Supplementary Material:

In vivo therapeutic effects of affinity-improved-TCR engineered T-cells on HBV-related

hepatocellular carcinoma

Qi Liu,^{1,2,3} Ye Tian,¹ Yanyan Li,¹ Wei Zhang,³ Wenxuan Cai,¹ Yaju Liu,³ Yuefei Ren,^{1,4}

Zhaoduan Liang,¹ Peipei Zhou,^{1,5} Yajing Zhang,^{1,2} Yifeng Bao,¹ Yi Li^{1,2,3}

¹State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and

Health, Chinese Academy of Sciences, Guangzhou 510530, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of

Biomedicine and Health, Chinese Academy of Sciences, Hefei 230088, China

⁴School of Life Sciences, University of Science and Technology of China, Hefei 230026,

China

⁵Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

Supplementary Figures

Supplementary Fig. S1. Analysis of HBs peptides and HBV genotypes. HBs371-379 epitope sequences (Supplementary Table S1.1) and HBs370-379 epitope sequences (Supplementary Table S1.2) were retrieved from 5855 unique full-length HBs polyproteins. The most common peptides of HBs371 and HBs370 from full-length HBs polyprotein sequences were statistically analyzed with Strawberry Perl 5.26.1.1 and R 3.6.1 according to HBV genotype classified in UniProt. The most common 20 peptides frequency of (A) HBs371-379 and (B) HBs370-379 were retrieved from 5657 (97% of 5855) and 5528 (94% of 5855) full-length HBs polyproteins. (C) The corresponding HBV genotypes of the most common 8 HBs371-379 peptides (vrt1 to vrt8). (D) The corresponding HBV genotypes of the most

common 8 HBs370-379 peptides (vrt0, vrt9 to vrt16).

Supplementary Fig. S2. Analysis of TCR-T activation and detection of cytotoxicity of TCR-T cells. The EC₅₀ values are shown for (A) IFN-γ ELISPOT and (B) LDH cytotoxicity obtained by titrating exogenous vrt1-HBs371 (ILSPFLPLL) peptide to HLA-A*02:01-T2 as the antigen-presenting cells. Black lines represent averages of the four batches of TCR-T cells prepared from different PBMC donors.

Supplementary Fig. S3. Determination of the critical residues in vrt1 and vrt0 for TCR recognition by alanine scanning. After coculturing TCR-T cells and peptide-pulsed T2 cells in triplicate overnight at an E:T ratio of 1:10, IFN- γ release was detected. The vrt1 (A) and vrt0 (B) peptides produced by alanine scanning (10⁻⁶ to 10⁻¹³ M) were analysed.

Supplementary Fig. S4. Expression profiling of human antigens containing 45 potential crossreactive peptides related to vrt1 (ILSPFLPLL) and vrt0 (SIVSPFIPLL) from (Supplementary Table S3.2). Two gene expression database *E-MTAB-5214* and *E-MTAB-3358* containing highest number of tissues (53 and 56, respectively) were selected and combined to cover

potential cross-reactive peptides from all 45 polyproteins having expression information. There were 43 peptides presented in *E-MTAB-5214*, and 35 in *E-MTAB-3358*. The expression levels of HLA-A (NP002107.3) from these two database were also extracted to serve as an internal reference normalization. The values are in ppm (ppm - parts per million, so that the sums of all entries in the database for a tissue is equal to 1 million). The heat map was generated with GraphPad Prism version 7. (A) Expression heatmap of potential cross-reactive peptides in *E-MTAB-5214*. (B) Expression heatmap of potential cross-reactive peptides in *E-MTAB-5214*.

Supplementary Fig. S5. The CD8⁺ cell rates of the human T cells used for the xenograft models prior injecting the mice.

Supplementary Tables

Supplementary Table S1.1 134 unique HBs371-379 peptides from 5855 unique full-length

HBs371-Peptides	Frequency	HBs371-	Frequency	HBs371-	Frequency
		Peptides		Peptides	
ILSPFLPLL(vrt1)	2426	TLTPFIPLL	3	ILSPFLPLV	1
ILSPFIPLL(vrt2)	1292	TLSPFLLLL	2	ILSPFLPTL	1

HBs protein. And the corresponding frequency.

