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SUMMARY
Recent studies have demonstrated immunologic dysfunction in severely ill coronavirus disease 2019
(COVID-19) patients. We use single-cell RNA sequencing (scRNA-seq) to analyze the transcriptome of
peripheral blood mononuclear cells (PBMCs) from healthy (n = 3) and COVID-19 patients with moderate
disease (n = 5), acute respiratory distress syndrome (ARDS, n = 6), or recovering from ARDS (n = 6). Our
data reveal transcriptomic profiles indicative of defective antigen presentation and interferon (IFN) respon-
siveness in monocytes from ARDS patients, which contrasts with higher responsiveness to IFN signaling
in lymphocytes. Furthermore, genes involved in cytotoxic activity are suppressed in both natural killer (NK)
and CD8 T lymphocytes, and B cell activation is deficient, which is consistent with delayed viral clearance
in severely ill COVID-19 patients. Our study demonstrates that COVID-19 patients with ARDS have a state
of immune imbalance in which dysregulation of both innate and adaptive immune responses may be contrib-
uting to a more severe disease course.
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection has quickly spread worldwide to cause the coronavirus

disease 2019 (COVID-19) pandemic (Zhu et al., 2020). Coronavi-

ruses are single, positive-stranded RNA viruses that can infect a

range of hosts. Some are known to cause seasonal, upper respi-

ratory infections (i.e., common colds), but coronaviruses that

cause severe lower respiratory infection have emerged,

including those that cause SARS, Middle Eastern respiratory

syndrome (MERS), and now COVID-19 (Cui et al., 2019; Drosten

et al., 2003; Zaki et al., 2012). SARS-CoV-2 has reached

pandemic proportions and is likely to remain a world health

emergency until an effective vaccine is widely available due to

limited treatments and a high likelihood of recurrent outbreaks.

The World Health Organization lists the primary symptoms of

COVID-19 as fever, dry cough, and fatigue but other symptoms

include diarrhea, loss of taste and smell, and rashes. Thosemore
This is an open access article under the CC BY-N
than 60 years of age and people with obesity, cardiovascular dis-

ease, and diabetes have the highest risk for severe COVID-19

(Ebinger et al., 2020; Grasselli et al., 2020). Most COVID-19 pa-

tients havemild respiratory illness; however, ~20%become seri-

ously ill and require hospitalization due to pneumonia (Wu and

McGoogan, 2020). This can progress into acute respiratory

distress syndrome (ARDS) and systemic inflammation referred

to as ‘‘cytokine storm’’ (Ye et al., 2020).

Instead of beneficial antiviral immunity in response to infec-

tion, severe COVID-19 is characterized by dysregulated immune

responses that allow the virus to persist, causing lung damage,

ARDS, and systemic inflammation (Giamarellos-Bourboulis

et al., 2020).Whilemechanisms underlying SARS-CoV-2 evasion

of antiviral immunity and pathogenic inflammation are not clear

at this time, commonalities in the pathogenic response with

this novel coronavirus and SARS-CoV-1 and MERS-CoV have

become apparent (Felsenstein et al., 2020; Ye et al., 2020). Cells

sense RNA viruses using endosomal and cytosolic pattern
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recognition receptors (PRRs) that signal through other mediators

including tumor necrosis factor (TNF) receptor-associated factor

3 (TRAF3) and TRAF6 to activate interferon (IFN) regulatory

factors (IRFs) and nuclear factor kB (NF-kB), resulting in tran-

scription of early antiviral type I IFNs by resident alveolar macro-

phages (AMs) and epithelial cells in the lungs, which sets up an

immune response that clears the virus and resolves inflammation

(Lester and Li, 2014). SARS-CoV-1, and likely SARS-CoV-2, in-

hibits multiple viral sensing PRRs and downstream signals,

effectively blocking recognition of virus and early antiviral type

I IFN and initiating a dysregulated inflammatory cascade that

can lead to ARDS and systemic inflammation (Hu et al., 2017;

Li et al., 2016; Siu et al., 2009). Moreover, transcriptomic analysis

of peripheral blood mononuclear cells (PBMCs) from COVID-19

patients found upregulated pro-inflammatory pathways in

monocytes and CD4 T cells, suggesting that the basic hallmarks

of the ‘‘cytokine storm’’ in COVID-19 parallel SARS and MERS

(Wen et al., 2020). However, we are now also appreciating immu-

nologic dysfunctions that may be causing amore severe disease

course (Hadjadj et al., 2020; Lee et al., 2020; Wilk et al., 2020).

COVID-19 patients have higher circulating levels of interleukin-

6 (IL-6), TNF-a, and C-X-C motif chemokine ligand 10 (CXCL10),

particularly those with severe disease, and these ‘‘early’’ cyto-

kines are sustained weeks into infection, suggesting an inability

to resolve inflammation (Xiong et al., 2020; Yang et al., 2020).

Adaptive immune cells recruited from nearby lymph nodes (via

circulatory and lymphatic systems) can also contribute to patho-

genic inflammation in the lung, particularly if polarized to T helper

1 (Th1) and Th17 responses that contribute to neutrophil recruit-

ment and pro-inflammatory monocyte/macrophage activation

(Wong et al., 2019). However, severe lung damage due to pneu-

monia or sepsis is more often characterized by a lack of adaptive

immune cells in the periphery (Bermejo-Martin et al., 2017; Roth

et al., 2003). This is due not only to migration of cells to sites of

inflammation but also to T cell dysfunction and death (Hotchkiss

et al., 2005; Nakajima et al., 2010; Roth et al., 2003). Prolonged

antigen stimulation and pro-inflammatory cytokine exposure

cause T cell exhaustion and apoptosis, leading to insufficient B

cell activation and loss of the immune-resolving functions of T

and B cells (De Biasi et al., 2020; Erickson et al., 2015; Kahan

et al., 2015). Despite exuberant innate immunity, lymphopenia

has been observed in COVID-19 and correlates with poor

outcome (De Biasi et al., 2020; Diao et al., 2020). Characteriza-

tion of T cells from COVID-19 patients found increased surface

expression of exhaustion markers T cell immunoglobulin and

mucin-domain containing-3 (Tim-3) and programmed cell death

protein 1 (PD-1), decreased expression of pathways involved in

T cell expansion, and increased expression of apoptotic path-

ways (Diao et al., 2020; Wen et al., 2020; Xiong et al., 2020).

Therefore, dysfunction of circulating T and B cells during ARDS

may result in an inability to resolve inflammation and perpetuate

the systemic inflammation caused by the cytokine storm.

