

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of short-term exposure to ambient PM2.5 with hospital admissions and 30-day readmissions in end-stage renal disease patients: population based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041177
Article Type:	Original research
Date Submitted by the Author:	01-Jun-2020
Complete List of Authors:	Wyatt, Lauren; United States Environmental Protection Agency Xi, Yuzhi; US Environmental Protection Agency (ORISE) Kshirsagar, Abhijit; University of North Carolina Kidney Center and Division of Nephrology and Hypertension Di, Qian; Tsinghua University Ward-Caviness, Cavin; United States Environmental Protection Agency Wade, Timothy; United States Environmental Protection Agency Cascio, Wayne E.; United States Environmental Protection Agency Rappold, Ana; United States Environmental Protection Agency Research Triangle Park Campus
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, NEPHROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
- 3 4	1	Title	
5 6 7 8 9	2	Association of short-term exposure to ambient $PM_{2.5}$ with hospital admissions and 30-day	
	3	readmissions in end-stage renal disease patients: population based retrospective cohort study	
9 10	4		
11 12	5	Author's names	
13 14	6	Lauren H Wyatt (0000-0002-4926-2058), Yuzhi Xi, Abhijit V Kshirsagar, Qian Di (0000-0002-	
15 16	7	1584-4770), Cavin Ward-Caviness (0000-0002-6322-4349), Timothy J Wade, Wayne E Cascio,	
17 18	8	Ana G Rappold (0000-0002-7696-0900)	
19 20 21	9		
22 22 23	10	Author's addresses and positions	
24 25 26 27	11	Center for Public Health and Environmental Assessment, Office of Research and Development,	,
	12	United States Environmental Protection Agency, Research Triangle Park, NC, USA Lauren H	
28 29	13	Wyatt postdoctoral research fellow	
30 31	14	Oak Ridge Institute for Science and Education at the United States Environmental Protection	
32 33	15	Agency, Research Triangle Park, NC, USA Yuzhi Xi doctoral student	
34 35	16	University of North Carolina Kidney Center and Division of Nephrology and Hypertension, UNC	
36 37	17	at Chapel Hill, Chapel Hill, NC, USA Abhijit V Kshirsagar nephrologist	
38 39 40	18	Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China	
40 41 42	19	Qian Di assistant professor	
43 44	20	Center for Public Health and Environmental Assessment, Office of Research and Development,	,
45 46	21	United States Environmental Protection Agency, Research Triangle Park, NC, USA Cavin	
47 48	22	Ward-Caviness computational biologist	
49 50	23	Center for Public Health and Environmental Assessment, Office of Research and Development,	,
51 52	24	United States Environmental Protection Agency, Research Triangle Park, NC, USA Timothy J	
53 54	25	Wade supervisory health scientist	
55 56			
57 58		1	1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

3 4	26	Center for Public Health and Environmental Assessment, Office of Research and Development,
5 6	27	United States Environmental Protection Agency, Research Triangle Park, NC, USA Wayne E
7 8	28	Cascio supervisory health scientist
9 10	29	Center for Public Health and Environmental Assessment, Office of Research and Development,
11 12	30	United States Environmental Protection Agency, Research Triangle Park, NC, USA Ana G
13 14	31	Rappold statistician
15 16	32	
17 18	33	Corresponding author
19 20 21	34	Correspondence to: Ana G Rappold rappold.ana@epa.gov, 919-843-9504, 109 TW Alexander
21 22 23	35	Drive, Mailbox 58B, Research Triangle Park, NC 27709
23 24 25	36	
26 27	37	Manuscript word count: 3159
28 29	38	Abstract word count: 298
30 31	39	
32 33	40	Abstract
34 35	41	Objectives: To examine the effect of short-term exposure to ambient fine particulate matter
36 37	42	(PM _{2.5}) on all-cause, cardiovascular, and respiratory related hospital admissions and
38 39	43	readmissions among patients receiving outpatient hemodialysis.
40 41 42	44	Design: Retrospective cohort study.
42 43 44	45	Setting: Inpatient hospitalization claims identified from the United States Renal Data System in
45 46	46	530 US counties.
47 48	47	Participants: All patients receiving in-center hemodialysis between 2008 and 2014.
49 50	48	Primary and secondary outcome measures: Risk of all-cause, cardiovascular, and
51 52	49	respiratory related hospital admissions and 30-day all-cause and cause-specific readmission
53 54	50	following an all-cause, cardiovascular, and respiratory related discharges. Readmission risk was
55 56		
57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	
5	
6 7	
7 8	
9	
10	
11 12	
13	
14 15	
16	
12 13 14 15 16 17 18	
18 19	
20	
21 22	
23	
24	
25 26	
27	
28 29	
30	
31 22	
32 33	
34	
35 36	
37	
38 39	
40	
41	
42 43	
44	
45 46	
47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58	
59 60	
-	

1

51	evaluated for early (1-7 days post-discharge) and late (8-30 days post-discharge) readmission
52	time-periods. Relative risk is expressed per 10 μ g/m ³ of PM _{2.5} .
53	Results: Same day ambient $PM_{2.5}$ was associated with increased hospital admission risk for
54	cardiovascular causes (0.8%, 95%CI: [0.1, 1.5]). Greater PM _{2.5} -related associations were
55	observed with 30-day readmission risk. All-cause readmission risk associated with $\mathrm{PM}_{\mathrm{2.5}}$ was
56	greater for early-readmissions compared to late-readmissions. Early-readmission risk was
57	increased by 1.4-1.7% following all-cause (1.4%, [0.5, 2.4]), cardiovascular (1.7%, [0.4, 3.1]),
58	and respiratory (1.6%, [0.2, 3.1]) discharges; while late-readmission risk increased by 0.3%
59	following all-cause and cardiovascular discharges. PM _{2.5} -related associations with readmission
60	risk were greatest for certain cause-specific readmissions ranging 1.8-7.6% for dysrhythmia and
61	conduction disorder, heart failure, COPD, other non-cardiac chest pain or respiratory syndrome,
62	and pneumonia. Following all-cause discharges, the cause-specific early-readmission risk was
63	increased by 6.1% (3.2, 9.2) for pneumonia, 4.6% (2.1, 7.1) for dysrhythmia and conduction
64	disorder, 3.6% (1.3, 5.9) for heart failure, and 2.7% (1.1, 4.2) for other non-cardiac chest pain or
65	respiratory syndrome related causes.
66	Conclusions: Daily ambient $PM_{2.5}$ was associated with an increased risk of cardiovascular
67	admissions and 30-day readmissions following cardiopulmonary-related discharges in a
68	vulnerable ESRD population. In the first week following discharge, greater $PM_{2.5}$ -related risk of
69	rehospitalization was identified for some diagnoses.
70	
71	Strengths and limitations of this study
72	Hospitalization records for patients undergoing in-center hemodialysis between 2008
73	and 2014 were identified using the US Renal Data System (> 1.8 million inpatient
74	admissions).
75	• Fine resolution daily air pollution was linked to the location of the last dialysis visit.
	3

2			
3 4	76	٠	The time-stratified design in the admissions analysis reduced the potential confounding
5 6	77		by factors that very slowly with time and those that are time-invariant.
7 8	78	•	Using time-dependent risk factors in the Cox proportional hazard model allowed for
9 10	79		readmission risk estimates to reflect the risk associated with daily fluctuations in ambient
11 12	80		PM _{2.5} and time-varying confounders.
13 14	81	•	This study uses ambient air quality near dialysis centers to estimate individual exposure
15 16	82		and diagnosis codes to classify cause-specific hospitalizations, which could contribute to
17 18	83		exposure and diagnosis misclassification.
19 20	84		exposure and diagnosis misclassification.
21 22			
23 24			
25 26			
27 28			
29			
30 31			
32 33			
34			
35 36			
37 38			
39			
40 41			
42 43			
44			
45 46			
47 48			
48 49			
50 51			
52			
53			
54 55			
56			
57 58			Λ
58 59			4
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4 5	
5	
7	
, 8	
9	
10	
11	
12	
13	
14	
16	
17	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	
19	
20	
21	
22	
24	
25	
26	
27	
28	
26 27 28 29 30	
30 31 32 33 34 35 36 37 38	
32	
33	
34	
35	
37	
38	
39	
40	
41	
42 43	
43 44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56 57	
57 58	
59	
60	

85

93

Introduction

86 Ambient fine particulate matter (PM_{2.5}) is a leading risk factor for all-cause mortality ¹⁻⁴, accounting for millions of premature deaths each year ⁵. Daily variation in ambient PM_{2.5} is also 87 associated with increased rates of unplanned hospital admissions, urgent care visits, and 88 89 medication usage ⁶⁷. Greater health impacts have been observed consistently in sensitive populations, including the elderly and individuals with chronic health conditions ^{3 8-10}; however, 90 few studies to our knowledge have examined PM_{2.5}-related health impacts on specific chronic 91 health conditions, such as individuals living with chronic kidney disease (CKD). 92

CKD is a progressive condition that affects 8 to 16% of the population worldwide ¹¹⁻¹³, and in the 94 final stage, end-stage renal disease (ESRD), many patients are transitioned to hemodialysis to 95 prolong life. Patients receiving dialysis represent a particularly vulnerable population because of 96 97 high rates of co-morbidities, including diabetes and cardiovascular disease, which may 98 contribute to the greater likelihood of hospital admission and readmission following PM exposure. In the US, patients on hemodialysis average 1.7 inpatient admissions annually with a 99 100 30-day readmission rate twice that of other Medicare beneficiaries ¹⁴, contributing to a substantial economic impact ¹⁵. In 2016, \$35.4 billion in Medicare fee-for-service costs were 101 attributed to ESRD ¹⁴, motivating health promotion and cost-containment efforts to slow the 102 progression of CKD and reduce hospitalizations and readmissions ¹⁶. While many current 103 strategies to reduce hospitalizations focus on care processes and patient-level factors ¹⁷⁻²⁰, 104 105 there is a knowledge gap on the role of modifiable environmental risk factors - specifically ambient PM_{2.5}^{2 21-23}. 106

107

108 In this study, we examined the risk of daily hospitalization and subsequent 30-day readmission 109 in relation to daily ambient PM_{2.5} using data from the US Renal Data System (USRDS) over a 7-110 year period. We focused on all-cause, cardiovascular, and respiratory hospitalizations and

Page 7 of 53

1 2			
3 4 5 6	111	estimated changes in risk for early (1 to 7 days post-discharge) and late (8 to 30 days post-	
	112	discharge) readmission accounting for the influence of different causal factors (i.e. acute and	
7 8	113	chronic illness burden) that may influence early versus late-readmissions ^{24 25} .	
9 10	114		
11 12	115	Methods	
13 14	116	Setting and study population	
15 16 17	117	Using patient level data from the USRDS, we constructed an open cohort of individuals	
18	118	receiving in-center hemodialysis between 2008 and 2014. USRDS is a national data registry for	
19 20 21	119	dialysis services and includes records of patient demographic characteristics, hospitalizations,	
22 23	120	and provider information on all patients receiving hemodialysis. Baseline demographic	
23 24 25 26 27 28 29 30 31	121	characteristics (sex, birth date, race, and smoking status) recorded at the initiation of dialysis	
	122	were extracted from the Medical Evidence Form CMS-2728 for each patient. For every inpatie	
	123	hospital visit, we extracted the admission date, discharge date, discharge diagnoses codes, and	
	124	discharge status.	
32 33	125		
34 35 36 37 38 39 40	126	For the analysis of 30-day readmission risk, we considered only admissions where patients	
	127	were discharged alive. Each readmission was counted once as a readmission relative to the	
	128	prior index admissions and was then considered as a new index admission. Thus, each	
40 41 42	129	admission could serve as both an index admission and readmission, consistent with previous	
43 44	130	studies ²⁶ . An admission that occurred on the same day as a discharge was combined with the	
45 46 47 48 49 50 51 52 53 54	131	previous admission. These readmissions are likely to represent facility transfers for which we	
	132	were not able to obtain information. Admissions occurring within 30 days of the end of the study	
	133	period were excluded, as 30 days of follow-up data were not available. For both admissions and	
	134	readmissions, patients could be represented more than once if they were admitted multiple	
	135	times during the study period.	
55 56	136		
57 58 59		6	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Health outcomes

The primary outcomes included daily counts of all-cause, respiratory, and cardiovascular-related admissions and the time to readmission following the cause-specific discharges. All-cause and cause-specific readmissions were examined separately. Readmissions were classified further as early-readmissions, occurring within 1 to 7 days of an index hospitalization discharge, and late-readmissions, occurring 8 to 30 days post-discharge.

International Classification of Diseases, 9th Revision (ICD-9) codes were used to identify cause-specific hospitalizations. Cardiovascular-related diagnoses included hypertension (ICD-9 codes 401-405), myocardial infarction (410), ischemic heart disease (410-411, 413), pulmonary embolism (415), dysrhythmia and conduction disorder (426-427), heart failure (428), and peripheral arterial disease (444). Respiratory-related diagnoses included asthma (493), chronic obstructive pulmonary disease (491-492, 496), pneumonia (480-486), and other non-cardiac chest pain or respiratory syndrome (786). Environmental data Daily concentrations of fine particulate matter (PM_{2.5}) were estimated using a previously described exposure prediction model ^{27 28}. Briefly, this model estimates daily PM_{2.5} on a 1 km grid for the entire continental US by incorporating satellite aerosol optical depth measurements, chemical transport model simulations, meteorology, land-use, and other variables. Gridded PM_{2.5} estimates were subsequently converted to population-weighted county-level estimates using 2010 Census tract population values. To enable adjustment for potential confounding by weather conditions, temperature and relative humidity data were obtained from the National Centers for Environmental Information's Global Historical Climatology Network (Global Surface Summary of the Day)²⁹ and using the Community Multiscale Air Quality model, respectively.

3 4	162	The study area was restricted to all counties containing at least one land surface station from	
5 6	163	the Global Historical Climatology Network (n = 530).	
7 8	164		
9 10	165	Daily PM _{2.5} was linked to patient hospitalizations based on the county of their last dialysis visit.	
11 12	166	Previous work has shown that patients in the USRDS cohort that receive in-center dialysis three	;
13 14	167	times a week have a median travel distance of 5.7 miles to their initial dialysis center ^{30 31} .	
15 16	168		
17 18 19	169	Study design and statistical analysis	
20 21	170	Daily county hospital admissions. The relative risks of hospital admissions associated with daily	
22 23	171	PM _{2.5} were estimated using a case-crossover design with conditional Poisson models for each	
24 25	172	of the three health outcomes separately (all-cause, cardiovascular, respiratory). Aggregated	
26 27	173	counts of daily admissions were time stratified by county-day, where each county served as its	
28 29	174	own control. For each county-day strata, $PM_{2.5}$ on the day of admission was compared with	
30 31	175	PM _{2.5} concentrations on control days. Control days were defined as occurring on the same day	
32 33	176	of the week in the same month and year. This, by design, enabled us to control for differences	
34 35	177	in county characteristics, such as population size and risk characteristics, and the influence of	
36 37 38	178	day of the week, seasonal, and long-term time trends ³² .	
39 40	179		
41 42	180	The relative risk of hospital admissions related to daily $PM_{2.5}$ for each health outcome was	
43 44	181	estimated using daily counts with respect to county-time strata, adjusted for meteorological	
45 46	182	conditions (temperature and humidity). Temperature and humidity effects were averaged over	
47 48	183	lag days 0, 1, and 2 and modeled using natural splines (df = 3) to allow for non-linear effects 33 .	
49 50	184		
51 52	185	We evaluated immediate (same day) and delayed $PM_{2.5}$ effects on all-cause and cause-specific	
53 54	186	hospital admissions. Unconstrained distributed lag models were used to assess the delayed	
55 56	187	effects of short-term exposures to PM _{2.5} . Delayed exposure up to 14 days were considered.	
57 58		٤	3
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2	188	
4 5		Early and late readmissions accurring within 20 days of discharge. Cay propertional bazarda
6 7	189	Early and late readmissions occurring within 30 days of discharge. Cox proportional hazards
8 9	190	models were used to assess the relative risk of early (1 to 7 days post-discharge) and late (8 to
10	191	30 days post-discharge) readmission associated with daily $PM_{2.5}$ following all-cause and cause-
11 12	192	specific index hospitalizations. Early-readmission models were censored at 7 days and late-
13 14	193	readmission models at 30 days.
15 16 17	194	
17 18 19	195	Models for readmissions incorporated both time-dependent and time-independent risk factors.
20 21	196	Time-dependent variables included daily $PM_{2.5}$, daily temperature, daily relative humidity, and
22 23	197	day-of-the-week. Time-independent factors included patient-specific and hospitalization event-
24 25	198	specific variables. Patient-specific variables included indicator of sex, race, baseline smoking
26 27	199	status, whether the patient had three or more previous hospital visits in the year prior, and age
28 29	200	at discharge. Event-specific variables included whether the discharge occurred on a holiday and
30 31	201	length of stay. Lastly, models were adjusted for patient-specific clusters to account for repeated
32 33	202	measures by individual.
34 35	203	
36 37	204	Daily county admission and readmission risks were expressed as the rate ratio (RR) per 10-
38 39 40	205	μ g/m ³ increase in PM _{2.5} . The proportion hospital admissions and readmissions associated with
40 41 42	206	$PM_{2.5}$ is reported as the attributable fraction (AF), where AF = (RR-1) / RR ³⁴ . All statistical
43 44	207	analyses were performed with R software (version 3.6.0) ³⁵ .
45 46	208	
47 48	209	Results
49 50	210	Characterization of clinical cohort and daily PM _{2.5}
51 52	211	Among 361,568 patients who were hospitalized during the study period, 10,274 were excluded
53 54	212	due to missing baseline demographic values, with 351,294 patients remaining. Demographic
55 56	213	descriptions are in Table 1. Patients had on average 2.97 hospital visits in the year prior to an
57 58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	214	admission and more than 70% of patients had at least one hospital admission related to
5 6	215	cardiovascular and respiratory causes (Table 2). The average daily county-level $PM_{2.5}$
7 8	216	concentration was 9.3 μ g/m ³ (range: 0.05 to 155.16 μ g/m ³) (Table S1).
9 10	217	
11 12	218	Description of clinical events, hospital admissions, and readmissions
13 14	219	In total, there were 1,801,966 hospital admissions, of which 1,493,795 recorded the patient as
15 16	220	alive at discharge. Of admissions that were discharged alive, 11.9% were readmitted within 7
17 18	221	days and 21.4% were readmitted 8 to 30 days post-discharge. The mean length of stay for all-
19 20 21	222	cause, cardiovascular, and respiratory admissions was 7.0, 7.0, and 7.1 days, respectively
22	223	(Table 2).
23 24 25 26 27 28 29 30 31	224	
	225	Associations between PM _{2.5} and readmission
	226	Early-readmission. Daily PM2.5 was positively associated with increased risk for early-
	227	readmission following all-cause, cardiovascular, and respiratory related discharges. Same day
32 33	228	(lag 0) PM _{2.5} was associated with a 1.4% (95%CI: 0.5, 2.4), 1.7% (95%CI: 0.4, 3.1), and 1.6%
34 35	229	(95%CI: 0.2, 3.1) increased risk of an early-readmission for any cause following all-cause,
36 37	230	cardiovascular, and respiratory related discharges, respectively (Figure 1, Table S3).
38 39 40	231	
40 41 42	232	PM _{2.5} associated early-readmission risk was greater for certain cause-specific outcomes.
43 44	233	Following all-cause discharges, same day (lag 0) $PM_{2.5}$ was associated with increased early-
45 46	234	readmission risk for dysrhythmia and conduction disorder (4.6% [2.1, 7.1]), heart failure (3.6%
47 48	235	[1.3, 5.9]), pneumonia 6.1% [3.2, 9.2]), and other non-cardiac chest pain or respiratory
49 50	236	syndrome (2.7% [1.1, 4.2]) causes. $PM_{2.5}$ associated early-readmission risk was greatest for
51 52	237	pneumonia related readmissions following cardiovascular related discharges (7.6% [3.6, 11.7]).
53 54	238	Other cause-specific early-readmission risks following cardiovascular and respiratory related
55 56		
57 58 59		10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	220	discharges were similar to estimates cheen ad following discharge for any eques (Figure 2
4 5	239	discharges were similar to estimates observed following discharge for any cause (Figure 2,
6	240	Table S4).
7 8	241	
9 10	242	An average AF at 10 $\mu\text{g/m}^3$ of PM $_{2.5}$ at lag 0 was 1.4% (95%CI: 0.5, 2.4), 1.7% (95%CI: 0.3,
11 12	243	3.0), and 1.6% (95%CI: 0.2, 3.0) for an early-readmission following all-cause, cardiovascular,
13 14	244	and respiratory discharges, respectively (Figure 1). County AF ranged 0.5% to 2.3%, 0.6% to
15 16	245	2.7%, and 0.5% to 2.6% for an early-readmission following all-cause, cardiovascular, and
17 18 10	246	respiratory related discharges, respectively (Figure 2).
19 20 21	247	
21 22 23	248	Late-readmission. Daily PM2.5 was also associated with increased risk of late-readmission
24 25	249	following all-cause, cardiovascular, and respiratory related discharges, though the magnitude of
26 27	250	risk related to all-cause readmissions was smaller than that observed with early-readmission.
28 29	251	Same day PM _{2.5} was associated with a 0.3% (95%CI: 0.1, 0.5) and 0.3% (95%CI: 0.1, 0.6)
30 31	252	increased risk of a late all-cause readmission following all-cause and cardiovascular related
32 33	253	discharges, respectively (Figure 1, Table S3).
34 35	254	
36 37 38	255	Similar to observations made for early-readmissions, PM _{2.5} associated late-readmission risk was
38 39 40	256	greater for certain cause-specific outcomes. Following all-cause discharges, a 10 μ g/m ³
40 41 42	257	increase in same day (lag 0) $PM_{2.5}$ was associated with increased late-readmission risk for
43 44	258	dysrhythmia and conduction disorder (2.5% [1.5, 3.6]), heart failure (3.7% [2.7, 4.7]), COPD
45 46	259	(2.2% [0.4, 3.9]), pneumonia (4.6% [3.3, 5.8]), and other non-cardiac chest pain or respiratory
47 48	260	syndrome (3.5% [2.9, 4.1]). Other cause-specific early-readmission risks following
49 50	261	cardiovascular and respiratory related discharges were similar to estimates observed following
51 52	262	discharge for any cause (Figure 2, Table S4).
53 54	263	
55 56		
57 58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 53

60

1 2		
2 3 4	264	The average AF at 10 $\mu\text{g}/\text{m}^3$ was 0.3% (95%CI: 0.1, 0.5) and 0.3% (95%CI: 0.1, 0.6) for a late-
5 6	265	readmission following all-cause and cardiovascular discharges, respectively (Figure 1). County
7 8	266	AF ranged 0.1% to 0.5% for a late-readmission following any cause (data not shown).
9 10	267	
11 12	268	Associations between PM _{2.5} and daily admissions
13 14	269	Same day $PM_{2.5}$ was associated with an increase in rate ratio of 0.3% (95%CI: -0.2, 0.9) for all-
15 16 17	270	cause admissions and 0.9% (95%CI: 0.2, 1.7) for cardiovascular admissions (Figure S2, Table
17 18 19	271	S2). We estimated 0.9% (95%CI: 0.1, 1.7) of cardiovascular admissions could be attributed to
20 21	272	10 μ g/m ³ ambient PM _{2.5} (Figure 3). Across counties, exposures accounted for 0.3% to 1.5% of
22 23	273	cardiovascular admissions when evaluated at the average daily $PM_{2.5}$ for each county (data not
24 25	274	shown).
26 27	275	
28 29	276	No change in risk of all-cause and cardiovascular admissions was observed related to prior
30 31	277	exposure (lags 1-14). Similarly, no change in risk for respiratory admissions was observed with
32 33	278	same day exposure (lag 0) or prior exposure (lags 1-14) (Figure S2, Table S2).
34 35	279	
36 37	280	Discussion
38 39 40	281	In a nationwide cohort study of 351,294 patients with ESRD managed with hemodialysis, we
41 42	282	evaluated the association between 1.8 million inpatient admissions and nearly 0.5 million
43 44	283	corresponding 30-day readmissions and the variation in daily ambient $PM_{2.5}$ in the US over 7
45 46	284	years, 2008-2014. Daily variation in $PM_{2.5}$ was associated with increased risk of hospital
47 48	285	admission and even greater risk of rehospitalization. We found that the rehospitalization risk
49 50	286	related to readmission for any cause was 4.7-8.0 times greater for readmission in the first week
51 52	287	following discharge, compared to late-readmissions (8-30d after discharge). Following all-cause,
53 54	288	cardiovascular, and respiratory related discharges, the early-readmission risk for any cause was
55 56	289	increased by 1.4, 1.7, 1.6%, respectively per 10 μ g/m ³ increase in daily PM _{2.5} . Importantly,
57 58 59		12