ILNPFLPLLS01ILNNPPLPL2NLSPFPLL1TVSPFIPLL(vrt5)160NLSPFIPLL2ILSPFIPLL1TLSPFIPLL(vrt6)78ILSHPLPLE2ILNPFTPLL1ILNPFTPLL(vrt7)66TLSPILF2ILNPFTPLL1ILNPFIPLL(vrt7)66ILSPLPLE2TLNPFTPLL1ILNPFTPLL(vrt8)62ILSPLPLE1ILNFFTPLL1ILSPFIPLL30ILTFTPLL1ILNFFTPLL1ILSPFIPLL24ILNFFTPLL1ILSPFIPLL1ILSPFIPL117ILSPFNPVL1ILSPFILL1ILSPFIPL112TVSPFTPLL1ILSPFILL1ILSPFIPL112TVSPFTPLL1ILSPFILL1ILSPFIPL18ILSPFILL1ILSPFILL1ILSPFIPL18ILSPFILL1ILSPFTPL1ILSPFTPL18ILSPFILL1ILSPFTPL1ILSPFTPL16ILSPFILL1ILSPFTPL1ILSPFTPL16ILSPFILL1ILSPFTPL1ILSPFTPL16ILSPFILL1ILSPFTPL1ILSPFTPL15ILSPFILL1ILSPFTPL1ILSPFTPL15ILSPFILL1ILSPFTPL1ILSPFTPL15ILSPFTPL11ILSPFTPL11ILSPFTPL15ILSPFTPL11ILSPFTPL11ILSPFTPL15ILSPFTPL11ILS	ILSPFMPLL(vrt3)	887	ILSPFIPLS	2	ILSPFLQLL	1
IVSPFIPLL INSPFIPLL VERPERPERPERPERPERPERPERPERPERPERPERPERPE	ILNPFLPLL(vrt4)	501	ILNLFLPLL	2	NLSPFLPLL	1
TLSPFLPLL(vrt6)78ILSHFLPLL2ILNPFTPLL1ILNPFTPLL(vrt7)66TLSPYLPLF2IMPFYPLL1IVRPFIPLL(vrt8)62ILSPLPLL2TLRPFIPLL1ILRPFLPL30ILTPFNPLL1ILTPFIPLL1TLSPFMPLL28IVNPFIPLL1ILTFIPLL1TLSPFMPLL24INNFIPLL1ILSFFLPLL1ILRPFLPL21IGSPFIPLL1ILNSFLPLL1ILSPFIPL17ILSFRPLL1INSFLPLL1ILSPFLPL17TLSPFIPLL1ILNFFLL1ILSPFIPL10TLSPFIPLL1ILSFFIPLL1ILSPFIPLL8ILSPFIPLL1ILSFFIPLL1ILRPFIPLL8ILSPFISL1ILSPFIPLL1ILSPFIPLL6ILSPFNLS1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPL	IVSPFIPLL(vrt5)	160	NLSPFIPLL	2	ILSSFLPLL	1
ILNPFIPLL(vrt7)66TLSPYLPLF2IMNPFMPLL1IVRPFIPLL(vrt8)62ILSPLLLL2TLRPFIPLL1ILRPFIPLL30ILTPFMPLL1ILTPFMPLL1ILRPFMPL28IVNPFIPLL1ILTLFIPLL1ILSPFMPL24ILNIFIPLL1ILSPFIPLL1ILSPFMPL24ILNIFIPLL1ILSPFIPLL1ILSPFIPL117ILSPFIPL11ILSPFIPL11ILSPFIPL112TVSPFIPL21ILSPFIPL11ILRPFIPL112TVSPFIPL31ILSPFIPL41ILSPFIPL18ILSPFIL11ILSPFIPL41ILSPFIPL18ILSPFIL21ILSPFIPL41ILSPFIPL18ILSPFIL31TLSPFIPL41ILSPFIPL18ILSPFIL41ILSPFIPL41ILSPFIPL16ILSPFIL51TVSPFIL41ILSPFIPL16ILSPFIPL51ILSPFIPL41ILSPFIPL46ISSPFIPL41ILSPFIPL41ILSPFIPL55ILSPFIPL51ILSPFIPL41ILSPFIPL55ILSPFIPL51ILSPFIPL51ILSPFIPL55ILSPFIPL41ILSPFIPL41ILSPFIPL54ILSPFIPL51ILSPFIPL51ILSPFIPL55ILSPFIPL51ILSPFIPL51ILSPFIPL54ILSPFIPL51ILSPFIPL5<	TLSPFLPLL(vrt6)	78	ILSHFLPLL	2	ILNPFTPLL	1
IVRPFIPLL(vrt8)62ILSPLPLL2TLRPFIPLL1ILRPFDPLL30ILTFFMPLL1IVRPFMPLL1TLSPFMPLL28IVNPFIPLL1ILTIFIPLL1ILNPFMPLL24ILNIFIPLL1ILSPFLPLL1ILSPFIPL17ILSPFMPLL1ILSPFLPL1ILSPFIPL17ILSPFMPLL1ILSPFLPL1ILSPFIPL13TLSPFMPL1ILSPFLPL1ILSPFIPL10TLSPFIPLS1ILSPFLPL1ILSPFIPLL10TLSPFIPLS1ILSPFIPLL1ILSPFIPLL8ILSPFALL1ILSPFIPLL1ILSPFIPLL8ILSPFIPLS1TLSPFIPLL1ILSPFPLL6ILSPFMPLS1ILSPFIPLL1ILSPFPLL6ILSPFMPLL1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL4ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1	ILNPFIPLL (vrt7)	66	TLSPYLPLF	2	IMNPFMPLL	1
