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1. Supplementary Figures 

 

 

Fig. S1. Distributions of participants’ mean adjustment and correlations across the four experimental 

conditions. Outer histogram panels show frequency distributions of participants’ mean adjustments 

(𝑠̅) towards the mean social information for each condition (LN: low variance, no skewness; HN: high 

variance, no skewness; HF: high variance, cluster of two peers relatively far from the participants first 

estimate; HC: high variance, cluster of two peers relatively near to the participant’s first estimate). 

Left (right) grey areas in each panel represent values of 𝑠̅ below 0 (above 1). Across conditions, almost 

all participants had, on average, an 𝑠̅ value between 0 and 1, implying they did not adjust away from 

the social information (i.e., 𝑠̅ < 0), nor adjust beyond the mean social information (i.e., 𝑠̅ > 1). Scatter 

plots show correlations between participants’ mean 𝑠̅ across the respective conditions. Dots represent 

participants, and the top left of each panel shows Pearson’s r, with 95% credible intervals (CI) in square 

brackets. Overall, we find strong correlations between participants’ mean adjustments across 

conditions, indicating consistent inter-individual differences in social information use. Furthermore, 

participants’ mean adjustments averaged across all conditions correlated in the expected directions 

with self-reported questionnaire scales measuring conformity (Pearson’s r=0.26, CI=[0.06, 0.44]), 

individualism (r=-0.20, CI=[-0.39, 0.00]), and resistance to peer influence (r=-0.23, CI=[-0.42, -0.03]), in 

line with previous findings using this paradigm [1].  
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Fig. S2. Adjustments in control conditions in which participants did not observe the stimulus, but only 

observed four peer estimates. Trials were created by first drawing one estimate (E1’) at random from 

the pool of pre-recorded estimates. Then, three additional pre-recorded estimates were drawn 

analogous to the four experimental conditions (see Methods). Before plotting, data was normalized 

in the same way as Fig. 2a-d, taking E1’ as the reference point. Histograms show distributions of 

estimates in the same colour coding as Fig. 2a-d. For comparison, in the grey background on top of 

each panel we summarize behaviour in conditions where participants did observe the stimulus (cf. Fig. 

2a-d; blue boxplot: distributions of relative estimates; insets: relative frequencies of each of the 

qualitative cases). 
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Fig. S3. Both in experimental (i.e., with observing the stimulus; coloured dots and boxplots) and 

control (i.e., without stimulus; grey dots and boxplots) conditions, participants systematically deviated 

from an ‘ideal Bayesian observer’, who would weigh all estimates equally. Boxplots and dots show the 

absolute difference between participants’ second estimates and the arithmetic mean of all four 

estimates (see Methods more details). Participants deviated more from the arithmetic mean in the 

experimental conditions compared to the control conditions.  
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Fig. S4. Proximity-based weighting can account for responses (E2’) in the control rounds in which 

participants did not observe the stimulus. The blue line shows the mean absolute difference between 

per-round predictions and observed responses as a function of parameter β (capturing proximity-

based weighting as the extent of discounting of social information that is inconsistent with other social 

information). This model assumes that each response is an average of the pieces of social information 

(Xi), weighted according to their summed distance (d) to other pieces of social information. Formally, 

predicted responses are calculated as: 𝐸2 ′̂ = ∑ 𝑤𝑖 ∙ 𝑋𝑖
4
𝑖=1 . In this formula, the weighting of each piece 

of social information (wi) is determined by discount factor β: 𝑤𝑖 =
𝑑𝑖

−𝛽

∑ 𝑑𝑗
−𝛽4

𝑗=1

, where 𝑑𝑖 =

∑ |𝑋𝑖 − 𝑋𝑗|4
𝑗=1 . When β > 0, more weight is assigned to social information when it is closer to other 

social information. We observe that the model predictions match the observed responses best when 

β ≈ 1.3. We interpret this as evidence of proximity-based weighting: on average, participants tend to 

assign more weight to social information when it is closer to other social information.  
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Fig. S5. Recovery of all parameters of the full model. The dots and error bars indicate mean and the 

95% CI of the posterior mean estimates. The diagonal line indicates the position expected under 

perfect parameter recovery. For the majority of recovered parameter estimates, the generating 

(input) parameters lie within the 95% CI. This indicates that the model parameters are identifiable. 

The parameter estimates for 𝛼′𝑘𝑒𝑒𝑝 and 𝛼′𝑎𝑑𝑜𝑝𝑡  are lower than the generating parameter values. This 

is a result of choosing priors for the group-level parameters reflecting our expectation that high 

probabilities to keep or adopt are less likely (see Table S4). In each panel, numbers in the top left 

corner indicate Spearman’s correlation coefficient. 
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Fig. S6. Correlation of predictions of the best-fitting cognitive model (y-axis) with the empirical data 

(x-axis). a-b, Predictions for the 20 rounds of the 4 experimental conditions, to which the model was 

fitted (i.e. the ‘training set’). a, Mean adjustment for each participant. b, Fraction of rounds in which 

they chose to choose to ‘keep’ their first estimate. We observe that the predictions of the cognitive 

model closely match data in the experimental conditions. c-d, Predictions for the ‘filler’ trials with 

social information randomly drawn from previous participants (on which the model was not trained). 