The innate-driven pathogenic inflammation and suppressed

adaptive immunity during ARDS in COVID-19 patients indicate

dysfunction in immune regulation and the switch from innate to

adaptive immunity. To better understand this dysregulated

immune response that drives patients to have more severe

illness from SARS-CoV-2 infection, we used single-cell RNA
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sequencing (scRNA-seq) to analyze the transcriptome of PBMCs

collected from hospitalized COVID-19 patients with a moderate

course of disease (moderate group) and those that developed

ARDS (severe group). Samples were collected within the first

5 days of hospitalization to minimize the potential for therapeutic

interventions to confound interpretation of the data. As ex-

pected, when we compared the samples from acutely ill

COVID-19 patients (moderate and severe groups) with samples

from healthy controls, we found enrichment of viral-induced

immunologic pathways. We next focused our analysis on the

COVID-19 patient groups and investigated the signals that drive

lung inflammation in ARDS. We also delineated novel pathways

activated during the resolution of lung inflammation by

comparing the severe group with the recovering group (i.e.,

those recovering from ARDS). Severely ill patients had an overall

higher activation of inflammatory pathways than moderate and

recovering patients. However, we unexpectedly found that pa-

tients with severe SARS-CoV-2 infection had monocytes with

transcriptomic profiles consistent with a blunted IFN response

and dysregulation of antigen presentation as well as defective

humoral and lymphocyte cytotoxic activity that could be contrib-

uting to the delayed viral clearance found in severely ill COVID-19

patients. The implications of these results are clinically relevant

and indicate that treatment of patients with ARDS from SARS-

CoV-2 infection may require a targeted approach instead of

broad immunosuppressive therapy.

RESULTS

COVID-19 Patients Have a Hyperinflammatory Immune
State
We identified and collected blood for buffy coat samples from

hospitalized patients confirmed to have SARS-CoV-2 infection

(Table S1). There were no significant differences in age, white

blood cell count, cell subsets, and hematocrit between the three

groups—acutely ill patients with moderate disease, acutely ill pa-

tients with severe disease, and patients recovering from ARDS—

but the platelet count was decreased in the severe versus moder-

ate group (Figures 1A and 1B). Using available clinical data, we

compared the levels of various inflammatory markers in the blood

between groups at the time of sample collection and identified a

significantly higher level of C-reactive protein in patients with se-

vere disease, reflecting the hyperinflammatory state relative to pa-

tients with moderate disease (Figure 1C).

Using scRNA-seq, we first compared the transcriptome of

PBMCs from healthy controls and COVID-19 patients. Principal

component analysis (PCA) of the samples demonstrated a clear

segregation between healthy controls and COVID-19 patients,

indicating that SARS-CoV-2 infection causes a profound pertur-

bation in the circulating immune cell transcriptome (Figure 1D),

but it did not clearly separate the moderate and severe COVID-

19 patients. To understand the pathways activated by SARS-

CoV-2 infection, we identified each of the major immune cell

subtypes (natural killer [NK] cells, CD8 and CD4 T cells, B cells,

and monocytes; Figure 1E; Figures S1A and S1B; Table S2) and

performed Gene Ontology (GO) analysis of the significantly up-

and downregulated differentially expressed genes between

acutely ill COVID-19 patients (moderate and severe groups)
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Figure 1. Evaluation of Blood Cells Subsets in Moderate, Severe (ARDS), and Recovering (post-ARDS) COVID-19 Patients

(A) Age distribution of hospitalized COVID-19 patients requiring minimal respiratory support (moderate, n = 5), with ARDS (severe, n = 6), and recovering from

ARDS (recovering, n = 6). Mean ± SD overlaid on dot plot.

(B) Clinical complete blood count (CBC) with differential cell count for COVID-19 patients. One-way ANOVA with Tukey’s multiple comparisons was used to test

significance. Normal ranges are indicated by gray shading. Mean ± SD overlaid on dot plot. *p < 0.05.

(C) Inflammatory markers in patients’ peripheral blood samples at admission (IL-6, lactate dehydrogenase [LDH], and C-reactive protein [CRP] were not available

for the recovering group). Mann-Whitney test was used for IL-6, LDH, and CRP, and Kruskal-Wallis test with Dunn’s multiple comparison was used for ferritin.

*p < 0.05.

(D–F) Peripheral blood leukocytes from COVID-19 patients were assessed by scRNA-seq in comparison with healthy controls. Principal component analysis

(PCA) of patient pairs from the same group sequenced together demonstrates clustering by disease stage (healthy control, acute COVID-19, recovering ARDS),

but does not separate moderately and severely ill patients (D). UMAP visualization reveals the major immune cell subsets (E). Violin plot of response to type I IFN

module genes for each cell from healthy versus acute COVID-19 patients (moderate and severe groups combined; F). Kruskal-Wallis test was used to test overall

significance in module scores, p < 2.2 3 10�16. Wilcoxon test was used for pairwise comparisons, ****p < 0.0001.
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and healthy controls (Figure S2; Table S3). Consistent with their

paucity among circulating immune cells, insufficient conven-

tional and plasmacytoid dendritic cells (cDCs and pDCs, respec-

tively) were captured for analysis. Neutrophils were not identified

because they, unlike other peripheral blood subsets, do not

tolerate the cell freezing process (Wilk et al., 2020).

As expected, the response to type I IFN was activated in pe-

ripheral immune cells from COVID-19 patients compared with

healthy controls (Figure 1F; Figure S2; Table S3).

Cytotoxic Lymphocytes Have a Higher IFN Response in
Patients with Severe Disease but Reduced Expression
of Cell-Killing Genes
To understand why some patients have a less severe disease

course, whereas others develop ARDS, we next analyzed im-

mune cell populations within the scRNA-seq data from moder-

ate, severe, and recovering COVID-19 patients (Figures S1C
and S1D). NK cells are an important arm of the innate lympho-

cytic antiviral response (Abel et al., 2018). We compared the

moderate versus severe group to identify differences in NK cell

gene expression that may determine why some have a more

benign course of disease compared with those that develop

ARDS (Figure 2; Figures S3A–S3C; Table S4). Pathway analysis

revealed differences in the NK cell transcriptome between

groups. Biological processes that were highly represented by

genes upregulated and downregulated in patients with severe

disease compared with patients with moderate disease were

identified (Figure 2A; Table S4). Patients with severe disease

have higher respiratory viral loads (Zheng et al., 2020). Accord-

ingly, biological processes such as ‘‘response to type I IFN,’’

‘‘response to virus,’’ ‘‘response to IFN-g,’’ and ‘‘response to

IFN-b,’’ among several others characteristic of a higher viral

response, were significantly upregulated in the severe disease

group compared with the moderate disease group.
Cell Reports 34, 108590, January 5, 2021 3
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Figure 2. NK Cells in Severe Patients Have Gene Expression Profiles Indicative of Higher Interferon (IFN) Signaling but Defective Cell Killing

(A and B) Global transcriptome differences between severe and moderate (A) and between severe and recovering (B) were evaluated in all NK cells by over-

representation analysis of up- and downregulated biological processes.

(C and D) Violin plots of response to IFN-g and response to type I IFN modules (C) and cell killing module (D) of each cell from patient groups. Kruskal-Wallis test

was used to test overall significance in module scores, p < 2.2 3 10�16. Wilcoxon test was used for pairwise comparisons, ****p < 0.0001.

(E) Average expression of differentially expressed genes (DEGs) involved in cytotoxicity from patient groups.

Article
ll

OPEN ACCESS
Comparing critically ill patients with ARDS during their acute

illness (i.e., severe group) with those that are recovering from se-

vere disease could provide insight into pathways that drive the

non-resolving inflammation in ARDS pathogenesis (Matthay

et al., 2012). Thus, we compared the biological processes that

were affected by evaluating both up- and downregulated genes

between severe and recovering groups (Figure 2B; Table S4).