ILRPFLPL30ILTPFMPLL1IVRPFMPLL1TLSPFMPLL28IVNPFIPLL1ILTLFIPLL1ILNPFMPLL24ILNLFIPLL1ILTFIPLL1ILNPFMPLL21ISSPFIPLL1ILSPFLPLL1TLSPFIPL17ILSPFMPL1ILSPFIPLL1ILSPFIPL13TLRPFQLL1ILSPFILL1ILSPFIPL10TLSPFIPLL1ILSPFILL1ILSPFIPLL10TLSPFIPLL1ILSPFIPLL1ILTFFPLL8ILSPFILL1ILSPFIPLL1ILSPFIPLL8ILSPFILL1ILSPFIPLL1ILSPFFPLL6ILSPFIPLL1ILSPFIPLL1ILSPFFPLL6ILSPFIPLL1ILSPFIPLL1ILSPFFPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL6ISSPFIPLL1ILSPFIPLL1ILSPFIPLL6ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1ILSPFIPLL5ILSPFIPLL1ILSPFIPLL1<	IVRPFIPLL(vrt8)	62	ILSPLLPLL	2	TLRPFIPLL	1
TLSPFMPLL28IVNPFIPLL1ILTLFIPLL1ILNPFMPLL24ILNIFIPLL1FLSPFLPLL1ILKPFLPLL21IGSPFIPLL1ILNSFLPLL1TLSPFIPLL17ILSPFMPVL1ILNSFLPLL1ILSPFIPL13TLRPFLQLL1TLSPFILF1ILSPFIPL12TVSPFIPLL1ILNTFLPLL1ILSPFILL10TLSPFILL1ILSPFILF1ILSPFILL8ILSPFILL1ILSPFILL1ILSPFIPLL8ILSPFILL1ILSPFILL1ILSPFFIL6ILSPFMLS1ILSPFILL1ILSPFFLL6ILSPFILL1ISPFILL1ILSPFFLL6ISPFIPLL1ISPFILL1ILSPFFLL6ISPFIFLL1ISPFILL1ILSPFFLL5ILSPFILL1ISPFILL1ILSPFIPLL5ILSPFILL1INPFLHS1ILSPFIPLL5ILSPFILL1INPFLHS1ILSPFILL5ILSPFILL1ISPFILL1ILSPFIPLL4ILSPFILL1ISPFILL1ILSPFILL4ILSPFILL1ILSPFILL1ILSPFILL4ILSFFILL1ILSPFILL1ILSPFILL4ILSFFILL1ILSPFILL1ILSFFILL4ILSFFILL1ILSFFILL1ILSFFILL4ILSFF	ILRPFLPLL	30	ILTPFMPLL	1	IVRPFMPLL	1
ILNPFMPL124ILNLFIPL11FLSPFLPL1ILKPFLPL121ISSPFPL11ILNSFLPL11TLSPFPL117TLSPFPL11INSPLPL11ILSPFLPL113TLSPFPL11ILNTFL11ILSPFLPL112TVSPF1L11ILNTFL11ILSPFL1110TLSPFPL11ILSPF1111ILSPFL118ILSPF1121ISSPF1121ILSPFP118ILSPF1121ISSPF1121ILSPFP116ILSPF1121ISSPF1121ILSPF1116ILSPF1121ISSPF1121ILSPF1126ISSPF1121ISSPF1121ILSPF1126ISSPF1121ISSPF1121ILSPF1125ILSPF1121ISSPF1121ILSPF1125ILSPF1121ISSPF1131ILSPF1145ILSPF1141ISSPF1141ILSPF1145ILSPF1141ISSPF1141ILSPF1145ILSPF1141ISSPF1141ILSPF1144ILSPF1141ISSPF1141ILSPF1144ILSPF1141ISSPF1141ILSPF1144ILSPF1141ISSPF1141ILSPF1144ILSPF1141ISSPF1141ILSPF1144ILSPF1141ISSPF1141ILSPF1143ILSPF114	TLSPFMPLL	28	IVNPFIPLL	1	ILTLFIPLL	1
ILKPFLPL21IGSPFIPL1ILMSFLPL1TLSPFIPL17ILSPFMPVL1IWSPLPLL1ILSPFLPL17TLSPFMPVL1IWSPLPLL1ILSPFLPL12TVSPFIPLL1ILNTFLPLL1ILRPFIPLL10TLSPFLLL1ILSPFLPL1ILSPFLLL8ILSPFLLL1ILSPFIPL1ILTPFLPL8ILSPFILL1ILSPFILL1ILSPFFLL6ILSPFNL1ILSPFIPL1ILSPFFLL6ILSPFNL1ISPFIPL1ILSPFFLL6ILSPFNL1ISPFIPL1ILSPFPLL6ISPFNPL1ISPFIPL1ILSPFPLL6ISPFNPL1ISPFIPL1ILSPFPLL6ISPFNPL1ISPFNPL1ISSPFLPL5ILSPFNL1ISPFNPL1ISSPFLPL5ILSPFNL1ISPFNPL1ILSPFLLS5ILSPFNL1ISPFNPL1ILSPFLL4ISSPFNPL1ISPFNPL1ILSPFNL4ISSPFNPL1ISPFNPL1ILSPFNL4ILSPFNPL1ISPFNPL1ILSPFNL4ILSPFNPL1ISPFNPL1ILSPFNL4ILSPFNPL1ISPFNPL1ILSPFNL4ILSPFNPL1ISPFNPL1ILSPFNL3ILNFFNPL1ISPFNPL	ILNPFMPLL	24	ILNLFIPLL	1	FLSPFLPLL	1