Also for these out-of-sample predictions, the model quite closely tracks the empirical data. As for 

previous predictions we sampled 10 estimates for each participant and trial. In each panel, numbers 

in the top left corner indicate Pearson’s correlations.  
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Fig. S7. Social information tends to have the strongest impact when at intermediate distance. We 

simulated trials that systematically varied the distance between individuals’ own first estimates and 

the mean social information (𝛥 = |𝑋̅ − 𝐸1| / 𝐸1). Dots show predicted mean adjustments as a 

function of the mean distance to three pieces of social information, for three levels of ‘peer proximity’, 

with peer estimates at 0, 3 or 6 numbers away from each other (respectively reflecting ‘low’, ‘medium’ 

or ‘high’ variance). We observe that mean shifts for each level are highest when the distance of social 

information is intermediate. This shows that our model is able to recover key results from previous 

studies showing this nonlinear effect of the distance of social information [2,3]. When the distance to 

mean social information is very low, individuals are very likely to keep their first estimates. When the 

distance to mean social information is very high, individuals are likely to compromise, but assign little 

weight to social information, again leading to reduced average adjustments. At intermediate distance, 

social information has the strongest impact: in those cases, the likelihood that individuals keep their 

first estimates is very close to zero, but when compromising, they still assign positive weight to social 

information. These effects hold across various levels of peer proximity. As expected, lower variance in 

social information leads to larger mean adjustments. Note that simulations with peers farther away 

from each other (i.e. ‘high’) start at higher values of Δ to avoid that the social information brackets 

the own first estimate. Including these ‘bracketed’ cases would show nonlinear adjustment patterns, 

because near Δ=0 the distance to the nearest peer is a nonlinear function of Δ.  
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Fig. S8. Relative position of peers as shown in each of the experimental conditions. Social information 

was based on data from a pre-recorded pool of 100 MTurkers who completed the task without social 

information. We assigned an experimental condition to each of the 30 rounds and calculated for each 

value of E1 the ‘triple’ of previous estimates that most closely matched the experimental condition 

(see below, Section 3a, ‘Definition of experimental conditions’, for a formal description). The graph 

shows for each condition where the peers were located in the actual experiment, expressed as their 

absolute deviation from E1, divided by E1. Colour coding: red: nearest peer, blue: middle peer, green: 

farthest peer. Coloured squares show for each of the three peers their average position (cf. Fig. 1e).   
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Fig. S9. The lower left side shows the joint posterior samples of the group-level means of the best fitting model. The upper right side displays Pearson 

correlation coefficient among these parameters. We find correlations between some mean and corresponding variance parameters. Apart from this finding, 

we do not find very strong correlations among the parameters indicating that the parameters are relatively independent (suggesting that the marginal 

distributions of the parameters can be interpreted in isolation). To have comparable measures for all parameters we display the mean and variance of the 

group-level beta distribution of 𝛼′𝑘𝑒𝑒𝑝 via: 𝜇 =
𝛼

𝛼 + 𝛽
, 𝜏 =

𝛼𝛽

(𝛼+𝛽)2 (𝛼+𝛽+1)
. 
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2. Supplementary Tables 
 

Table S1. Determinants of participants’ social information use. Numbers on the left hand side show 

results from a Bayesian linear mixed model (LMM; fitted with the R-package brms [4] version 2.13.5, 

using default priors) fitted to participants’ average adjustments towards the mean social information 

across the rounds of each of the experimental conditions, with ‘participant’ as varying intercept. 

Numbers between brackets indicate 95% posterior credible intervals. On the right-hand side, we show 

pairwise comparisons between experimental conditions. Average adjustments were calculated as the 

relative distance adjusted towards the mean social information (Fig. 1d), across the five rounds of each 

of the four experimental conditions (LN, HN, HF, HC; Fig. 1e), yielding four data points for each 

participant. We omitted those rounds in which a participant adjusted away from the mean social 

information. The LN condition was used as the baseline. Relative to that baseline, the HN and HF 

conditions had a strong negative effect. The HC condition had a smaller negative effect. Pairwise 

comparisons indicate that, except for the HN and HF conditions, all pairs of experimental conditions 

differed significantly from each other. Age and gender did not seem to affect social information use 

(the 95% CI shown for ‘age’ is rounded from [-0.004, 0.004]). To quantify the participants’ constancy 

of displayed behaviour across conditions we also derived the commonly used index of ‘repeatability’ 

for this model (R=0.79 [0.70, 0.84]) [5]. Finally, an LMM fitted to adjustments in individual rounds, 

with ‘round’ as an additional predictor, confirms the results shown here, and reveals that adjustments 

did not change over the course of the experiment (see Table S7). 
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Table S2. Marginal effects of experimental conditions on participants’ use of adjustment strategies. 

Values indicate for each condition the predicted relative frequencies of adjustment strategies - 

keeping, compromising, adopt the nearest peer (X1), and all ‘other’ cases pooled - from a mixed 

multinomial regression with ‘participant’ as varying intercept (cf. insets Fig. 2a-d of the main text), 

fitted with the R-package brms[4] version 2.13.5, using default priors. Values in brackets indicate 95% 

posterior credible intervals. Apart from the experimental conditions, the regression model also 

included age and gender, neither of which had credible non-zero effects on any of the relative 

frequencies.  

 

 

 

 

  



Page 13 of 50 
 

Table S3. The comparison of all versions of the cognitive models with all possible combinations of 

considered features. We compared models with (1) and without (0) each of the four features (keeping, 

adopting, confirmation-based and proximity-based weighting) and calculated the looic. The 

differences in expected log pointwise predictive density (‘elpd_diff’) indicate the expected predictive 

accuracy of each model compared to the model with the lowest looic (i.e., rank 1), with ‘se_diff’ 

indicating the corresponding standard error. The best-fitting model includes the keep heuristic, 

confirmation- and proximity-based weighting, but not the ‘adopt’ heuristic. Note that the model 

including ‘adopt’ (i.e., rank 2) has only marginally lower predictive accuracy. Inspection of the results 

from the full model (including all features) reveals that predicted probabilities of adopting are very 

low. 
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Table S4. The parameters shaping the group-level distributions, their priors, their upper (lower) 

bounds and the model estimates of the best fitting model (i.e, without the ‘adopt’ heuristic). The 

parameters μ and 𝜏describe the mean and standard deviation of group-level normal distributions and 

𝛼 and 𝛽 the two parameters shaping the group-level beta distributions. Standard deviations and 

parameters describing the beta distributions were truncated at 0.01 to avoid zero or negative values. 

