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Suppl. Figure 1: Quality of Turnover Data, Related to Figure 1 (A) Pie chart of mutants included in the
T-MAP categorized by biological function (described in Table S1). (B) Cumulative frequency of the number
of scores (proteins quantified) in the T-MAP as a function of quantification events/score. (C) Scoring
function for quantitative turnover analysis identifies destabilizing (H/L, ,, < H/Lmed), stabilizing (H/L, , >
H/L_ ) and neutral (H/L, N H/L_ ) effects of mutant Aj on protein i. (D) Reproducibility of turnover
profiling between independent biological duplicates (coefficient of correlation) for each mutant in the
screen. Inlay shows as an example the reproducibility between biological replicates of pep4A. (E) Correla-
tion of protein abundance measurements determined in this study to ribosome footprint data from Ingolia et
al., 2009 (Pearson correlation coefficient: 0.85). (F) Correlation between protein abundance and protein
turnover determined in this study (Spearman correlation coefficient: 0.43). (G) Distribution of protein
turnover (H/Lmed) in different organelles. Abbreviations: end., endoplasmic; pl., plasma.
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Suppl. Figure 2: Coordination between Proteasomal and Vacuolar Responses, Related to Figure 2 (A)
Schematic of the 26S proteasome. The 26S proteasome consists of the catalytic 20S proteasome (a barrel of
four stacked rings: two outer rings and two inner rings) and the 19S regulatory particle (RP, also known as
PA700). (B) Abundance fold-change of proteasome subunit in 7pn4A cells. (C) Simplified version of figure
2 A showing separately the effects of vacuolar and proteasomal inhibition on proteome stability. (D) Stability
(T-scores) of 26S proteasome subunits in ¥pn4A and pep4A. (E) Stability (T-scores) of vacuolar enzymes in
rpn4A and pep4A. (F) Six proteins are stabilized by impairing either proteasomal or vacuolar degradation.
Itr1 is only affected by vacuolar degradation, Cit2 by proteasomal degradation, and Pgk1 is an unaffected,
long-lived protein. (G) Examples of known E3 substrates identified in our T-MAP. Asterisks indicates
known E3 ligase-substrate relationships. Squares are color coded by T-scores; n.d, no data. (H) Distribution
of E3 effects on 457 proteins stabilized in at least one E3 ligase mutant strain.
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Suppl. Figure 3: Validation of Turnover Measurements Using Cycloheximide Chase Experiments,
Related to Figure 2 and 4. (A) T-scores of selected proteins changes to various degrees in pep4A strain. (B)
Turnover measurements of proteins in (C) after inhibition of protein synthesis using 250 pg/ml cyclohexim-
ide. Indicated genes were endogenously tagged with C-terminal 3xFLAG and proteins were detected using
anti-FLAG pr anti-Pgk1 antibodies. Molecular weight marker bands indicated on the right in kDa. (C)
Quantification of experiment in A from 3 independent repeats. Error bars indicate standard deviation. (D)
Degradation of GFP-Tsc10 after inhibition of protein synthesis by 50 pg/ml cycloheximide in wildtype, asil
A, asi3A, doalOA, and hrdIA. Molecular weight marker bands indicated on the right in kDa.
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Suppl. Figure 4: Systematic Prediction of Targets for the HRD1 Branch of ERAD, Related to Figure 3.
(A) HHPred alignment of YJR0O15W. (B) Erg25 physically interacts with the Hrd1 complex, Cdc48 complex,
and proteasome. (left) Experimental design of SILAC-based affinity purification and MS analysis of
“heavy”-labeled cells expressing GFP-tagged Erg25 and untagged control cells. (right) Protein intensities are
plotted against normalized heavy/light SILAC ratios. (C) T-scores of Hrd1 targets in cells with impaired
proteasomal activity deleted for either RPN4 or PRE9 or expressing the DAMP allele of the essential genes
PRE?2 and PREG. Black squares indicate no data.