TLSPFIPLL17ILSPFMPVL1IWSPLPLL1ILSPFLPF13TLRPFLQLL1TLSPFLLF1ILSPFLPF12TVSPFIPL1ILNTFLPLL1ILSPFLL10TLSPFLL1ILNTFLPL1ILSPFLL10TLSPFLL1ILSPFLPL1ILTPFLPL8ILSPFILL1TLSPFLL1ILSPFPLL8ILSPFSL1TLSPFILL1ILSPFPLL6ILSPFMPL1ISPFILL1ILSPFPLL6ILSPFMPL1ISPFILL1ILSPFPLL6ISPFMPL1ISPFILL1ISSPFPLL6ISPFMPL1ISPFMPL1ISSPFPLL5TLTPFPLL1ISPFMPL1ILSPFMPL5ILSPFMPL1ISPFMPL1ILSPFLL5ILSPFMPL1ISPFMPL1ILSPFLL5ILSPFMPL1ISPFMPL1ILSPFMPL4ISPFMPL1ISPFMPL1ILSPFMPL4ISPFMPL1ISPFMPL1ILSPFMPL4ISPFMPL1ISPFMPL1ILSPFML4ISPFMPL1ISPFMPL1ILSPFML3ILSPFMPL1ISPFMPL1ILSPFML3ILSPFMPL1ISPFMPL1ILSPFML3ILSPFMPL1ISPFMPL1ILSPFML3ILSPFMPL1ISPFMPL1 <td>ILKPFLPLL</td> <td>21</td> <td>IGSPFIPLL</td> <td>1</td> <td>ILNSFLPLL</td> <td>1</td>	ILKPFLPLL	21	IGSPFIPLL	1	ILNSFLPLL	1
ILSPFLPLF13TLRPFLQLL1TLSPFILLF1ILRPFIPL12TVSPFIPL1ILNTFLPLL1ILSPFLLL10TLSPFLLS1NLNPFLPLL1ILSPFLLL8ILSPFILL1ILSPFIPL1ILKPFIPL8ILSPFISL1ILSPFITL1ILSPFIPL6ILSPFISL1ILSPFIPL1ILSPFPL6ILSPFIPL1ISSPFIPL1ILSPFIPL6ISSPFIPL1ISSPFIPL1ILSPFIPL6ISSPFIPL1ISSPFIPL1ISSPFPL6ISSPFIPL1ISSPFIPL1ISSPFPL5TLSPFIPL1ISSPFIPL1ISSPFPL5ISSPFIPL1ISSPFIPL1ILSPFPLS5ISSPFIPL1ISSPFIPL1ILSPFIPL5ISSPFIPL1ISSPFIPL1ILSPFIPL4ISSPFIPL1ISSPFIPL1ILSPFIPL4ISSPFIPL1ISSPFIPL1ILSPFIPL4ISSPFIPL1ISSPFIPL1ILSPFIPL4ISSPFIPL1ISSPFIPL1ILSPFIPL3INFFIPL1ISSPFIPL1ILSPFIPL3ISSPFIPL1ISSPFIPL1ILSPFIPL3ISSPFIPL1ISSPFIPL1ILSPFIPL3ISSPFIPL1ISSPFIPL1ILSPFIPL3ISSPFIPL1 </td <td>TLSPFIPLL</td> <td>17</td> <td>ILSPFMPVL</td> <td>1</td> <td>IWSPLLPLL</td> <td>1</td>	TLSPFIPLL	17	ILSPFMPVL	1	IWSPLLPLL	1
ILRPFIPLL12TVSPFIPLL1ILNTFLPLL1ILSPFLLL10TLSPFLPLS1NLNPFLPLL1ILTFPLPLL8ILSPFLALL1ILSHFLPLF1ILKPFIPLL8ILSPFISLL1ILSPFITLL1TINPFLPLL8ILSPFISLL1ILSPFITLL1ILSPFFPLL6ILSPFIPLL1ISPFFILL1ILSPFFPLL6ILSPFIPLL1TVSPFILL1ILSPFFPLL6ISPFIPLL1TSPFIPLL1ILSPFFPLL6ISPFIPLL1ILSPFIPLL1ISSPFLPLL5TLTPFLPLL1ILSPFIPLL1ISSPFLPLL5ILSPFIPLL1ILSPFIPLL1ISSPFLPLL5ILSPFIPLL1ILSPFIPLL1ILSPFLPLS5ILSPFNQLL1ILSPFNPLL1ILSPFLPLL5ILSPFIPLL1ILSPFNPLL1ILSPFLPLL4ISSPFLPLL1ILSPFNPLL1ILSPFLPLL4ISSPFLPLL1ILSPFNPLL1ILSPFNPLL4ILSPFNPLL1ILSPFNPLL1ILSPFIPLL4ILSFFNPLL1ILSPFNPLL1ILSPFNPLL3ILNPFNPLL1ILSPFNPLL1ILSPFNPLL3ILNPFNPLL1ILSPFNPLL1ILSPFNPLL3ILSPFNPLL1ILSPFNPLL1ILSPFNPLL3ILSPFNPLL1ILSPFNPLL1<	ILSPFLPLF	13	TLRPFLQLL	1	TLSPFILLF	1
ILSPFLLL10TLSPFPLS1NLNPFPLL1ILTPFLPL8ILSPFLALL1ILSHFPLF1ILKPFIPL8ILSPFILL1TLSPFLL1ILNPFLPL8ILSPFNL1ILSPFITL1ILSPFPLL6ILSPFMPLS1TVKPFIPL1ILSPFFPL6ILSPFMPL1ISRPFIPL1ILSPFPL6IASPFIPL1ISSPFIPL1ILSPFTPL6ISPFIPL1ILSPFIPL1ISSPFLPL6ISPFIPL1ILSPFIPL1ISSPFLPL5TLTPFPLL1ILSPFIPL1ISSPFLPL5ILSPFIPL1ILSPFIPL1ILSPFIPLS5ILSPFIPL1ISSPFIPL1ILSPFLPL5ILSPFIPL1ISSPFIPL1ILSPFIPL5ILSPFIPL1ISSPFIPL1ILSPFIPL5ILKFMPL1ISSPFIPL1ILSPFIPL4ILSPFIPL1ISSPFIPL1ILSPFIPL4ILSPFIPL1ISSPFIPL1ILSPFIPL4ILSPFMPL1ILSPFIPL1ILSPFIPL3ILNPFMPL1ILSPFIPL1ILSPFIPL3ILSPFMPL1ILSPFIPL1ILSPFIPL3ILSPFMPL1ILSPFMPL1ILSPFIPL3ILSPFMPL1ILSPFMPL1ILSPFIPL3ILSPFMPL1 <t< td=""><td>ILRPFIPLL</td><td>12</td><td>TVSPFIPLL</td><td>1</td><td>ILNTFLPLL</td><td>1</td></t<>	ILRPFIPLL	12	TVSPFIPLL	1	ILNTFLPLL	1