3 4 5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 22 32 42 52 62 72 82 92 30 31 32 33 43 53 63 73 83 94 41 22 34 45 65 75 55 55 55 55 55 55 55 55 55 55 55 55	2
4 5 6 7 8 9 10 1 12 13 14 15 16 7 18 19 20 12 22 32 42 5 26 7 28 9 30 13 22 33 34 5 36 7 38 9 41 42 34 45 46 7 48 9 5 15 25 35 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-
8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 2 4 5 6 7 8 9 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4
8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 2 4 5 6 7 8 9 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5
8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 2 4 5 6 7 8 9 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6
8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 2 4 5 6 7 8 9 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7
9 10 11 2 13 14 15 16 7 18 9 20 22 22 22 22 22 22 22 22 22 22 22 22	/
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 45\\ 36\\ 7\\ 38\\ 9\\ 01\\ 12\\ 34\\ 44\\ 45\\ 46\\ 7\\ 89\\ 05\\ 15\\ 23\\ 45\\ 56\\ 7\\ 58\\ 57\\ 58\\ \end{array}$	8
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 45\\ 36\\ 7\\ 38\\ 9\\ 01\\ 12\\ 34\\ 44\\ 45\\ 46\\ 7\\ 89\\ 05\\ 15\\ 23\\ 45\\ 56\\ 7\\ 58\\ 57\\ 58\\ \end{array}$	9
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 01\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 01\\ 32\\ 33\\ 45\\ 36\\ 7\\ 38\\ 9\\ 01\\ 12\\ 34\\ 44\\ 46\\ 47\\ 89\\ 05\\ 15\\ 23\\ 45\\ 56\\ 7\\ 58\\ \end{array}$	10
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 90\\ 41\\ 23\\ 44\\ 45\\ 46\\ 47\\ 89\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\end{array}$	
14 15 16 17 18 19 21 22 32 25 26 27 28 20 31 32 33 34 35 37 38 39 41 42 34 45 46 47 89 51 52 53 45 56 75 57 58	
$\begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 23 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 38 \\ 90 \\ 41 \\ 23 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 90 \\ 51 \\ 52 \\ 53 \\ 55 \\ 57 \\ 58 \end{array}$	13
$\begin{array}{c} 16\\ 17\\ 18\\ 9\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 7\\ 8\\ 9\\ 30\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 41\\ 42\\ 43\\ 44\\ 50\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\end{array}$	14
$\begin{array}{c} 16\\ 17\\ 18\\ 9\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 7\\ 8\\ 9\\ 30\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 41\\ 42\\ 43\\ 44\\ 50\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\end{array}$	15
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	16
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	17
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	18
20 21 22 23 24 25 26 27 28 29 31 32 33 35 36 37 38 39 41 42 43 44 50 51 52 53 55 57 58	19
21 22 23 24 25 26 27 28 29 31 32 33 35 36 37 38 39 41 42 34 45 46 47 48 9 51 52 53 55 57 58	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 40 41 42 34 45 46 47 48 90 51 52 53 55 55 57 58	
$\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	22
$\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	23
$\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$	24
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 57 58	
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 57 58	26
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 55 57 58	27
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 56 57 58	
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53 54 55 56 57 58	
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 56 57 58	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 	
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	30 72
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	
45 46 47 48 49 50 51 52 53 54 55 56 57 58	
46 47 48 49 50 51 52 53 54 55 56 57 58	
47 48 49 50 51 52 53 54 55 56 57 58	
48 49 50 51 52 53 54 55 56 57 58	
49 50 51 52 53 54 55 56 57 58	
50 51 52 53 54 55 56 57 58	
51 52 53 54 55 56 57 58	
52 53 54 55 56 57 58	
53 54 55 56 57 58	
54 55 56 57 58	
55 56 57 58	
56 57 58	
57 58	
58	
59	
	59

299

314

60

1

290 readmissions related to some cardiorespiratory diagnoses had the greatest PM_{2.5} attributed 291 readmission risk that was observed to be elevated for both early and late-readmissions. The 292 early-readmission risk following all-cause discharges, was increased by 6.1%, 4.6%, and 3.6% for pneumonia, dysrhythmia and conduction disorder, and heart failure related readmissions, 293 294 respectively. Most notably for readmissions related to pneumonia and dysrhythmia, the early-295 readmission risk attributed to $PM_{2.5}$ was nearly twice as large as the late-readmission risk. 296 Overall, these results suggest that at 10 µg/m³, 1.4-1.7% of early-readmissions for any cause 297 were attributable to short-term exposure. In the context of the daily PM_{2.5} National Ambient Air Quality Standard ($35 \mu g/m^3$), this attributable fraction would be 5-6%. 298

Our findings are consistent with previous studies that observed increased admission risks in 300 301 elderly populations ^{6 9 36-40} and patients with cardiovascular health complications ^{7 41}, and increased readmission risk following cardiovascular related admissions 74142. Studies in the 302 Medicare population similarly observed a 1-2% increase in cardiovascular hospital admissions 303 associated with same-day PM_{2.5} concentrations ^{6 9 36 38}. Risk appears to vary by diagnosis, as 304 305 the increased risk was slightly less (0.13%) for ST-elevation myocardial infarction related 306 admissions in a Chinese population ⁷ and greater (29%) for incident heart failure admissions in an Australian population ⁴¹. Increases in respiratory admissions (1-2%) have been noted in the 307 Medicare population ^{6 9 36-38}, but were not observed in this study. Prior studies provide evidence 308 309 that air pollution exposure is associated with adverse health outcomes including increased 310 infection rates, acute lung edema, and elevated concentrations of systematic inflammation markers ⁴³⁻⁴⁵. Despite known associations between PM exposure and adverse cardiovascular 311 and respiratory health outcomes, previous studies have not evaluated the impacts on hospital 312 readmissions among individuals with ESRD. 313

Page 15 of 53

BMJ Open

2	
3 4	315
5 6	316
7 8	317
9 10	318
11 12	319
13 14	320
15 16	321
17 18	322
19 20	323
21 22	324
23 24	
25 26	325
27 28	326
29 30	327
31 32	328
33 34	329
35 36	330
37 38	331
39 40	332
41 42	333
43 44	334
45 46	335
47 48	336
49 50	337
51	338
53	339
55	
57	510
54 55 56	

59

60

315 Few studies have examined PM_{2.5}-related effects on readmissions, and those that have report 316 on the long-term (>1yr) risk following cardiovascular related admissions. Following cardiovascular hospitalization, PM_{2.5}-related rehospitalization risks were greater for cardiac 317 readmissions compared to our observations of all-cause readmissions (1.3-2.6% vs 0.3%)^{7 42}. 318 319 Additionally, one study in an Australian population with very low ambient air pollution concentrations (mean $PM_{2.5} = 2.9 \,\mu g/m^3$) found no relationship between $PM_{2.5}$ and the all-cause 320 readmissions after an incident heart failure hospitalization ⁴¹. Short-term readmission risks were 321 greater in comparison to the long-term readmission risks, suggesting the week following a 322 323 discharge to be a window of heightened vulnerability. Prior work indicates that factors related to index hospitalizations and acute illness burden were predictive of an early-readmission ^{24 25}. 324 This may indicate that hospital readmissions related to acute illness burdens may be more 325 susceptible to PM_{2.5} exposure. 326

Our study contributes to the currently limited literature on the association between air pollution 328 and health impacts among hemodialysis patients and shines a light on the vulnerability in this 329 clinical population related to ambient airborne particulate matter. The 30-day rehospitalization 330 331 rate is 35% in this population, which is twice that of older Medicare beneficiaries without a kidney disease diagnosis ¹⁴. As many as 70% of readmissions are thought to be unnecessary ⁴⁶, 332 prompting efforts to improve outcomes. Economic healthcare costs associated with short-term 333 increases in PM_{2.5} are considerable; annual inpatient and post-acute care costs related to a 10 334 335 μ g/m³ in daily PM_{2.5} ranges \$30-70 million for cardiovascular and respiratory related diseases ⁴⁷. PM_{2.5} is a modifiable risk factor and reductions in short-term exposures could contribute to 336 reduced healthcare costs. Our findings suggest that short-term increases in PM_{2.5} contribute to 337 338 healthcare usage through unplanned admissions and readmissions. 339

340 Strengths and Limitations

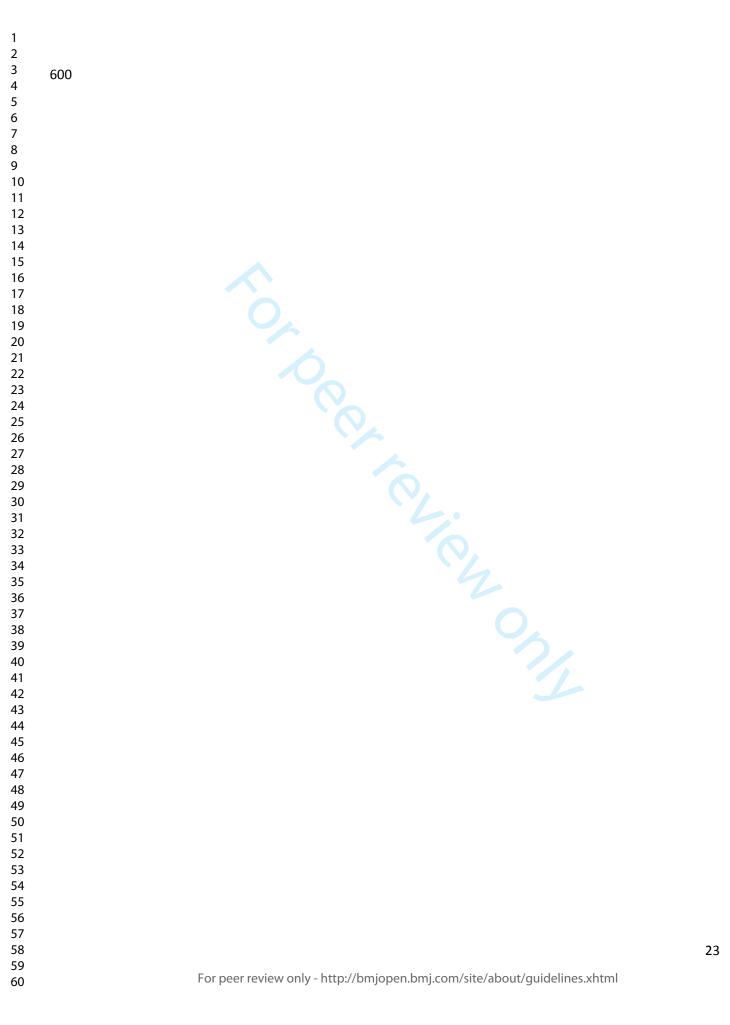
This study included a nearly complete cohort of US patients undergoing in-center hemodialysis. To our knowledge this is the largest analysis of short-term exposure to air pollution in the US in this highly vulnerable population. The USRDS registry provides a complete registry of all hospitalizations and contains detailed information regarding demographics, dialysis, hospitalization, rehospitalization, and co-morbid conditions. Secondly, ambient PM_{2.5} was estimated using a prediction model with highly resolved spatial and temporal resolution with proven accuracy ^{27 28}. Thirdly, the time-stratified design allowed for county matching that reduced the potential confounding by factors that very slowly with time and those that are time-invariant. Fourthly, the use of time-dependent risk factors in the Cox proportional hazard model allowed for readmission risk estimates to reflect the risk associated with daily fluctuations in ambient PM_{2.5} and time-varying confounders.

This study also had some limitations. Firstly, there was the potential for exposure

misclassification as the location of the last dialysis visit was used to estimate individual level exposures. PM_{2.5} around dialysis centers could differ from concentrations around hospitals and patient residences. However, given that patients generally reside less than 6 miles from their initial dialysis center, differences in temporal variation of exposure should be small and not likely to contribute a systematic bias favoring an association between ambient PM_{2.5} and clinical events ^{30 31}. Secondly, diagnosis misclassification was possible but was not likely to confound the relationship because it is not likely to vary on the same temporal scale as PM_{25} . Thirdly, there is the possibility that some unmeasured time variant factors may have confounded our estimates (smoking status, medication usage, behaviors). Data availability restricted the consideration of some patient level confounders, such as smoking status, to values recorded at baseline. Lastly, generalization of the results is limited to the Medicare population with ESRD managed with hemodialysis treatments. Future studies are needed to understand PM_{2.5}-related

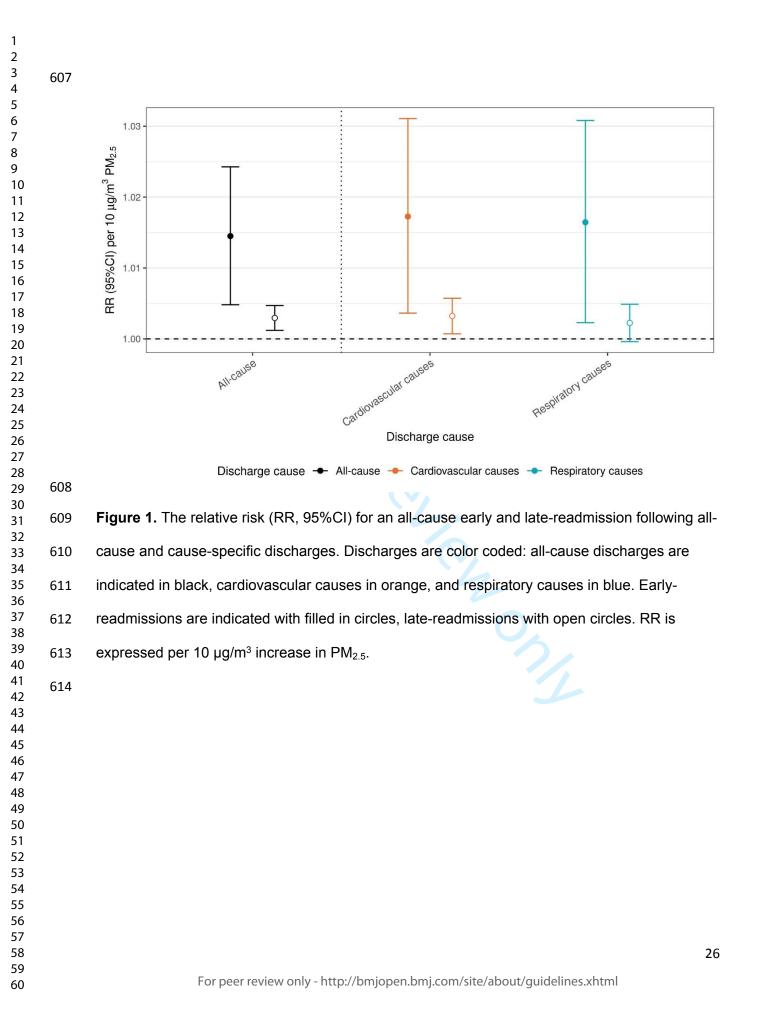
1 2					
3 4 5 6 7 8	366	impacts on specific health conditions, and if health impacts vary based on race, socioeconomi	ic		
	367	indicators, or other individual and population factors.			
	368				
9 10	369	Conclusion			
11 12	370	In conclusion, this United States wide cohort study identified increased risk in patients receivin	ng		
13 14	371	in-center hemodialysis associated with short-term increases in ambient air particle pollution.			
15 16	372	Elevated PM _{2.5} concentrations were found to be associated with increased inpatient hospital			
17 18	373	admissions related to cardiovascular causes, and an increased likelihood of hospital			
19 20 21	374	readmission following cardiovascular and respiratory related hospitalizations. Medicare			
22 23	375	spending for beneficiaries with ESRD is high. Traditional efforts to reduce the burden of diseas	se		
24 25	376	focus on patient factors; however, these data suggest that air particle pollution is a factor that			
26 27	377	contributes to increased risks for hospital admission and subsequent readmission. To reduce			
28 29 30 31	378	PM _{2.5} -related morbidities, we echo the recommendations made in the Million Hearts initiative,			
	379	that healthcare systems, insurers, physicians, and health care professionals should			
32 33	380	incorporate health risks related to ambient PM into patient care.			
34 35	381				
36 37 38	382	Disclaimer			
39 40	383	The research described in this article has been reviewed by the Center for Public Health and t	the		
41 42	384	Environment, U.S. Environmental Protection Agency, and approved for publication. Approval			
43 44	385	does not signify that the contents necessarily reflect the views and policies of the Agency, nor			
45 46	386	does the mention of trade names of commercial products constitute endorsement or			
47 48	387	recommendation for use.			
49 50	388				
51 52	389	Acknowledgements			
53 54 55	390	The patient data reported here have been supplied by the United States Renal Data System			
56 57	391	(USRDS). We are grateful for the high resolution ambient $PM_{2.5}$ data provided by Drs. Joel			
58 59			16		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

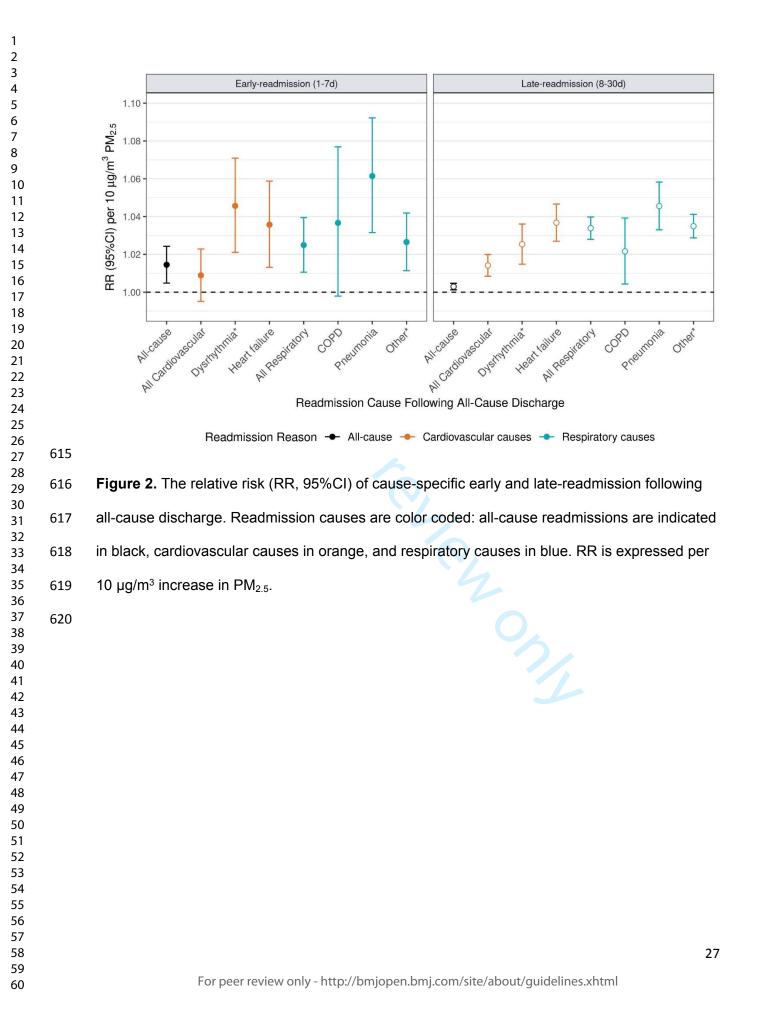
1 2			
- 3 4	392	Schwartz and Qian Di. The interpretation and reporting of these data are the responsibility of the	
5 6	393	author(s) and in no way should be seen as an official policy or interpretation of the U.S.	
7 8	394	government.	
9 10	395		
11 12	396	Contributors	
13 14	397	LHW, AGR conceived and designed the study. TJW, WEC, and AVK provided subject expert	
15 16 17	398	input into the study design and interpretation of evidence. AVK, QD, and CWC provided access	
17 18 19	399	to the data for the study; LHW managed and analyzed the data and AGR oversaw the analysis.	
20 21	400	LHW and AGR wrote the first draft of the manuscript. LHW, YX, AVK, CWC, TJW, WEC, and	
22 23 24	401	AGR critically contributed to the manuscript and approved the final draft. LHW and AGR are the	
25 26 27	402	guarantors. The corresponding author attests that all listed authors meet authorship criteria and	
28 29 30 31	403	that no others meeting the criteria have been omitted.	
	404		
32 33	405	Funding	
34 35	406	This work was supported by an internal US Environmental Protection Agency grant. The source	
36 37	407	of funding had no role in study design, data collection, analyses, interpretation, and decision to	
38 39 40	408	submit the article for publication.	
41 42	409		
43 44	410	Competing Interests	
45 46 47 48 49 50	411	All authors have completed the ICMJE uniform disclosure form at	
	412	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the	
	413	submitted work; no financial relationships with any organisations that might have an interest in	
51 52	414	the submitted work in the previous three years; no other relationships or activities that could	
53 54 55	415	appear to have influenced the submitted work.	
55 56 57	416		
58 59		17	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	


2		
3 4	417	Ethical approval
5 6	418	This study was reviewed by the institutional review board at the University of North Carolina at
7 8	419	Chapel Hill and determined to be exempt based on the study design involving secondary data
9 10	420	analysis.
11 12	421	
13 14	422	Data sharing
15 16	423	Data access to USRDS data sets is through an internal data use agreement with the University
17 18 19	424	of North Carolina at Chapel Hill's Cecil G. Sheps Center. $PM_{2.5}$ data was obtained through
20 21	425	collaboration with Drs. Joel Schwartz (Harvard TH Chan School of Public Health) and Qian Di
22 23	426	(Tsinghua University). For general data sharing inquiries, contact rappold.ana@epa.gov or
24 25	427	wyatt.lauren@epa.gov.
26 27	428	
28 29	429	Transparency
30 31	430	The lead and corresponding authors (LHW and AGR) affirm that the manuscript is an honest,
32 33	431	accurate, and transparent account of the study being reported; that no important aspects of the
34 35 36	432	study have been omitted; and that any discrepancies from the study as planned (and, if
30 37 38	433	relevant, registered) have been explained.
39 40	434	
41 42	435	Patient and Public Involvement
43 44	436	This study utilized a deidentified database, thus contact with patients was not possible.
45 46	437	
47 48	438	Copyright (non-exclusive license)
49 50	439	I Ana G Rappold The Corresponding Author of this article contained within the original
51 52	440	manuscript which includes any diagrams & photographs within and any related or stand alone
53 54	441	film submitted (the Contribution") has the right to grant on behalf of all authors and does grant
55 56 57	442	on behalf of all authors, a licence to the BMJ Publishing Group Ltd and its licencees, to permit
58 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	443	this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products	
5 6	444	and to exploit all subsidiary rights, as set out in our licence set out at:	
7 8	445	http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-ope	n-
9 10	446	access-and-permission-reuse	
11 12	447		
13 14	448	Please tick one or more boxes as appropriate:	
15 16	449	□ I am the sole author of the Contribution.	
17 18	450	☑ I am one author signing on behalf of all co-owners of the Contribution.	
19 20 21	451	☑ The Contribution has been made in the course of my employment and I am signing as	
21 22 23	452	authorised by my employer.	
24 25	453	☑ I am a US Federal Government employee acting in the course of my employment.	
26 27	454	□ I am not a US Federal Government employee, but some or all of my co-authors are.	
28 29 30 31	455	□ I am an employee of the UK Crown* acting in the course of my employment	
	456	□ I am not an employee of the UK Crown acting in the course of my employment but some/al	11
32 33	457	of my co-authors are.*	
34 35		of my co-authors are.*	
36 37			
38 39			
40			
41 42			
43 44			
44			
46			
47 48			
49			
50			
51			
52			
53 54			
54 55			
56			
57			
58			19
59		For poor rovious only http://hmionon.hmi.com/site/shout/suidalines.shtml	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2		
3	460	References
4	400	Relefences
5	461	1. Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease
6	462	attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases
7	463	Study 2015. The Lancet 2017;389(10082):1907-18. doi: 10.1016/S0140-6736(17)30505-6
8	464	2. Brook RD, Rajagopalan S, Pope CA, 3rd, et al. Particulate matter air pollution and cardiovascular
9 10	465	disease: An update to the scientific statement from the American Heart Association. <i>Circulation</i>
10	466	2010;121(21):2331-78. doi: 10.1161/CIR.0b013e3181dbece1 [published Online First:
12	467	2010/05/12]
13	468	3. Shi L, Zanobetti A, Kloog I, et al. Low-Concentration PM2.5 and Mortality: Estimating Acute and
14	469	Chronic Effects in a Population-Based Study. Environ Health Perspect 2016;124(1):46-52. doi:
15	470	10.1289/ehp.1409111 [published Online First: 2015/06/04]
16	471	4. Kloog I, Ridgway B, Koutrakis P, et al. Long- and short-term exposure to PM2.5 and mortality: using
17	472	novel exposure models. <i>Epidemiology (Cambridge, Mass)</i> 2013;24(4):555-61. doi:
18 19	473	10.1097/EDE.0b013e318294beaa [published Online First: 2013/05/17]
20	474	5. WHO WHO. Country estimates of burden of disease from ambient air pollution for 2016, 2018.
21	475	6. Dominici F, Peng RD, Bell ML, et al. Fine particulate air pollution and hospital admission for
22	476	cardiovascular and respiratory diseases. Jama 2006;295(10):1127-34. doi:
23	477	10.1001/jama.295.10.1127 [published Online First: 2006/03/09]
24	478	7. Liu H, Tian Y, Cao Y, et al. Fine particulate air pollution and hospital admissions and readmissions for
25	479	acute myocardial infarction in 26 Chinese cities. <i>Chemosphere</i> 2018;192:282-88. doi:
26 27	480	10.1016/j.chemosphere.2017.10.123 [published Online First: 2017/11/07]
27	481	8. Di Q, Dai L, Wang Y, et al. Association of Short-term Exposure to Air Pollution With Mortality in Older
29	482	AdultsAssociation of Short-term Exposure to Air Pollution With Mortality in Older
30	483	AdultsAssociation of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA
31	484	2017;318(24):2446-56. doi: 10.1001/jama.2017.17923
32	485	9. Bravo MA, Ebisu K, Dominici F, et al. Airborne Fine Particles and Risk of Hospital Admissions for
33	486	Understudied Populations: Effects by Urbanicity and Short-Term Cumulative Exposures in 708
34 35	487	U.S. Counties. Environ Health Perspect 2017;125(4):594-601. doi: 10.1289/ehp257 [published
35 36	488	Online First: 2016/09/21]
37	489	10. Simoni M, Baldacci S, Maio S, et al. Adverse effects of outdoor pollution in the elderly. J Thorac Dis
38	490	2015;7(1):34-45. doi: 10.3978/j.issn.2072-1439.2014.12.10
39	491	11. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. Jama
40	492	2007;298(17):2038-47. doi: 10.1001/jama.298.17.2038 [published Online First: 2007/11/08]
41	493	12. Hsu CY, Vittinghoff E, Lin F, et al. The incidence of end-stage renal disease is increasing faster than
42 43	494	the prevalence of chronic renal insufficiency. Annals of internal medicine 2004;141(2):95-101.
43	495	doi: 10.7326/0003-4819-141-2-200407200-00007 [published Online First: 2004/07/21]
45	496	13. Cockwell P, Fisher L-A. The global burden of chronic kidney disease. The Lancet
46	497	2020;395(10225):662-64. doi: 10.1016/S0140-6736(19)32977-0
47	498	14. USRDS USRDS. 2018 USRDS annual data report: Epidemiology of kidney disease in the United States.
48	499	Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and
49	500	Kidney Diseases, 2018.
50 51	501	15. Wang V, Vilme H, Maciejewski ML, et al. The Economic Burden of Chronic Kidney Disease and End-
52	502	Stage Renal Disease. Seminars in nephrology 2016;36(4):319-30. doi:
53	503	10.1016/j.semnephrol.2016.05.008 [published Online First: 2016/08/01]
54	504	16. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review.
55	505	JAMA 2019;322(13):1294-304. doi: 10.1001/jama.2019.14745
56		
57		
58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


