Supporting Information for

Encapsulation of Highly Volatile Fragrances in Y Zeolites for Sustained Release: Experimental and Theoretical Studies

Zixie Li[†], Jianxiang Huang[‡], Long Ye[†], Yichao Lv[†], Zhuxian Zhou,[‡] Youqing Shen,[‡]

Yi He,[‡] and Liming Jiang*,[†]

[†] Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of

Education; Department of Polymer Science and Engineering, Zhejiang University,

Hangzhou 310027, China

[‡] Key Laboratory of Biomass Chemical Engineering, Ministry of Education; Center

for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang

University, Hangzhou 310027, China

*Corresponding author Email: cejlm@zju.edu.cn

Figure S1. SEM images of Y-type zeolites with different extra-framework metal ions: (A) NaY, (B) Ca_{0.91}Y, and (C) La_{0.90}Y. The latter two were obtained from the parent zeolite NaY by an ion-exchanging process.

Figure S2. Total energy dispersion spectra on the surface of Y zeolites with different extra-framework cations: (A) NaY; (B) Ca_{0.91}Y; (C) La_{0.90}Y.

Figure S3. N₂ adsorption–desorption isotherms measured at 77 K for $Ca_{0.91}Y$ (A) and $La_{0.90}Y$ (B). Insets: the corresponding pore width distribution curve derived from desorption isotherm branches by the BJH method.

Figure S4. Comparison of IR spectra of neat fragrances limonene (A, B) and linalool (C, D) with that of Y zeolites and composites FG@ZY thereof.

Figure S5. SEM images of linalool-loaded composites: (A) Lol@NaY, (B) Lol@Ca_{0.91}Y, and (C) Lol@La_{0.90}Y.

Figure S6. Comparison of powder X-ray diffraction (PXRD) patterns of Y zeolites with the corresponding fragrance-loaded composites.

Figure S7. TGA curves of free fragrances D-limonene and linalool.

Figure S8. Periodic model of a primitive cell of the zeolite NaY, CaY, and LaY (Si: blue; Al: grey; O: red; Na: yellow; Ca: brown; La: green).

Figure S9. The most stable adsorption configurations of fragrance molecules onto Y zeolites NaY, CaY, and LaY at a primitive cell scale.

Figure S10. The chemical structures of linalool (Lol) and limonene (Lim) with labels on the atoms.

Figure S11. Graphical representation of the shape-selectivity of the sodalite cage in Y zeolites towards D-limonene (A) and linalool (B).

Calcination-impregnation cycles	0	1	2	3
Ion exchange degree, <i>x</i>	0.62	0.90	0.95	0.97

Table S1. Preparation of La_xY starting from La_{0.62}Y^{*a*}

^{*a*} Calcination for 6 h at 400 °C followed by soaking with 1.0 M LaCl₃ solution for 24 h at r.t. is considered a cycle.

 Table S2. Chemical composition of Y-type zeolites determined by energy dispersive

 spectroscopy

Element —	Element content (wt-%)			
	NaY	Ca _{0.91} Y	La _{0.90} Y	
0	64.70	76.08	73.11	
Na	8.51	0.48	0.73	
Al	7.64	6.14	6.83	
Si	19.15	14.71	17.12	
Cl	0.00	0.00	0.00	
Ca	0.00	2.59	0.00	
La	0.00	0.00	2.21	
Total	100.00	100.00	100.00	

Table S3. Fragrance release kinetic parameters for FG@NaY composites

First-order Eq.		Higuchi Eq.		Weibull Eq.			
Sample	$k(s^{-1})$	R^2	k (s ^{-0.5})	R^2	$k(s^{-1})$	п	R^2
Lol@NaY	1.9×10 ⁻⁷	0.9249	4.4×10 ⁻³	0.9815	1.7×10 ⁻⁷	0.40	0.9845
Lim@NaY	1.1×10^{-7}	0.9878	3.6×10 ⁻³	0.9997	6.1×10 ⁻⁸	0.38	0.9993

Table S4. Zero-order kinetic parameters for the release of fragrance from $FG@Ca_{0.91}Y$ and $FG@La_{0.90}Y$

Sample	Lol@Ca _{0.91} Y	Lim@Ca _{0.91} Y	Lol@La _{0.90} Y	Lim@La _{0.90} Y
$k(s^{-1})$	1.0×10^{-7}	4.7×10 ⁻⁸	8.6×10^{-8}	3.7×10 ⁻⁸
R^2	0.9996	0.9914	0.9930	0.9947

10	Lol				
ΔQ	NaY	CaY	LaY		
01	0.4820	0.4870	0.4660		
C1	-0.0198	0.0226	0.0116		
C2	0.0074	-0.0095	-0.0025		
C3	-0.0625	-0.0041	0.0114		
C4	-0.0078	-0.0078	-0.0081		
C5	-0.0520	-0.0115	-0.0032		
C6	-0.0035	-0.0080	0.0041		
C7	-0.0064	-0.0396	-0.0585		
C8	0.0017	-0.0033	-0.0206		
C9	-0.0174	-0.0211	-0.0702		
C10	0.0112	0.0184	0.0402		
H1	-0.0009	0.0274	0.0544		
H2	0.0249	0.0294	0.0128		
H3	-0.0166	0.0055	0.0054		
H4	-0.0131	-0.0043	0.0051		
H5	0.1150	0.0158	0.0169		
H6	0.0070	0.0268	0.0294		
H7	-0.0192	-0.0183	-0.0132		
H8	0.0070	0.0130	0.0130		
Н9	0.0543	0.0089	0.0108		
H10	0.0064	-0.0122	-0.0266		
H11	0.0036	0.0089	0.0167		
H12	0.0079	0.0172	0.0369		
H13	0.0034	0.0275	0.0471		
H14	0.0089	0.0063	0.0095		
H15	0.0239	0.0465	0.0589		
H16	0.0053	0.0062	0.0121		
H17	0.0066	0.0197	0.0314		
H18	0.0098	0.0311	0.0447		
Total	0.5670	0.6780	0.7350		

 Table S5. The Bader charge differences of linalool in Y-type zeolites (see Figure S10)

40	Lim				
ΔQ	NaY	CaY	LaY		
C1	0.0118	0.0100	0.0197		
C2	-0.0026	-0.0055	-0.1120		
C3	0.0011	0.0129	-0.0452		
C4	-0.0188	-0.0569	-0.0636		
C5	0.0007	0.0134	0.0206		
C6	-0.0909	-0.0971	-0.1820		
C7	-0.0342	-0.0393	-0.0998		
C8	-0.0143	-0.0107	0.0060		
С9	0.0021	0.0182	0.0310		
C10	-0.0101	-0.0220	-0.0166		
H1	-0.0063	0.0166	0.0149		
H2	0.0393	0.0298	0.1300		
H3	-0.0046	0.0033	0.0112		
H4	-0.0062	0.0016	0.0032		
H5	-0.0068	0.0034	-0.0121		
Н6	-0.0035	-0.0022	0.0175		
H7	0.0092	0.0216	0.0230		
H8	0.0017	0.0118	0.0256		
Н9	0.0659	0.0439	0.1400		
H10	0.0391	0.0597	0.1280		
H11	0.0226	0.0226	0.0215		
H12	-0.0066	-0.0079	-0.0033		
H13	0.0142	0.0060	0.0010		
H14	0.0053	0.0083	0.0209		
H15	-0.0063	0.0187	0.0336		
H16	0.0250	0.0220	0.0459		
Total	0.0268	0.0824	0.1590		

 Table S6. The Bader charge differences of limonene in Y-type zeolites (see Figure S10).