ILTPFLPLL8ILSPFLALL1ILSHFPLF1ILKPFIPLL8ILRPFTPLL1ILSPFITLL1ILNPFLPLL8ILSPFISLL1ILSPFITLL1ILSPFFPLL6ILSPFMLS1VKFFIPLL1ILSPFTPLL6ILNPLIPLL1ISRFFIPL1ILSPFTPLL6IASPFLPL1ISRFFIPL1ILSPFTPLL6ISPFIPLL1ISRFFIPL1ISSPFLPL6ISSPFIPLL1ISSPFLPL1ISSPFLPL5ILSPFIPLL1ISSPFLPL1ILSPFLPL5ILSPFNDL1ISSPFLPL1ILSPFLPLS5ILSPFNDL1ISSPFLPL1ILSPFLPLS5ILSFFIPL1ISSPFTL1ILSPFLPLS5ILSFFIPL1ISSPFTL1ILSPFLPL5ILSFFIPL1ISSPFTL1ILSPFLPL4ISSPFIPL1ISSPFTL1ILSPFIPL4ILSFFIPL1ISSPFTL1ILSPFSPLL4ILSFFIPL1ISSPFTPL1ILSPFIPL3ILNPFMPL1ISSPFTL1ILSPFIPLL3ILSPFTL1ISSPFTL1ILSPFIPLL3ILSPFTL1ISSPFTL1ILSPFIPLL3ILSPFTL1ISSPFTL1ILSPFTPLL3ILSPFTL1ISSPFTL1ISSPFTPLL3ILSPFTL<	ILSPFLLLL	10	TLSPFLPLS	1	NLNPFLPLL	1
ILKPFIPLL8ILRPFTPLL1TLSPFITLL1TLNPFLPL8ILSPFISLL1ILSPFITLL1ILSPFFPL6ILSPFMPLS1TVKPFIPL1ILSPFTPL6ILMPLIPLL1ISRPFIPL1ILSPFTPL6IASPFIPL1TVSPFILL1ILSPFTPL6IASPFIPL1ISRPFIPL1ISSPFIPL6ISSPFIPL1ISSPFIPL1ISSPFIPL5TLTPFPLL1ISSPFIPL1ILSPFIPL5ILSPFIPL1ISSPFIPL1ILSPFIPLS5ILSPFIPL1ISSPFIPL1ILSPFIPLS5ILSPFIPL1ISSPFIPL1ILSPFIPL5ILKFMPL1ISSPFIPL1ILSPFIPL5ILKFMPL1ISSPFIPL1ILSPFIPL4ISSPFIPL1ISSPFIPL1ILSPFIPL4ISSPFIPL1ISSPFIPL1ILSPFIPL4ILSFMPL1ISSPFIPL1ILSPFIPLL3ILNFFMPL1ISSPFIPL1ILSPFILL3ISSPFIPL1ISSPFIPL1ILSPFIPL3ILSPFMPL1ISSPFIPL1ILSPFIPL3ILSPFMPL1ISSPFIPL1ILSPFIPL3ILSPFMPL1ISSPFIPL1ILSPFIPL3ILSPFMPL1ISSPFIPL1ISSPFIPL3ILSPFMPL <td< td=""><td>ILTPFLPLL</td><td>8</td><td>ILSPFLALL</td><td>1</td><td>ILSHFLPLF</td><td>1</td></td<>	ILTPFLPLL	8	ILSPFLALL	1	ILSHFLPLF	1
TINPFIPLL8ILSPFISLL1ILSPFITLL1ILSPFFPL6ILSPFMPLS1TVKPFIPLL1ILSLFIPL6IASPFIPLL1ISRPFIPL1ILSPFTPL6IASPFIPLL1ISPFIPLL1ISSPFTPL6IFSPFIPL1ILSPFIPL1ISSPFTPL5TITPFLPL1ILSPFIPL1ISSPFTPL5ILSPYILL1ILSPFIPL1ILSRFIPL5ILSPFMQLL1ILSPFMQL1ILSPFLPL5ILSPFMQLL1ILSPFMQL1ILSPFLPL5ILSPFMQLL1ILSPFMQL1ILSPFLPL5ILSPFMQLL1ILSPFMQL1ILSPFLPL5ILSPFMQL1ILSPFMQL1ILSPFIPL4ILSPFIPL1ILSPFMQL1ILSPFIPLL4ILSPFIPL1ISPFMPL1ILSPFIPLL4ILSPFIPL1ILSPFMQL1ILSPFIPLL4ILSPFMQL1ILSPFMQL1ILSPFIPLL4ILSPFMQL1ILSPFMQL1ILSPFIPLL4ILSPFMQL1ILSPFMQL1ILSPFMQL3ILMFFMPL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILMPFMQL3ILSPFMQL	ILKPFIPLL	8	ILRPFTPLL	1	TLSPFLTLL	1
ILSPFFPLL6ILSPFMPLS1TVKPFIPLL1ILSLFIPLL6ILNPLIPLL1ISRPFIPLL1ILSPFTPLL6IASPFIPLL1ISPFIPLL1IVSPFLPLL6IFSPFIPLL1ILSPFIPLL1ISSPFLPLL5TLTPFLPL1ILSPFIPLL1ILSRFLPL5ILSPYILL1ILSPFIPLL1ILSPFLPL5ILSPFMQLL1ILSPFMQLL1ILSPFLPL5ILSPFMQLL1ILSPFMQLL1ILSPFLPL5ILSRFIPLL1ILSPFMQLL1ILSPFLPL5ILSPFMQLL1ILSPFMQLL1ILSPFLPLL4ILSPFIPLL1ILSPFMQLL1ILSPFIPLL4ILSPFIPLL1ILSPFMQLL1ILSPFIPLL4ILSPFIQLL1ILSPFMQL1ILSPFSPLL4ILSPFIQLL1ILSPFMQL1ILSPFSPLL4ILSPFMQLL1ILSPFMQL1ILSPFSPLL4ILSPFMQLL1ILSPFMQL1ILSPFIPLL3ILNPFMPL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL3ILSPFMQL1ILSPFMQL1ILSPFMQL	TLNPFLPLL	8	ILSPFISLL	1	ILSPFITLL	1