3	506	17. Flythe JE, Hilbert J, Kshirsagar AV, et al. Psychosocial Factors and 30-Day Hospital Readmission
4	507	among Individuals Receiving Maintenance Dialysis: A Prospective Study. American journal of
5	508	nephrology 2017;45(5):400-08. doi: 10.1159/000470917 [published Online First: 2017/04/14]
6	509	18. Perl J, McArthur E, Bell C, et al. Dialysis Modality and Readmission Following Hospital Discharge: A
7	510	Population-Based Cohort Study. American journal of kidney diseases : the official journal of the
8 9	511	National Kidney Foundation 2017;70(1):11-20. doi: 10.1053/j.ajkd.2016.10.020 [published
9 10	512	Online First: 2017/01/11]
11	513	19. Chan L, Chauhan K, Poojary P, et al. National Estimates of 30-Day Unplanned Readmissions of
12	514	Patients on Maintenance Hemodialysis. <i>Clinical journal of the American Society of Nephrology :</i>
13	515	
14		<i>CJASN</i> 2017;12(10):1652-62. doi: 10.2215/cjn.02600317 [published Online First: 2017/10/04]
15	516	20. Lin Y, Yang C, Chu H, et al. Association between the Charlson Comorbidity Index and the risk of 30-
16	517	day unplanned readmission in patients receiving maintenance dialysis. BMC nephrology
17	518	2019;20(1):363. doi: 10.1186/s12882-019-1538-0 [published Online First: 2019/10/09]
18	519	21. USEPA USEPA. Integrated Science Assessment (ISA) for Particulate Matter, 2009.
19	520	22. Newby DE, Mannucci PM, Tell GS, et al. Expert position paper on air pollution and cardiovascular
20	521	disease. European heart journal 2014;36(2):83-93. doi: 10.1093/eurheartj/ehu458
21	522	23. Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in
22 23	523	155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a
23 24	524	prospective cohort study. <i>Lancet (London, England)</i> 2020;395(10226):795-808. doi:
25	525	10.1016/s0140-6736(19)32008- <mark>2</mark> [published Online First: 2019/09/08]
26	526	24. Graham KL, Auerbach AD, Schnipper JL, et al. Preventability of Early Versus Late Hospital
27	527	Readmissions in a National Cohort of General Medicine Patients. Annals of internal medicine
28	528	2018;168(11):766-74. doi: 10.7326/m17-1724 [published Online First: 2018/05/02]
29	529	25. Graham KL, Wilker EH, Howell MD, et al. Differences between early and late readmissions among
30	530	patients: a cohort study. Annals of internal medicine 2015;162(11):741-9. doi: 10.7326/m14-
31	531	2159 [published Online First: 2015/06/02]
32	532	26. Barrett M RS, Andrews R. Overview of Key Readmission Measures and Methods. 2012. HCUP
33	533	Methods Series Report #2012-04. U.S. Agency for Healthcare Research and Quality, 2012.
34 35	534	27. Makar M, Antonelli J, Di Q, et al. Estimating the Causal Effect of Low Levels of Fine Particulate Matter
36	535	on Hospitalization. Epidemiology (Cambridge, Mass) 2017;28(5):627-34. doi:
37	536	10.1097/ede.0000000000000690 [published Online First: 2017/08/03]
38	537	28. Di Q, Kloog I, Koutrakis P, et al. Assessing PM2.5 Exposures with High Spatiotemporal Resolution
39	538	across the Continental United States. Environ Sci Technol 2016;50(9):4712-21. doi:
40	539	10.1021/acs.est.5b06121 [published Online First: 2016/03/30]
41	540	29. NOAA. Global Surface Summary of the Day - GSOD. In: National Climatic Data Center N, NOAA, U.S.
42	541	Department of Commerce, ed.
43	542	30. Prakash S, Coffin R, Schold J, et al. Travel distance and home dialysis rates in the United States. <i>Perit</i>
44	543	Dial Int 2014;34(1):24-32. doi: 10.3747/pdi.2012.00234
45 46	544	31. Stephens JM, Brotherton S, Dunning SC, et al. Geographic disparities in patient travel for dialysis in
40 47	545	the United States. The Journal of rural health : official journal of the American Rural Health
48	546	Association and the National Rural Health Care Association 2013;29(4):339-48. doi:
49	547	10.1111/jrh.12022 [published Online First: 2013/10/04]
50	548	32. Carracedo-Martinez E, Taracido M, Tobias A, et al. Case-crossover analysis of air pollution health
51	548 549	effects: a systematic review of methodology and application. <i>Environ Health Perspect</i>
52	549 550	2010;118(8):1173-82. doi: 10.1289/ehp.0901485 [published Online First: 2010/04/02]
53		
54	551	33. DeFlorio-Barker S, Crooks J, Reyes J, et al. Cardiopulmonary Effects of Fine Particulate Matter
55	552	Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States
56		
57 58		- 4
58 59		21
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


2		
3 4	553	2008-2010. Environ Health Perspect 2019;127(3):37006. doi: 10.1289/ehp3860 [published
5	554	Online First: 2019/03/16]
6	555	34. Hildebrandt M, Bender R, Gehrmann U, et al. Calculating confidence intervals for impact numbers.
7	556	BMC Med Res Methodol 2006;6:32. doi: 10.1186/1471-2288-6-32 [published Online First:
8	557	2006/07/14]
9	558	35. A language and environment for statistical computing. R Foundation for Statistical Computing
10	559	[program]. Vienna, Austria, 2019.
11	560	36. Peng RD, Bell ML, Geyh AS, et al. Emergency admissions for cardiovascular and respiratory diseases
12	561	and the chemical composition of fine particle air pollution. Environ Health Perspect
13	562	2009;117(6):957-63. doi: 10.1289/ehp.0800185 [published Online First: 2009/07/11]
14 15	563	37. Peng RD, Chang HH, Bell ML, et al. Coarse particulate matter air pollution and hospital admissions for
16	564	cardiovascular and respiratory diseases among Medicare patients. Jama 2008;299(18):2172-9.
17	565	doi: 10.1001/jama.299.18.2172 [published Online First: 2008/05/15]
18	566	38. Powell H, Krall JR, Wang Y, et al. Ambient Coarse Particulate Matter and Hospital Admissions in the
19	567	Medicare Cohort Air Pollution Study, 1999-2010. Environ Health Perspect 2015;123(11):1152-8.
20	568	doi: 10.1289/ehp.1408720 [published Online First: 2015/04/15]
21	569	39. Zanobetti A, Dominici F, Wang Y, et al. A national case-crossover analysis of the short-term effect of
22	570	PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders.
23	571	Environmental health : a global access science source 2014;13(1):38. doi: 10.1186/1476-069x-
24 25	572	13-38 [published Online First: 2014/06/03]
25 26	573	40. Wellenius GA, Bateson TF, Mittleman MA, et al. Particulate air pollution and the rate of
20	574	hospitalization for congestive heart failure among medicare beneficiaries in Pittsburgh,
28	575	Pennsylvania. Am J Epidemiol 2005;161(11):1030-6. doi: 10.1093/aje/kwi135 [published Online
29	576	First: 2005/05/20]
30	577	41. Huynh QL, Blizzard CL, Marwick TH, et al. Association of ambient particulate matter with heart
31	578	failure incidence and all-cause readmissions in Tasmania: an observational study. BMJ Open
32	579	2018;8(5):e021798. doi: 10.1136/bmjopen-2018-021798
33	580	42. von Klot S, Peters A, Aalto P, et al. Ambient air pollution is associated with increased risk of hospital
34 25	581	cardiac readmissions of myocardial infarction survivors in five European cities. <i>Circulation</i>
35 36	582	2005;112(20):3073-79. doi: 10.1161/CIRCULATIONAHA.105.548743
37	583	43. Liu MH, Chan MJ, Hsu CW, et al. Association of uremic pruritus in hemodialysis patients with the
38	584	number of days of high mean 24-hour particulate matter with a diameter of <2.5 mum.
39	585	Therapeutics and clinical risk management 2017;13:255-62. doi: 10.2147/tcrm.s129133
40	586	[published Online First: 2017/03/07]
41	587	44. Chiu PF, Chang CH, Wu CL, et al. High particulate matter 2.5 levels and ambient temperature are
42	588	associated with acute lung edema in patients with nondialysis Stage 5 chronic kidney disease.
43	589	Nephrology, dialysis, transplantation : official publication of the European Dialysis and
44 45	590	Transplant Association - European Renal Association 2018 doi: 10.1093/ndt/gfy144 [published
45 46	591	Online First: 2018/06/26]
47	592	45. Huang WH, Yen TH, Chan MJ, et al. Impact of environmental particulate matter and peritoneal
48	593	dialysis-related infection in patients undergoing peritoneal dialysis. <i>Medicine</i> 2014;93(25):e149.
49	594	doi: 10.1097/md.00000000000149 [published Online First: 2014/12/02]
50	595	46. Mathew AT, Rosen L, Pekmezaris R, et al. Potentially Avoidable Readmissions in United States
51	596	Hemodialysis Patients. <i>Kidney Int Rep</i> 2017;3(2):343-55. doi: 10.1016/j.ekir.2017.10.014
52	597	47. Wei YG, Wang Y, Di Q, et al. Short term exposure to fine particulate matter and hospital admission
53	598	risks and costs in the Medicare population: time stratified, case crossover study. BMJ-British
54 55	599	Medical Journal 2019;367:13. doi: 10.1136/bmj.l6258
56		······································
57		
58		22
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Dry.		
		No. (%)	
	All-cause	Cardiovascular	Respiratory
Characteristic	N = 351,294	n = 262,385	n = 247,829
Age (yr), mean (SD)	64·69 (14.70)	65 [.] 58 (14.53)	65·61 (14.48)
Male sex (%)	190,716 (54.3)	140,206 (53.4)	132,288 (53.4
Race			
White	209,921 (59.8)	155,405 (59.2)	147,204 (59.4)
Black	122,943 (35.0)	93,325 (35.6)	87,831 (35.4)
Other	18,430 (5.2)	13,655 (5.2)	12,794 (5.2)
Smoking status at initiation (no)	330,837 (94.2)	246,634 (94.0)	232,396 (93.8)

	Number of Events (Number of Unique Patients)					
	Outcome	All-cause	Cardiovascular	Respirato		
	Admissions	1,801,966 (351,294)	832,255 (262,385)	766,447 (247		
	Discharged alive	1,493,795 (312,521)	685,680 (229,780)	637,250 (217		
	Early-readmission (1-7d)	177,552 (91,944)	83,533 (52,622)	78,723 (49,		
	Late-readmission (8-30d)	319,058 (130,935)	150,576 (81,149)	142,139 (76		
	Length of stay, d					
	Mean (SD)	6.98 (10.68)	7.05 (10.34)	7·07 (10.3		
	Median (IQR)	4 (2-7)	4 (2-8)	4 (2-8)		
	Hospital visits in prior year					
	3+ visits	637,503 (123,949)	307,891 (93,399)	292,803 (89		
	Mean (SD)	2.97 (3.80)	3.14 (3.95)	3.21 (3.8		
	Median (IQR)	2 (1-4)	2 (1-4)	2 (1-4)		
606			4			

Page 29 of 53

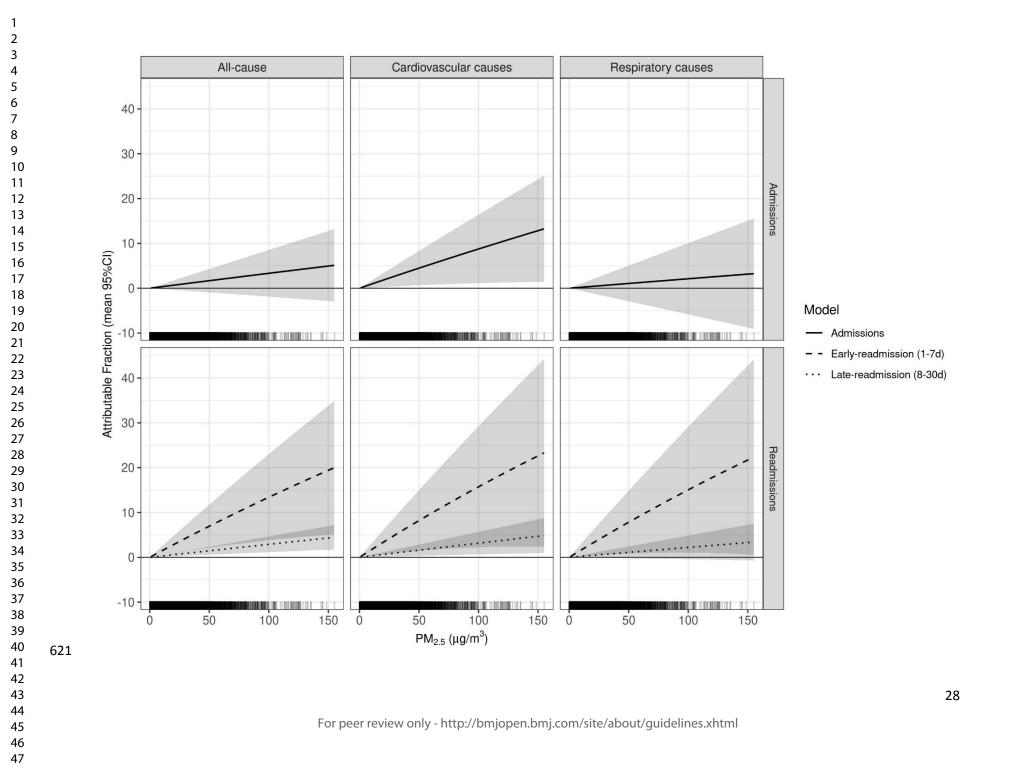


Figure 3. Mean proportion (95%CI) of all-cause and cause-specific hospital admissions, early readmissions (1-7d), and late readmissions (8-30d) with respect to PM_{2.5} (µg/m³). Hash marks above the x-axis represent the density of daily county PM_{2.5}.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

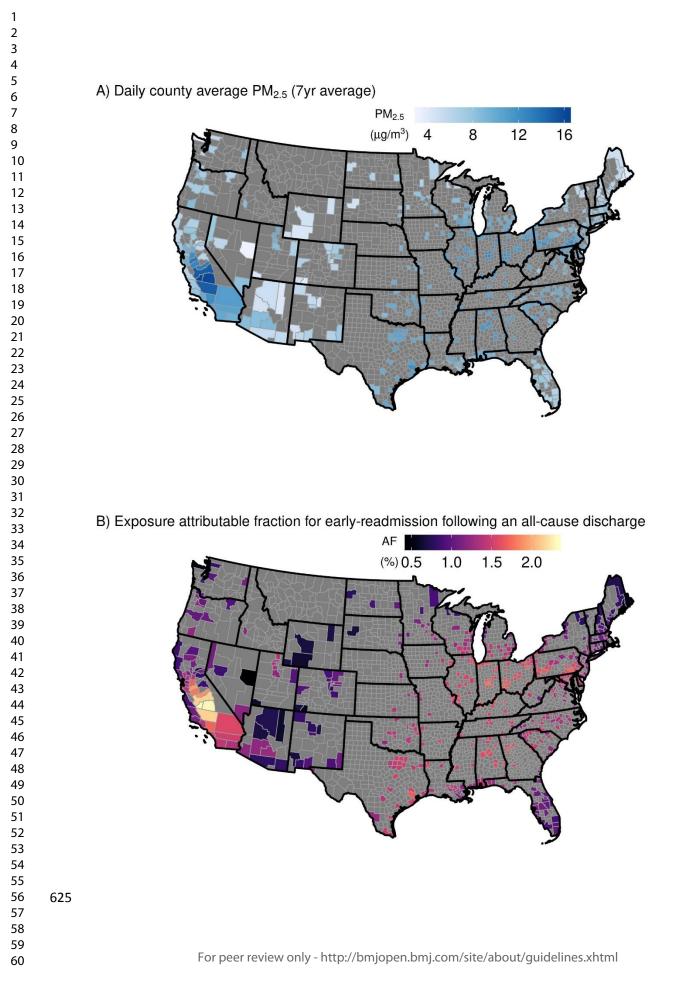


Figure 4. Average daily county PM_{2.5} (µg/m³) between 2008 and 2014 (A) and the attributable fraction for early-readmission following an all-cause discharge based on the average PM_{2.5} (B) for the 530 counties included in the study.

је Inali-cause Study:

629 Supplemental Materials

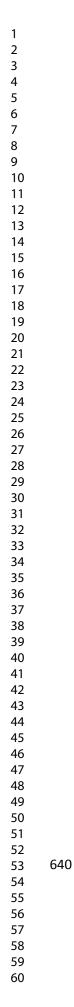
Table S1. Summary statistics of PM_{2.5} and meteorological variables across 530 counties.

Variable	Mean ± SD	Minimum 0.05	Maximum
PM _{2.5} (µg/m ³)	9.29 ± 5.39		155.16
Temperature (°F)	56.37 ± 18.50	-37.30	104.74
Relative humidity (%)	65.24 ± 16.24	0	100

Table S2. Relative risk (RR ± 95% CI) of all-cause and cause-specific daily county admission

for rates associated with a 10 μ g/m³ increase in PM_{2.5} for exposure lags 0-14 days

Endpoint	Lag	RR (95% CI)	N
All-cause	0	1.003 (0.998, 1.009)	1,801,966
All-cause	1	0.997 (0.990, 1.003)	1,801,966
All-cause	2	0.999 (0.992, 1.005)	1,801,966
All-cause	3	0.996 (0.990, 1.002)	1,801,966
All-cause	4	1.002 (0.996, 1.008)	1,801,966
All-cause	5	1.001 (0.995, 1.007)	1,801,966
All-cause	6	1.001 (0.995, 1.008)	1,801,966
All-cause	7	1.000 (0.993, 1.006)	1,801,966
All-cause	8	1.004 (0.997, 1.010)	1,801,966
All-cause	9	1.004 (0.998, 1.010)	1,801,966
All-cause	10	0.999 (0.993, 1.005)	1,801,966
All-cause	11	0.996 (0.989, 1.002)	1,801,966
All-cause	12	1.002 (0.996, 1.009)	1,801,966
All-cause	13	0.995 (0.989, 1.001)	1,801,966


All-cause	14	1.000 (0.994, 1.005)	1,801,966
CVD broad definition	0	1.009 (1.002, 1.017)	832,255
CVD broad definition	1	0.995 (0.986, 1.004)	832,255
CVD broad definition	2	0.998 (0.988, 1.007)	832,255
CVD broad definition	3	0.993 (0.984, 1.002)	832,255
CVD broad definition	4	1.003 (0.994, 1.012)	832,255
CVD broad definition	5	1.004 (0.994, 1.013)	832,255
CVD broad definition	6	0.999 (0.990, 1.008)	832,255
CVD broad definition	7	1.005 (0.995, 1.014)	832,255
CVD broad definition	8	1.002 (0.993, 1.011)	832,255
CVD broad definition	9	1.009 (1.000, 1.018)	832,255
CVD broad definition	10	0.992 (0.983, 1.001)	832,255
CVD broad definition	11	0.999 (0.990, 1.008)	832,255
CVD broad definition	12	0.999 (0.990, 1.008)	832,255
CVD broad definition	13	0.996 (0.987, 1.005)	832,255
CVD broad definition	14	1.002 (0.994, 1.009)	832,255
Respiratory broad definition	0	1.002 (0.994, 1.010)	766,447
Respiratory broad definition	1	0.998 (0.989, 1.008)	766,447
Respiratory broad definition	2	0.995 (0.985, 1.004)	766,447
Respiratory broad definition	3	0.995 (0.985, 1.004)	766,447
Respiratory broad definition	4	0.999 (0.989, 1.008)	766,447
Respiratory broad definition	5	1.009 (1.000, 1.019)	766,447
Respiratory broad definition	6	0.999 (0.990, 1.009)	766,447
Respiratory broad definition	7	0.999 (0.989, 1.009)	766,447
Respiratory broad definition	8	1.005 (0.996, 1.015)	766,447

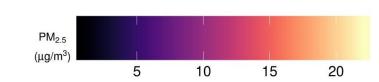
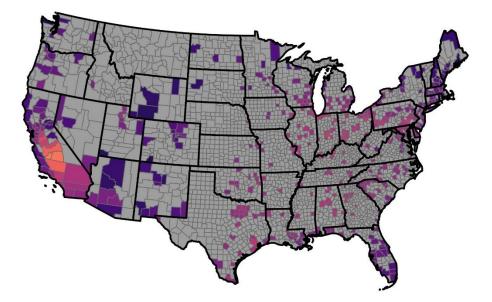
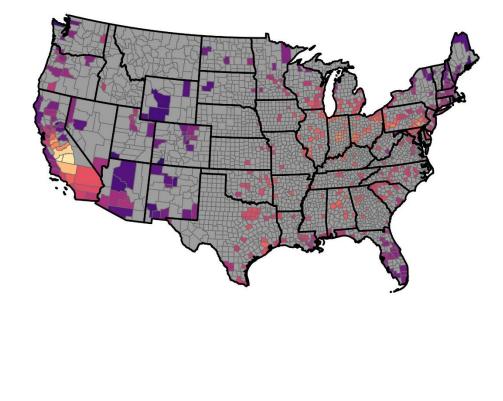
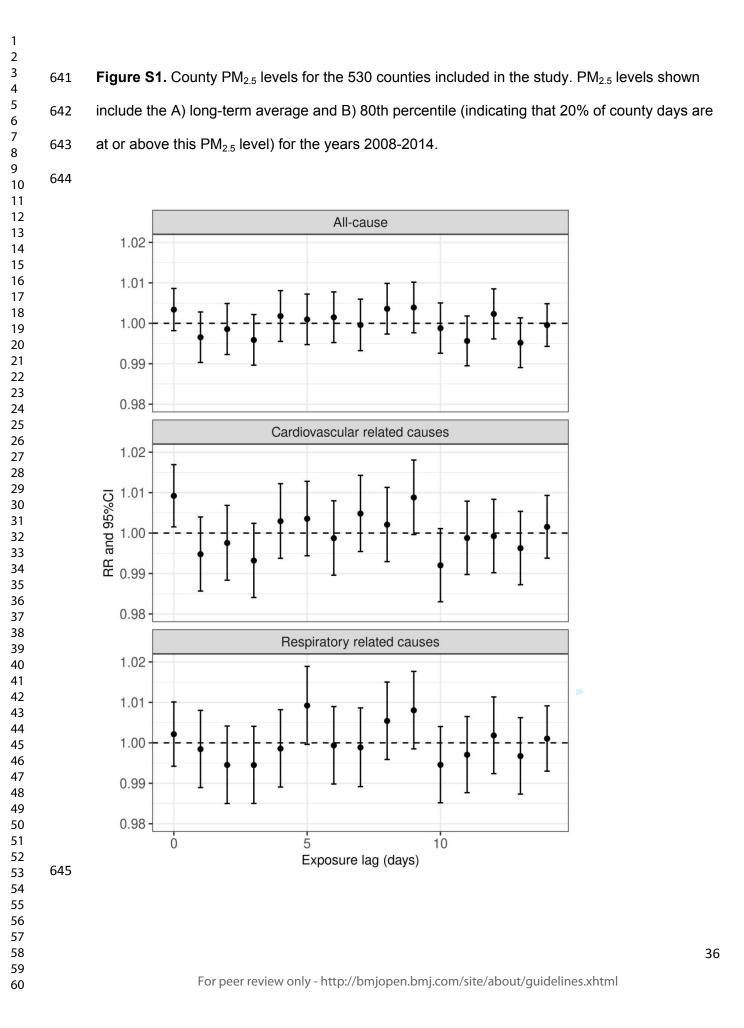

Respiratory broad definition	9	1.008 (0.999, 1.018)	766,447
Respiratory broad definition	10	0.995 (0.985, 1.004)	766,447
Respiratory broad definition	11	0.997 (0.988, 1.007)	766,447
Respiratory broad definition	12	1.002 (0.992, 1.011)	766,447
Respiratory broad definition	13	0.997 (0.987, 1.006)	766,447
Respiratory broad definition	14	1.001 (0.993, 1.009)	766,447

Table S3. The relative risk (RR, 95%CI) for an all-cause early and late-readmission following


all-cause and cause-specific discharges. RR is expressed per 10 μ g/m³ increase in PM_{2.5}.