The recovering group exhibited resolution of the antiviral path-

ways, which would be expected from the waning respiratory viral

load over time. The transcriptomic response to both types I and II

IFNs was clearly upregulated in NK cells from the severe group in

comparisonwith themoderate and recovering groups (Figure 2C;

Figure S3A). Despite this response, which reflects a higher respi-

ratory viral load in the severe group, expression of genes associ-

ated with cytotoxic function was lower than in the moderate and

recovering groups, suggesting a dysfunctional effector antiviral

response by NK cells in ARDS patients (Figures 2D and 2E; Fig-

ures S3B and S3C). Evaluating the data as pairs of samples from

individual patients from the same group that were sequenced

together (Figures S3A and S3B) rather than all cells from the pa-

tient groups (Figures 2C and 2D) revealed the same pattern of

changes in IFN signaling and cytotoxic function.

We performed a similar evaluation of CD8 T lymphocytes (Fig-

ure 3; Figures S3D–S3G; Table S5) to investigate the biological

processes that differentiate the severity of disease and those
4 Cell Reports 34, 108590, January 5, 2021
that are activated during the recovery phase. CD8 T cells had

appropriate activationof IFNsignaling that correlatedwith thedis-

ease severity (Figures 3A–3C; Figure S3D). We also found a gene

signature indicating increased apoptosis in CD8 T cells from the

severe group, which is consistent with a prior report (Merad and

Martin, 2020) and could be driving the lymphopenia associated

with COVID-19 illness (Figure 3D; Figure S3E). Interestingly,

CD8 T cells had a pattern of gene expression that suggested a

deficiency in cytotoxic function in both the severe and recovering

groups in comparison with patients with moderate disease (Fig-

ures 3E and3F; Figures S3F andS3G). Although this pattern is ex-

pected in recovering patients who have resolving SARS-CoV-2

infection, the altered cytotoxic functional pathways in patients

with ARDS mirror the findings of NK cells (Figures 2D and 2E).

Next, we evaluated CD4 T lymphocytes to determine up- and

downregulated biological pathways in moderate versus severe

and severe versus recovering groups (Figure 4; Figures S3H

and S3I; Table S6). Consistent with NK and CD8 T lymphocytes,

the severe group had a transcriptome that was indicative of a

higher IFN response in CD4 T cells than that of moderate group,

and this was appropriately diminished in recovering patients (Fig-

ures 4A–4C; Figure S3H). In addition to the antiviral response,

expression of gene sets in metabolic and apoptotic pathways

was elevated in CD4 T cells in the severe group in comparison

with the other groups (Figures 4A, 4B, and 4D; Figure S3I).
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Figure 3. CD8 T Cells in Severe Group Patients Have Gene Expression Profiles Indicative of Higher IFN Signaling, Increased Apoptotic Gene

Expression, and Defective Cell Killing

(A and B) Global transcriptome differences between severe and moderate (A) and severe and recovering (B) were evaluated in all CD8 T cells by over-

representation analysis of up- and downregulated biological processes.

(C–E) Violin plots of response to IFN-g and response to type I IFNmodules (C), intrinsic apoptotic signaling module (D), and cell killing module (E) of each cell from

patient groups. Kruskal-Wallis test was used to test overall significance in module scores, p < 2.2 3 10�16. Wilcoxon test was used for pairwise

comparisons, ****p < 0.0001.

(F) Average expression of DEGs involved in cytotoxicity from patient groups.
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Taken together, these transcriptomic findings indicate that NK

and T lymphocytes in severely ill COVID-19 patients, who have

higher respiratory viral titers and delayed clearance of SARS-

CoV-2 (Merad and Martin, 2020), have an expected stronger

response to IFN signaling. Moreover, T lymphocytes have a

gene signature consistent with increased activation of metabolic

and apoptotic pathways. However, both innate and adaptive
cytotoxic lymphocytes have dysfunctional cytotoxic-activity-

associated pathways in severely ill COVID-19 patients

B Cells Have Gene Expression Profiles Indicative of
Dysregulated Activation in Patients in the Severe Group
B lymphocytes also play an important role in the antiviral

response (Chiu and Openshaw, 2015). We evaluated B cells
Cell Reports 34, 108590, January 5, 2021 5
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Figure 4. CD4 T Cells in Severe Group Patients Have Gene Expression Profiles Indicative of Higher IFN Signaling, Increased Apoptotic Gene

Expression, and Metabolic Activation

(A and B) Global transcriptome differences between severe and moderate (A) and severe and recovering (B) were evaluated in CD4 T cells (all T cells expressing

CD4) by overrepresentation analysis of up- and downregulated pathways for biological processes.

(C and D) Violin plots of response to IFN-g and response to type I IFN (C) and regulation of apoptotic signaling (D) modules of each cell from patient

groups. Kruskal-Wallis test was used to test overall significance in module scores, p < 2.2 3 10�16. Wilcoxon test was used for pairwise comparisons,

****p < 0.0001.
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and plasma cells to determine the differentially expressed genes

between patient groups (Figure 5; Figures S4A and S4B; Table

S7). Similar to NK and T lymphocytes, the B lymphocytes also

had changes in their gene signature that were consistent with

higher IFN-mediated responses and activation of apoptotic sig-

nals in patients in the severe group compared with those in both

the moderate and recovering groups (Figures 5A–5D; Figures

S4A and S4B). Moreover, transcriptomic changes suggested

B cell activation was upregulated in the recovering group in com-

parison with the severe group, which is the expected response

during the recovery phase (Figure 5E). By contrast, B cell activa-

tion genes were reduced in the severe group compared with that

of patients in the moderate group, supporting the concept that a

delayed humoral response could be contributing to the severity

of disease (Figures 5B and 5E).

In order to understand the pathways that are activated in

B cells during the resolution from SARS-CoV-2 infection,
6 Cell Reports 34, 108590, January 5, 2021
we used ingenuity pathway analysis (IPA) to evaluate canoni-

cal pathways enriched among the 642 genes that were upre-

gulated in the recovering group compared with the severe

group. The top canonical pathways enriched among these

genes were B cell receptor signaling (false discovery rate

[FDR] of 2.5 3 10�11), IL-3 signaling (FDR of 4.0 3 10�6),

and phosphatidylinositol 3-kinase (PI3K) signaling (FDR of

3.9 3 10�7), which are important signals required for B cell

memory and the humoral response (Table S7). We performed

causal network analysis to understand the upstream signals

that regulate the differential upregulation of genes in the

patients in the recovering group relative to the severe

group and identified spleen tyrpsine kinase (SYK), which is a

critical controller of B cell differentiation, maturation, and

signal transduction by the B cell receptor, as the top upstream

regulator candidate among the differentially expressed genes

(Figure 5F) (Mócsai et al., 2010).
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Figure 5. B Cells in Severe Group Patients Have Gene Expression Profiles Indicative of Higher IFN Signaling, Increased Apoptotic Gene

Expression, and Defective Activation

(A and B) Global transcriptome differences between severe and moderate (A) and severe and recovering (B) were evaluated in B cells and plasma cells by

overrepresentation analysis of up- and downregulated pathways for biological processes.