ILSLFIPLL6ILNPLIPLL1ISRPFIPLL1ILSPFTPLL6IASPFLPLL1TVSPFILLL1IVSPFIPLL6IFSPFIPLL1ILSPFIPLY1ISSPFLPLL5TLTPFLPLL1ILSPFIPLL1ILSRFLPLL5ILSPYILLL1ILSPFLPLL1ILSPFLPLL5ILSPFMQLL1ILSPFLPLL1ILSPFLPLL5ILSPFMQLL1ILSPFLPLL1ILSPFLPLL5ILSRFIPLL1ILSPFLLL1ILGPFLPLL5ILKHFMPLL1ILSPFTLL1ILSPFIPLL4ILSPFLPL1ISPFMPLL1ILSPFLPLL4ILSPFIPLL1ISPFMPLL1ILSPFSPLL4ILSPFIQLL1TLSPFMPL1ILSPFSPLL4ILSPFMPL1ILSPFMPL1ILSPFSPLL4ILSPFMPL1ILSPFMPL1ILSPFSPLL4ILSPFMPL1ILSPFMPL1ILSPFMPL4ILSPFMPL1ILSPFMPL1ILSPFMLL3ILNPFMPL1ILSPFMPL1ILSPFMLL3ILNPFMPL1ILSPFMPL1ILSPFMLL3ILSPFMPL1ILSPFMPL1ILSPFMLL3ILSPFMPL1ILSPFMPL1ILSPFMLL3ILSPFMPL1ILSPFMPL1ILSPFMLL3ILSPFMPL1ILSPFMPL1ILMPFLPLL <td< td=""><td>ILSPFFPLL</td><td>6</td><td>ILSPFMPLS</td><td>1</td><td>TVKPFIPLL</td><td>1</td></td<>	ILSPFFPLL	6	ILSPFMPLS	1	TVKPFIPLL	1
ILSPFTPLL6IASPFLPLL1TVSPFILL1IVSPFLPLL6IFSPFIPLL1ILSPFIPLY1ISSPFLPLL5TLTPFLPLL1ILSPFIPLL1ILSRFLPLL5ILSPYILLL1ILSPFLPLL1IVNPFLPLL5ILSPFMQLL1INNPFLHS1ILSPFLPLS5ILSRFIPLL1ISPFTLL1ILGPFLPLL5ILKHFMPLL1ISPFTLL1ILSPFLPL4ILSPFLPL1ISPFTLL1ILSPFIPLL4ILSPFIPLL111ILSPFSPLL4ILSPFIQLL111ILSPFSPLL4ILSPFIQLL111ILSPFSPLL4ILSPFIQLL111ILSPFSPLL4ILSPFIPLL111ILSPFSPLL4ILSPFIPLL111ILSPFSPLL4ILSPFIPLL111ILSPFSPLL4ILSPFNPL111ILSPFSPLL4ILSPFNPL111ILSPFSPLL3ILNPFMPL111ILSPFNPL3ILSPFMPL111ILSPFNSLL3ILSPFMPL111ILSPFNSLL3ILSPFMPL111ILSPFNPL3ILSPFMPL111ILSPFNPL3ILSPFMPL111ILMPFLPL3ILNPF	ILSLFIPLL	6	ILNPLIPLL	1	ISRPFIPLL	1
IVSPFLPLL6IFSPFIPLL1ILSPFIPLY1ISSPFLPLL5TLTPFLPLL1TLKPFIPLL1ILSRFLPLL5ILSPYILL1ILSPFLPLL1IVNPFLPLL5ILSPFMQLL1INNPFLHLS1ILSPFLPLS5ILSRFIPLL1ILSPFTLL1ILGPFLPLL5ILKHFMPLL1ILSPFTLL1ILSPFLPLL4ILSPFLPL1INSPFMPLL1ILSPYLPLL4ISSPFIPLL1TLTPFMPLL1ILSPFSPLL4ILSPFIQLL1TLSPFTPLL1ILSPFSPLL4ILSPFIQLL1ILSPFTPLL1ILSPFSPLL4ILSPFIQLL1ILSPFTPLL1ILSPFSPLL4ILSPFIPLL1ILSPFTPLL1ILSPFSPLL4ILSPFIPLL1ILSPFIPLL1ILSPFSPLL4ILSPFIPLL1ILSPFIPLL1ILSPFSPLL4ILSPFIPLL1ILSPFIPLL1ILSPFIPLL3ILNPFMPL1ILSPFIPLL1ILSPFMSLL3ILSPFMPLF1ILSPFMPL1ILSPFIPL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNHFIPLL1 <td>ILSPFTPLL</td> <td>6</td> <td>IASPFLPLL</td> <td>1</td> <td>TVSPFILLL</td> <td>1</td>	ILSPFTPLL	6	IASPFLPLL	1	TVSPFILLL	1
ISSPFLPLL5TLTPFLPLL1TLKPFIPLL1ILSRFLPLL5ILSPYILLL1ILSPFLPLL1IVNPFLPLL5ILSPFMQLL1INNPFLHLS1ILSPFLPLS5ILSRFIPLL1ILSPCMPLL1ILGPFLPLL5ILKHFMPLL1ILSPFTLL1ILSPYLPLL4ILSPFLPL1INSPFMPLL1ILSPYLPLL4ILSPFIPLL1TLTPFMPLL1ILSPSPLPLL4ILSPFIQLL1TLSPFTPLL1ILSPFSPLL4ILSPFIQLL1ILSPFTPLL1ILSPFSPLL4ILSFMPLL1ILSPFTPLL1ILSPFSPLL4ILSFMPLL1ILSPFTPLL1ILSPFIPLL3ILNPFMPL1ILSPFTPL1ILSPFILL3ILNPFMPL1ILSPSTPLL1ILSPFMSLL3ILSPFMPLF1ILSPFMPL1ILSPFIPLF3ILNPFFPLL1ILSPFLPL1ILNPFIPLL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNFFIPLL1ILSPFIPLF3ILNPFIPLL1ILNFFIPLL1ILSPFIPLF3ILNPFIPLL1ILNFFIPLL1ILSPFIPLF3ILNPFIPLL1ILNFFIPLL1ILSPFIPLF3ILNPFIPLL1ILNFFIPLL1ILSPFIPLL3ILNPFIPLL1ILNFFIPLL1<	IVSPFLPLL	6	IFSPFIPLL	1	ILSPFIPLY	1