Subscripts p and s respectively indicate personal and social information; the other subscripts refer to 

their respective model feature (confirmation- or proximity-based weighting; heuristics of keeping or 

adopting). The right-hand side column shows the parameter estimates of the best-fitting model, with 

brackets indicating 95% posterior credible intervals. This model did not include the ‘adopt’ heuristic 

(see Table S3) so no values are shown for the parameters associated with that heuristic. 
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Table S5. Pearson correlations for the mean posterior parameter estimates across participants of the 

best-fitting model, with 95% posterior credible intervals in brackets. Overall, we did not find strong 

correlations between pairs of parameter estimates, with three exceptions: (i) A low weight on own 

first estimates (higher 𝜎2
𝑝)  is associated with stronger proximity-based weighting (higher 𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦) 

and (ii) a lower tendency to keep their first estimates (lower 𝛼′𝑘𝑒𝑒𝑝). (iii) A stronger tendency to keep 

first estimates (higher𝛼′𝑘𝑒𝑒𝑝) is associated with a lower sensitivity to the distance of the nearest peer 

(less negative 𝛽𝑘𝑒𝑒𝑝). 
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Table S6. Description of the model parameters and the parameters of their group-level distribution.  

Model feature  Parameter Group-level distributions Description 

Keep 

Keep intercept 𝛼′𝑘𝑒𝑒𝑝 𝐵𝑒𝑡𝑎(𝛼𝛼′𝑘𝑒𝑒𝑝
, 𝛽𝛼′𝑘𝑒𝑒𝑝

) A value between zero and one 
describing the baseline 
probability of keeping the first 
estimate. 

Keep slope 𝛽𝑘𝑒𝑒𝑝 𝑁(𝜇𝛽𝑘𝑒𝑒𝑝
, 𝜏𝛽𝑘𝑒𝑒𝑝

) The influence of the distance of 
the nearest peer on the 
probability to keep the first 
estimate. 

Adopt 

Adopt intercept 𝛼′𝑎𝑑𝑜𝑝𝑡 𝐵𝑒𝑡𝑎(𝛼𝛼′𝑎𝑑𝑜𝑝𝑡
, 𝛽𝛼′𝑎𝑑𝑜𝑝𝑡

) A value between zero and one 
describing the baseline 
probability of adopting the 
estimate of a  peer. 

Adopt slope 𝛽𝑎𝑑𝑜𝑝𝑡 𝑁(𝜇𝛽𝑎𝑑𝑜𝑝𝑡
, 𝜏𝛽𝑎𝑑𝑜𝑝𝑡

) The influence of distance on the 
probability to adopt the estimate 
of a peer. 

Compromise 

Uncertainty first 

estimate 

𝜎2
𝑝 𝑁(𝜇𝜎2

𝑝
, 𝜏𝜎2

𝑝
) Uncertainty associated with 

personal information (i.e. the 
first estimate, E1) 

Intercept 

uncertainty peer 

estimate 

𝛼𝑠 𝑁(𝜇𝛼𝑠
, 𝜏𝛼𝑠

) The intercept uncertainty 
associated with the peer 
estimates (Xi) 

Confirmation- 
based weighting 

𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑁(𝜇𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛
, 𝜏𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛

) The influence of closeness of the 
peer estimate to the first 
estimate on the uncertainty 
associated with the peer 
estimate 

Proximity-based 
weighting 

𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝑁(𝜇𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦
, 𝜏𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦

) The influence of proximity of the 
peer estimate to other peers on 
the uncertainty associated with 
the peer estimate 
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Table S7. Determinants of participants’ social information use in individual rounds of the 

experiment. Estimates show results from a Bayesian linear mixed model (LMM; fitted with the R-

package brms [4] version 2.13.5, using default priors) fitted to participants’ adjustments towards the 

mean social information in the rounds of each of the experimental conditions, with round number, 

experimental condition (LN, HN, HF or HC), age and gender as predictors. We further included 

‘participant’ as varying intercept, and random slopes for round number. Numbers between brackets 

indicate 95% posterior credible intervals (the 95% CI shown for ‘round’ is rounded from [-0.001, 

0.002], and for ‘age’ from [-0.004, 0.004]). We observe that ‘round’ does not predict social 

information use, suggesting that over time, individuals did not change their social information use. 

Treatment effects are very similar to those reported in Table S1. 

 

  
  

Estimate 95% CI

round 0.00 [-0.00, 0.00]

Low variance, No skew (LN); baseline 0.36 [0.18, 0.55]

High variance, No skew (HN) -0.13 [-0.16, -0.10]

High variance, cluster far from E1 (HF) -0.14 [-0.16, -0.11]

High variance, cluster close to E1 (HC) -0.05 [-0.08, -0.02]

Age 0.00 [-0.00, 0.00]

Gender (0=male, 1=female) 0.04 [-0.06, 0.13]

N 95

n 1839
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3. Supplementary Methods 

  

3a. Behavioural experiment 

 

General procedures and experimental paradigm. We recruited 100 participants from Amazon 

Mechanical Turk (MTurk), restricted to US citizens, and to MTurkers with a minimum approval rate of 

95%. By clicking the link to the experimental pages, participants confirmed informed consent. Five 

participants dropped out during the task and did not receive any payment, resulting in 95 participants 

(57% male, mean ± s.d. age = 36 ± 11 years). The online experiment was programmed in LIONESS Lab 

[6].  