Discharge cause	Model	RR (95% CI)	N
All-cause	Early-readmission (1-7d)	1.014 (1.005, 1.024)	177,552
All-cause	Late-readmission (8-30d)	1.003 (1.001, 1.005)	319,058
CVD broad definition	Early-readmission (1-7d)	1.017 (1.004, 1.031)	83,533
CVD broad definition	Late-readmission (8-30d)	1.003 (1.001, 1.006)	150,576
Respiratory broad definition	Early-readmission (1-7d)	1.016 (1.002, 1.031)	78,723
Respiratory broad definition	Late-readmission (8-30d)	1.002 (0.999, 1.005)	142,139
	1	0	

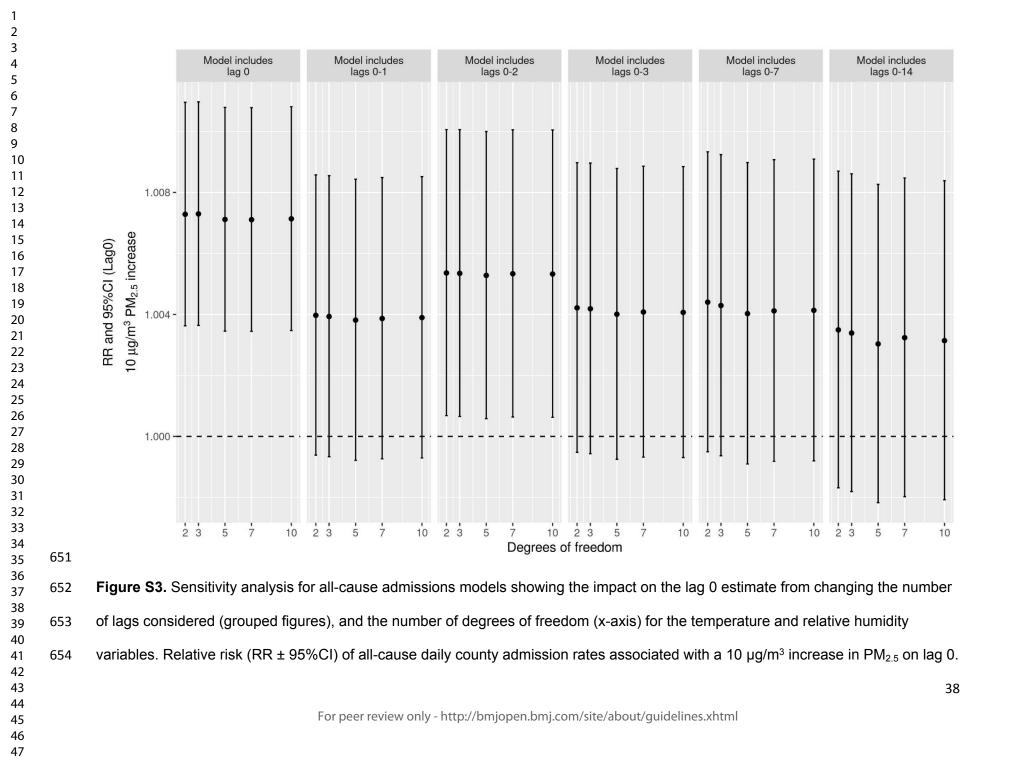


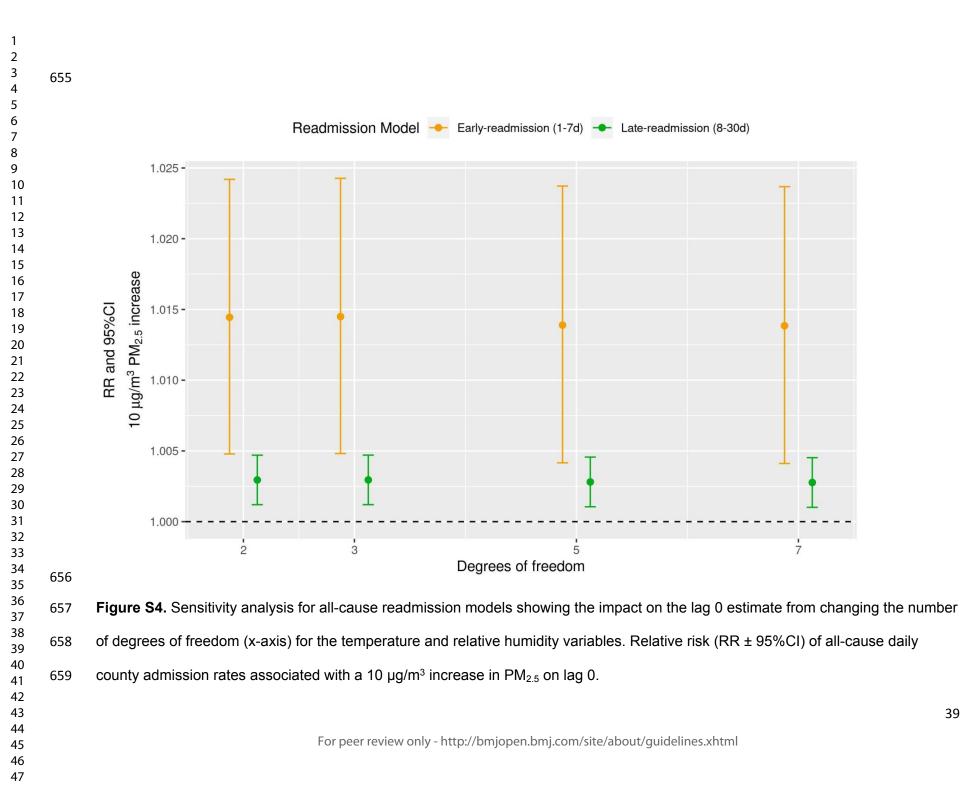


A) Long-term county PM_{2.5} (7yr average)

B) 20% of county days are above PM_{2.5} (80th percentile)

1
2
3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40
47 48
48 49
50
51
52
53
54
55


646	Figure S2. Relative risk (RR	$R \pm 95\%$ CI) for daily county admission rates for all-cause
-----	------------------------------	---


647 hospitalization associated with a 10 μ g/m³ increase in PM_{2.5} for exposure lags 0-14 days using

648 an unconstrained distributed lag model (Table S1).

torbeer terien only

Page 39 of 53

6

1

2	
3	
-	
4	
5	
4 5 6 7 8 9	
7	
, Q	
0	
9	
10	
11	
12	
12 13	
13	
14	
15	
16	
17	
10	
12 13 14 15 16 17 18 19	
19	
20	
21	
22	
22	
23	
20 21 22 23 24 25 26 27 28 29	
25	
26 27 28 29	
27	
20	
20	
30	
31	
32	
22	
33 34 35 36 37 38	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 Supplemental Materials for

2 Association of short-term ambient PM2.5 with hospital admissions and 30-day readmissions in

3 end-stage renal disease patients: population based retrospective cohort study

5 **Table S1.** Summary statistics of PM_{2.5} and meteorological variables across 530 counties.

Variable	Mean ± SD	Minimum	Maximum
PM _{2.5} (µg/m ³)	9.29 ± 5.39	0.05	155.16
Temperature (°F)	56.37 ± 18.50	-37.30	104.74
Relative humidity (%)	65.24 ± 16.24	0	100

7 **Table S2.** Relative risk (RR ± 95% CI) of all-cause and cause-specific daily county admission

8 rates associated with a 10 μ g/m³ increase in PM_{2.5} for exposure lags 0-14 days

Endpoint	Lag	RR (95% CI)
All-cause	0	1.003 (0.998, 1.009)
All-cause	1	0.997 (0.990, 1.003)
All-cause	2	0.999 (0.992, 1.005)
All-cause	3	0.996 (0.990, 1.002)
All-cause	4	1.002 (0.996, 1.008)
All-cause	5	1.001 (0.995, 1.007)
All-cause	6	1.001 (0.995, 1.008)
All-cause	7	1.000 (0.993, 1.006)
All-cause	8	1.004 (0.997, 1.010)
All-cause	9	1.004 (0.998, 1.010)
All-cause	10	0.999 (0.993, 1.005)
All-cause	11	0.996 (0.989, 1.002)

BMJ Open		
All-cause	12	1.002 (0.996, 1.009)
All-cause	13	0.995 (0.989, 1.001)
All-cause	14	1.000 (0.994, 1.005)
CVD broad definition	0	1.009 (1.002, 1.017)
CVD broad definition	1	0.995 (0.986, 1.004)
CVD broad definition	2	0.998 (0.988, 1.007)
CVD broad definition	3	0.993 (0.984, 1.002)
CVD broad definition	4	1.003 (0.994, 1.012)
CVD broad definition	5	1.004 (0.994, 1.013)
CVD broad definition	6	0.999 (0.990, 1.008)
CVD broad definition	7	1.005 (0.995, 1.014)
CVD broad definition	8	1.002 (0.993, 1.011)
CVD broad definition	9	1.009 (1.000, 1.018)
CVD broad definition	10	0.992 (0.983, 1.001)
CVD broad definition	11	0.999 (0.990, 1.008)
CVD broad definition	12	0.999 (0.990, 1.008)
CVD broad definition	13	0.996 (0.987, 1.005)
CVD broad definition	14	1.002 (0.994, 1.009)
Respiratory broad definition	0	1.002 (0.994, 1.010)
Respiratory broad definition	1	0.998 (0.989, 1.008)
Respiratory broad definition	2	0.995 (0.985, 1.004)
Respiratory broad definition	3	0.995 (0.985, 1.004)
Respiratory broad definition	4	0.999 (0.989, 1.008)
Respiratory broad definition	5	1.009 (1.000, 1.019)
Respiratory broad definition	6	0.999 (0.990, 1.009)

Respiratory broad definition	7	0.999 (0.989, 1.009)
Respiratory broad definition	8	1.005 (0.996, 1.015)
Respiratory broad definition	9	1.008 (0.999, 1.018)
Respiratory broad definition	10	0.995 (0.985, 1.004)
Respiratory broad definition	11	0.997 (0.988, 1.007)
Respiratory broad definition	12	1.002 (0.992, 1.011)
Respiratory broad definition	13	0.997 (0.987, 1.006)
Respiratory broad definition	14	1.001 (0.993, 1.009)

Table S3. Relative risk (RR ± 95% CI) for early and late-readmissions following all-cause and

11	cause-specific discharges.	RR is associated wit	th a 10 μ g/m ³ increase in PM _{2.5} .
----	----------------------------	----------------------	--

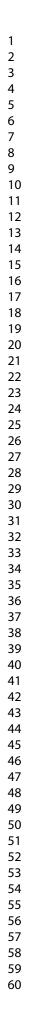
Discharge Cause	Model	RR (95% CI)
All-cause	Early-readmission (1-7d)	1.014 (1.005, 1.024)
All-cause	Late-readmission (8-30d)	1.003 (1.001, 1.005)
CVD broad definition	Early-readmission (1-7d)	1.017 (1.004, 1.031)
CVD broad definition	Late-readmission (8-30d)	1.003 (1.001, 1.006)
Respiratory broad definition	Early-readmission (1-7d)	1.016 (1.002, 1.031)
Respiratory broad definition	Late-readmission (8-30d)	1.002 (0.999, 1.005)
	1	

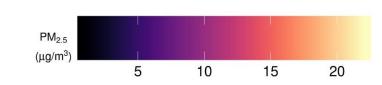
Table S4. Relative risk (RR ± 95% CI) for early and late all-cause and cause specific readmissions following all-cause,

14 cardiovascular, and respiratory discharges. RR is associated with a 10 μ g/m³ increase in PM_{2.5}.

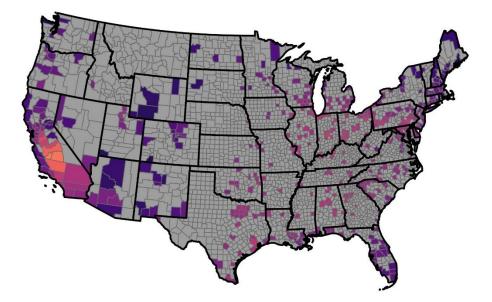
Discharge Cause	Readmission cause	Model	RR (95% CI)
All-cause	All-cause	Early-readmission (1-7d)	1.014 (1.005, 1.024)
All-cause	All-cause	Late-readmission (8-30d)	1.003 (1.001, 1.005)
All-cause	CVD broad definition	Early-readmission (1-7d)	1.009 (0.995, 1.023)
All-cause	CVD broad definition	Late-readmission (8-30d)	1.014 (1.008, 1.020)
All-cause	Dysrhythmia and conduction disorder	Early-readmission (1-7d)	1.046 (1.021, 1.071)
All-cause	Dysrhythmia and conduction disorder	Late-readmission (8-30d)	1.025 (1.015, 1.036)
All-cause	Heart failure	Early-readmission (1-7d)	1.036 (1.013, 1.059)
All-cause	Heart failure	Late-readmission (8-30d)	1.037 (1.027, 1.047)
All-cause	Hypertension	Early-readmission (1-7d)	1.007 (0.990, 1.024)
All-cause	Hypertension	Late-readmission (8-30d)	1.006 (0.999, 1.014)
All-cause	Ischemic heart disease	Early-readmission (1-7d)	0.974 (0.934, 1.016)
All-cause	Ischemic heart disease	Late-readmission (8-30d)	1.016 (0.998, 1.035)
All-cause	Myocardial infarction	Early-readmission (1-7d)	0.962 (0.913, 1.014)
All-cause	Myocardial infarction	Late-readmission (8-30d)	0.999 (0.976, 1.022)
All-cause	Peripheral arterial disease	Early-readmission (1-7d)	0.902 (0.752, 1.083)
All-cause	Peripheral arterial disease	Late-readmission (8-30d)	0.975 (0.903, 1.054)
All-cause	Pulmonary embolism	Early-readmission (1-7d)	1.047 (0.932, 1.177)
All-cause	Pulmonary embolism	Late-readmission (8-30d)	1.032 (0.973, 1.094)
All-cause	Asthma	Early-readmission (1-7d)	1.098 (0.988, 1.222)
All-cause	Asthma	Late-readmission (8-30d)	1.013 (0.971, 1.058)
All-cause	COPD	Early-readmission (1-7d)	1.037 (0.998, 1.077)
All-cause	COPD	Late-readmission (8-30d)	1.022 (1.004, 1.039)
All-cause	Other non-cardiac chest pain or resp syndrome	Early-readmission (1-7d)	1.027 (1.011, 1.042)
All-cause	Other non-cardiac chest pain or resp syndrome	Late-readmission (8-30d)	1.035 (1.029, 1.041)
All-cause	Pneumonia	Early-readmission (1-7d)	1.061 (1.032, 1.092)
All-cause	Pneumonia	Late-readmission (8-30d)	1.046 (1.033, 1.058)

All-cause	Respiratory broad definition	Early-readmission (1-7d)	1.025 (1.011, 1.0
All-cause	Respiratory broad definition	Late-readmission (8-30d)	1.034 (1.028, 1.0
CVD broad definition	All-cause	Early-readmission (1-7d)	1.017 (1.004, 1.0
CVD broad definition	All-cause	Late-readmission (8-30d)	1.003 (1.001, 1.0
CVD broad definition	CVD broad definition	Early-readmission (1-7d)	1.006 (0.989, 1.0
CVD broad definition	CVD broad definition	Late-readmission (8-30d)	1.013 (1.005, 1.0
CVD broad definition	Dysrhythmia and conduction disorder	Early-readmission (1-7d)	1.042 (1.010, 1.0
CVD broad definition	Dysrhythmia and conduction disorder	Late-readmission (8-30d)	1.027 (1.013, 1.0
CVD broad definition	Heart failure	Early-readmission (1-7d)	1.027 (1.000, 1.0
CVD broad definition	Heart failure	Late-readmission (8-30d)	1.031 (1.019, 1.0
CVD broad definition	Hypertension	Early-readmission (1-7d)	1.006 (0.985, 1.0
CVD broad definition	Hypertension	Late-readmission (8-30d)	1.002 (0.993, 1.0
CVD broad definition	Ischemic heart disease	Early-readmission (1-7d)	1.015 (0.964, 1.0
CVD broad definition	Ischemic heart disease	Late-readmission (8-30d)	1.017 (0.993, 1.0
CVD broad definition	Myocardial infarction	Early-readmission (1-7d)	0.991 (0.927, 1.0
CVD broad definition	Myocardial infarction	Late-readmission (8-30d)	1.002 (0.972, 1.0
CVD broad definition	Peripheral arterial disease	Early-readmission (1-7d)	0.914 (0.688, 1.2
CVD broad definition	Peripheral arterial disease	Late-readmission (8-30d)	1.029 (0.922, 1.1
CVD broad definition	Pulmonary embolism	Early-readmission (1-7d)	1.129 (0.984, 1.2
CVD broad definition	Pulmonary embolism	Late-readmission (8-30d)	1.004 (0.928, 1.0
CVD broad definition	Asthma	Early-readmission (1-7d)	1.085 (0.947, 1.2
CVD broad definition	Asthma	Late-readmission (8-30d)	1.006 (0.949, 1.0
CVD broad definition	COPD	Early-readmission (1-7d)	1.032 (0.982, 1.0
CVD broad definition	COPD	Late-readmission (8-30d)	1.026 (1.003, 1.0
CVD broad definition	Other non-cardiac chest pain or resp syndrome	Early-readmission (1-7d)	1.025 (1.005, 1.0
CVD broad definition	Other non-cardiac chest pain or resp syndrome	Late-readmission (8-30d)	1.036 (1.027, 1.0
CVD broad definition	Pneumonia	Early-readmission (1-7d)	1.076 (1.036, 1.1
CVD broad definition	Pneumonia	Late-readmission (8-30d)	1.041 (1.024, 1.0
CVD broad definition	Respiratory broad definition	Early-readmission (1-7d)	1.026 (1.007, 1.0
CVD broad definition	Respiratory broad definition	Late-readmission (8-30d)	1.034 (1.026, 1.0
Respiratory broad definition	All-cause	Early-readmission (1-7d)	1.016 (1.002, 1.0

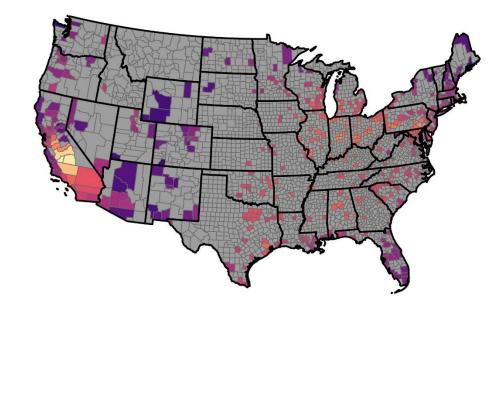

1 2 3 4 5 6 7 8 9 10	
11 12 13 14 15 16 17 18 19 20 21	
22 23 24 25 26 27 28 29 30	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	

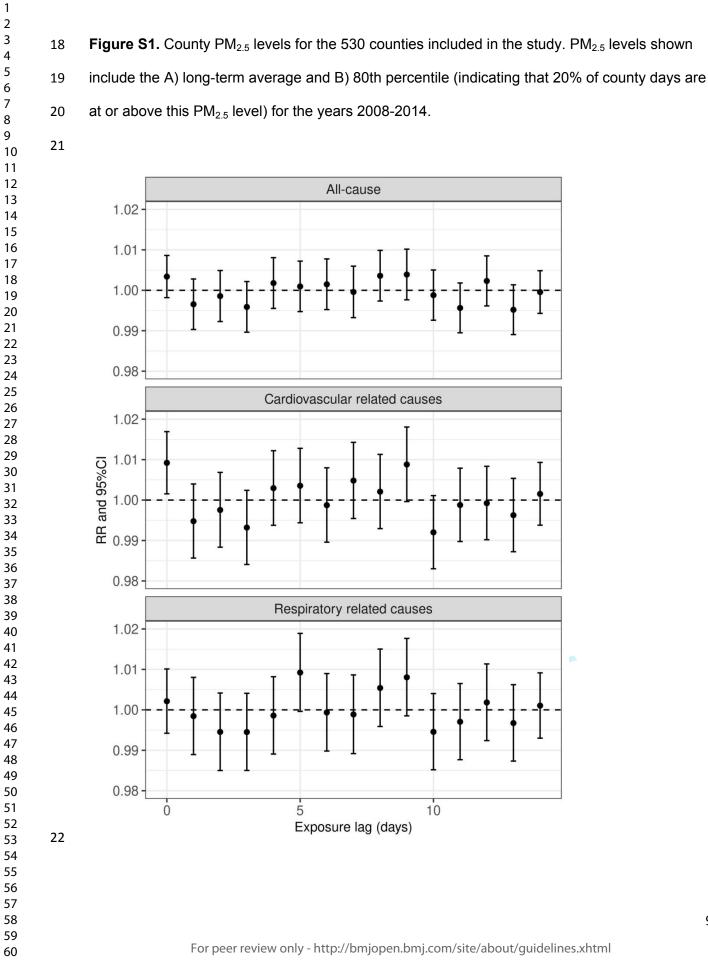

Respiratory broad definition	All-cause	Late-readmission (8-30d)	1.002 (1.000, 1.005)
Respiratory broad definition	CVD broad definition	Early-readmission (1-7d)	1.007 (0.988, 1.026)
Respiratory broad definition	CVD broad definition	Late-readmission (8-30d)	1.013 (1.005, 1.021)
Respiratory broad definition	Dysrhythmia and conduction disorder	Early-readmission (1-7d)	1.042 (1.008, 1.077)
Respiratory broad definition	Dysrhythmia and conduction disorder	Late-readmission (8-30d)	1.018 (1.004, 1.033)
Respiratory broad definition	Heart failure	Early-readmission (1-7d)	1.016 (0.987, 1.045)
Respiratory broad definition	Heart failure	Late-readmission (8-30d)	1.028 (1.015, 1.041)
Respiratory broad definition	Hypertension	Early-readmission (1-7d)	1.014 (0.991, 1.039)
Respiratory broad definition	Hypertension	Late-readmission (8-30d)	1.007 (0.997, 1.017)
Respiratory broad definition	Ischemic heart disease	Early-readmission (1-7d)	0.971 (0.918, 1.028)
Respiratory broad definition	Ischemic heart disease	Late-readmission (8-30d)	0.998 (0.973, 1.023)
Respiratory broad definition	Myocardial infarction	Early-readmission (1-7d)	0.940 (0.874, 1.011)
Respiratory broad definition	Myocardial infarction	Late-readmission (8-30d)	0.979 (0.948, 1.011)
Respiratory broad definition	Peripheral arterial disease	Early-readmission (1-7d)	0.844 (0.596, 1.197
Respiratory broad definition	Peripheral arterial disease	Late-readmission (8-30d)	1.050 (0.935, 1.179)
Respiratory broad definition	Pulmonary embolism	Early-readmission (1-7d)	1.071 (0.910, 1.260)
Respiratory broad definition	Pulmonary embolism	Late-readmission (8-30d)	1.027 (0.941, 1.120)
Respiratory broad definition	Asthma	Early-readmission (1-7d)	1.068 (0.932, 1.224
Respiratory broad definition	Asthma	Late-readmission (8-30d)	0.973 (0.918, 1.031)
Respiratory broad definition	COPD	Early-readmission (1-7d)	1.039 (0.991, 1.090
Respiratory broad definition	COPD	Late-readmission (8-30d)	1.015 (0.994, 1.037
Respiratory broad definition	Other non-cardiac chest pain or resp syndrome	Early-readmission (1-7d)	1.028 (1.008, 1.048)
Respiratory broad definition	Other non-cardiac chest pain or resp syndrome	Late-readmission (8-30d)	1.022 (1.014, 1.030
Respiratory broad definition	Pneumonia	Early-readmission (1-7d)	1.044 (1.006, 1.084)
Respiratory broad definition	Pneumonia	Late-readmission (8-30d)	1.046 (1.029, 1.063
Respiratory broad definition	Respiratory broad definition	Early-readmission (1-7d)	1.025 (1.006, 1.044
Respiratory broad definition	Respiratory broad definition	Late-readmission (8-30d)	1.022 (1.014, 1.030