ILSRFLPLL5ILSPYILLL1ILSPFLPLL1IVNPFLPLL5ILSPFMQLL1IWNPFLHLS1ILSPFLPLS5ILSRFIPLL1ILSPCMPLL1ILGPFLPLL5ILKHFMPLL1ILSPFTLLL1ILSPFLPLL4ILSPFLPL1IWSPFMPLL1ILSPYLPLL4IFSPFLPL1TUTPFMPLL1IWSPFLPLL4ILSPFIQLL1TUSPFPLL1ILSPFSPLL4ILSPFIQLL1TLSPFTPLL1ILSPFSPLL4ILSFFIQLL1ILSPFTPLL1ILSPFSPLL4ILSFFIPLL1ILSPFTPLL1ILSPFSPLL4ILSPFIPLL1ILSPFTPLL1ILSPFIPLL3ILNPFMPL1ILSPFTPLL1ILSPFILL3ILSPFMPLF1ILSPSPLL1ILSPFMSLL3ILSPFMPLF1ILSPFMPL1ILSPFIPLL3ILSPFMPLF1ILSPFMPL1ILNPFIPLL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLQ1ILNFFIPLL1ILSPFIPLF3ILNPFIPLQ1ILNFFIPLL1ILSPFIPLF3ILNPFIPLQ1ILNFFIPLL1ILSPFIPLF3ILSPFIPLQ1ILNFFIPLL1ILSPFIPLF3ILSPFIPLQ1ILNFFIPLL1	ISSPFLPLL	5	TLTPFLPLL	1	TLKPFIPLL	1
IVNPFLPLL5ILSPFMQLL1IWNPFLHLS1ILSPFLPLS5ILSRFIPLL1ILSPCMPLL1ILGPFLPLL5ILKHFMPLL1ILSPFTLL1ILSHFIPL4ILSPFLPL1IWSPFMPLL1ILSPYLPLL4IFSPFLPLL1TLTPFMPLL1IWSPFLPLL4ILSPFIQLL1TLSPFTPLL1ILSPFSPLL4ILSFFIQLL1TLSPFTPLL1ILSPFSPLL4ILSFFIQLL1ILSPFTPLL1ILSPFSPLL4ILSFFIPLL1ILSPFTPLL1ILSPFSPLL4ILSFFIPLL1ILSPFTPLL1ILSPFSPLL4ILSFFIPLL1ILSPFTPLL1ILSPFIPLL3ILNPFMPL1ILSPFTPLL1ILSPFILL3ILSPFIPLL1ILSPSTPLL1ILSPFSPLL3ILSPFMPLF1ILSPFIPLL1ILSPFIPLL3ILSPFIPLL1ILSPFIPLL1ILSPFIPLL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPL1ILNPFIPLL1ILSPFIPLF3ILNPFLPL1ILNPFIPLL1ILSPFIPLF3ILNPFLPL1ILNPFIPLL1ILSPFIPLF3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1	ILSRFLPLL	5	ILSPYILLL	1	ILSPFLPML	1
ILSPFLPLS5ILSRFIPLL1ILSPCMPLL1ILGPFLPLL5ILKHFMPLL1ILSPFTLLL1ILSHFIPLL4ILSPFLPLL1IWSPFMPLL1ILSPYLPLL4IFSPFLPLL1TLTPFMPLL1IWSPFLPLL4ILSPFIQLL1TVSPFLPLL1ILSPFSPLL4ILSPFIQLL1TLSPFTPLL1ILSPFSPLL4ILSFMPLL1ILSPFTPLL1IVKPFIPLL4ILSFMPLL1ILSPFTPLL1IVKPFIPLL4INSRFIPLL1ILMPFLPLL1ILSPFTILL3ILNPFMPL1ILSPFTPLL1ILSPFTILL3IVRHFIPLL1ILSPFTPLL1ILSPFMSLL3ILSPFMPLF1ILSPSTPLL1ILSPFTILL3ILSPFMPLF1ILSPFMPLL1ILNPFIPLL3ILNPFFPLL1ILNPFIPLL1ILNPFLPLF3ILNPFFPLL1ILNPFIPLL1ILSPFTIPLF3ILNPFIPLL1ILNPFIPLL1ILRPFMPLL3ILNPFIPLL1ILNHFIPLL1ILRPFMPLL3ILSPFIPLL1ILNHFIPLL1ILRPFMPLL3ILSPFIPLL1ILNHFIPLL1ILRPFMPLL3ILSPFMLL1ILNHFIPLL1ILRPFMPLL3ILSPFMLL1ILNHFIPLL1ILRPFMPLL3ILSPFMLL1ILNHFIPLL1 </td <td>IVNPFLPLL</td> <td>5</td> <td>ILSPFMQLL</td> <td>1</td> <td>IWNPFLHLS</td> <td>1</td>	IVNPFLPLL	5	ILSPFMQLL	1	IWNPFLHLS	1
ILGPFLPLL5ILKHFMPLL1ILSPFTLLL1ILSHFIPLL4ILSPFLPLL1IWSPFMPLL1ILSPYLPLL4IFSPFLPLL1TLTPFMPLL1IWSPFLPLL4ILSPFIQLL1TVSPFLPLL1ILSPFSPLL4ILIPFLPL1TLSPFTPLL1ILSPFSPLL4ILSFMPLL1ILSPFTPLL1ILSPFSPLL4ILSFMPLL1ILSPFTPLL1IVKPFLPLL4INSRFIPLL1ILSPFIPLL1IVKPFIPLL3ILNPFMPL1IMSPVVPLL1ILSPFILL3INSPFIPLL1ILSPYMPLL1ILSPFMSLL3ILSPFMPLF1ILSPSTMPLL1ILSPFIPLL3ILSPFMPLF1ILSPFLPLL1ILNPFIPLL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILRPFMPLL3ILNPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFMLL1ILNHFLPLL1ILRPFMPLL3ILSPFMLL1ILNHFLPLL1ILRPFMPLL3ILSPFMLL1ILNHFLPLL1 <td>ILSPFLPLS</td> <td>5</td> <td>ILSRFIPLL</td> <td>1</td> <td>ILSPCMPLL</td> <td>1</td>	ILSPFLPLS	5	ILSRFIPLL	1	ILSPCMPLL	1