 

The experimental task is based on a validated perceptual judgment paradigm for quantifying social 

information use (BEAST [1]; Fig. 1a-c). The basic version of this task has been used in samples from 

various ages and cultural backgrounds [1,7,8], and has been shown to have high test-retest reliability 

with participants recruited from MTurk [1]. In each of 30 rounds (5 per experimental condition, plus 

10 ‘filler’ rounds with randomly selected social information, see section ‘Definition of experimental 

conditions’ below), participants observed an image with 50-100 animals for 6 seconds and had to 

estimate how many animals there were. They entered their estimates with a slider limited from 1 to 

150 (for screenshots, see section Experimental Materials below). After submitting their first estimate 

(E1), they observed the estimates of three other participants (X1, X2, X3) who had completed the same 

task before but without receiving social information. After observing the social information, 

participants provided a second estimate (E2). No feedback about performance was given during the 

task, curbing participants’ learning about the accuracy of their own first estimates, or whether their 

responses to social information led to an improved performance.  

 

Participants were rewarded for accuracy, earning 100 points if their estimate was exactly correct (both 

for E1 and E2). For each animal they were off, five points were subtracted (but earnings in a round 

could not drop below zero). At the end of the session, one decision was randomly chosen from each 

of the experimental ‘blocks’ (see below) for bonus payment (100 points = $1.00), which came on top 

of a flat fee of $4.50. Total earnings ranged from $4.50 to $7.00 (average $5.50). Participants took, on 

average, 35 minutes, resulting in an hourly wage of $9.50. Experimental sessions ended with a short 

questionnaire in which we recorded participants’ age and gender, and measured individualism [9], 

social conformity [10], and resistance to peer influence [11]; see caption of Fig. S1. 
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To study the effects of disparate social information on behaviour, we used four experimental 

conditions (Fig. 1e of the main text). Across conditions, we systematically manipulated the variance 

and skewness of the distributions of social information, while keeping the distance between the mean 

social information (𝑋̅) and E1 constant. To achieve experimental control without deception, we first 

recorded a large (N=100) pool of estimates made by MTurkers for each image shown in the main 

experiment. Like in the main experiment, the MTurkers in this ‘pre-test’ were rewarded for accuracy: 

after making their estimates, we randomly selected one estimate for payment (earning 100 points if 

their estimate was correct; five points were subtracted for each animal off; earnings could not be 

lower than zero; again, 100 points = $1.00). In a given round of the main experiment, the three pieces 

of social information were selected based on the participant's first estimate and the experimental 

condition assigned to that round (for implementation details, see section ‘Definition of experimental 

conditions’ below). This procedure resulted in clearly defined experimental conditions (Fig. S7). We 

randomly shuffled the order of experimental conditions across rounds and held this order fixed for all 

participants.  

 

Definition of experimental conditions. Participants faced four experimental conditions in which they 

could adjust their first estimates based on three pieces of social information. These conditions varied 

in the variance and skewness of the social information (Fig. 1e, main text). For each round, for each 

possible first estimate (E1) we considered each possible triple of unique pre-recorded estimates, and 

calculated the first three moments of its distribution (mean μ, variance σ2 and skewness γ). To 

determine which triple would be shown in a given condition in a given round for a given value of E1, 

we used a cost function that assigned penalties (L) to deviations from the target mean (Tμ), target 

variance (Tσ
2 ) and target skewness (γ).  For each round, for each possible value of E1 we selected the 

triple with the lowest L. The cost functions L for each condition are given in the below table, which 

shows the penalties for deviations from the target mean, variance and skewness in separate columns: 

 

Mean  Variance  Skewness 

Low variance, no skew (LN) 

100 ∙ | μ – Tμ | + 10 ∙ | σ2 - Tσ
2 | + 10 ∙ | γ | 

High variance, no skew (HN) 

100 ∙ | μ – Tμ |  +  10 ∙ | σ2 - Tσ
2 | + 500 ∙ | γ | 
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High variance, cluster far from E1 (HF) 

 100 ∙ | μ – Tμ |  + 10 ∙ | σ2 - Tσ
2 |  - 1,000 ∙ γ’ 

High variance, cluster close to E1 (HC) 

 100 ∙ | μ – Tμ |  +  10 ∙ | σ2 - Tσ
2 | + 1,000 ∙ γ’ 

 

In all conditions, Tμ was set to deviate 20% from E1. We held this distance fixed to avoid possible effects 

of the mean deviation of social information on its impact on behaviour [2,3] (see also Fig. S7 for an 

illustration of how this deviation may affect social information use). For further standardization, Tμ 

was always in the direction of the true value A[1,12]. Formally, Tμ = 1.2 ∙ E1  if (E1>A) and Tμ = 0.8  ∙ E1 

if (E1<A). We set Tσ
2  =10 for the LN condition and Tσ

2  =100 for all other experimental conditions. For 

the LN and HN we aimed for symmetric distributions so we penalized positive absolute values of γ. For 

HF and HC, target skewness depended on whether E1 was higher or lower than A. To this end, we used 

γ’ which was equal to γ if E1>A and equal to -γ if E1<A. This procedure ensured that participants faced 

well-defined experimental conditions (Fig. S8). For the 10 ‘filler’ rounds, which were intermixed with 

the experimental rounds, we randomly drew social information from the pre-recorded pool.  

 

We further implemented two control conditions completed in separate blocks of the experimental 

session (these blocks were completed in randomized order). First, participants completed trials in 

which they did not observe the stimulus themselves, but only observed the estimates of four peers 

(Fig. S2). The distribution of these peer estimates emulated the distributions of social information in 

each of the experimental conditions, enabling us to compare how individuals integrate personal and 

social information with a control in which individuals integrate four pieces of information, none of 

which is their first estimate. Second, participants could observe the estimate of only one peer whose 

deviation from the individuals’ first estimate matched that of the mean deviation in the four 

experimental conditions. The results from this one-peer control condition are not the focus of this 

paper and will not be reported here.  