Page 47 of 53


1

2 3 4				
5 6 1	15			
7	16			
9	10			
10 11				
12 13				
14				
15 16				
17 18				
19				
20 21				
22 23				
24				
24 25 26				
27				
28 29				
30 31				
32 33				
33 34 35 36				
36				
37 38				
39				
40 41				
42 43				7
44		For peer review only - http://bmjopen.bmj.com/site/ab	out/quidelines.xhtml	
45 46		to perference only integration openion from sterab	ou, guidennes.Antini	
47				





A) Long-term county PM_{2.5} (7yr average)

B) 20% of county days are above $PM_{2.5}$ (80th percentile)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
22 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
49 50
50 51
51 52
52 53
53 54
54 55
55

56 57 58

59

60

26

27

Figure S2. Relative risk (RR ± 95%CI) for daily county admission rates for all-cause

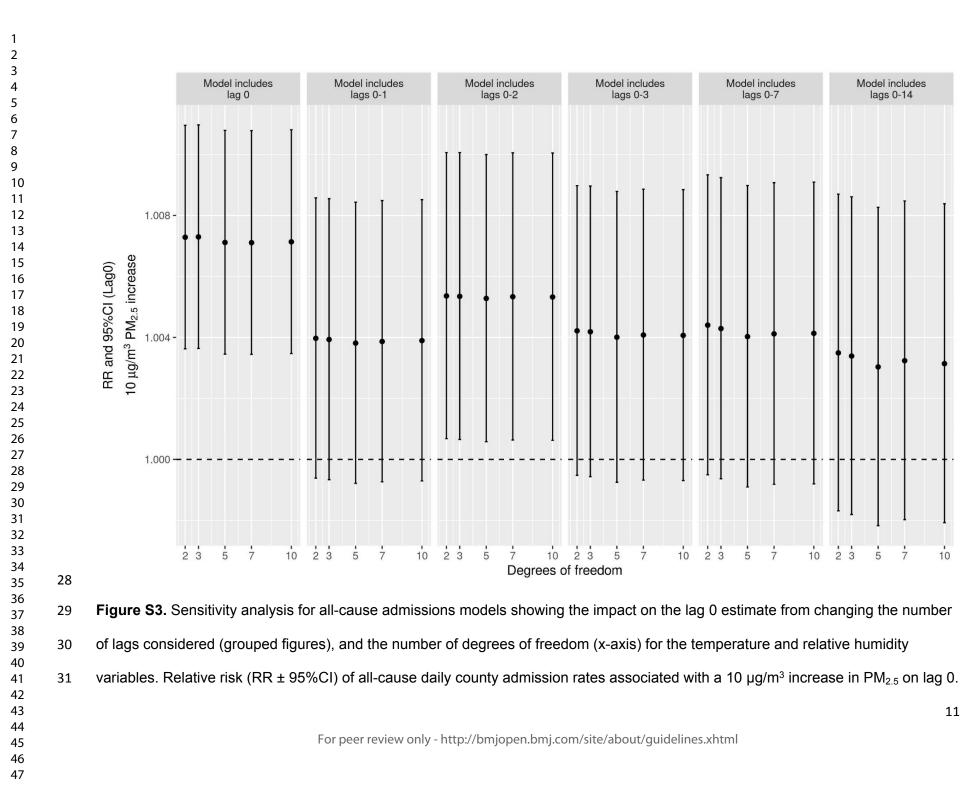
hospitalization associated with a 10 μ g/m³ increase in PM_{2.5} for exposure lags 0-14 days using

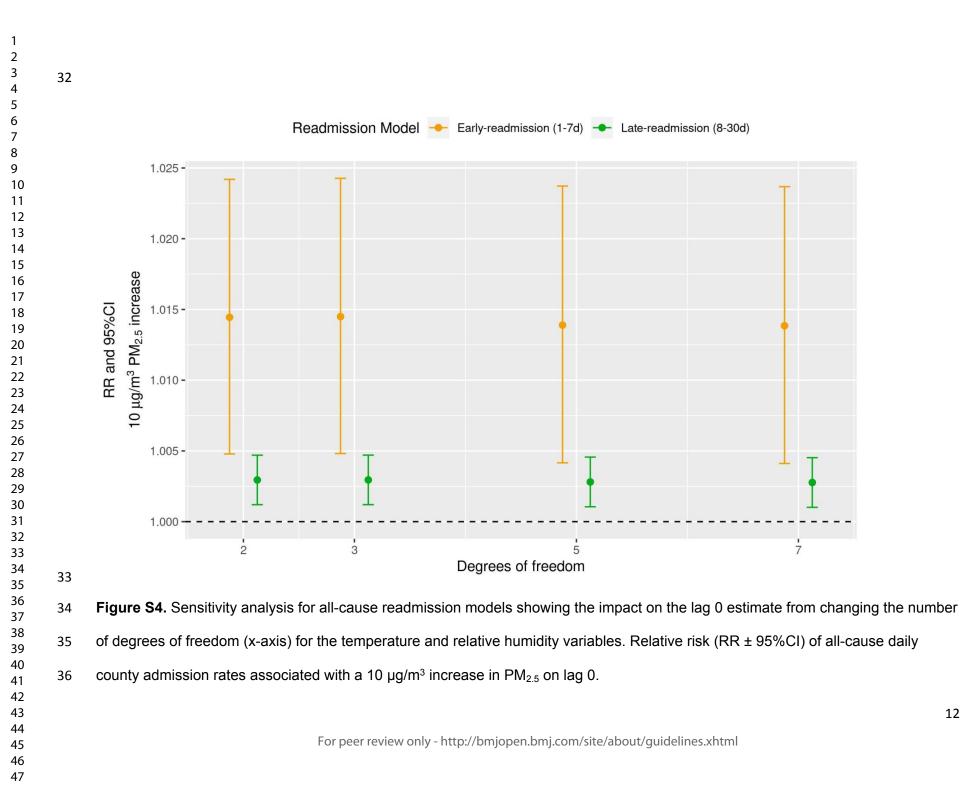
an unconstrained distributed lag model (Table S1).

for beer terien only

Page 51 of 53

Model includes


lags 0-3


 Model includes

lags 0-7

Model includes

lags 0-14

BMJ Open

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1-3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	5.0
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	_
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-9
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8-9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-10
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	10

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	1
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Association of short-term exposure to ambient PM2.5 with hospital admissions and 30-day readmissions in end-stage renal disease patients: population based retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041177.R1
Article Type:	Original research
Date Submitted by the Author:	22-Oct-2020
Complete List of Authors:	Wyatt, Lauren; US Environmental Protection Agency Research Triangle Park Campus, Center for Public Health and Environmental Assessment Xi, Yuzhi; US Environmental Protection Agency (ORISE) Kshirsagar, Abhijit; University of North Carolina Kidney Center and Division of Nephrology and Hypertension Di, Qian; Tsinghua University Ward-Caviness, Cavin; US Environmental Protection Agency Research Triangle Park Campus, Center for Public Health and Environmental Assessment Wade, Timothy; US Environmental Protection Agency Research Triangle Park Campus, Center for Public Health and Environmental Assessment Cascio, Wayne E.; US Environmental Protection Agency Research Triangle Park Campus, Center for Public Health and Environmental Assessment Rappold, Ana; US Environmental Protection Agency Research Triangle Park Campus, Center for Public Health and Environmental Assessment
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, NEPHROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
- 3 4	1	Title	
5 6	2	Association of short-term exposure to ambient $PM_{2.5}$ with hospital admissions and 30-day	
7 8	3	readmissions in end-stage renal disease patients: population based retrospective cohort study	
9 10	4		
11 12	5	Author's names	
13 14	6	Lauren H Wyatt (0000-0002-4926-2058), Yuzhi Xi, Abhijit V Kshirsagar, Qian Di (0000-0002-	
15 16	7	1584-4770), Cavin Ward-Caviness (0000-0002-6322-4349), Timothy J Wade, Wayne E Cascio,	
17 18	8	Ana G Rappold (0000-0002-7696-0900)	
19 20 21	9		
21 22 23	10	Author's addresses and positions	
24 25	11	Center for Public Health and Environmental Assessment, Office of Research and Development,	,
26 27	12	United States Environmental Protection Agency, Research Triangle Park, NC, USA Lauren H	
28 29	13	Wyatt postdoctoral research fellow	
30 31	14	Oak Ridge Institute for Science and Education at the United States Environmental Protection	
32 33	15	Agency, Research Triangle Park, NC, USA Yuzhi Xi doctoral student	
34 35	16	University of North Carolina Kidney Center and Division of Nephrology and Hypertension, UNC	
36 37	17	at Chapel Hill, Chapel Hill, NC, USA Abhijit V Kshirsagar nephrologist	
38 39 40	18	Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China	
40 41 42	19	Qian Di assistant professor	
43 44	20	Center for Public Health and Environmental Assessment, Office of Research and Development,	,
45 46	21	United States Environmental Protection Agency, Research Triangle Park, NC, USA Cavin	
47 48	22	Ward-Caviness computational biologist	
49 50	23	Center for Public Health and Environmental Assessment, Office of Research and Development,	,
51 52	24	United States Environmental Protection Agency, Research Triangle Park, NC, USA Timothy J	
53 54	25	Wade supervisory health scientist	
55 56			
57 58 59			1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

3 4	26	Center for Public Health and Environmental Assessment, Office of Research and Development,
5 6	27	United States Environmental Protection Agency, Research Triangle Park, NC, USA Wayne E
7 8	28	Cascio supervisory health scientist
9 10	29	Center for Public Health and Environmental Assessment, Office of Research and Development,
11 12	30	United States Environmental Protection Agency, Research Triangle Park, NC, USA Ana G
13 14	31	Rappold statistician
15 16 17	32	
17 18 19	33	Corresponding author
20 21	34	Correspondence to: Ana G Rappold rappold.ana@epa.gov, 919-843-9504, 109 TW Alexander
22 23	35	Drive, Mailbox 58B, Research Triangle Park, NC 27709
24 25	36	
26 27	37	Manuscript word count: 3439
28 29	38	Abstract word count: 285
30 31	39	
32 33	40	Abstract
34 35	41	Objectives: To examine the effect of short-term exposure to ambient fine particulate matter
36 37 29	42	(PM _{2.5}) on all-cause, cardiovascular, and respiratory related hospital admissions and
38 39 40	43	readmissions among patients receiving outpatient hemodialysis.
40 41 42	44	Design: Retrospective cohort study.
43 44	45	Setting: Inpatient hospitalization claims identified from the United States Renal Data System in
45 46	46	530 US counties.
47 48	47	Participants: All patients receiving in-center hemodialysis between 2008 and 2014.
49 50	48	Primary and secondary outcome measures: Risk of all-cause, cardiovascular, and
51 52	49	respiratory related hospital admissions and 30-day all-cause and cause-specific readmission
53 54	50	following an all-cause, cardiovascular, and respiratory related discharges. Readmission risk was
55 56		
57 58		2
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 4 of 46

1
2 3
5 4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
10
20
21
22
23
24
25
26
27
28
29
30 31
32
33
34
35
36
37
38
39
40
41
42 43
45 44
45
46
47
48
49
50
51
52
53
54 55
55 56
56 57
57 58
59
60

76

1

51	evaluated for early (1-7 days post-discharge) and late (8-30 days post-discharge) readmission
52	time-periods. Relative risk is expressed per 10 μ g/m ³ of PM _{2.5} .
53	Results: Same day ambient $PM_{2.5}$ was associated with increased hospital admission risk for
54	cardiovascular causes (0.9%, 95%CI: [0.2, 1.7]). Greater PM _{2.5} -related associations were
55	observed with 30-day readmission risk. Early-readmission risk was increased by 1.6-1.8%
56	following all-cause (1.6%, [0.6, 2.6]), cardiovascular (1.8%, [0.4, 3.2]), and respiratory (1.8%,
57	[0.4, 3.2]) discharges; while late-readmission risk increased by 1.2-1.3% following all-cause and
58	cardiovascular discharges. $PM_{2.5}$ -related associations with readmission risk were greatest for
59	certain cause-specific readmissions ranging 4.0-6.5% for dysrhythmia and conduction disorder,
60	heart failure, COPD, other non-cardiac chest pain or respiratory syndrome, and pneumonia.
61	Following all-cause discharges, the cause-specific early-readmission risk was increased by
62	6.5% (3.5, 9.6) for pneumonia, 4.8% (2.3, 7.4) for dysrhythmia and conduction disorder, 3.7%
63	(1.4, 6.0) for heart failure, and 2.7% (1.2, 4.2) for other non-cardiac chest pain or respiratory
64	syndrome related causes.
65	Conclusions: Daily ambient $PM_{2.5}$ was associated with an increased risk of cardiovascular
66	admissions and 30-day readmissions following cardiopulmonary-related discharges in a
67	vulnerable ESRD population. In the first week following discharge, greater $PM_{2.5}$ -related risk of
68	rehospitalization was identified for some diagnoses.
69	
70	Strengths and limitations of this study
71	Nearly complete representation of hospitalization records (> 1.8 million inpatient
72	admissions), identified using the US Renal Data System, of patients undergoing in-
73	center hemodialysis between 2008 and 2014.
74	Location of last dialysis visit was linked with daily population-weighted air pollution.
75	Admission risk estimated using time and county stratified design to control for county-

level time trends.

1 2		
2 3 4	77 •	Cox proportional hazard model with time-varying exposure was used to estimate
5 6	78	readmission risk associated with daily fluctuations in ambient PM _{2.5} controlled for time-
7 8	79	varying confounders.
9 10	80 •	Potential diagnosis misclassification from using diagnosis codes to classify cause-
11 12	81	specific hospitalizations and exposure misclassification related to $PM_{2.5}$ exposure not
13 14	82	captured by ambient air quality near dialysis centers.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 839 40 41 42 43 44 50 51 52 53 54 55 56 758	83	captured by ambient air quality near dialysis centers.
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
- 3 4	84
5 6	8
7 8	8
9 10	8
11 12	8
13 14	8
15 16	9(
17 18	9:
19 20	92
21 22	93
23 24	94
25 26	9
27 28	9
29 30	
31 32	9
33 34	98
35 36	99
37 38	10
39 40	10
41 42	102
43 44	103
45 46	104
47 48	10
49 50	10
51 52	10
53 54	10
55 56	
57 58	
58 59	
60	

1

4 Introduction

5 Ambient fine particulate matter (PM_{2.5}) is a leading risk factor for all-cause mortality ¹⁻⁴, 6 accounting for millions of premature deaths each year 5. Daily variation in ambient PM_{2.5} is also 7 associated with increased rates of unplanned hospital admissions, urgent care visits, and 8 medication usage ⁶⁷. Greater health impacts have been observed consistently in sensitive 9 populations, including the elderly and individuals with chronic health conditions such as chronic 0 kidney disease (CKD) ³⁸⁻¹¹. Additionally, PM_{2.5} exposure during wildfire periods has been shown 1 to increase the risk of mortality among patients managing their end stage renal disease with hemodialysis ¹². However, the role of short-term PM_{2.5} exposure at ambient levels on 2 progression of disease and cause-specific morbidities has not been characterized. 3 4 CKD is a progressive condition that affects 8 to 16% of the population worldwide ¹³⁻¹⁵, and in the 5 6 final stage, end-stage renal disease (ESRD), many patients are transitioned to hemodialysis to 7 prolong life. Patients receiving dialysis represent a particularly vulnerable population because of 8 high rates of co-morbidities, including diabetes and cardiovascular disease, which may 9 contribute to the greater likelihood of hospital admission and readmission following PM 0 exposure. In the US, patients on hemodialysis average 1.7 inpatient admissions annually with a 30-day readmission rate twice that of other Medicare beneficiaries ¹⁶, contributing to a 1 substantial economic impact ¹⁷. In 2016, \$35.4 billion in Medicare fee-for-service costs were 2 attributed to ESRD ¹⁶, motivating health promotion and cost-containment efforts to slow the 3 4 progression of CKD and reduce hospitalizations and readmissions ¹⁸. While many current strategies to reduce hospitalizations focus on care processes and patient-level factors ¹⁹⁻²², 5 there is a knowledge gap on the role of modifiable environmental risk factors - specifically 6 7 ambient PM_{2.5}^{2 23-25}. 8

60

2		
3 4	109	In this study, we examined the risk of daily hospitalization and subsequent 30-day readmission
5 6	110	in relation to daily ambient $PM_{2.5}$ using data from the US Renal Data System (USRDS) over a 7-
7 8	111	year period. We focused on all-cause, cardiovascular, and respiratory hospitalizations and
9 10	112	estimated changes in risk for early (1 to 7 days post-discharge) and late (8 to 30 days post-
11 12	113	discharge) readmission accounting for the influence of different causal factors (i.e. acute and
13 14	114	chronic illness burden) that may influence early versus late-readmissions ^{26 27} .
15 16	115	
17 18 19	116	Methods
20 21	117	Setting and study population
22 23	118	Using patient level data from the USRDS, we constructed an open cohort of individuals
24 25	119	receiving in-center hemodialysis between 2008 and 2014. USRDS is a national data registry for
26 27	120	dialysis services and includes records of patient demographic characteristics, hospitalizations,
28 29	121	and provider information on all patients receiving hemodialysis. Baseline demographic
30 31	122	characteristics (sex, birth date, race, and smoking status) recorded at the initiation of dialysis
32 33	123	were extracted from the Medical Evidence Form CMS-2728 for each patient. For every inpatient
34 35	124	hospital visit, we extracted the admission date, discharge date, discharge diagnoses codes, and
36 37	125	discharge status.
38 39 40	126	
40 41 42	127	For the analysis of 30-day readmission risk, we considered only admissions where patients
43 44	128	were discharged alive. Each readmission was counted once as a readmission relative to the
45 46	129	prior index admissions and was then considered as a new index admission. Thus, each
47 48	130	admission could serve as both an index admission and readmission, consistent with previous
49 50	131	studies ²⁸ . An admission that occurred on the same day as a discharge was combined with the
51 52	132	previous admission. These readmissions are likely to represent facility transfers for which we
53 54	133	were not able to obtain information. Discharges occurring within 30 days of the end of the study
55 56	134	period were excluded, as 30 days of follow-up data were not available. For both admissions and
57 58 59		6
59		For neer review only - http://bmiopen.hmi.com/site/about/guidelines.xhtml

2		
3 4	135	readmissions, patients could be represented more than once if they were admitted multiple
5 6	136	times during the study period.
7 8	137	
9 10	138	Health outcomes
11 12	139	The primary outcomes included daily counts of all-cause, respiratory, and cardiovascular-related
13 14	140	admissions and the time to readmission following the cause-specific discharges. All-cause and
15 16 17	141	cause-specific readmissions were examined separately. Readmissions were classified further
17 18 19	142	as early-readmissions, occurring within 1 to 7 days of an index hospitalization discharge, and
20 21	143	late-readmissions, occurring 8 to 30 days post-discharge.
22 23	144	
24 25	145	International Classification of Diseases, 9th Revision (ICD-9) codes were used to identify cause-
26 27	146	specific hospitalizations. Cardiovascular-related diagnoses included hypertension (ICD-9 codes
28 29	147	401-405), myocardial infarction (410), ischemic heart disease (410-411, 413), pulmonary
30 31	148	embolism (415), dysrhythmia and conduction disorder (426-427), heart failure (428), and
32 33	149	peripheral arterial disease (444). Respiratory-related diagnoses included asthma (493), chronic
34 35	150	obstructive pulmonary disease (491-492, 496), pneumonia (480-486), and other non-cardiac
36 37 28	151	chest pain or respiratory syndrome (786).
38 39 40	152	
40 41 42	153	Environmental data
43 44	154	Daily concentrations of fine particulate matter (PM _{2.5}) were estimated using a previously
45 46	155	described exposure prediction model 2930 . Briefly, this model estimates daily PM _{2.5} on a 1 km
47 48	156	grid for the entire continental US by incorporating satellite aerosol optical depth measurements,
49 50	157	chemical transport model simulations, meteorology, land-use, and other variables. Gridded
51 52	158	PM _{2.5} estimates were subsequently converted to population-weighted county-level estimates
53 54	159	using 2010 Census tract population values. To enable adjustment for potential confounding by
55 56	160	weather conditions, temperature and relative humidity data were obtained from the National
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 46

1		
2 3 4	161	Centers for Environmental Information's Global Historical Climatology Network (Global Surface
5 6 7 8	162	Summary of the Day) ³¹ and using the Community Multiscale Air Quality model, respectively.
	163	The study area was restricted to all counties containing at least one land surface station from
9 10	164	the Global Historical Climatology Network (n = 530).
11 12	165	
13 14	166	Daily PM _{2.5} was linked to patient hospitalizations based on the county of their last dialysis visit.
15 16	167	Previous work has shown that patients in the USRDS cohort that receive in-center dialysis three
17 18	168	times a week have a median travel distance of 5.7 miles to their initial dialysis center ^{32 33} .
19 20 21	169	
22 23	170	Study design and statistical analysis
24 25	171	Daily county hospital admissions. The relative risks of hospital admissions associated with daily
26 27	172	PM _{2.5} were estimated using a case-crossover design with conditional Poisson models for each
28 29	173	of the three health outcomes separately (all-cause, cardiovascular, respiratory). Aggregated
30 31	174	counts of daily admissions were time stratified by county-day, where each county served as its
32 33	175	own control. For each county-day strata, $PM_{2.5}$ on the day of admission was compared with
34 35	176	$PM_{2.5}$ concentrations on control days. Control days were defined as occurring on the same day
36 37 38	177	of the week in the same month and year. This, by design, enabled us to control for differences
39 40	178	in county characteristics, such as population size and risk characteristics, and the influence of
41 42	179	day of the week, seasonal, and long-term time trends ³⁴ .
43 44	180	
45 46	181	The relative risk of hospital admissions related to daily $PM_{2.5}$ for each health outcome was
47 48	182	estimated using daily counts with respect to county-time strata, adjusted for meteorological
49 50	183	conditions (temperature and humidity). Temperature and humidity effects were averaged over
51 52	184	lag days 0, 1, and 2 and modeled using natural splines (df = 3) to allow for non-linear effects 35 .
53 54	185	
55 56 57		
58 59		8
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

We evaluated immediate (same day) and delayed $PM_{2.5}$ effects on all-cause and cause-specific hospital admissions. Unconstrained distributed lag models were used to assess the delayed effects of short-term exposures to $PM_{2.5}$. Delayed exposure up to 14 days and models stratified on county socioeconomic status were considered. To assess the impact of county socioeconomic level, we used the percent of individuals below poverty from the 2010 US Census. Associations were assessed for counties both above and below the median poverty level (12.5%).

Early and late readmissions occurring within 30 days of discharge. Cox proportional hazards models were used to assess the relative risk of early (1 to 7 days post-discharge) and late (8 to 30 days post-discharge) readmission associated with daily PM_{2.5} following all-cause and causespecific index hospitalizations. Early-readmission models were censored at 7 days and latereadmission models at 30 days.

Models for readmissions incorporated both time-dependent and time-independent risk factors. Time-dependent variables included daily PM_{2.5}, daily temperature, daily relative humidity, and day-of-the-week. Time-independent factors included patient-specific, hospitalization event-specific, and county socioeconomic variables. Patient-specific variables included indicator of sex, race, baseline smoking status, whether the patient had three or more previous hospital visits in the year prior, and age at discharge. Event-specific variables included whether the discharge occurred on a holiday and length of stay. To adjust for county socioeconomic level, the percent of individuals below poverty was included as a covariate. Models were also adjusted for patient-specific clusters to account for repeated measures by individual. Lastly, models were adjusted for the competing cause of death by including death as an additional censoring criteria. The presented models represent the cause-specific readmission hazard. Non-linear PM_{2.5} associations were also explored.