(C and D) Violin plots of response to IFN-g and response to type I IFN (C) and regulation of apoptotic signaling (D) modules of each cell from patient groups.

Kruskal-Wallis test was used to test overall significance in module scores, p < 2.2 3 10�16. Wilcoxon test was used for pairwise comparisons, ****p < 0.0001.

(E) Average expression of DEGs in the B cell activation pathway between moderate and severe and severe and recovering groups.

(F) IPAcausalpathwayanalysisdemonstrates thatSYK is theprimaryupstreammediatorof theupregulatedpathways inBcells fromrecovering versusseveregroups.
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Figure 6. Classical Monocytes in Severe Group Patients Have Decreased Gene Expression for IFN Signaling, Phagocytosis, and Antigen

Presentation

(A and B) Global transcriptome differences between severe and moderate (A) and severe and recovering (B) were evaluated in classical monocytes

(CD14+CD16�) by overrepresentation analysis of up- and downregulated pathways for biological processes.

(C–E) Violin plots of response to IFN-g and response to type I IFN (C), phagocytosis (D), and regulation of apoptotic signaling (E) modules of each cell from patient

groups. Kruskal-Wallis test was used to test overall significance in module scores, p < 2.2 3 10�16. Wilcoxon test was used for pairwise comparisons,

****p < 0.0001.

(F) Average expression of differentially expressed human leukocyte antigen (HLA) genes by classical monocytes from patient groups.
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Monocyte Gene Expression Profiles Indicate That They
Are Hyporesponsive in Patients in the Severe Group
Emerging evidence demonstrates disruptions to the myeloid

compartment in COVID-19 patients (Wilk et al., 2020). As ex-

pected, classical monocytes comprised the majority of the cells

(Figures S4C and S4D). Surprisingly, classical monocytes had a

gene signature consistent with a decreased activation state,

impaired phagocytosis, and altered differentiation in the severe

compared with moderate group (Figures 6A and 6D; Figure S4E;
8 Cell Reports 34, 108590, January 5, 2021
Table S8). This functional deficiency in classical monocytes ap-

pears to recover during the resolution of ARDS, suggesting that

improvement in monocyte function could facilitate the resolu-

tion of inflammation in COVID-19 patients who develop ARDS

(Figures 6B and 6D; Figure S4E). Moreover, monocytes in the

severe group had more activation of apoptotic signals (Fig-

ure 6E; Figure S4F) and dysfunction in antigen processing

and presentation, including lower expression of major histo-

compatibility complex class I (MHC class I) and MHC class II
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Figure 7. Canonical Pathway Analysis Demonstrates Defective Signaling Programs across All ImmuneCells in Severely Ill COVID-19 Patients

(A) Significantly enriched pathways activated or inhibited between severe versus moderate and severe versus recovering groups in all cell types. An FDR < 0.01

was used to designate a pathway as significantly enriched, and z-score was applied to determine the activation/inhibition state of a given pathway in the severe

condition.

(B) Upstream regulator analysis of DEGs identified IRF7 as a putativemaster regulator across all cell types. Top left: themechanistic regulatory network, with IRF7

as the key orchestrator, was constructed based on the overlap between the patterns of differential gene expression and IPA’s knowledge base across immune

cell types. Top right: each member of this network is itself a key regulator of many other DEG targets in each cell type. Bottom: a heatmap summary highlighting

whether each regulator is expected to be activated or inhibited for each immune cell population in severe versus moderate groups.

(C) mTOR canonical pathway in severe versus recovering group. The up- (red) and downregulated (blue) nodes are based on composite information across all cell

types. Some of the nodes do not represent a single DEG but potentially a family of genes (e.g., 40S ribosome).

(D) Gene product interaction network analysis of the eIF2 pathway, which is downregulated in lymphocytes, but not monocytes, in the severe versus moderate

group. Amajority of the interactome’s nodes were differentially expressed across cell types, particularly within the densely connected network hubs shown in the

center (selectively labeled in the figure and fully detailed in Table S9).
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(Figures 6A and 6F). Additionally, in contrast to the lympho-

cytes, monocytes in severely ill patients had a deficient

transcriptomic response to IFN signaling in comparison with

moderately sick subjects that could at least partially explain

the hypofunctional state that we identified in this cell compart-

ment (Figure 6C; Figure S4G).

Potential Mechanisms Driving the Immunoparalysis of
Specific Immune Cells
To further evaluate the potential mechanisms that were driving

the selective immunodeficiencies identified within various cell

compartments, we performed a canonical pathway analysis
with IPA. In contrast to standard GO analysis where activation

or inhibition of a process is inferred from up- and downregulation

of its member genes, respectively, canonical pathway analysis

incorporates prior knowledge of the overall consequences of

up- and downregulation of individual members of a process in

activating or suppressing that pathway (e.g., downregulation of

an inhibitor can lead to the activation of a process). In this anal-

ysis, we found cell-specific enrichment patterns; for example,

CD4 and CD8 T cells had significant activation of the T cell

exhaustion pathway in the severe versus the moderate group

(Table S9), which is consistent with another report (Wilk et al.,

2020).
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We next explored patterns of altered signaling pathway

changes across all cell compartments (Figure 7A). Oxidative

phosphorylation pathways were uniformly elevated in the severe

group comparedwith themoderate and recovering groups, likely

reflecting the increased metabolic state with more severe infec-

tion. By contrast, signaling by sirtuins, which are known media-

tors of antiviral defenses (Budayeva et al., 2015; Koyuncu et al.,

2014), was suppressed in severe conditions across all cell com-

partments. As with our GO evaluation of biological processes,

IFN signaling was decreased in monocytes when comparing se-

vere with moderate groups. Similarly, respiratory viral signaling

pathways were also uniquely suppressed only within monocytes

when comparing severe with moderate groups. Notably, PD-1/

programmed death-ligand 1 (PD-L1) signaling, an immunologic

checkpoint inhibitory pathway, was higher in monocytes within

the severe group, which could be contributing to the suppressed

response of this cellular compartment.

IFN signaling (types I and II) was a prominent pathway that was

repeatedly enriched in our comparison of the severe versus

moderate groups. We used IPA to perform an upstream regu-

lator analysis for each cell type (severe versus moderate) based

on the cell type’s pattern of differential gene expression and also

identified IRF7 as one of the most significant regulators consis-

tently enriched in lymphocytes (Figure 7B). We constructed a

mechanistic network with IRF7 as the master regulator and

found that type I IFN signaling components were enriched as

highly interactive nodes (Krämer et al., 2014). Using this frame-

work, we assessed which of the hierarchical components were

activated or inhibited in our data and found that lymphocyte sub-

sets had the expected activation, whereas monocytes had inhi-

bition of type I IFN pathways (Figure 7B), which is consistent with

our prior analysis. We also compiled the genes identified by GO

analysis across all immune cell populations to evaluate common

genes that were enriched in response to IFN signaling (Figures

S5A–S5C). The lymphocyte subsets from patients with severe

disease had similarly elevated type I IFN responses (consistent

with enhanced IRF7 expression). By contrast, the classical

monocytes from patients in the severe group were no more

responsive than those from the moderate group, with lower

expression of IRF1 and IRF9, perhaps due to subversion

of Toll-like receptor (TLR) and retinoic acid-inducible gene I

(RIG-I) signaling by SARS-CoV-2, as was previously reported

for SARS-CoV-1 (Hu et al., 2017; Li et al., 2016; Siu et al.,

2009). Consistent with this analysis, GO pathway analysis re-

vealed a reduction in the response to IFN-g compared with

healthy controls and a weaker type I IFN response in monocytes

from severe patients, which contrasts with the stronger lympho-

cytic responses (Figures S5D–S5H).

