The same analysis as in B is shown but for species of the genus
Rothia.

Fig. S4. Comparison of genome relatedness by gene content with phylogenomics, 16S, and sourmash.
A) Phylogenomic tree based on 139 concatenated single-copy core genes. Tip names colored in red
correspond to those of Group 2 in Figure 2. B) Pangenome is arranged as in Figure 2, but the yellow
heatmap shows 16S % similarity and the red heatmap shows sourmash similarity. Each heatmap’s order
from bottom to top matches the order from left to right.

Fig. S5. Syntenic arrangement of Rothia mucilaginosa genomes relative to a R. mucilaginosa subgroup
1 genome (R. sp. E04). Gene clusters from R. mucilaginosa genomes are arranged in syntenic order
according to R. sp. EO4 (red arrow); gene clusters not found in R. sp. EO4 are omitted. Red arrows above
and below mark the 22 gene clusters uniquely shared by both R. sp E04 and R. sp C03 (blue arrow). The
order and spacing of layers is identical to that Figure 2 but linearized.

Fig. S6. R. sp. C03 gene-level recruitment of HMP metagenomes. Layout as in Figure 4A but for R. sp.
C03. Genes shared with R. sp. E04 are marked to also show that the genes unique to the BM-enriched
subgroup are also well distributed throughout the genome.

Fig. S7. Comparison of varying MCL inflation factors on pangenome structure. Identical pangenomes
were run but with varying MCL inflation factors. The left and right columns of pangenome plots show
the H. parainfluenzae and Rothia pangenomes, respectively. The MCL inflation parameter used for each
pangenome shown is listed next to the central dendrogram.
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Haemophilus parainfluenzae Rothia
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