Page 11 of 46

1 2		
2 3 4 5 6 7 8	212	Daily county admission and readmission risks were expressed as the rate ratio (RR) per 10-
	213	μ g/m ³ increase in PM _{2.5} . The proportion hospital admissions and readmissions associated with
	214	$PM_{2.5}$ is reported as the attributable fraction (AF), where AF = (RR-1) / RR ³⁶ . All statistical
9 10	215	analyses were performed with R software (version 3.6.0) ³⁷ .
11 12	216	
13 14	217	Results
15 16	218	Characterization of clinical cohort and daily PM _{2.5}
17 18 10	219	Among 361,568 patients who were hospitalized during the study period, 10,274 were excluded
19 20 21	220	due to missing baseline demographic values, with 351,294 patients remaining. Demographic
22 23	221	descriptions are in Table 1. Patients had on average 2.97 hospital visits in the year prior to an
24 25 26 27	222	admission and more than 70% of patients had at least one hospital admission related to
	223	cardiovascular and respiratory causes (Table 2). The average daily county-level $PM_{2.5}$
28 29	224	concentration was 9.3 μ g/m ³ (range: 0.05 to 155.16 μ g/m ³) (Table S1). The highest daily
30 31 32 33	225	county-level PM _{2.5} was observed in California (Figure S1, Supplementary file).
	226	
34 35	227	Description of clinical events, hospital admissions, and readmissions
36 37 38 39 40	228	In total, there were 1,801,966 hospital admissions, of which 1,493,795 recorded the patient as
	229	alive at discharge. Of admissions that were discharged alive, 11.8% were readmitted within 7
40 41 42	230	days and 21.3% were readmitted 8 to 30 days post-discharge. The mean length of stay for all-
43 44	231	cause, cardiovascular, and respiratory admissions was 7.0, 7.0, and 7.1 days, respectively
44 45 46	232	(Table 2).
47 48	233	
49 50	234	Associations between PM _{2.5} and readmission
51 52	235	Early-readmission. Daily PM _{2.5} was positively associated with increased risk for early-
53 54	236	readmission following all-cause, cardiovascular, and respiratory related discharges. Same day
55 56	237	(lag 0) $PM_{2.5}$ was associated with a 1.6% (95%CI: 0.6, 2.6), 1.8% (95%CI: 0.4, 3.2), and 1.8%
57 58 59		10
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5 6 7 8	238	(95%CI: 0.4, 3.2) increased risk of an early-readmission for any cause following all-cause,
	239	cardiovascular, and respiratory related discharges, respectively (Figure 1, Table S2).
	240	
9 10	241	PM _{2.5} associated early-readmission risk was greater for certain cause-specific outcomes.
11 12	242	Following all-cause discharges, same day (lag 0) $PM_{2.5}$ was associated with increased early-
13 14	243	readmission risk for dysrhythmia and conduction disorder (4.8% [2.3, 7.4]), heart failure (3.7%
15 16	244	[1.4, 6.0]), pneumonia 6.5% [3.5, 9.6]), and other non-cardiac chest pain or respiratory
17 18	245	syndrome (2.7% [1.2, 4.2]) causes. PM _{2.5} associated early-readmission risk was greatest for
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	246	pneumonia related readmissions following cardiovascular related discharges (7.5% [3.5, 11.7]).
	247	Other cause-specific early-readmission risks following cardiovascular and respiratory related
	248	discharges were similar to estimates observed following discharge for any cause (Figure 2,
	249	Table S2).
	250	
	251	An average AF at 10 μg/m³ of PM _{2.5} at lag 0 was 1.5% (95%CI: 0.6, 2.5), 1.7% (95%CI: 0.4,
	252	3.1), and 1.7% (95%CI: 0.3, 3.2) for an early-readmission for any cause following all-cause,
	253	cardiovascular, and respiratory discharges, respectively (Figure 3). County AF ranged 0.5-2.5%,
36 37	254	0.6-2.8%, and 0.6-2.8% for an early-readmission following all-cause, cardiovascular, and
38 39	255	respiratory related discharges, respectively (Figure 4).
40 41 42	256	
42 43 44	257	Late-readmission. Daily PM _{2.5} was also associated with increased risk of late-readmission
45 46	258	following all-cause, cardiovascular, and respiratory related discharges and the magnitude of risk
47 48	259	related to all-cause readmissions was similar to that observed with early-readmission. Same
49 50	260	day PM _{2.5} was associated with a 1.3% (95%CI: 0.6, 2.0), 1.2% (95%CI: 0.3, 2.2), and 1.0%
51 52	261	(95%CI: 0.01, 2.0) increased risk of a late all-cause readmission following all-cause,
53 54	262	cardiovascular, and respiratory related discharges, respectively (Figure 1, Table S2).
55 56	263	
57 58		11
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 46

1 2			
3 4 5 6 7 8 9 10 11 12 13 14	264	Similar to observations made for early-readmissions, PM _{2.5} associated late-readmission risk wa	as
	265	greater for certain cause-specific outcomes. Following all-cause discharges, a 10 μ g/m ³	
	266	increase in same day (lag 0) $PM_{2.5}$ was associated with increased late-readmission risk for	
	267	dysrhythmia and conduction disorder (3.1% [1.3, 5.0]), heart failure (4.1% [2.5, 5.8]), COPD	
	268	(4.6% [1.7, 7.6]), pneumonia (5.9% [3.7, 8.2]), and other non-cardiac chest pain or respiratory	
	269	syndrome (3.0% [1.9, 4.1]) (Figure 2, Table S2).	
15 16	270		
17 18 19 20	271	The average AF at 10 µg/m³ was 0.1% (95%CI: 0.5, 1.8) and 1.0% (95%CI: 0.1, 2.0) for a late-	-
	272	readmission following all-cause and cardiovascular discharges, respectively (Figure 3). County	,
21 22 23	273	AF ranged 0.3-1.9% for a late-readmission following any cause (data not shown).	
24 25	274		
26 27	275	Associations between PM _{2.5} and daily admissions	
28 29 30 31 32 33 34 35 36 37	276	Same day PM _{2.5} was associated with an increase in rate ratio of 0.3% (95%CI: -0.2, 0.9) for all	-
	277	cause admissions and 0.9% (95%CI: 0.2, 1.7) for cardiovascular admissions (Figure S2, Table	!
	278	S3, Supplementary file). We estimated 0.9% (95%CI: 0.1, 1.7) of cardiovascular admissions	
	279	could be attributed to 10 μ g/m ³ ambient PM _{2.5} (Figure 3). Across counties, exposures accounted	٠d
	280	for 0.3% to 1.5% of cardiovascular admissions when evaluated at the average daily $\text{PM}_{2.5}$ for	
38 39 40	281	each county (data not shown).	
41 42	282		
43 44 45 46 47 48 49 50 51 52 53 54	283	No change in risk of all-cause and cardiovascular admissions was observed related to prior	
	284	exposure (lags 1-14). Similarly, no change in risk for respiratory admissions was observed with	1
	285	same day exposure (lag 0) or prior exposure (lags 1-14) (Figure S2, Table S3, Supplementary	
	286	file). The model with a dose-specific association for $PM_{2.5}$ (non-linear dose-response function)	
	287	did not improve model fit. Models stratified on median percent below poverty were similar	
	288	(Figure S2, Table S3, Supplementary file). In a sensitivity analysis, changing the number of	
55 56			
57 58 59			12
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

degrees of freedom considered for temperature and relative humidity had a negligible effect(Figure S3, Figure S4, Supplementary file).

292 Discussion

In a nationwide cohort study of 351,294 patients with ESRD managed with hemodialysis, we evaluated the association between 1.8 million inpatient admissions and nearly 0.5 million corresponding 30-day readmissions and the variation in daily ambient PM_{2.5} in the US over 7 years, 2008-2014. Daily variation in PM_{2.5} was associated with increased risk of hospital admission and even greater risk of rehospitalization. Following all-cause, cardiovascular, and respiratory related discharges, the early-readmission risk for any cause was increased by 1.6, 1.8, 1.8%, respectively per 10 μ g/m³ increase in daily PM_{2.5}. Importantly, readmissions related to some cardiorespiratory diagnoses had the greatest PM_{2.5} attributed readmission risk that was observed to be elevated for both early and late-readmissions. The early-readmission risk following all-cause discharges, was increased by 6.5, 4.8, 3.7, and 2.7% for pneumonia, dysrhythmia and conduction disorder, heart failure, and other non-cardiac chest pain or respiratory syndrome related readmissions, respectively. Overall, these results suggest that at 10 µg/m³, 1.5-1.7% of early-readmissions for any cause were attributable to short-term exposure. In the context of the daily $PM_{2.5}$ National Ambient Air Quality Standard (35 μ g/m³), this attributable fraction would be 5.3-6.0%.

43 308

Our findings are consistent with previous studies that observed increased admission risks in elderly populations ^{6 9 38-42} and patients with cardiovascular health complications ^{7 43}, and increased readmission risk following cardiovascular related admissions 74344. Studies in the Medicare population similarly observed a 1-2% increase in cardiovascular hospital admissions associated with same-day PM_{2.5} concentrations ^{6 9 38 40}. Risk appears to vary by diagnosis, as the increased risk was slightly less (0.13%) for ST-elevation myocardial infarction related

Page 15 of 46

60

1 2		
3 4	315	admissions in a Chinese population ⁷ and greater (29%) for incident heart failure admissions in
5 6 7 8	316	an Australian population ⁴³ . Increases in respiratory admissions (1-2%) have been noted in the
	317	Medicare population ^{6 9 38-40} , but were not observed in this study. Prior studies provide evidence
9 10	318	that air pollution exposure is associated with adverse health outcomes including increased
11 12	319	infection rates, acute lung edema, and elevated concentrations of systematic inflammation
13 14	320	markers ⁴⁵⁻⁴⁷ . Despite known associations between PM exposure and adverse cardiovascular
15 16	321	and respiratory health outcomes, previous studies have not evaluated the impacts on hospital
17 18	322	readmissions among individuals with ESRD.
19 20	323	
21 22 23	324	Few studies have examined $PM_{2.5}$ -related effects on readmissions, and those that have report
23 24 25	325	on the long-term (>1yr) risk following cardiovascular related admissions. Following
26 27	326	cardiovascular hospitalization, greater PM _{2.5} -related rehospitalization risk was observed for
28 29	327	some cardiac and respiratory readmissions (dysrhythmia, pneumonia) compared to our
30 31	328	observations of all-cause readmissions (4.3-7.5% vs 1.6%).
32 33	329	Studies in other populations, have noted similar same-day cardiovascular related readmission
34 35	330	risks of 5.5-7.7% and 2.6% associated with $PM_{2.5}$ ⁷ and PM_{10} ⁴⁴ , respectively. Additionally, one
36 37 38 39	331	study in an Australian population with very low ambient air pollution concentrations (mean PM _{2.5}
	332	= 2.9 μ g/m ³) found no relationship between PM _{2.5} and all-cause readmissions after an incident
40 41 42	333	heart failure hospitalization ⁴³ . In some instances, short-term readmission risks were greater in
42 43 44	334	comparison to the long-term readmission risks, suggesting the week following a discharge to be
45 46	335	a window of heightened vulnerability. Prior work indicates that factors related to index
47 48	336	hospitalizations and acute illness burden are predictive of an early-readmission ^{26 27} . This may
49 50	337	indicate that hospital readmissions related to certain acute illness burdens may be more
51 52	338	susceptible to $PM_{2.5}$ exposure.
53 54	339	
55 56		
57 58		14
59		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14 15	
15	
16	
17 19	
18 19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
50 57	
58	
59	
60	

363

1 2

340 Our study contributes to the currently limited literature on the association between air pollution 341 and health impacts among hemodialysis patients and shines a light on the vulnerability in this clinical population related to ambient airborne particulate matter. The 30-day rehospitalization 342 rate is 33% in this population, which is twice that of older Medicare beneficiaries without a 343 344 kidney disease diagnosis ¹⁶. As many as 70% of readmissions are thought to be unnecessary ⁴⁸, prompting efforts to improve outcomes. Economic healthcare costs associated with short-term 345 increases in PM_{2.5} are considerable; annual inpatient and post-acute care costs related to a 10 346 $\mu g/m^3$ in daily PM_{2.5} ranges \$30-70 million for cardiovascular and respiratory related diseases ⁴⁹. 347 348 PM_{2.5} is a modifiable risk factor and reductions in short-term exposures could contribute to reduced healthcare costs. Our findings suggest that short-term increases in PM25 contribute to 349 healthcare usage through unplanned admissions and readmissions. 350 351 352 Additionally, the findings of the study may have a broader public health implication. In the 353 conceptual framework for public health action, ambient airborne particulate matter fits well into the base of a 5-tiered pyramid as a socioeconomic or social determinant of health ⁵⁰. 354 Interventions that address the base of the pyramid may provide the greatest potential impact 355 356 given the widespread population exposure of such a determinant of health like ambient airborne 357 particulate matter. Mitigation strategies would need to include policy initiatives to curb the expulsion of airborne pollutants, as well as education of persons, patients, hospital staff, and 358 359 others. Areas with the higher concentrations of ambient airborne particulate matter may see the 360 greatest benefit from mitigation strategies. 361 Strengths and Limitations 362

To our knowledge this is the largest analysis of short-term exposure to air pollution in the US in

This study included a nearly complete cohort of US patients undergoing in-center hemodialysis.

this highly vulnerable population. The USRDS registry provides a complete registry of all

BMJ Open

2			
3 4	366	hospitalizations and contains detailed information regarding demographics, dialysis,	
5 6	367	hospitalization, rehospitalization, and co-morbid conditions. Secondly, ambient $PM_{2.5}$ was	
7 8	368	estimated using a prediction model with highly resolved spatial and temporal resolution with	
9 10	369	proven accuracy ^{29 30} . Thirdly, the time-stratified design allowed for county matching that	
11 12	370	reduced the potential confounding by factors that very slowly with time and those that are time	-
13 14	371	invariant. Fourthly, the use of time-dependent risk factors in the Cox proportional hazard mode	əl
15 16	372	allowed for readmission risk estimates to reflect the risk associated with daily fluctuations in	
17 18	373	ambient PM _{2.5} and time-varying confounders.	
19 20	374		
21 22 23	375	This study also had some limitations. Firstly, there was the potential for exposure	
23 24 25	376	misclassification as the location of the last dialysis visit was used to estimate individual level	
26 27	377	exposures. PM _{2.5} around dialysis centers could differ from concentrations around hospitals and	b
28 29 30 31 32 33	378	patient residences. However, given that patients generally reside less than 6 miles from their	
	379	initial dialysis center, differences in temporal variation of exposure should be small and not like	ely
	380	to contribute a systematic bias favoring an association between ambient PM2.5 and clinical	
34 35	381	events ^{32 33} . Secondly, diagnosis misclassification was possible but was not likely to confound	
36 37	382	the relationship because it is not likely to vary on the same temporal scale as PM _{2.5} . Thirdly,	
38 39	383	there is the possibility that some unmeasured time variant factors may have confounded our	
40 41 42	384	estimates (smoking status, medication usage, behaviors, lipid levels, C-reactive protein levels,	,
42 43 44	385	etc.). Data availability restricted the consideration of some patient level confounders, such as	
45 46	386	smoking status, to values recorded at baseline. We used a time stratified design to control for	
40 47 48	387	time-varying confounding for time scales larger than a month, such as the number of patients	
49 50	388	enrolled in the USRDS. At scales smaller than a month, the control of person time was not	
51 52	389	possible. Lastly, generalization of the results is limited to the Medicare population with ESRD	
53 54	390	managed with hemodialysis treatment. Future studies are needed to understand PM _{2.5} -related	
55 56			
57 58			16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2		
3 4	391	impacts on specific health conditions, and if health impacts vary based on race, socioeconomic
5 6	392	indicators, or other individual and population factors.
7 8	393	
9 10	394	Conclusion
11 12	395	In conclusion, this United States wide cohort study identified increased risk in patients receiving
13 14	396	in-center hemodialysis associated with short-term increases in ambient air particle pollution.
15 16	397	Elevated PM _{2.5} concentrations were found to be associated with increased inpatient hospital
17 18	398	admissions related to cardiovascular causes, and an increased likelihood of hospital
19 20 21	399	readmission following cardiovascular and respiratory related hospitalizations. Medicare
21 22 23	400	spending for beneficiaries with ESRD is high. Traditional efforts to reduce the burden of disease
23 24 25	401	focus on patient factors; however, these data suggest that air particle pollution is a factor that
26 27	402	contributes to increased risks for hospital admission and subsequent readmission. To reduce
28 29	403	PM _{2.5} -related morbidities, we echo the recommendations made in the Million Hearts initiative,
30 31	404	that healthcare systems, insurers, physicians, and health care professionals should
32 33	405	incorporate health risks related to ambient PM into patient care.
34 35	406	
36 37	407	Disclaimer
38 39 40	408	The research described in this article has been reviewed by the Center for Public Health and the
40 41 42	409	Environment, U.S. Environmental Protection Agency, and approved for publication. Approval
43 44	410	does not signify that the contents necessarily reflect the views and policies of the Agency, nor
45 46	411	does the mention of trade names of commercial products constitute endorsement or
47 48	412	recommendation for use.
49 50	413	
51 52	414	Acknowledgements
53 54	415	The patient data reported here have been supplied by the United States Renal Data System
55 56	416	(USRDS). We are grateful for the high resolution ambient $PM_{2.5}$ data provided by Drs. Joel
57 58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	417	Schwartz and Qian Di. The interpretation and reporting of these data are the responsibility of the
5 6	418	author(s) and in no way should be seen as an official policy or interpretation of the U.S.
7 8	419	government.
9 10	420	
11 12	421	Contributors
13 14	422	LHW, AGR conceived and designed the study. TJW, WEC, and AVK provided subject expert
15 16	423	input into the study design and interpretation of evidence. AVK, QD, and CWC provided access
17 18	424	to the data for the study; LHW managed and analyzed the data and AGR oversaw the analysis.
19 20 21	425	LHW and AGR wrote the first draft of the manuscript. LHW, YX, AVK, CWC, TJW, WEC, and
22 23 24	426	AGR critically contributed to the manuscript and approved the final draft. LHW and AGR are the
25 26 27	427	guarantors. The corresponding author attests that all listed authors meet authorship criteria and
28 29	428	that no others meeting the criteria have been omitted.
30 31	429	
32 33	430	Funding
34 35	431	This work was supported by an internal US Environmental Protection Agency grant (grant
36 37	432	number not applicable). The source of funding had no role in study design, data collection,
38 39 40	433	analyses, interpretation, and decision to submit the article for publication.
41 42	434	
43 44	435	Competing Interests
45 46	436	All authors have completed the ICMJE uniform disclosure form at
47 48	437	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the
49 50	438	submitted work; no financial relationships with any organisations that might have an interest in
51 52	439	the submitted work in the previous three years; no other relationships or activities that could
53 54	440	appear to have influenced the submitted work.
55 56 57	441	
57 58 59		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	442
5 6	443
7 8	444
9 10	445
11 12	446
13 14	447
15 16	448
17 18	449
19 20	450
21 22	451
23 24 25	452
25 26 27	453
27 28 29	454
30 31	455
32 33	456
34 35	457
36 37	458
38 39	459
40 41	460
42 43	461
44 45	462
46 47	463
48 49 50	464
50 51 52	465
52 53 54	466
55 56	467
57 58	ŦU7
50 59 60	

60

42 Ethical approval

This study was reviewed by the institutional review board at the University of North Carolina at 43 Chapel Hill and determined to be exempt based on the study design involving secondary data 44 analysis (IRB Number: 20-0984). 45

46

1 2

Data sharing 47

Data access to USRDS data sets is through an internal data use agreement with the University 48 of North Carolina at Chapel Hill's Cecil G. Sheps Center. PM_{2.5} data was obtained through 49 50 collaboration with Drs. Joel Schwartz (Harvard TH Chan School of Public Health) and Qian Di (Tsinghua University). For general data sharing inquiries, contact rappold.ana@epa.gov or 51

wyatt.lauren@epa.gov. 52

54 Transparency

The lead and corresponding authors (LHW and AGR) affirm that the manuscript is an honest, 55 accurate, and transparent account of the study being reported; that no important aspects of the 56 57 study have been omitted; and that any discrepancies from the study as planned (and, if

58 relevant, registered) have been explained.

Patient and Public Involvement 60

This study utilized a deidentified database, thus contact with patients was not possible. 61

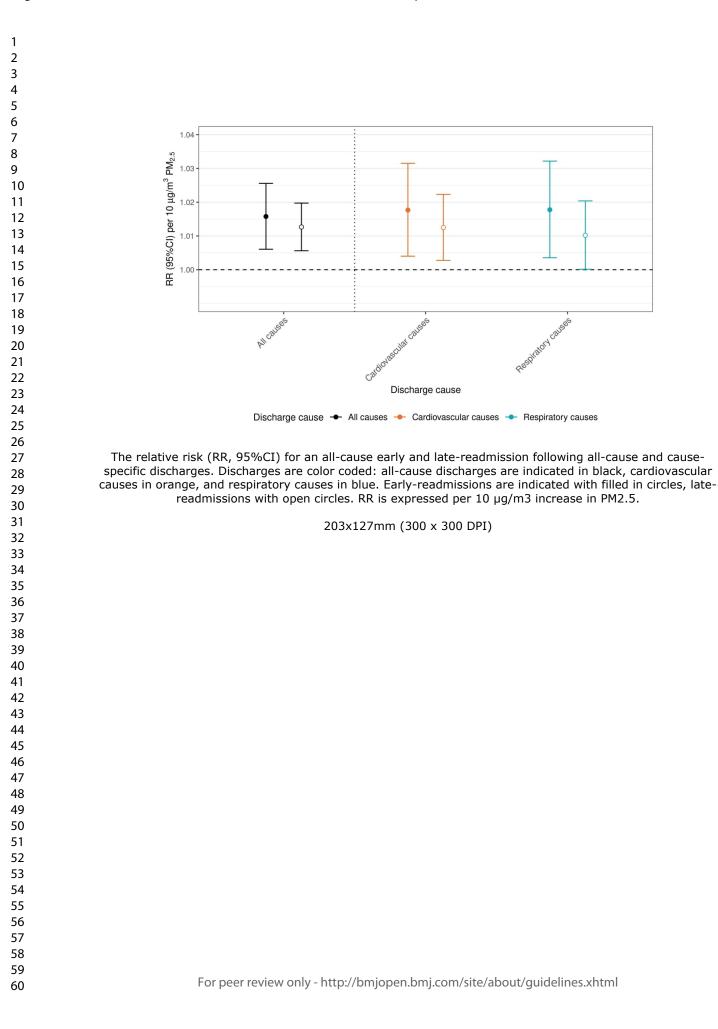
Copyright (non-exclusive license) 63

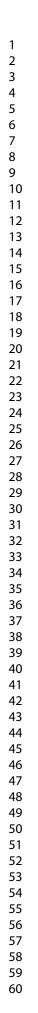
I Ana G Rappold The Corresponding Author of this article contained within the original 64 65 manuscript which includes any diagrams & photographs within and any related or stand alone 66 film submitted (the Contribution") has the right to grant on behalf of all authors and does grant on behalf of all authors, a licence to the BMJ Publishing Group Ltd and its licencees, to permit 67

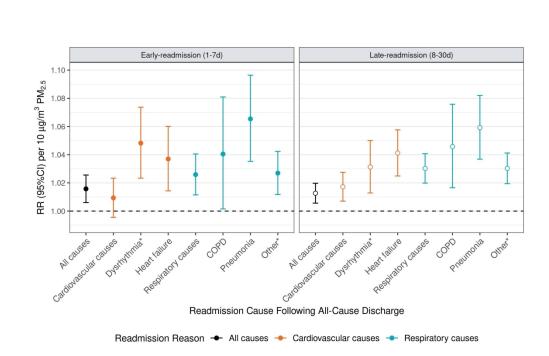
1 2			
- 3 4	468	this Contribution (if accepted) to be published in the BMJ and any other BMJ Group products	
5 6	469	and to exploit all subsidiary rights, as set out in our licence set out at:	
7 8	470	http://www.bmj.com/about-bmj/resources-authors/forms-policies-and-checklists/copyright-open-	
9 10	471	access-and-permission-reuse	
11 12	472		
13 14	473	Please tick one or more boxes as appropriate:	
15 16	474	□ I am the sole author of the Contribution.	
17 18	475	☑ I am one author signing on behalf of all co-owners of the Contribution.	
19 20 21	476	☑ The Contribution has been made in the course of my employment and I am signing as	
21 22 23	477	authorised by my employer.	
24 25	478	☑ I am a US Federal Government employee acting in the course of my employment.	
26 27	479	□ I am not a US Federal Government employee, but some or all of my co-authors are.	
28 29	480	□ I am an employee of the UK Crown* acting in the course of my employment	
30 31	481	□ I am not an employee of the UK Crown acting in the course of my employment but some/all	
32 33	482	of my co-authors are.*	
34 35			
36 37			
38 39			
40 41			
42 43			
44 45			
45 46			
47			
48 49			
50			
51			
52 53			
54			
55			
56			
57 58		20	
58 59		20	
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2 3 4	485	References
5	486	1. Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease
6	487	attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases
7 8	488	Study 2015. The Lancet 2017;389(10082):1907-18. doi: 10.1016/S0140-6736(17)30505-6
8 9	489	2. Brook RD, Rajagopalan S, Pope CA, 3rd, et al. Particulate matter air pollution and cardiovascular
10	490	disease: An update to the scientific statement from the American Heart Association. <i>Circulation</i>
11	491	2010;121(21):2331-78. doi: 10.1161/CIR.0b013e3181dbece1 [published Online First:
12	492	2010/05/12]
13	493	3. Shi L, Zanobetti A, Kloog I, et al. Low-Concentration PM2.5 and Mortality: Estimating Acute and
14	494	Chronic Effects in a Population-Based Study. <i>Environ Health Perspect</i> 2016;124(1):46-52. doi:
15	495	10.1289/ehp.1409111 [published Online First: 2015/06/04]
16	496	4. Kloog I, Ridgway B, Koutrakis P, et al. Long- and short-term exposure to PM2.5 and mortality: using
17 18	497	novel exposure models. <i>Epidemiology (Cambridge, Mass)</i> 2013;24(4):555-61. doi:
18	498	10.1097/EDE.0b013e318294beaa [published Online First: 2013/05/17]
20	499	5. WHO WHO. Country estimates of burden of disease from ambient air pollution for 2016, 2018.
21	500	6. Dominici F, Peng RD, Bell ML, et al. Fine particulate air pollution and hospital admission for
22	501	cardiovascular and respiratory diseases. Jama 2006;295(10):1127-34. doi:
23	502	10.1001/jama.295.10.1127 [published Online First: 2006/03/09]
24	503	7. Liu H, Tian Y, Cao Y, et al. Fine particulate air pollution and hospital admissions and readmissions for
25	504	acute myocardial infarction in 26 Chinese cities. <i>Chemosphere</i> 2018;192:282-88. doi:
26	505	10.1016/j.chemosphere.2017.10.123 [published Online First: 2017/11/07]
27 28	506	8. Di Q, Dai L, Wang Y, et al. Association of Short-term Exposure to Air Pollution With Mortality in Older
20	507	AdultsAssociation of Short-term Exposure to Air Pollution With Mortality in Older
30	508	AdultsAssociation of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA
31	509	2017;318(24):2446-56. doi: 10.1001/jama.2017.17923
32	510	9. Bravo MA, Ebisu K, Dominici F, et al. Airborne Fine Particles and Risk of Hospital Admissions for
33	511	Understudied Populations: Effects by Urbanicity and Short-Term Cumulative Exposures in 708
34	512	U.S. Counties. Environ Health Perspect 2017;125(4):594-601. doi: 10.1289/ehp257 [published
35 36	513	Online First: 2016/09/21]
30 37	514	10. Simoni M, Baldacci S, Maio S, et al. Adverse effects of outdoor pollution in the elderly. J Thorac Dis
38	515	2015;7(1):34-45. doi: 10.3978/j.issn.2072-1439.2014.12.10
39	516	11. Ran J, Sun S, Han L, et al. Fine particulate matter and cause-specific mortality in the Hong Kong elder
40	517	patients with chronic kidney disease. Chemosphere 2020;247:125913. doi:
41	518	https://doi.org/10.1016/j.chemosphere.2020.125913
42	519	12. Xi Y, Kshirsagar AV, Wade TJ, et al. Mortality in US Hemodialysis Patients Following Exposure to
43	520	Wildfire Smoke. Journal of the American Society of Nephrology : JASN 2020;31(8):1824-35. doi:
44 45	521	10.1681/asn.2019101066 [published Online First: 2020/07/18]
46	522	13. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. Jama
47	523	2007;298(17):2038-47. doi: 10.1001/jama.298.17.2038 [published Online First: 2007/11/08]
48	524	14. Hsu CY, Vittinghoff E, Lin F, et al. The incidence of end-stage renal disease is increasing faster than
49	525	the prevalence of chronic renal insufficiency. Annals of internal medicine 2004;141(2):95-101.
50	526	doi: 10.7326/0003-4819-141-2-200407200-00007 [published Online First: 2004/07/21]
51 52	527	15. Cockwell P, Fisher L-A. The global burden of chronic kidney disease. The Lancet
52 53	528	2020;395(10225):662-64. doi: 10.1016/S0140-6736(19)32977-0
54	529	16. USRDS USRDS. 2018 USRDS annual data report: Epidemiology of kidney disease in the United States.
55	530	Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and
56	531	Kidney Diseases, 2018.
57		
58		21
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		tor peer review only intep.//binjopen.binj.com/site/about/guidennes.xittin