Finally, eukaryotic translation initiation factor 2 (eIF2) signaling,

a known target of many respiratory viruses (Groskreutz et al.,

2010; Liu et al., 2020; Rabouw et al., 2020), was the most signif-

icantly downregulated pathway across all cells (except mono-

cytes) when comparing severe to moderate groups, whereas

mammalian target of rapamycin (mTOR) signaling was

depressed in the severe versus recovering groups (Figure 7A).

We investigated the mTOR canonical pathway in the severe

versus recovering groups and noted that several nutrient-

sensing and stress response processes were downregulated in
10 Cell Reports 34, 108590, January 5, 2021
severe COVID-19 patients relative to those with moderate dis-

ease (Figure 7C). To better define how the components of the

eIF2 pathway were altered in immune cells, we performed a

gene product interaction analysis using IPA. This network was

built by initially including all eIF2-associated members and

limiting gene product relationships to those with experimentally

validated direct interactions. We observed that many members

of this network were differentially expressed in patients with se-

vere versus moderate COVID-19 including eIF1 and eIF2 as well

as a number of ribosomal genes such as ribosomal protein S6

(RPS6) that were previously reported to be downregulated in

influenza virus infection (Figure 7D; Table S9) (Zhai et al.,

2015). This overrepresentation was more pronounced when as-

sessing the most highly connected network nodes—i.e., hubs—

suggesting that key drivers of the eIF2 pathway are affected in

severe SARS-CoV-2 infection.

DISCUSSION

ARDS is driven by a dysregulated inflammatory response that

has been largely described as a ‘‘cytokine storm’’ associated

with severely ill patients infected with SARS-CoV-2. A unique

feature of the lung injury that perpetuates ARDS is a non-

resolving inflammation even after the inciting factor, in this

case SARS-CoV-2 infection, has resolved (Matthay et al.,

2012). A growing literature has provided a better understanding

of how immune cell dysfunction contributes to the inflammatory

response in COVID-19 patients (Giamarellos-Bourboulis et al.,

2020). Several groups have adopted scRNA-seq as an approach

to functionally interrogate distinct immune compartments (Had-

jadj et al., 2020; Lee et al., 2020; Wen et al., 2020; Wilk et al.,

2020). Our data are largely consistent with those findings, but

our study further delineates the profound immune dysregulation

in COVID-19 patients with severe illness compared with those

with moderate symptoms and those recovering from ARDS.

Moreover, our findings were consistent with prior scRNA-seq

studies that compared the transcriptomes of PBMCs from

healthy controls versus COVID-19 patients and identified an in-

flammatory signal that increased with disease severity (Hadjadj

et al., 2020; Wilk et al., 2020). Focusing our analysis to COVID-

19 patients with varying severity allowed us to deeply interrogate

the immune cell dysfunction and differentiate those that have

moderate disease from patients that develop ARDS. Our anal-

ysis revealed that although most immune cellular compartments

had an expected hyperinflammatory response in severe

patients, several key pathways were dysfunctional in severely

ill patients, which could be contributing to their inability to control

the viral infection. Indeed, PBMCs from the severe group had a

transcriptomic signal suggesting deficiencies in functions

necessary to clear the virus: cytotoxic killing in NK and CD8

T cells, B cell activation, and impaired antigen presentation by

monocytes. Together, these findings indicate that distinct func-

tional impairments in innate and adaptive immune responses

during SARS-CoV-2 infection contribute to the disease severity.

One of the first immunologic features identified in COVID-19

patients was decreased but hyperactive lymphocytes (Song

et al., 2020; Xu et al., 2020). Our data suggest that both CD4

and CD8 T lymphocytes have a normal response to the viral
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pathogen with activation of antiviral pathways and a resultant

hypermetabolic state. Notably, we found an increase in mito-

chondrial respiratory chain activity in the severe group, which

could reflect a mitochondrial antiviral signaling (MAVS) response

to the SARS-CoV-2 infection (Moreno-Altamirano et al., 2019;

Shi et al., 2014). It has also been suggested that lymphocytope-

nia results from increased apoptosis, which is consistent with

our findings (Vabret et al., 2020; Xiong et al., 2020). Additionally,

our analysis indicates that CD8 T lymphocytes have a deficiency

in cell killing that could be contributing to the pathobiology of

ARDS in COVID-19 patients. Similarly, NK cells had a transcrip-

tomic signature that indicated defective effector killing of virally

infected cells in patients with severe disease. Clinical data on

COVID-19 patients reported high respiratory viral load and

impaired clearance in severe disease cases compared with

moderate cases (Shi et al., 2020). Additionally, studies in

COVID-19 patients have found that SARS-CoV-2 persisted

longer in respiratory samples of patients with severe disease

than in those with milder symptoms, and this delayed viral clear-

ance coincideswithmore lung damage from the infection (Chang

et al., 2020; Zheng et al., 2020). Collectively, these results

demonstrate a functional defect in both the innate and adaptive

cytotoxic lymphocytic responses in COVID-19 patients with

ARDS that could be contributing to the severity of disease.

Successful viral clearance relies on adaptive T cell and B cell

immunity. Whereas cytotoxic T lymphocytes induce apoptosis

of virus-infected cells, CD4 T cells activate B cells to differentiate

into antibody-producing plasma cells and memory B cells (Liao

et al., 2017; Vos et al., 2000). Delayed immunoglobulin M (IgM)

has been reported in severely ill COVID-19 patients, suggesting

a defect in B cell function, although it is unclear whether this is

due to direct defects in B cells or in CD4 Th cells (Shen et al.,

2020). Our findings suggest CD4 T lymphocytes have normal ac-

tivity despite the decreased numbers described in COVID-19 pa-

tients. By contrast, pathways involved in B cell activation were

downregulated in the severe group, suggesting an inherent

dysfunction in the B lymphocyte compartment that limits their

activity. Moreover, SYK, which is essential for B cell activation,

was identified as the most significant upstream regulator that

was downregulated in B cells within the severe group (Cheng

et al., 1995; Cornall et al., 2000). Although recovery from

SARS-CoV-2 infection is not fully dependent on B cell function

and antibody production (Fallet et al., 2020), these immune cells

likely still have an important role in controlling the severity of dis-

ease, and a dysfunctional humoral response may result in higher

viral titers and delayed viral clearance that could contribute to

the development of ARDS during SARS-CoV-2 infection.