 

Participants’ belief that social information was real. Estimates in our experiment were incentivised 

so that participants should only adjust them based on social information in case they think it will 

improve their accuracy. The fact that overall, adjustments were quite substantial, suggests that 

participants trusted the social information. Furthermore, in a separate study using a basic version of 

the BEAST paradigm (manuscript in preparation), we asked participants to elaborate on how they 



Page 21 of 50 
 

integrated the estimates of other MTurkers into their own judgments. Out of 209 participants, only 

three expressed doubt about the veracity of the social information shown to them (and hence chose 

to ignore it). This suggests that the vast majority of MTurkers tend to trust that the real social 

information in our experiment was indeed real. 

 

3b. Cognitive Model 

 

In this section we describe and analyse our cognitive model explaining social information use in our 

experiments. We first formalize our model assumptions below, and then present the model analysis. 

We conclude this section with robustness checks.   

 

Overview. To gain a detailed understanding of how individuals in our experiment integrated social 

information, we developed a set of models that combine simple heuristics (keeping and adopting) and 

more complex strategies (compromising; cf. Fig. 3a). In our model, individuals first select their 

adjustment strategy (‘keep’ their own personal estimate, ‘adopt’ the estimate of the nearest peer, or 

‘compromise’ towards the social information).  We assume that an individual’s strategy selection 

depends on the distance between their own first estimate and the estimate of the nearest peer 

[13,14]. If individuals select the compromising strategy, the weight of each of the peer estimates 

depends on its distance to an individual’s own first estimate (‘confirmation-based weighting’ 

[2,3,12,15]), and its distance to other peer estimates (‘proximity-based weighting’; Fig. S4 [13,14]).  

 

Our assumptions are reflected in four model features which define the selection of (i) the keep 

heuristic, or (ii) the adopt heuristic, and, when compromising, the weighting of social information 

based on (iii) confirmation or (iv) proximity. We use Bayesian techniques to examine the effects of 

each of these model features separately, as well as any combination of features. By identifying the 

combination of model features that best explain the experimental data, and examining their best-

fitting parameters, we obtain a detailed picture of how individuals select an adjustment strategy, and 

how they implement the weighting of personal and social information.  

 

 

Choosing an adjustment strategy (keep, adopt or compromise).  Individuals choose one of the three 

strategies with respective probabilities P(keep), P(adopt), and P(compromise). The sum of the three 

probabilities adds up to 1 [16]. The probability to keep is given by the logistic function 𝑃(𝑘𝑒𝑒𝑝) =

[1 + exp(−𝐾)]−1, where 𝐾 = 𝛼𝑘𝑒𝑒𝑝 +  𝛽𝑘𝑒𝑒𝑝  ∙  𝑑1. In this formula, the parameters 
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𝛼𝑘𝑒𝑒𝑝 and 𝛽𝑘𝑒𝑒𝑝determine the intercept and slope of the logistic function, and 𝑑1 is the absolute 

distance between the first estimate and the nearest peer estimate: 𝑑1 = |𝐸1 − 𝑋1|. Likewise, we 

define the probability to adopt the estimate of the nearest peer as 𝑃(𝑎𝑑𝑜𝑝𝑡) = [1 + exp(−𝐴)]−1, 

where 𝐴 = 𝛼𝑎𝑑𝑜𝑝𝑡 +  𝛽𝑎𝑑𝑜𝑝𝑡  ∙  𝑑1.  Note that we do not include the possibility to adopt the estimates 

of the peers that were not the nearest, as this rarely happened in our data (Fig. 2) and would make 

the model overly complicated. Finally, the probability to compromise is given by: 1 - P(keep) - P(adopt). 

In our model fitting procedure, we explore the values of the α and β parameters to find the mixture 

of the probabilities P that best predict the experimental data. Our fitting procedure was constrained 

to exclude theoretically impossible cases of P(keep) + P(adopt) > 1. The model code is available via 

https://osf.io/rmcuy/. 

 

Implementation of compromising. We model compromising as a Bayesian updating process [17–20] 

(cf. Fig. 3a). In this process, individuals weigh personal information (their own first estimate; E1) and 

social information (the peer estimates; X1-3) to produce an updated estimate (their second estimate; 

E2; cf. Fig. 3a). We represent personal and social information as probability density distributions with 

means at the observed estimates (E1 and X1-3). Each of these distributions has a variance, which 

indicates subjective uncertainty associated with the estimate. This uncertainty is inversely related to 

the weight an individual will assign to that estimate in the updating process. For example, a very 

uncertain piece of social information (with a high variance assigned to it) will not much affect beliefs, 

while a very certain piece of social information (with low variance assigned to it) might cause a 

substantial shift in beliefs. In our model of compromising, we are interested in how the assignment of 

these variances that individuals assign to a piece of social information depends on (i) its degree of 

agreement with the individual’s personal information (E1), i.e., confirmation-based weighting; and (ii) 

its degree of agreement with other pieces of social information, i.e., a proximity-based weighting.  

 

We assume that an individual’s initial (prior) belief 𝐸𝑝 about the number of animals (N) follows a 

(discretised; see below) normal distribution centred around the first estimate E1. The uncertainty of 

the initial belief is captured in the variance of the distribution (𝜎𝑝
2): 𝑝( 𝐸𝑝 | 𝑁 )  ∼ 𝑁𝑜𝑟𝑚( 𝐸1 , 𝜎𝑝

2). For 

modelling the quantity judgments in our task, normal distributions are a natural choice to represent 

uncertainty around a point estimate. These distributions have two desirable properties. First, their 

probability density is highest at the centre. This seems reasonable as in our case, participants are 

incentivised to enter values they deem most likely. Second, the probability density is symmetrically 

decreasing as values are further away from the centre. Indeed, using normal distributions to represent 

https://osf.io/rmcuy/
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uncertainty round a point estimate is a common approach in Bayesian models of belief updating, 

including models considering social information [18]. 