1		
2		
3 4	532	17. Wang V, Vilme H, Maciejewski ML, et al. The Economic Burden of Chronic Kidney Disease and End-
5	533	Stage Renal Disease. Seminars in nephrology 2016;36(4):319-30. doi:
6	534	10.1016/j.semnephrol.2016.05.008 [published Online First: 2016/08/01]
7	535	18. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review.
8	536	JAMA 2019;322(13):1294-304. doi: 10.1001/jama.2019.14745
9	537	19. Flythe JE, Hilbert J, Kshirsagar AV, et al. Psychosocial Factors and 30-Day Hospital Readmission
10	538	among Individuals Receiving Maintenance Dialysis: A Prospective Study. American journal of
11 12	539	nephrology 2017;45(5):400-08. doi: 10.1159/000470917 [published Online First: 2017/04/14]
13	540	20. Perl J, McArthur E, Bell C, et al. Dialysis Modality and Readmission Following Hospital Discharge: A
14	541	Population-Based Cohort Study. American journal of kidney diseases : the official journal of the
15	542	National Kidney Foundation 2017;70(1):11-20. doi: 10.1053/j.ajkd.2016.10.020 [published
16	543	Online First: 2017/01/11]
17	544 545	21. Chan L, Chauhan K, Poojary P, et al. National Estimates of 30-Day Unplanned Readmissions of
18 19	545 546	Patients on Maintenance Hemodialysis. <i>Clinical journal of the American Society of Nephrology :</i> CJASN 2017;12(10):1652-62. doi: 10.2215/cjn.02600317 [published Online First: 2017/10/04]
20	540 547	22. Lin Y, Yang C, Chu H, et al. Association between the Charlson Comorbidity Index and the risk of 30-
21	548	day unplanned readmission in patients receiving maintenance dialysis. BMC nephrology
22	549	2019;20(1):363. doi: 10.1186/s12882-019-1538-0 [published Online First: 2019/10/09]
23	550	23. USEPA USEPA. Integrated Science Assessment (ISA) for Particulate Matter, 2009.
24	551	24. Newby DE, Mannucci PM, Tell GS, et al. Expert position paper on air pollution and cardiovascular
25	552	disease. European heart journal 2014;36(2):83-93. doi: 10.1093/eurheartj/ehu458
26 27	553	25. Yusuf S, Joseph P, Rangarajan S, et al. Modifiable risk factors, cardiovascular disease, and mortality in
27	554	155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a
29	555	prospective cohort study. <i>Lancet (London, England)</i> 2020;395(10226):795-808. doi:
30	556	10.1016/s0140-6736(19)32008-2 [published Online First: 2019/09/08]
31	557	26. Graham KL, Auerbach AD, Schnipper JL, et al. Preventability of Early Versus Late Hospital
32	558	Readmissions in a National Cohort of General Medicine Patients. Annals of internal medicine
33	559	2018;168(11):766-74. doi: 10.7326/m17-1724 [published Online First: 2018/05/02]
34 35	560	27. Graham KL, Wilker EH, Howell MD, et al. Differences between early and late readmissions among
36	561	patients: a cohort study. Annals of internal medicine 2015;162(11):741-9. doi: 10.7326/m14-
37	562	2159 [published Online First: 2015/06/02]
38	563	28. Barrett M RS, Andrews R. Overview of Key Readmission Measures and Methods. 2012. HCUP
39	564	Methods Series Report #2012-04. U.S. Agency for Healthcare Research and Quality, 2012.
40	565	29. Makar M, Antonelli J, Di Q, et al. Estimating the Causal Effect of Low Levels of Fine Particulate Matter
41 42	566	on Hospitalization. Epidemiology (Cambridge, Mass) 2017;28(5):627-34. doi:
42	567	10.1097/ede.0000000000000690 [published Online First: 2017/08/03]
44	568	30. Di Q, Kloog I, Koutrakis P, et al. Assessing PM2.5 Exposures with High Spatiotemporal Resolution
45	569	across the Continental United States. Environ Sci Technol 2016;50(9):4712-21. doi:
46	570	10.1021/acs.est.5b06121 [published Online First: 2016/03/30]
47	571	31. NOAA. Global Surface Summary of the Day - GSOD. In: National Climatic Data Center N, NOAA, U.S.
48	572	Department of Commerce, ed.
49 50	573	32. Prakash S, Coffin R, Schold J, et al. Travel distance and home dialysis rates in the United States. <i>Perit</i>
50	574	<i>Dial Int</i> 2014;34(1):24-32. doi: 10.3747/pdi.2012.00234
52	575	33. Stephens JM, Brotherton S, Dunning SC, et al. Geographic disparities in patient travel for dialysis in
53	576	the United States. The Journal of rural health : official journal of the American Rural Health
54	577	Association and the National Rural Health Care Association 2013;29(4):339-48. doi:
55	578	10.1111/jrh.12022 [published Online First: 2013/10/04]
56 57		
58		22
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

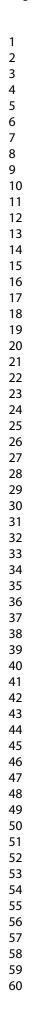

2		
3	579	34. Carracedo-Martinez E, Taracido M, Tobias A, et al. Case-crossover analysis of air pollution health
4	580	effects: a systematic review of methodology and application. <i>Environ Health Perspect</i>
5	581	2010;118(8):1173-82. doi: 10.1289/ehp.0901485 [published Online First: 2010/04/02]
6	582	35. DeFlorio-Barker S, Crooks J, Reyes J, et al. Cardiopulmonary Effects of Fine Particulate Matter
7 8	583	Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States
o 9	584	2008-2010. <i>Environ Health Perspect</i> 2019;127(3):37006. doi: 10.1289/ehp3860 [published
9 10	585	Online First: 2019/03/16]
11	586	36. Hildebrandt M, Bender R, Gehrmann U, et al. Calculating confidence intervals for impact numbers.
12	587	BMC Med Res Methodol 2006;6:32. doi: 10.1186/1471-2288-6-32 [published Online First:
13	588	2006/07/14]
14	589	37. A language and environment for statistical computing. R Foundation for Statistical Computing
15	590	[program]. Vienna, Austria, 2019.
16	591	38. Peng RD, Bell ML, Geyh AS, et al. Emergency admissions for cardiovascular and respiratory diseases
17	592	and the chemical composition of fine particle air pollution. <i>Environ Health Perspect</i>
18 19	593	2009;117(6):957-63. doi: 10.1289/ehp.0800185 [published Online First: 2009/07/11]
20	593 594	39. Peng RD, Chang HH, Bell ML, et al. Coarse particulate matter air pollution and hospital admissions for
21	594 595	cardiovascular and respiratory diseases among Medicare patients. Jama 2008;299(18):2172-9.
22	595 596	doi: 10.1001/jama.299.18.2172 [published Online First: 2008/05/15]
23	596 597	
24		40. Powell H, Krall JR, Wang Y, et al. Ambient Coarse Particulate Matter and Hospital Admissions in the
25	598	Medicare Cohort Air Pollution Study, 1999-2010. Environ Health Perspect 2015;123(11):1152-8.
26	599	doi: 10.1289/ehp.1408720 [published Online First: 2015/04/15]
27	600	41. Zanobetti A, Dominici F, Wang Y, et al. A national case-crossover analysis of the short-term effect of
28	601	PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders.
29	602	Environmental health : a global access science source 2014;13(1):38. doi: 10.1186/1476-069x-
30 31	603	13-38 [published Online First: 2014/06/03]
32	604	42. Wellenius GA, Bateson TF, Mittleman MA, et al. Particulate air pollution and the rate of
33	605	hospitalization for congestive heart failure among medicare beneficiaries in Pittsburgh,
34	606	Pennsylvania. Am J Epidemiol 2005;161(11):1030-6. doi: 10.1093/aje/kwi135 [published Online
35	607	First: 2005/05/20]
36	608	43. Huynh QL, Blizzard CL, Marwick TH, et al. Association of ambient particulate matter with heart
37	609	failure incidence and all-cause readmissions in Tasmania: an observational study. BMJ Open
38	610	2018;8(5):e021798. doi: 10.1136/bmjopen-2018-021798
39	611	44. von Klot S, Peters A, Aalto P, et al. Ambient air pollution is associated with increased risk of hospital
40	612	cardiac readmissions of myocardial infarction survivors in five European cities. Circulation
41 42	613	2005;112(20):3073-79. doi: 10.1161/CIRCULATIONAHA.105.548743
42 43	614	45. Liu MH, Chan MJ, Hsu CW, et al. Association of uremic pruritus in hemodialysis patients with the
44	615	number of days of high mean 24-hour particulate matter with a diameter of <2.5 mum.
45	616	Therapeutics and clinical risk management 2017;13:255-62. doi: 10.2147/tcrm.s129133
46	617	[published Online First: 2017/03/07]
47	618	46. Chiu PF, Chang CH, Wu CL, et al. High particulate matter 2.5 levels and ambient temperature are
48	619	associated with acute lung edema in patients with nondialysis Stage 5 chronic kidney disease.
49	620	Nephrology, dialysis, transplantation : official publication of the European Dialysis and
50	621	Transplant Association - European Renal Association 2018 doi: 10.1093/ndt/gfy144 [published
51	622	Online First: 2018/06/26]
52	623	47. Huang WH, Yen TH, Chan MJ, et al. Impact of environmental particulate matter and peritoneal
53 54	624	dialysis-related infection in patients undergoing peritoneal dialysis. <i>Medicine</i> 2014;93(25):e149.
54 55	625	doi: 10.1097/md.000000000000149 [published Online First: 2014/12/02]
56		
57		
58		23
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

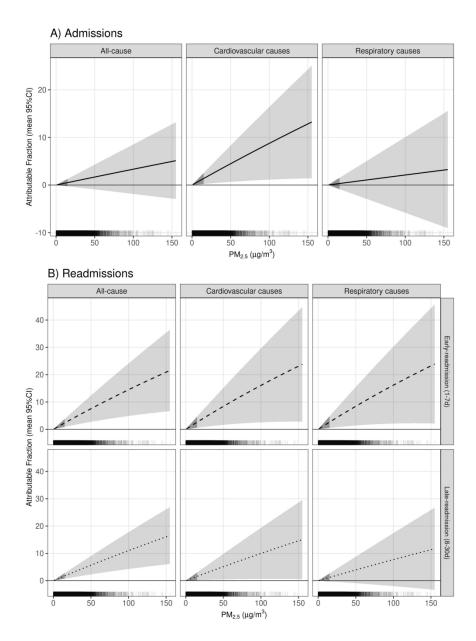

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	626 627 628 629 630 631 632 633 634	 48. Mathew AT, Rosen L, Pekmezaris R, et al. Potentially Avoidable Readmissions in United States Hemodialysis Patients. <i>Kidney Int Rep</i> 2017;3(2):343-55. doi: 10.1016/j.ekir.2017.10.014 49. Wei YG, Wang Y, Di Q, et al. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study. <i>BMJ-British Medical Journal</i> 2019;367:13. doi: 10.1136/bmj.l6258 50. Frieden TR. A framework for public health action: the health impact pyramid. <i>American journal of public health</i> 2010;100(4):590-5. doi: 10.2105/ajph.2009.185652 [published Online First: 2010/02/20]
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33		
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49		
50 51 52 53 54 55 56 57 58 59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


3 4	635	Figure 1. The relative risk (RR, 95%CI) for an all-cause early and late-readmission following all-
5 6	636	cause and cause-specific discharges. Discharges are color coded: all-cause discharges are
7 8	637	indicated in black, cardiovascular causes in orange, and respiratory causes in blue. Early-
9 10	638	readmissions are indicated with filled in circles, late-readmissions with open circles. RR is
11 12	639	expressed per 10 μ g/m ³ increase in PM _{2.5} .
13 14	640	
15 16 17	641	Figure 2. The relative risk (RR, 95%CI) of cause-specific early and late-readmission following
17 18 19	642	all-cause discharge. Readmission causes are color coded: all-cause readmissions are indicated
20 21	643	in black, cardiovascular causes in orange, and respiratory causes in blue. RR is expressed per
22 23	644	10 μg/m ³ increase in PM _{2.5} .
24 25	645	
26 27	646	Figure 3. Mean proportion (95%CI) of all-cause and cause-specific hospital admissions, early
28 29	647	readmissions (1-7d), and late readmissions (8-30d) with respect to $PM_{2.5}$ (µg/m ³). Hash marks
30 31	648	above the x-axis represent the density of daily county PM2.5. The 95% CI under 15.9 $\mu\text{g}/\text{m}^3$ is
32 33	649	shaded darker to indicate where 90 percent of the data falls.
34 35	650	
36 37	651	Figure 4. Average daily county $PM_{2.5}$ (µg/m ³) between 2008 and 2014 (A) and the attributable
38 39 40	652	fraction for early-readmission following an all-cause discharge based on the average $PM_{2.5}$ (B)
40 41 42	653	for the 530 counties included in the study.
42 43 44	654	
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57		
58 59		25
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

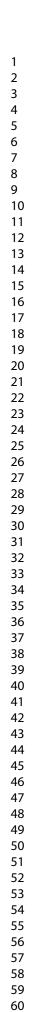
2014 by Hospital Admission Catego	, y.		
		No. (%)	
	All-cause	Cardiovascular	Respiratory
Characteristic	N = 351,294	n = 262,385	n = 247,829
Age (yr), mean (SD)	64.69 (14.70)	65·58 (14.53)	65·61 (14.48)
Male sex (%)	190,716 (54.3)	140,206 (53.4)	132,288 (53.4
Race			
White	209,921 (59.8)	155,405 (59.2)	147,204 (59.4
Black	122,943 (35.0)	93,325 (35.6)	87,831 (35.4)
Other	18,430 (5.2)	13,655 (5.2)	12,794 (5.2)
Smoking status at initiation (no)	330,837 (94.2)	246,634 (94.0)	232,396 (93.8

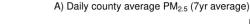
659	2014.				
		Number of E	ue Patients)		
	Outcome	All-cause	Cardiovascular	Respiratory	
	Admissions	1,801,966 (351,294)	832,255 (262,385)	766,447 (247,829	
	Discharged alive	1,493,795 (312,521)	685,680 (229,780)	637,250 (217,221	
	Early-readmission (1-7d)	176,822 (91,508)	83,193 (52,374)	78,392 (49,343)	
	Late-readmission (8-30d)	317,948 (130, 454)	150,080 (80,851)	141,656 (76,444)	
	Length of stay, d				
	Mean (SD)	6.98 (10.68)	7.05 (10.34)	7.07 (10.38)	
	Median (IQR)	4 (2-7)	4 (2-8)	4 (2-8)	
	Hospital visits in prior year				
	3+ visits	637,503 (123,949)	307,891 (93,399)	292,803 (89,905)	
	Mean (SD)	2.97 (3.80)	• 3.14 (3.95)	3.21 (3.89)	
	Median (IQR)	2 (1-4)	2 (1-4)	2 (1-4)	
660			4		
661					

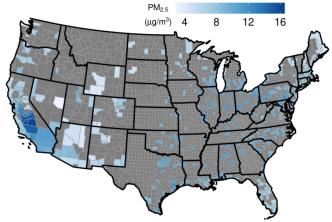




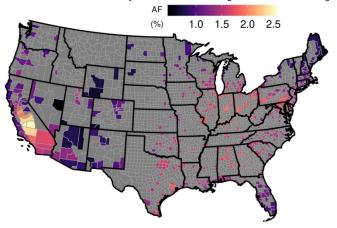
The relative risk (RR, 95%CI) of cause-specific early and late-readmission following all-cause discharge. Readmission causes are color coded: all-cause readmissions are indicated in black, cardiovascular causes in orange, and respiratory causes in blue. RR is expressed per 10 µg/m3 increase in PM2.5.


203x127mm (300 x 300 DPI)





Mean proportion (95%CI) of all-cause and cause-specific hospital admissions, early readmissions (1-7d), and late readmissions (8-30d) with respect to PM2.5 (μ g/m3). Hash marks above the x-axis represent the density of daily county PM2.5. The 95% CI under 15.9 μ g/m3 is shaded darker to indicate where 90 percent of the data falls.


203x279mm (300 x 300 DPI)

B) Exposure attributable fraction for early-readmission following an all-cause discharge

Average daily county PM2.5 (μ g/m3) between 2008 and 2014 (A) and the attributable fraction for earlyreadmission following an all-cause discharge based on the average PM2.5 (B) for the 530 counties included in the study.

203x279mm (300 x 300 DPI)

1 Supplemental Materials

Table S1. Summary statistics of PM_{2.5} and meteorological variables across 530 counties.

PM _{2.5} (µg/m ³) 9.29 ± 5.39 0.05 155.16 Temperature (°F) 56.37 ± 18.50 -37.30 104.74 Relative humidity (%) 65.24 ± 16.24 0 100	56.37 ± 18.50 65.24 ± 16.24	-37.30	104.74
Relative humidity (%) 65.24 ± 16.24 0 100	65.24 ± 16.24	0	100
	65.24 ± 16.24	0	100
	ORP.		

Table S2. The relative risk (RR, 95%CI) for an all-cause, cardiovascular, and respiratory related early and late-readmission following
all-cause and cause-specific discharges. RR is expressed per 10 µg/m³ increase in PM_{2.5}. Models presented include the main model
presented in the paper (model 1) where PM_{2.5} is considered as a linear variable and a model that considers PM_{2.5} as a non-linear
variable (model 2).

	1		Model 1 PM linear	Model 2 PM non-linear
Readmission model	Discharge cause	Readmission cause	RR (95%CI)	RR (95%CI)
Early-readmission (1-7d)	All Causes	All Causes	1.016 (1.006, 1.026)	1.089 (1.016, 1.168)
Early-readmission (1-7d)	All Causes	All Cardiovascular	1.009 (0.996, 1.023)	0.984 (0.892, 1.085)
Early-readmission (1-7d)	All Causes	Dysrhythmia*	1.048 (1.023, 1.074)	0.898 (0.754, 1.070)
Early-readmission (1-7d)	All Causes	Heart failure	1.037 (1.014, 1.060)	1.065 (0.906, 1.252)
Early-readmission (1-7d)	All Causes	Hypertension	1.007 (0.990, 1.025)	1.011 (0.895, 1.141)
Early-readmission (1-7d)	All Causes	Ischemic heart disease	0.970 (0.929, 1.012)	0.910 (0.678, 1.222)
Early-readmission (1-7d)	All Causes	Myocardial infarction	0.955 (0.906, 1.007)	0.940 (0.651, 1.358)
Early-readmission (1-7d)	All Causes	Peripheral arterial disease	0.900 (0.748, 1.083)	0.389 (0.121, 1.254)
Early-readmission (1-7d)	All Causes	All Respiratory	1.026 (1.011, 1.040)	1.082 (0.977, 1.199)
Early-readmission (1-7d)	All Causes	Asthma	1.102 (0.992, 1.226)	0.464 (0.240, 0.900)
Early-readmission (1-7d)	All Causes	COPD	1.040 (1.002, 1.081)	1.021 (0.763, 1.366)
Early-readmission (1-7d)	All Causes	Other*	1.027 (1.012, 1.042)	1.093 (0.981, 1.218)
Early-readmission (1-7d)	All Causes	Pneumonia	1.065 (1.035, 1.096)	1.263 (1.012, 1.576)
Early-readmission (1-7d)	All Causes	Pulmonary embolism	1.047 (0.930, 1.179)	0.911 (0.371, 2.233)
Early-readmission (1-7d)	All Cardiovascular	All Causes	1.018 (1.004, 1.032)	1.034 (0.933, 1.145)
Early-readmission (1-7d)	All Cardiovascular	All Cardiovascular	1.006 (0.989, 1.024)	0.938 (0.823, 1.070)
Early-readmission (1-7d)	All Cardiovascular	Dysrhythmia*	1.043 (1.012, 1.076)	1.006 (0.793, 1.278)
Early-readmission (1-7d)	All Cardiovascular	Heart failure	1.027 (0.999, 1.056)	0.994 (0.810, 1.221)
Early-readmission (1-7d)	All Cardiovascular	Hypertension	1.006 (0.985, 1.028)	0.911 (0.776, 1.069)
Early-readmission (1-7d)	All Cardiovascular	Ischemic heart disease	1.014 (0.963, 1.069)	0.888 (0.603, 1.309)
Early-readmission (1-7d)	All Cardiovascular	Myocardial infarction	0.987 (0.924, 1.054)	0.901 (0.557, 1.459)
Early-readmission (1-7d)	All Cardiovascular	Peripheral arterial disease	0.924 (0.693, 1.230)	0.195 (0.044, 0.875)