Much attention has been devoted to lymphocyte dysfunction

in COVID-19, particularly to the importance of cytotoxic T cells

in overcoming viral infection (De Biasi et al., 2020; Diao et al.,

2020; Song et al., 2020); yet, the most dramatic difference we

found in the severe group was a marked decline in monocyte

function. We identified excessive activation of endoplasmic re-

ticulum (ER) stress in monocytes with a concomitant increase

in apoptosis, which could be augmenting death of these immune

cells in the severe group. Peripheral blood monocytes also had a

deficiency in their response to IFN signaling. Type I IFN activity is

important during an appropriate antiviral immune response
(Acharya et al., 2020), but a recent study demonstrated that pa-

tients with severe COVID-19 have an apparent deficiency in type

I IFN signaling (Hadjadj et al., 2020). Our findings are congruous

with this finding but further reveal that the deficient type I IFN

response emanates from the monocytic compartment in

contrast to lymphocytes, which had an appropriate response.

Circulating monocytes from the severe group may be exhibiting

immunoparalysis (Giamarellos-Bourboulis et al., 2020), as our

results imply that they were not responsive to IFN signaling. Sud-

den loss of monocytes and their MHC expression is an indicator

of severe acute illness in other conditions characterized by

‘‘cytokine storm’’ such as sepsis and community acquired infec-

tions (Cajander et al., 2016; Lekkou et al., 2004). We also found

that monocytes were characterized by decreased expression of

class I and II MHC genes in the severe group, consistent with

other descriptions (Giamarellos-Bourboulis et al., 2020; Wilk

et al., 2020), which may be related to reduced responsiveness

to both type I IFN and IFN-g. A concomitant augmentation of

PD-1/PD-L1 signaling was found in monocytes, which could

lead to selective immunosuppression in this population. Addi-

tionally, we postulate that suppressed protein translation by an

augmented unfolded protein response in monocytes may be

further contributing to the immunoparalysis phenotype identified

in the myeloid compartment. We also identified IRF7 as a master

regulator that could be driving the aberrant type I IFN response in

severe conditions, perhaps as a consequence of SARS-CoV-2

suppression of TLR/RIG-I signaling (Hu et al., 2017; Li et al.,

2016; Siu et al., 2009). Consequently, altered antigen presenta-

tion by monocytes can also result in the observed defect in

T cell function in the severe group, resulting in inhibition of the

downstream adaptive immunity necessary for viral clearance

and resolution of systemic inflammation (Jakubzick et al., 2017).

Several cytokines have been found to be dysregulated in

COVID-19 patients (Vabret et al., 2020). Type I IFNs are crucial

for a successful antiviral immune response, and subverting the

early type I IFN response contributes to pathogenesis in

MERS-CoV, SARS-CoV-1, and SARS-CoV-2 infections (Had-

jadj et al., 2020; Lee et al., 2020; Siu et al., 2009; Yang

et al., 2015). Clinical trials with type I IFN therapy are ongoing;

however, this treatment may be harmful if patients are already

upregulating IFN-stimulated genes. In fact, our pathway anal-

ysis suggests adaptive immune cells have a normal IFN

response, but monocytes have a selective dysregulation with

a depressed IFN response in patients with severe COVID-19.

Furthermore, our findings suggest that monocytes in patients

in the severe group have an inherent defect in their ability to

respond to IFN signaling, and this dysfunction may not be

ameliorated by simply treating patients at high risk for devel-

oping ARDS from SARS-CoV-2 infection with type I IFN

(Acharya et al., 2020).

SARS-CoV-2 infection of immune cells may be causing the

dysregulated response in PBMCs. However, immune cells do

not express angiotensin-converting enzyme (ACE2), the recep-

tor required for viral entry, suggesting an inability for viral infec-

tion (Hamming et al., 2004; Hoffmann et al., 2020; Radzikowska

et al., 2020; Zou et al., 2020). Moreover, we did not find any ev-

idence of ACE2 expression or any viral RNA in our scRNA-seq of

PBMCs (unpublished data). These observations make it less
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likely, but do not exclude the possibility, that viral infection of im-

mune cells is antagonizing inflammatory signaling pathways. An

alternative explanation is that genetic, environmental, and age-

related changes could confer a predisposition to a dysregulated

response to pro-inflammatory signals. This concept has been

previously demonstrated where certain individuals have attenu-

ated, while others have augmented, inflammatory responses

upon LPS stimulation of PBMCs (Wurfel et al., 2005). Recently,

a loss-of-function mutation in TLR7 was found to decrease the

IFN response and was associated with the development of se-

vere COVID-19 in small group of young men (van der Made

et al., 2020). Aging, a risk for more severe COVID-19 illness,

could also be contributing to immunoparalysis (Ebinger et al.,

2020; Fulop et al., 2018; Grasselli et al., 2020). Indeed, sirtuin

signaling was uniformly depressed in all immune cell compart-

ments of the severe group irrespective of comparison with mod-

erate or recovering COVID-19 patients. Sirtuins are histone de-

acetylases that have diverse effects in antiviral defense and

control of longevity, inflammation, and cellular senescence (Bu-

dayeva et al., 2015; Imai and Guarente, 2014; Koyuncu et al.,

2014). In particular, sirtuin activity decreases with age, and im-

munosenescence could be driving some of the dysregulated im-

mune response in severe COVID-19 patients (Fulop et al., 2018).

Obesity is another risk factor for development of severe COVID-

19 (Ebinger et al., 2020), and immunometabolic alterations could

be contributing to the dysfunctional immune response in COVID-

19 patients. The immunomodulatory effects of obesity can alter

both the innate and adaptive arms of the immune system and

have profound effects in tissue inflammation (Hotamisligil,

2017). Autophagy has a prominent role in immunometabolism

(Rathmell, 2012), and our findings demonstrate disrupted

mTOR signaling in multiple cellular compartments of severe pa-

tients particularly when compared with recovering patients, sug-

gesting another possible link to the dysregulated immunologic

findings in COVID-19 patients.

In summary, our study supports the concept that COVID-19,

and especially severe cases that have progressed to ARDS, is

characterized by multifaceted immune dysregulation that is not

uniformly hyperinflammatory but more accurately described as

a state of immune imbalance. Although immune cells have

augmented inflammatory signatures in severe COVID-19 pa-

tients compared with the moderate and recovering patient

groups, transcriptomic analysis suggests distinct patterns of

immunoparalysis such as impaired cytotoxic cell killing, attenu-

ated B cell activation, and dysregulated monocyte antigen

presentation that could contribute to the severity of illness. It

is unclear whether the divergent immunological responses in

patients with a moderate-versus-severe disease course are

specific to SARS-CoV-2 infection or generalizable to other in-

fectious and non-infectious causes of ARDS, and future

research using larger sample sizes is needed to further delin-

eate the transcriptional landscape of immune cells in different

ARDS populations. However, our study suggests that therapies

should consider a nuanced approach, particularly those

involving targeted augmentation of pathways within specific

immune compartments to limit disease severity as well as

promote resolution of the unrelenting inflammation in COVID-

19-associated ARDS.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human adult PBMC from COVID-19+ patient Cedars Sinai Medical Center BioBank

and Translational Research Core

http://www.cedars-sinai.org/research/

cores/biobank-translational.html

Patient information is available as Table S1

Critical Commercial Assays

Single Cell 30 Next GEM V3.1 10X Genomics PN-1000121

KAPA Library Quantification Kit Roche KK4824

Deposited Data

Raw and analyzed data This paper GEO: GSE154567

Healthy PBMC dataset Chen et al., 2018 GEO: GSE112845

SARS-COV2 genome https://www.ncbi.nlm.nih.gov/nuccore/

MT246667.1

GenBank: MT246667.1

Human reference transcriptome GRCh38 https://www.gencodegenes.org/human/ GRCh38.p13