 

These distributions are typically modelled as continuous density functions. Note that in our 

experiments, values of ‘beliefs’ were restricted to integer numbers from 1 to 150 (the range of the 

slider for entering estimates). To reflect this fact, and to make our analysis of compromising consistent 

with heuristics of keeping and adopting (by definition also restricted to integers), we discretised the 

normal distributions by calculating the relative probability of each integer from 1 to 150 and 

normalizing the sum of all probabilities to 1. Note that compromising generates a probability 

distribution of updated (second) estimates, which might include the individuals’ own first estimate, 

and the estimate of a peer. As a consequence, compromising might result in instances of keeping or 

adopting.  

 

Weighting personal and social information. Like individuals’ own first estimate, we model social 

information (𝑆𝐼𝑠) as discretised normal distributions centred around peer estimates (𝑋𝑠), with 

subjective uncertainty 𝜎𝑠
2: 𝑝( 𝑆𝐼𝑠 | 𝑁 )  ∼ 𝑁𝑜𝑟𝑚( 𝑋𝑠 , 𝜎𝑠

2), where the subscript s indexes each peer 

estimate. Both 𝜎𝑝
2 and 𝜎𝑠

2 are free parameters indicating how much weight individuals assign to the 

personal and social information, with high values (i.e., more uncertainty) indicating less weight. When 

𝜎𝑝
2  < 𝜎𝑠

2, participants assign more weight to their personal first estimate than to those of others. 

Individuals can adjust the weight they assign to social information (𝜎𝑠
2) based on the extent to which 

it confirms their own prior belief, and its proximity to the other two peer estimates.  

 

Confirmation-based weighting depends on the absolute distance between a peer estimate and an 

individual’s first estimate (𝑑𝑠 = |𝐸1 − 𝑋𝑠|). This distance impacts the uncertainty assigned to the 

estimate: 𝜎𝑠
2 =  𝛼𝑠  +  𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ∙  𝑑𝑠, where 𝛼𝑠 and 𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 respectively determine the 

intercept and slope of the weighting function. Positive values of 𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 imply that peer 

estimates agreeing more with an individual’s first estimate receive more weight.  

 

Proximity-based weighting of a peer estimate depends on its summed absolute distance (e.g., 𝜏1 =

|𝑋1 − 𝑋2|  + |𝑋1 − 𝑋3|) to the other two peer estimates: 𝜎𝑠
2 =  𝛼𝑠  +   𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦  ∙  𝜏𝑠. Positive values 

of 𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦imply that peer estimates agreeing more with other peer estimates receive more weight. 

When we consider both confirmation- and proximity-based weighting simultaneously, they shape 

uncertainty 𝜎𝑠
2 in an additive fashion.  
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Bayesian updating: calculating the posterior. As outlined above, we model compromising as a process 

of Bayesian updating. Here we formulate the updating process. Individuals have two sources of 

information to infer the number of animals (N): (i) The individual’s personal belief about the number 

of animals (𝐸𝑃) and social information provided by the peers (𝑋𝑠), with s=1:k, and k being the group 

size. Personal beliefs are expressed as a discretised normal probability distribution centred around 

first estimate (𝐸1 ) and associated with uncertainty (𝜎2
𝑝): 

 

 𝑝( 𝐸𝑝 | 𝑁 )  ∼ 𝑁𝑜𝑟𝑚( 𝐸1 , 𝜎2
𝑝). 

 

Similarly, we model social information (𝑆𝐼𝑠) as a discretised normal probability distributions centred 

around peer estimates 𝑋𝑠, with associated uncertainties (𝜎2
𝑠): 

 

  𝑝( 𝑆𝐼𝑠 | 𝑁 )  ∼ 𝑁𝑜𝑟𝑚( 𝑋𝑠 , 𝜎2
𝑠). 

 

With only one peer (i.e. k = 1) we obtain the (posterior) probability of N animals by applying Bayes’ 

rule:  

 

𝑝( 𝑁 |  𝐸𝑝, 𝑆𝐼1 )  =  
𝑝( 𝐸𝑝 | 𝑁 )  ∗  𝑝(𝑆𝐼1 |  𝑁)  ∗  𝑝(𝑁)

𝑝(𝐸𝑝, 𝑆𝐼1 | 𝑁)
 

 

Here, 𝑝( 𝑁 |  𝐸𝑝, 𝑆𝐼1 ) is the updated ‘posterior’ belief about the number of animals (N) given personal 

and social information (𝐸𝑝 and 𝑆𝐼1, respectively). We assume that before observing the images with 

the animals, individuals have no prior expectations regarding N. We therefore model p(N) as a uniform 

distribution across the response scale (bounded between 1 and 150).  

 

When individuals observe three peers (as in our experimental conditions), a similar updating 

procedure is conducted with all peer estimates: 

 

 𝑝(𝑁 |𝐸𝑝, 𝑆𝐼1, 𝑆𝐼2, 𝑆𝐼3)  =  
𝑝( 𝐸𝑝 | 𝑁 ) ∗ 𝑝( 𝑆𝐼1 | 𝑁 ) ∗  𝑝( 𝑆𝐼2 | 𝑁 ) ∗ 𝑝( 𝑆𝐼3 | 𝑁 ) ∗ 𝑝(𝑁)

𝑝(𝐸𝑝,𝑆𝐼1,𝑆𝐼2,𝑆𝐼3 | 𝑁)
 

 

Note that the order of social information is not affecting the outcome of this updating process. In the 

probability density functions, we set the minimum values to 10−30to avoid outcome probabilities of 

zero. 
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Model analysis. We fitted the model using a  hierarchical Bayesian inference technique implemented 

with RStan in R[21,22]. We used a hierarchical model structure, in which each model parameter had 

a higher-order prior (see Table S6). For all model parameters (except two, see below), priors were 

normal distributions with hyperparameters describing the mean and variance. The only exceptions to 

this were 𝛼𝑘𝑒𝑒𝑝 and 𝛼𝑎𝑑𝑜𝑝𝑡. Many participants (almost) never chose to keep their first estimate or to 

adopt the estimate of a peer (cf. Fig. 2f), necessitating a zero-inflated distribution for these two 

parameters. To account for individual differences in these two parameters, we used more flexible 