Early-readmission (1-7d)	All Cardiovascular	All Respiratory	1.025 (1.006, 1.045)	1.015 (0.882, 1.1
Early-readmission (1-7d)	All Cardiovascular	Asthma	1.086 (0.948, 1.243)	0.335 (0.144, 0.7
Early-readmission (1-7d)	All Cardiovascular	COPD	1.035 (0.985, 1.087)	0.877 (0.604, 1.27
Early-readmission (1-7d)	All Cardiovascular	Other*	1.025 (1.005, 1.045)	1.067 (0.919, 1.23
Early-readmission (1-7d)	All Cardiovascular	Pneumonia	1.075 (1.035, 1.117)	1.124 (0.831, 1.52
Early-readmission (1-7d)	All Cardiovascular	Pulmonary embolism	1.134 (0.986, 1.303)	1.879 (0.544, 6.49
Early-readmission (1-7d)	All Respiratory	All Causes	1.018 (1.004, 1.032)	1.041 (0.939, 1.15
Early-readmission (1-7d)	All Respiratory	All Cardiovascular	1.007 (0.988, 1.026)	1.011 (0.880, 1.16
Early-readmission (1-7d)	All Respiratory	Dysrhythmia*	1.045 (1.011, 1.080)	0.936 (0.731, 1.19
Early-readmission (1-7d)	All Respiratory	Heart failure	1.017 (0.988, 1.047)	0.989 (0.802, 1.22
Early-readmission (1-7d)	All Respiratory	Hypertension	1.014 (0.990, 1.038)	1.056 (0.885, 1.26
Early-readmission (1-7d)	All Respiratory	Ischemic heart disease	0.971 (0.918, 1.028)	0.783 (0.534, 1.14
Early-readmission (1-7d)	All Respiratory	Myocardial infarction	0.938 (0.872, 1.009)	0.682 (0.422, 1.10
Early-readmission (1-7d)	All Respiratory	Peripheral arterial disease	0.857 (0.603, 1.219)	0.189 (0.035, 1.00
Early-readmission (1-7d)	All Respiratory	All Respiratory	1.025 (1.006, 1.044)	1.087 (0.947, 1.24
Early-readmission (1-7d)	All Respiratory	Asthma	1.074 (0.938, 1.230)	0.407 (0.180, 0.92
Early-readmission (1-7d)	All Respiratory	COPD	1.041 (0.993, 1.092)	0.856 (0.600, 1.22
Early-readmission (1-7d)	All Respiratory	Other*	1.028 (1.008, 1.048)	1.114 (0.963, 1.28
Early-readmission (1-7d)	All Respiratory	Pneumonia	1.049 (1.011, 1.089)	1.185 (0.890, 1.57
Early-readmission (1-7d)	All Respiratory	Pulmonary embolism	1.075 (0.913, 1.265)	0.921 (0.265, 3.20
Late-readmission (8-30d)	All Causes	All Causes	1.013 (1.006, 1.020)	1.024 (0.974, 1.07
Late-readmission (8-30d)	All Causes	All Cardiovascular	1.017 (1.007, 1.027)	1.071 (0.995, 1.15
Late-readmission (8-30d)	All Causes	Dysrhythmia*	1.031 (1.013, 1.050)	1.103 (0.961, 1.26
Late-readmission (8-30d)	All Causes	Heart failure	1.041 (1.025, 1.058)	1.027 (0.915, 1.15
Late-readmission (8-30d)	All Causes	Hypertension	1.010 (0.998, 1.023)	1.036 (0.947, 1.13
Late-readmission (8-30d)	All Causes	Ischemic heart disease	1.008 (0.975, 1.042)	0.858 (0.676, 1.08
Late-readmission (8-30d)	All Causes	Myocardial infarction	0.974 (0.933, 1.017)	0.722 (0.538, 0.96
Late-readmission (8-30d)	All Causes	Peripheral arterial disease	1.003 (0.873, 1.153)	1.367 (0.511, 3.65
Late-readmission (8-30d)	All Causes	All Respiratory	1.030 (1.020, 1.041)	1.083 (1.004, 1.16
Late-readmission (8-30d)	All Causes	Asthma	1.071 (0.998, 1.150)	1.327 (0.739, 2.38
Late-readmission (8-30d)	All Causes	COPD	1.046 (1.017, 1.076)	1.001 (0.813, 1.23
Late-readmission (8-30d)	All Causes	Other*	1.030 (1.019, 1.041)	1.113 (1.028, 1.20

1.059 (1.037, 1.082)

1.063 (0.959, 1.178)

1.012 (1.003, 1.022)

1.016 (1.003, 1.029)

1.035 (1.012, 1.058)

1.035 (1.015, 1.055)

1.007 (0.991, 1.023)

0.977 (0.936, 1.020)

0.946 (0.894, 1.002)

1.013 (0.815, 1.258)

1.028 (1.015, 1.042)

1.057 (0.963, 1.160)

1.047 (1.011, 1.084)

1.028 (1.014, 1.042)

1.052 (1.023, 1.082)

1.036 (0.909, 1.181)

1.010 (1.000, 1.020)

1.020 (1.006, 1.034)

1.037 (1.012, 1.062)

1.034 (1.013, 1.055)

1.013 (0.996, 1.030)

0.975 (0.932, 1.002)

0.948 (0.893, 1.006)

1.102 (0.894, 1.359)

1.019 (1.005, 1.032)

0.996 (0.905, 1.095)

1.026 (0.991, 1.063)

1.019 (1.005, 1.033)

1.062 (1.033, 1.092)

1.070 (0.915, 1.252)

1.104 (0.940, 1.297)

1.774 (0.742, 4.240)

1.030 (0.956, 1.109)

1.048 (0.950, 1.157)

1.058 (0.884, 1.266)

1.055 (0.907, 1.227)

1.002 (0.889, 1.129)

0.740 (0.542, 1.010)

0.593 (0.405, 0.868)

1.084 (0.257, 4.566)

1.086 (0.978, 1.206)

1.424 (0.654, 3.097)

0.840 (0.645, 1.094)

1.130 (1.012, 1.262)

1.203 (0.963, 1.504)

1.251 (0.389, 4.020)

1.039 (0.963, 1.120)

1.076 (0.970, 1.194)

1.053 (0.869, 1.277)

1.130 (0.968, 1.319)

1.040 (0.914, 1.184)

0.759 (0.553, 1.040)

0.710 (0.472, 1.069)

1.078 (0.974, 1.193)

1.200 (0.579, 2.489)

0.887 (0.691, 1.138)

1.119 (1.005, 1.246)

1.178 (0.947, 1.465)

1.848 (0.599, 5.701)

4

1.895 (0.351, 10.226)

Pneumonia

All Causes

Dysrhythmia*

Heart failure

Hypertension

All Respiratory

Asthma

COPD

Other*

Pneumonia

All Causes

Dysrhythmia*

Heart failure

Hypertension

All Respiratory

Asthma COPD

Other*

Pneumonia

Pulmonary embolism

Ischemic heart disease

Peripheral arterial disease

Myocardial infarction

Pulmonary embolism

Ischemic heart disease

Peripheral arterial disease

Myocardial infarction

Pulmonary embolism

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

All Cardiovascular

All Cardiovascular

י ר
2
3
4
5
6
7
7 8
9
10
11
12
13
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28 29
30
31
32
33
34
35
36
37
38
39
40
41
41 42
42 43
43

1

Late-readmission (8-30d)

Late-readmission (8-30d) Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

Late-readmission (8-30d)

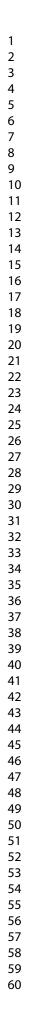
Late-readmission (8-30d)

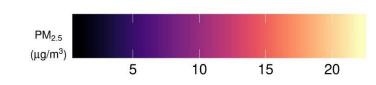
All Causes

All Causes

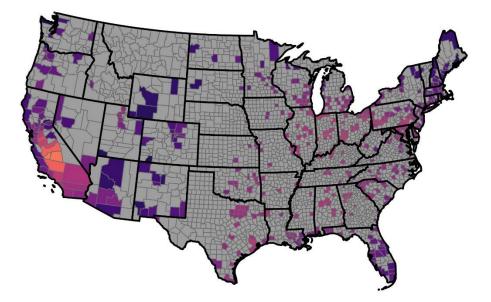
All Cardiovascular

All Respiratory

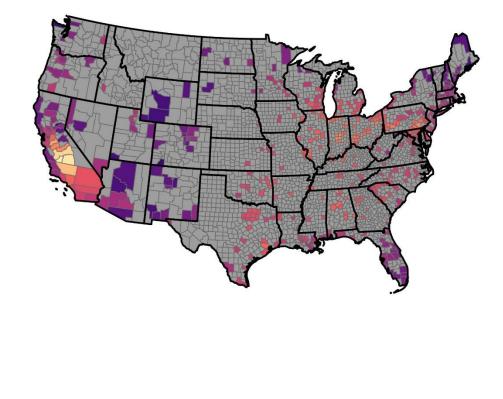

4	4
4	5


45
46
47

10 Table S3. Relative risk (RR ± 95%	5 CI) of all-cause and ca	ause-specific daily count	y admission rates associated v	with a 10 µg/m³			
11 increase in PM _{2.5} for exp	increase in PM _{2.5} for exposure lags 0-14 days. Models presented include the main model presented in the paper (model 1) where							
12 PM _{2.5} is considered as a	PM _{2.5} is considered as a linear variable and a model that considers PM _{2.5} as a non-linear variable (model 2). Additionally, the main							
13 model was stratified on t	model was stratified on the median of percent of individuals below poverty with respect to county (12.5% below poverty), with model							
14 3 representing the mode	I with cou	nties with high % below	poverty and model 4 re	presenting counties with low %	below poverty.			
		Model 1, PM linear	Model 2, PM non- linear	Model 3, PM linear high % poverty	Model 4, PM linear low % poverty			
Endpoint	Lag	RR (95%CI)	RR (95%CI)	RR (95%CI)	RR (95%CI)			
All-cause	0	1.003 (0.998, 1.009)	0.998 (1.009, 0.996)	1.009 (0.996, 0.978)	0.996 (0.978, 1.015)			
All-cause	1	0.997 (0.99, 1.003)	0.99 (1.003, 0.988)	1.003 (0.988, 0.968)	0.988 (0.968, 1.008)			
All-cause	2	0.999 (0.992, 1.005)	0.992 (1.005, 0.998)	1.005 (0.998, 0.978)	0.998 (0.978, 1.018)			
All-cause	3	0.996 (0.99, 1.002)	0.99 (1.002, 1.011)	1.002 (1.011, 0.991)	1.011 (0.991, 1.032)			
All-cause	4	1.002 (0.996, 1.008)	0.996 (1.008, 1.006)	1.008 (1.006, 0.986)	1.006 (0.986, 1.027)			
All-cause	5	1.001 (0.995, 1.007)	0.995 (1.007, 0.977)	1.007 (0.977, 0.957)	0.977 (0.957, 0.997)			
All-cause	6	1.001 (0.995, 1.008)	0.995 (1.008, 0.988)	1.008 (0.988, 0.968)	0.988 (0.968, 1.009)			
All-cause	7	1 (0.993, 1.006)	0.993 (1.006, 0.982)	1.006 (0.982, 0.961)	0.982 (0.961, 1.003)			
All-cause	8	1.004 (0.997, 1.01)	0.997 (1.01, 1.001)	1.01 (1.001, 0.981)	1.001 (0.981, 1.022)			
All-cause	9	1.004 (0.998, 1.01)	0.998 (1.01, 0.985)	1.01 (0.985, 0.965)	0.985 (0.965, 1.006)			
All-cause	10	0.999 (0.993, 1.005)	0.993 (1.005, 1.02)	1.005 (1.02, 1)	1.02 (1, 1.042)			
All-cause	11	0.996 (0.989, 1.002)	0.989 (1.002, 0.998)	1.002 (0.998, 0.978)	0.998 (0.978, 1.019)			
All-cause	12	1.002 (0.996, 1.009)	0.996 (1.009, 1.006)	1.009 (1.006, 0.986)	1.006 (0.986, 1.028)			
All-cause	13	0.995 (0.989, 1.001)	0.989 (1.001, 0.979)	1.001 (0.979, 0.959)	0.979 (0.959, 0.999)			
All-cause	14	1 (0.994, 1.005)	0.994 (1.005, 0.987)	1.005 (0.987, 0.968)	0.987 (0.968, 1.006)			
Cardiovascular related causes	0	1.009 (1.002, 1.017)	1.002 (1.017, 0.994)	1.017 (0.994, 0.967)	0.994 (0.967, 1.022)			
Cardiovascular related causes	1	0.995 (0.986, 1.004)	0.986 (1.004, 0.978)	1.004 (0.978, 0.949)	0.978 (0.949, 1.007)			


Cardiovascular related	2	0.998 (0.988, 1.007)	0.988 (1.007, 0.997)	1.007 (0.997, 0.968)	0.997 (0.968, 1.028)
causes Cardiovascular related causes	3	0.993 (0.984, 1.002)	0.984 (1.002, 1)	1.002 (1, 0.97)	1 (0.97, 1.03)
Cardiovascular related causes	4	1.003 (0.994, 1.012)	0.994 (1.012, 1.029)	1.012 (1.029, 0.999)	1.029 (0.999, 1.06)
Cardiovascular related causes	5	1.004 (0.994, 1.013)	0.994 (1.013, 0.976)	1.013 (0.976, 0.947)	0.976 (0.947, 1.006)
Cardiovascular related causes	6	0.999 (0.99, 1.008)	0.99 (1.008, 0.991)	1.008 (0.991, 0.962)	0.991 (0.962, 1.022)
Cardiovascular related causes	7	1.005 (0.995, 1.014)	0.995 (1.014, 0.979)	1.014 (0.979, 0.949)	0.979 (0.949, 1.01)
Cardiovascular related causes	8	1.002 (0.993, 1.011)	0.993 (1.011, 0.999)	1.011 (0.999, 0.969)	0.999 (0.969, 1.03)
Cardiovascular related causes	9	1.009 (1, 1.018)	1 (1.018, 0.992)	1.018 (0.992, 0.963)	0.992 (0.963, 1.023)
Cardiovascular related causes	10	0.992 (0.983, 1.001)	0.983 (1.001, 0.996)	1.001 (0.996, 0.966)	0.996 (0.966, 1.026)
Cardiovascular related causes	11	0.999 (0.99, 1.008)	0.99 (1.008, 1.017)	1.008 (1.017, 0.987)	1.017 (0.987, 1.048)
Cardiovascular related causes	12	0.999 (0.99, 1.008)	0.99 (1.008, 1.004)	1.008 (1.004, 0.974)	1.004 (0.974, 1.035)
Cardiovascular related causes	13	0.996 (0.987, 1.005)	0.987 (1.005, 0.969)	1.005 (0.969, 0.94)	0.969 (0.94, 0.999)
Cardiovascular related causes	14	1.002 (0.994, 1.009)	0.994 (1.009, 1.007)	1.009 (1.007, 0.978)	1.007 (0.978, 1.036)
Respiratory related causes	0	1.002 (0.994, 1.01)	0.994 (1.01, 0.998)	1.01 (0.998, 0.97)	0.998 (0.97, 1.027)
Respiratory related causes	1	0.998 (0.989, 1.008)	0.989 (1.008, 0.977)	1.008 (0.977, 0.948)	0.977 (0.948, 1.008)
Respiratory related causes	2	0.995 (0.985, 1.004)	0.985 (1.004, 1.007)	1.004 (1.007, 0.976)	1.007 (0.976, 1.039)
Respiratory related causes	3	0.995 (0.985, 1.004)	0.985 (1.004, 1.006)	1.004 (1.006, 0.975)	1.006 (0.975, 1.038)
Respiratory related causes	4	0.999 (0.989, 1.008)	0.989 (1.008, 0.997)	1.008 (0.997, 0.967)	0.997 (0.967, 1.029)

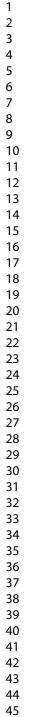
5	1.009 (1, 1.019)	1 (1.019, 0.993)	1.019 (0.993, 0.962)	0.993 (0.962, 1.024
6	0.999 (0.99, 1.009)	0.99 (1.009, 0.974)	1.009 (0.974, 0.944)	0.974 (0.944, 1.005
7	0.999 (0.989, 1.009)	0.989 (1.009, 0.984)	1.009 (0.984, 0.952)	0.984 (0.952, 1.017
8	1.005 (0.996, 1.015)	0.996 (1.015, 1.011)	1.015 (1.011, 0.98)	1.011 (0.98, 1.043)
9	1.008 (0.999, 1.018)	0.999 (1.018, 0.979)	1.018 (0.979, 0.948)	0.979 (0.948, 1.01)
10	0.995 (0.985, 1.004)	0.985 (1.004, 0.994)	1.004 (0.994, 0.963)	0.994 (0.963, 1.026
11	0.997 (0.988, 1.007)	0.988 (1.007, 1.013)	1.007 (1.013, 0.981)	1.013 (0.981, 1.046
12	1.002 (0.992, 1.011)	0.992 (1.011, 0.998)	1.011 (0.998, 0.967)	0.998 (0.967, 1.03)
13	0.997 (0.987, 1.006)	0.987 (1.006, 0.979)	1.006 (0.979, 0.948)	0.979 (0.948, 1.011
14	1.001 (0.993, 1.009)	0.993 (1.009, 0.995)	1.009 (0.995, 0.966)	0.995 (0.966, 1.025
	6 7 8 9 10 11 12 13	6 0.999 (0.99, 1.009) 7 0.999 (0.989, 1.009) 8 1.005 (0.996, 1.015) 9 1.008 (0.999, 1.018) 10 0.995 (0.985, 1.004) 11 0.997 (0.988, 1.007) 12 1.002 (0.992, 1.011) 13 0.997 (0.987, 1.006)	6 0.999 (0.99, 1.009) 0.99 (1.009, 0.974) 7 0.999 (0.989, 1.009) 0.989 (1.009, 0.984) 8 1.005 (0.996, 1.015) 0.996 (1.015, 1.011) 9 1.008 (0.999, 1.018) 0.999 (1.018, 0.979) 10 0.995 (0.985, 1.004) 0.985 (1.004, 0.994) 11 0.997 (0.988, 1.007) 0.988 (1.007, 1.013) 12 1.002 (0.992, 1.011) 0.997 (1.006, 0.979) 13 0.997 (0.987, 1.006) 0.987 (1.006, 0.979)	6 0.999 (0.99, 1.009) 0.99 (1.009, 0.974) 1.009 (0.974, 0.944) 7 0.999 (0.989, 1.009) 0.989 (1.009, 0.984) 1.009 (0.984, 0.952) 8 1.005 (0.996, 1.015) 0.996 (1.015, 1.011) 1.015 (1.011, 0.98) 9 1.008 (0.999, 1.018) 0.999 (1.018, 0.979) 1.018 (0.979, 0.948) 10 0.995 (0.985, 1.004) 0.985 (1.004, 0.994) 1.004 (0.994, 0.963) 11 0.997 (0.988, 1.007) 0.988 (1.007, 1.013) 1.007 (1.013, 0.981) 12 1.002 (0.992, 1.011) 0.992 (1.011, 0.998) 1.011 (0.998, 0.967) 13 0.997 (0.987, 1.006) 0.987 (1.006, 0.979) 1.006 (0.979, 0.948)



A) Long-term county PM_{2.5} (7yr average)

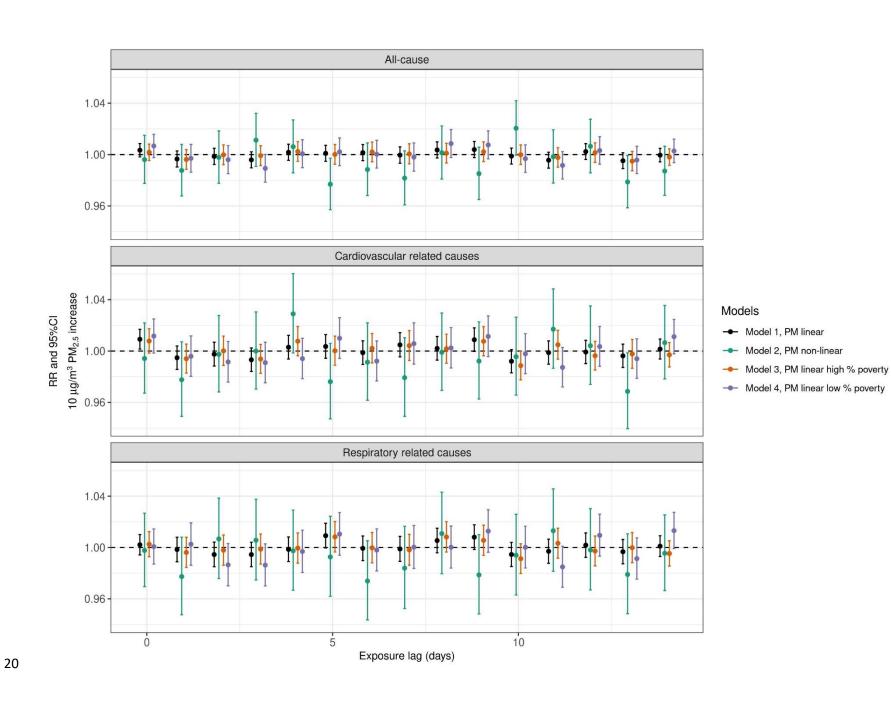
B) 20% of county days are above $PM_{2.5}$ (80th percentile)

2	
3	17
4 5	
4 5 6 7	18
7	19
8 9	
10	
11	
12 13	
14	
15	
16 17	
18	
19	
20	
21	
20 21 22 23	
24 25	
25 26	
26 27	
28	
29	
30 31	
32	
33	
34 35	
35 36	
37	
38	
39 40	
41	
42	
43 44	
44 45	
46	
47	
48 49	
50	
51	
52 53	
53 54	
55	
56	
57	

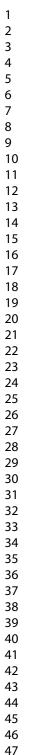

58

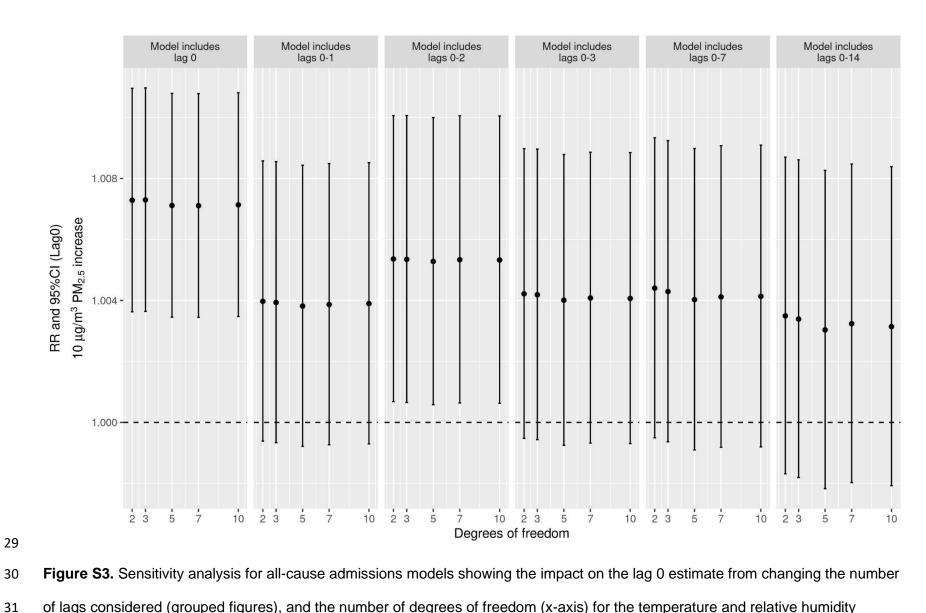
59

60


- 17 **Figure S1.** County PM_{2.5} levels for the 530 counties included in the study. PM_{2.5} levels shown
- 18 include the A) long-term average and B) 80th percentile (indicating that 20% of county days are
- 19 at or above this PM_{2.5} level) for the years 2008-2014.

to been teriew only


47



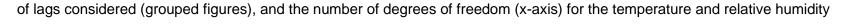
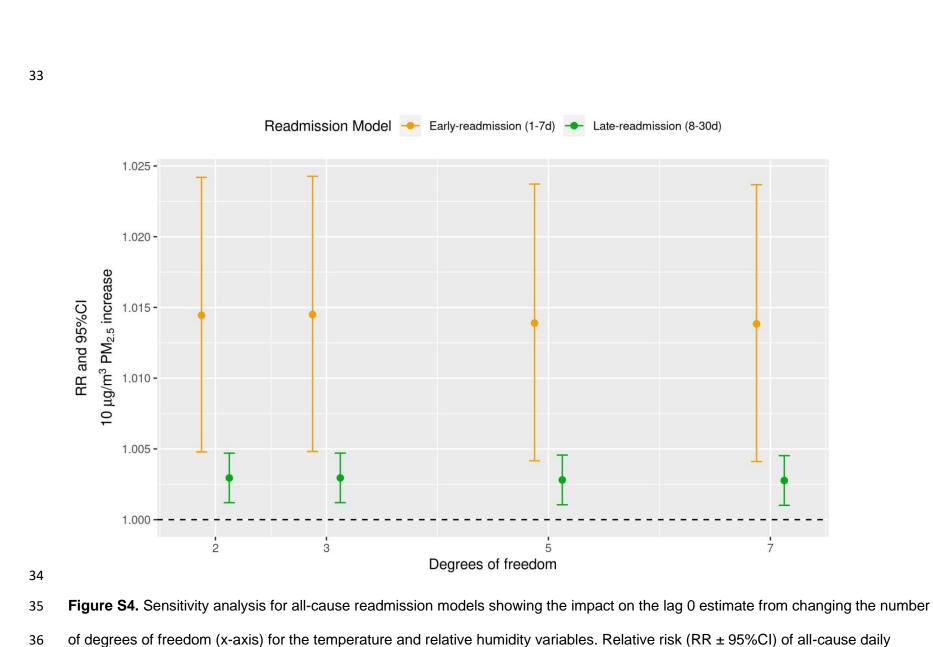

BMJ Open

Figure S2. Relative risk (RR ± 95%CI) for daily county admission rates for all-cause hospitalization associated with a 10 µg/m³ increase in PM_{2.5} for exposure lags 0-14 days using an unconstrained distributed lag model. Models presented include the main model presented in the paper (model 1) where PM_{2.5} is considered as a linear variable in black and a model that considers PM_{2.5} as a non-linear variable (model 2) in green. Additionally, the main model was stratified on the median of percent of individuals below erty), w... poverty with respect to county (12.5% below poverty), with model 3 representing the model with counties with high % below poverty

in orange and model 4 representing counties with low % below poverty in purple (Table S2).



variables. Relative risk (RR ± 95%CI) of all-cause daily county admission rates associated with a 10 µg/m³ increase in PM_{2.5} on lag 0. 32

BMJ Open

county admission rates associated with a 10 μ g/m³ increase in PM_{2.5} on lag 0.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1-3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods		state specific objectives, meruding any prespectives hypotheses	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
6		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-8
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-8
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-9
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8-9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9-10
-		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	10

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10- 12
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12- 13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15- 16
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	13- 16
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	17
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.