Software and Algorithms

CellRanger v3.0.0 10X Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/overview/

welcome

R package Seurat v.3.1.5 Stuart et al., 2019 https://github.com/satijalab/seurat

R package SoupX (Young and Behjati, 2018) https://github.com/constantAmateur/SoupX

Harmony Korsunsky et al., 2019 https://github.com/immunogenomics/

harmony

R package MAST Finak et al., 2015 https://github.com/RGLab/MAST

Webgestalt v2019 Liao et al., 2019 http://www.webgestalt.org

Ingenuity Pathway Analysis QIAGEN N/A

GraphPad Prism 9 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

Other

FACS Aria III BD Biosciences N/A

10X Chromium Controller 10X Genomics Cat.#1000202

Novaseq 6000 Illumina N/A
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Peter Chen (peter.

chen@cshs.org).

Materials Availability
This study did not generate new unique materials.

Data and Code Availability
The accession number for the COVID-19 patient scRNA-seq data reported in this paper is GEO: GSE154567.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
This study was approved by the Institutional Review Board at Cedars-Sinai Medical Center (CSMC; IRB# STUDY00000602).

Informed consent was obtained from all enrolled patients according to CSMC BioBank’s Phase 2 Protocol (IRB# PRO00043021).

Study design and sample collection
Patients admitted to CSMC and diagnosed with COVID-19 by RT-PCR of nasopharyngeal swabs were stratified into moderate,

severe, and recovering groups (n = 6/group). One sample in the moderate group was lost during processing. The patient cohort

included 9 females and 8 males between the ages of 35-85 (Refer to Table S1 for details). Analysis by sex was not done due to

the small sample size per group. Patients with moderate disease had minimal oxygenation requirements (%4 l via nasal cannula)

at the time of sample collection. Severe disease included critically ill patients admitted to themedical intensive care unit and requiring

mechanical ventilation for acute respiratory distress syndrome (ARDS) during their hospitalization. Instead of sample collection

based on days of symptoms, which is subjective and liable to variability, we chose to collect samples within 5 days of admission

from moderate and severe groups to maintain uniformity of timing for comparison between groups based on disease severity and

reduce the potential for therapeutic interventions to confound interpretation of differences in immune cell gene expression between

patients and groups. Furthermore, we collected samples from a recovering group comprised of patients 18 to 25 days after admis-

sion who were recovering from ARDS secondary to SARS-CoV-2 infection. Venous blood was collected into EDTA coated tubes and

centrifuged to separate plasma and buffy coat. Plasmawas collected and frozen at�80C, and the buffy coat was collected into cryo-

preservation media and frozen at �80C. Our analyses focused on comparing differences between the moderate versus severe and

severe versus recovering groups. Because the moderate and recovering groups had different acuity and severity, these two groups

were not directly compared with each other.

METHOD DETAILS

Sample processing and single cell RNA-seq
The frozen buffy coats were thawed and washed with PBS containing 10% FBS. The cells were stained with DAPI (3mM) for 5 min to

assess viability. Live cells were sorted using a BD FACS Aria III (BD Biosciences, San Jose, CA, USA) in the CSMC Flow Cytometry

Core. Pairs of samples from the same patient group were mixed together at a 1:1 ratio before methanol fixation using the 10X Ge-

nomics methanol fixation protocol (Chen et al., 2018). Single cells were captured using a 10X Chromium Controller (10X Genomics)

and libraries were prepared according to the Single Cell 30 Next GEM V3.1 Reagent Kits User Guide (10X Genomics). The barcoded

sequencing libraries were quantified by quantitative PCR using the KAPA Library Quantification Kit (KAPA Biosystems, Wilmington,

MA). Libraries were sequenced using a Novaseq 6000 (Illumina) with custom sequencing settings of 28bp and 91bp for read 1 and 2,

respectively, to obtain a sequencing depth of ~5x104 reads per cell.

Alignment, Demultiplexing, Quality Control and Batch Correction
CellRanger v3.0.0 software was used with the default settings for demultiplexing, aligning reads with STAR software to a custom hu-

man GRCh38 transcriptome reference downloaded from https://www.gencodegenes.org/, containing all protein coding and long

non-coding RNA genes based on human GENCODE version 33 annotation with SARS-Cov2 virus genome MT246667.1, https://

www.ncbi.nlm.nih.gov/nuccore/MT246667.1.

Single cell analysis R package Seurat v3.1.5 was used for data analysis (Stuart et al., 2019). For quality control and filtering out low

quality cells, only cells expressing more than 200 genes (defined as genes detected in at least 3 cells) and fewer than 20%mitochon-

drial genes were selected. To minimize doublet contamination for each dataset, we removed cells with a high number of genes de-

tected using a fitmodel generated from suggestedmulitplet rate over number of cells recovered as in the 10XGenomics usermanual.

Ambient RNA derived from lysed cells was removed using SoupX package (Young and Behjati, 2018). A total number of 69983

captured single cells (about 4000 cells per patient) passed quality control for further batch correction and unbiased clustering.

We used default normalization and data scaling from the Seurat package, which is a log normalization and linear model for data

scaling. Batch correction package Harmony with Seurat 3 wrapper was used for data integration (Korsunsky et al., 2019). The batch

correction was processedwith PCA (Principal Component Analysis) using the 5000most variable genes, and the first 20 independent

components were used for downstream unbiased clustering with a resolution of 0.4. The UMAP (Uniform Manifold Approximation

and Projection) method was used for visualization of unsupervised clustering. We used the Seurat RunUMAP function for UMAP

reduction using the first 20 harmonized dimensions for immune cell types and 30 harmonized dimensions for immune cell subsets.

We applied default setting embedding in Seurat RunUMAP function, with min.dist of 0.3 and n_neighbors of 30. Cell cluster identities

were determined using known gene markers of individual cell types. Differentially expressed genes between different clusters and

groups were calculated using Mode-based Analysis of Single-cell transcriptomics (MAST) (Finak et al., 2015). Major immune cell

types were assigned according their expression of known cell type specific gene signatures (Figure S1; Table S2). Erythrocyte

and Platelet clusters were removed from further analysis. Lymphocyte clusters without obvious subset markers and with relatively

lower UMI counts were annotated as ‘‘undefined lymphocytes’’ and were excluded from further analysis. Three methanol fixed
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healthy PBMC datasets generated using the Chromium Single Cell 30 Reagent v2 Kit were downloaded fromGEO: GSE112845 (Chen

et al., 2018). Each individual dataset went through the same QC step as the COVID-19 patient samples. To reduce the technical vari-

ability caused by different versions of 10x ChromiumSingle Cell 30 Reagent kits, when comparing healthy samples withmoderate and

severe COVID-19 patient samples, ribosomal and mitochondrial genes were removed from the analysis.