(non-normal) group-level distributions. In particular, we implemented 𝛼𝑘𝑒𝑒𝑝and 𝛼𝑎𝑑𝑜𝑝𝑡(continuous 

numbers) via a transformed parameter  𝛼𝑘𝑒𝑒𝑝  =  𝑙𝑜𝑔𝑖𝑡 (𝛼′𝑘𝑒𝑒𝑝)  or  𝛼𝑎𝑑𝑜𝑝𝑡  =  𝑙𝑜𝑔𝑖𝑡 (𝛼′𝑎𝑑𝑜𝑝𝑡). This 

restricts parameters 𝛼′𝑘𝑒𝑒𝑝 and 𝛼′𝑎𝑑𝑜𝑝𝑡 between zero and one, and allows us to describe these 

parameters with beta distributions, each having two hyperparameters controlling their shape (see 

Table S6). Further, note that for the fitting process, we centred the predictors 𝑑𝑠 and 𝜏𝑠to their mean 

values. In the fitting procedure we ran 4 chains in parallel with 2,000 iterations each and discarded 

the first 1000 as burn-in. We reduced the memory load by thinning the chains with a factor of 5.  

 

We investigated the predictive power of four model features: (i) keep heuristic; (ii) the adopt heuristic; 

and when compromising, (iii) confirmation-based weighting (assigning weight to social information 

depending on its distance of the personal first estimate), (iv) proximity-based weighting (assigning 

weight to social information depending its distance to other peer estimates). The importance of each 

of these features was evaluated by calculating the leave-one-out cross-validation (looic;  [23]) of the 

models containing all possible combinations of these features (16 in total; Table S3). We quantified 

the importance of a feature by calculating the average reduction of the looic when the feature was 

included rather than excluded (cf. Fig. 2b of the main text). In the main text (e.g. Fig. 3c-e) we focus 

on the results of the best-fitting model, i.e., the model with the lowest looic (see Table S3). Visual 

inspection of Markov chains and the Gelman Rubin statistic 𝑅̂ indicated that all Markov chains of all 

of the 16 investigated models converged. 

 

Parameter recovery analysis. To ensure that all model parameters are identifiable and influence 

judgments in an interpretable manner, we conducted a parameter recovery analysis. Specifically, we 

drew eight sets of model parameters with a quasi-random number generator using the sobol sequence 

(from the R package randtoolbox [24]) to ensure a uniformly covered multidimensional parameter 

space within a reasonable parameter ranges. We used the following ranges: 𝜎2
𝑝varies within [3,15], 

𝛼𝑠within [7,20], 𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛within [-0.5,0.5], 𝛽𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦within [-0.5,0.5], 𝛼′𝑘𝑒𝑒𝑝within [0,0.6], 

𝛽𝑘𝑒𝑒𝑝within [-0.5,0.1], 𝛼′𝑎𝑑𝑜𝑝𝑡within [0,0.6], 𝛽𝑎𝑑𝑜𝑝𝑡within [-0.5,0.1]. 
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For each parameter set, we generated second estimates based on first estimates and observed social 

information from our four experimental conditions. We also used the same set of stimuli and the same 

number of individuals who participated in our experiment. This allows us to test whether the 

hierarchical implementation and sample size allow for an accurate identifiability of  model parameters. 

The generated dataset thus consists of 100 participants with 20 synthetic second estimates each. We 

then fitted the model for each parameter set using the identical analysis as described in the main text. 

We report the mean and the 95% credible interval (CI)of the group-level parameter estimate. To 

compare input parameters and estimates of 𝛼𝑘𝑒𝑒𝑝 and 𝛼𝑎𝑑𝑜𝑝𝑡we used the mean of the group-level 

beta distribution 𝜇 =
𝛼

𝛼 + 𝛽
. We measured the relationship of input and recovered parameters by 

calculating Spearman’s correlation coefficient. For all parameters we find a strong positive correlation 

between input and recovered parameters indicating that the empirically found parameters describe 

distinguishable aspects of judgements and are interpretable in their magnitude (Fig. S9).  

 

Model predictions. We generated the predictions of the best-fitting model (red lines and diamonds in 

Fig. 1f and Fig. 2 of the main text, respectively) by calculating the probability density function for each 

participant in each round. This density function was based on the mean posterior parameter estimates 

for the participant (see Table S4 for characteristics of the parameter group-level distributions), their 

experimentally observed first estimate (E1) and the displayed social information (𝑋𝑠) in that round. To 

account for stochasticity, the model predictions in Figure 1f (red line) and Figure 2 (red diamonds) are 

based on 10 samples of estimates from each density function. To analyse the prediction of the best-

fitting model for the experimental conditions and ‘filler’ rounds, we once sampled from each density 

function of each round and participant and calculated the actual and predicted individual-level mean 

adjustment and keep proportions (Fig. S6). To verify that the model parameters are distinguishable 

and identifiable, we conducted extensive parameter recovery analyses (Fig. S9), confirming that the 

model allows for reliably recovering all of its parameters. 

 

 

3c. Simulations  

 

In each of the settings shown in Fig. 4 of the main text, agents were endowed with adjustment 

strategies whose parameter values were sampled from the group-level distributions from the best-

fitting model (Table S4), assuming no correlations between the parameters. Inspection of the joint 

posterior distributions of means shows that this assumption is generally justified (for details, see Table 
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S5; Fig. S9; sampling from the individual-level parameters from our experiment does not lead to 

observable differences in simulation outcomes shown in Fig. 4). For each agent, we assumed their first 

estimate to be 50, and simulated their adjustment given the social information in the respective social 

environment. For Fig. 4, the social environment consisted of ten pieces of social information, either 

agreeing (i.e., an estimate of 50) or disagreeing (i.e., an estimate of 65) with the focal agent. For Fig. 