Pathway analysis and module scores
To understand the biological processes that were enriched by the differentially expressed genes within each immune compartment,

we sorted differentially expressed genes (FDR < 0.01) into those that were upregulated or downregulated between two groups (i.e.,

moderate versus severe and severe versus recovering) and did further analysis of gene lists separately. Using Webgestalt (Version

2019) (Liao et al., 2019), gene lists were entered to do an over-representation analysis using the Gene Ontology (GO) database to

identify the biological processes that were affected by the differentially expressed genes between severity groups in each cell type.

In order to complement our GO analysis, we also performed canonical pathway analysis on all major immune cell types using

Ingenuity Pathway Analysis (IPA, QIAGEN). Enrichment analysis on differentially expressed genes (FDR < 0.01) for each cell type

(Classical monocytes, NK, CD8 T cell, CD4 T cell, and B cell) across conditions (Moderate, Severe, Recovering) was performed

by leveraging over 700manually curated pathways using Fisher’s exact test with Benjamini Hochberg adjusted P-values (FDR). Addi-

tionally, pathway activity analysis was performed to assess whether significantly enriched pathways (FDR < 0.01) were activated or

inhibited based on IPA’s knowledgebase of expression or phosphorylation patterns of gene products in a given canonical pathway

using a Z score statistic. While each cell type and condition elicited a distinct set of enriched and differentially activated/inhibited

pathways, we focused on the most significant programs shared by immune cells under different clinical states.

Upstream regulator analysis was performed by using differentially expressed genes (FDR< 0.01) for each immune cell type as input

seeds. The direction of expression of these genes was compared to IPA’s knowledge base using a statistical model (Krämer et al.,

2014) to identify key putative regulators and construct a mechanistic regulatory network. An overlap P-value was used to measure

enrichment of network-regulated genes in the dataset and an activation Z score was calculated to identify likely regulating molecules

based on statistically significant patterns of up- and downregulation as well as expected activation state (activated or inhibited) of

each regulator.

Pathwaymodule scores within each immune compartment were determined using the union of differentially expressed genes in all

COVID-19 groups returned from GO over-representation analysis for biological processes of interest. Pathways were defined by the

GO database. Genes present from the sorted differentially expressed genes that are attributed to a biological process or pathway of

interest by the GO database were used to form the modules, and module genes were selected based on actual enriched GO pro-

cesses. Pathway module scores were calculated using the AddModuleScore function of the Seurat package that calculated the

average expression of each gene signature list and subtracted by the aggregated expression of control feature sets. All analyzed

features are binned based on averaged expression, and the control features are randomly selected from each bin (Tirosh et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of clinical data was performed usingGraphPad Prism software v9. Data were assessed for normal distribution and

plotted in the figures asmean ±SEMunless described otherwise. One-way ANOVAwith Tukey’s multiple comparisons test was used

for normally disturbed data, and Kruskal-Wallis test with Dunn’smultiple comparisons test andMann-Whitney test were used for data

that were not normally distributed. Statistical analysis of scRNaseq datawas performed using RStudio v1.3.1 and IPA. Kruskal-Wallis

test with Wilcoxon test and Fisher’s exact test with Benjamini Hochberg adjusted P-values were used for module scores and canon-

ical pathway analysis, respectively.
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Supplemental Figure 1

A

Supplemental Figure 1. Identification of immune cell subsets in healthy control and COVID-19 patient 
samples. (related to Figures 1-7)
A) UMAP plot of all cells from healthy controls (n=3) and acutely ill COVID-19 patients with moderate and severe
disease (n=11). B) UMAP plots identify T cells (CD3G), NK cells (TYROBP, FCGR3A), B cells (MS4A1), plasma 
cells (JCHAIN), proliferating lymphocytes (MKI67 and CD3G or FCGR3A), monocytes (CD14 or FCGR3A), cDCs
(CD1C), pDCs (SERPINF1), platelets (PF4) and erythrocytes (HBA2). Erythrocytes, platelets and undefined 
lymphocytes were excluded from further analysis. C) UMAP plot of all cells from moderate (n=5), severe (n=6) 
and recovering (n=6) COVID-19 patients. D) UMAP plots identify T cells (CD3G), NK cells (TYROBP, FCGR3A), 
B cells (MS4A1), plasma cells (JCHAIN), proliferating lymphocytes (MKI67 and CD3G or FCGR3A), monocytes 
(CD14 or FCGR3A), cDCs (CD1C), pDCs (SERPINF1), platelets (PF4) and erythrocytes (HBA2). Erythrocytes, 
platelets and undefined lymphocytes were excluded from further analysis.
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Supplemental Figure 2

Supplemental Figure 2. Healthy control versus acutely ill COVID-19 patient samples. (related to 
Figure 1)
Global transcriptome differences between healthy control and acutely ill COVID-19 patient NK cells, CD8 
T cells, CD4 T cells, B cells and monocytes were defined by over representation analysis of up- and 
downregulated biological processes.
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Supplemental Figure 3
A

Supplemental Figure 3. Comparison of NK and CD8 and CD4 T cell gene expression. (related to Figures 
2-4)
A-B) Mean NK cell module scores for pairs of individual patients sequenced together. C) Average NK cell 
expression of differentially expressed genes involved in cytotoxicity in patient groups compared to healthy 
controls. D-F) Mean CD8 T cell module scores for pairs of individual patients sequenced together. G) Average 
CD8 T cell expression of differentially expressed genes involved in cytotoxicity in patient groups compared to 
healthy controls. H-I) Mean CD4 T cell module scores for pairs of individual patients sequenced together.
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Supplemental Figure 4

Supplemental Figure 4. Comparison of B and plasma cell and monocyte gene expression. (related to 
Figures 5 and 6)
A-B) Mean B and plasma cell module scores for pairs of individual patients sequenced together. C) UMAP of 
monocytes and DCs from all patients. D) Monocyte and DC clusters were identified as classical monocytes 
(CD14), non-classical monocytes (FCGR3A), cDCs (HLA-DRB1, CD74) and pDCs (PLD4, LILRA4) cells. E-G) 
Mean classical monocyte module scores for pairs of individual patients sequenced together.
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Supplemental Figure 5
A

Supplemental Figure 5. Comparison of IFN responses in immune cell subsets. (related to Figure 7)
A) List of type I IFN response genes increased (red) or decreased (blue) in the severe group compared to the
moderate group. B) Venn diagram showing overlapping gene targets in the immune cell subsets. C) Total 
number of DEG overlapping between immune cell subsets. D-H) Mean module scores for COVID-19 patients 
compared to healthy controls. Kruskal-Wallis test was used to test overall significance in module scores, P<2.2 x 
10-16. Wilcoxon test was used for pairwise comparisons, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001
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