4d and 4e we sampled the parameters for confirmation-based weighting from the higher and lower 

half of the group-level distribution of 𝛽𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛, respectively. The individuals’ first estimate in 

these settings was 55 (that is, in between the two clusters of estimates, but closer to the lower cluster).  
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4. Experimental materials 

 

The experimental session consisted of 3 blocks (referred to as ‘Task I, II and III’ in the instructions for 

participants), the order of which was randomized across participants. 

 

Block 1: Participants observed an image and made their first estimate of the number of animals on it. 

Then, they could observe the estimate of three participants who completed the task before, and then 

make a second estimate. Participants completed five rounds for each of the experimental conditions 

(cf. Fig. 1e of the main text), plus 10 ‘filler rounds’ in which they observed three randomly drawn 

previous participants. So, in this block, participants completed 30 rounds in total; the participants’ 

responses in the experimental rounds of this block are the main focus of this study  

 

Block 2: Like in Block 1, participants observed an image and made their first estimate of the number 

of animals on it. Then, they could observe the estimate of one participant who completed the task 

before, and then make a second estimate. This was repeated for five rounds (with a new image 

showing another species of animal in every round). NB: the data for this control condition is not the 

focus of this paper, and therefore its results are not presented here.  

 

Block 3: Participants did not observe an image, but had to make an estimate based on the estimates 

of four participants who completed the task before. The five rounds of this task mimicked the four 

experimental conditions plus a random round (see Experimental Design in the main text). 

 

Below we show screenshots of the experiment. We add notes in between screenshots where 

appropriate, for clarification and to prevent repetitiveness. 
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Participants had to answer the check for understanding correctly before proceeding to the task. 
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Participants could view the images for 6 seconds. We used five species of animal on the images. Across 

rounds, the sequence of shown species was fixed: ants-bees-flamingos-cranes-crickets-ants-bees-

flamingos-cranes-crickets-ants-etc. 
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This is the decision screen for entering the first estimate. Participants used the slider to indicate their 

estimate. The slider was limited at 1 and 150 (NB: the number of animals shown in the images ranged 

from 50-100), and initialized at the left hand side without showing a running number. While moving 

the slider, the running number was shown in blue. Participants could not proceed to the next screen 

without moving the slider. 
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We now show the screens in which participants entered their second estimates. In these screens, 

participants observed social information in the form of the estimates of three others who completed 

the task before. As described in Fig. 1d of the main text and in the Methods, we manipulated social 

information such that the conditions differed in the variance and the skewness of the distribution of 

social information, while holding fixed the mean deviation from a participant’s first estimate (to the 

extent that the pre-recorded pool of information allowed; see Methods for details and Fig. S7 for 

distributions of the three peers in each condition).  

 

The following five screenshots show an example of this screen for each of the experimental conditions 

(plus the random condition for the ‘filler’ rounds). For the sake of exposition, we have filled out ‘60’ 

as the first estimate in each of these rounds when making the screenshots. Note that the order of the 

rounds of the experimental conditions were randomized, and were intermixed with filler rounds (in 

which social information was randomly drawn from the pre-recorded pool of estimates). After the five 

screenshots, we collate the sliders from a full sequence of screens in which participants entered their 

first estimates. This collation aims to illustrate participants’ experience in the task. 

 

 

Low variance, no skewness (LN); peers strongly agreed with each other. 
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High variance, no skewness (HN). Peers disagreed amongst each other. 

 

 

High variance, cluster far from E1 (HF). One peer strongly agreed with the participant, while two other 

strongly disagreed. 
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High variance, cluster close to E1 (HC). Two peers showed moderate agreement with the participant, 

while one peer strongly disagreed. 

 

 

Random condition. Peer estimates were drawn randomly from the pre-recorded pool. 
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Collation of sliders from the screens of 30 rounds, in which participants entered their second 

estimates. Note that in the experiment, these screens were not shown right after each other: within 

a round, the screens showing social information were preceded by screens with a stimulus, and a 

screen for entering their first estimate. For illustration purposes, we here always presume the first 

estimate to be 60. Actual data shows more varied first estimates for each participant, and, as a 

consequence, social information also differed between rounds of the same treatment. It therefore 
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seems rather unlikely that participants identified a regular pattern over the course of the experiment 

(which would undermine participants’ belief in the veracity of the social information, and might 

affect social information use). This idea is further supported by a regression fitted to adjustments in 

individual rounds (Table S7). In this model, ‘round number’ did not predict adjustments, suggesting 

that participants’ trust in the social information displayed to them did not decrease over the course 

of the experiment.   

 

 

After completing the 30 rounds of this block (5 rounds for each experimental condition, plus 10 filler 

rounds), participants proceeded to the next block. 

 

 

 

After the 30 rounds of this task were completed, this Block ended, and participants proceeded to Block 

2 (referred to in the instructions as ‘Task II’). 
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Again, participants had to complete all items correctly before they could proceed to the task. 
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The screen for entering their first estimate was identical to the screen in the previous Block. In this 

one-peer (control) condition, participants could observe a single peer (here shown in red). The 

participant’s first estimate is shown as a blue square. Participants used the slider to enter their second 

estimate. 
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Again, participants had to complete all items correctly before they could proceed to the task. 
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Participants did not observe an image but just observed 4 peer estimates and made their first estimate 

with the slider. The conditions in this block emulated the conditions in the three-peer conditions (see 

Methods in the main text for details). This screenshot and the next show two examples. 
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After completing the third Block, participants proceeded to a questionnaire, in which we measured 

age and gender (along with some other items not reported here). Finally, participants were shown 

their payoffs for each of the blocks. 
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