ILSHFIPLL4ILSPFLPPL1IWSPFMPLL1ILSPYLPLL4IFSPFLPLL1TLTPFMPLL1IWSPFLPLL4ILSPFIQLL1TLSPFTPLL1ILSPFSPLL4ILSFMPLL1ILSPFTPLL1ILSPFSPLL4ILSLFMPLL1ILSPFIPLI1IVKPFLPLL4IUSSFTIPLL1ILSPFIPLI1IVKPFIPLL4IWSRFIPLL1ILSPFIPLI1IVKPFIPLL3ILNPFMPPL1IMSPVVPLL1ILSPFMSLL3IVRHFIPLL1ILSPYMPLL1ILSPFMSLL3ILSPFMPLF1ILSPSPIPL1ISSPFIPLL3ILSPFMPLF1ILSPFLPL1ILNPFIPLF3ILNPFFPLL1ILNPYIQLL1ILNPFLPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFMLL1ILNHFIPLL1ILRPFMPLL3ILSPFMLL1ILSPFIQLL1	ILGPFLPLL	5	ILKHFMPLL	1	ILSPFTLLL	1
ILSPYLPLL4IFSPFLPLL1TLTPFMPLL1IWSPFLPLL4ILSPFIQLL1TVSPFLPLL1ILSPFSPLL4ILIPFLPLL1ILSPFTPLL1TLKPFLPLL4ILSLFMPLL1ILSPFIPLI1IVKPFIPLL4IWSRFIPLL1ILMPFLPLL1IVSPFIPLL3ILNPFMPPL1IMSPVVPLL1IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ILSPFMSLL3INSPFLPLL1ILSPSYPLL1ISSPFIPLL3ILSPFMPLF1ILSPSYPLL1ILTPFIPLL3ILSPFMPLL1ILSPFLPLL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1ILSPFIPLL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1IVKPFLPLL3ILSPFIPLL1ILNPFIQLL1IVKPFLPLL3ILSPFIPLL1ILNPFIQLL1IVKPFLPLL3ILSPFMLL1ILNPFIQL1IVKPFLPLL3ILSPFMLL1ILNPFIQL1IVKPFLPLL3ILSPFMLL1II<	ILSHFIPLL	4	ILSPFLPPL	1	IWSPFMPLL	1
IWSPFLPLL4ILSPFIQLL1TVSPFLPLL1ILSPFSPLL4ILIPFLPLL1ILSPFTPLL1TLKPFLPLL4IWSRFIPLL1ILSPFIPLL1IVKPFIPLL4IWSRFIPLL1ILMPFLPLL1ILSPFILL3ILNPFMPPL1IMSPVVPLL1IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ISSPFMSLL3INSPFLPLL1ILSPSLPLL1ISSPFIPLL3ILSPFMPLF1ILSPSHPLL1ILTPFIPLL3ILSPFMPLL1ILSPFLPLL1ILNPFLPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLL3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIPLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFIPLL1ILNPFIQLL1ILRPFMPLL3ILSPFMLL1ILNPFIQLL1 <td>ILSPYLPLL</td> <td>4</td> <td>IFSPFLPLL</td> <td>1</td> <td>TLTPFMPLL</td> <td>1</td>	ILSPYLPLL	4	IFSPFLPLL	1	TLTPFMPLL	1
ILSPFSPLL4ILIPFLPLL1TLSPFTPLL1TLKPFLPLL4ILSLFMPLL1ILSPFIPLI1IVKPFIPLL4IWSRFIPLL1ILMPFLPLL1ILSPFILL3ILNPFMPPL1IMSPVVPLL1IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ILSPFMSLL3IMSPFLPLL1ILSPYMPLL1ILSPFMSLL3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFMPLF1ILSPFMPLL1ILTPFIPLL3ILSPFMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILSPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1ILNHFLPLL1IVKPFLPLL3ILSPFMLL1ILSPFIQLL1IVKPFLPLL3ILSPFMLL1ILNHFLPLL1	IWSPFLPLL	4	ILSPFIQLL	1	TVSPFLPLL	1
TLKPFLPLL4ILSLFMPLL1ILSPFIPLI1IVKPFIPLL4IWSRFIPLL1ILMPFLPLL1ILSPFILLL3ILNPFMPPL1IMSPVVPLL1IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ILSPFMSLL3IMSPFLPLL1ILSPYMPLL1ILSPFLLF3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFLTLL1ILSPFLPLL1ILTPFIPLL3ILSPFLTLL1ILSPFLPLL1ILNPFLPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPLL1ILNHFLPLL1ILSPFIPLF3ILSPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFIPLL1ILNHFLPLL1IVKPFLPLL3ILSPFIPLL1ILNHFLPLL1	ILSPFSPLL	4	ILIPFLPLL	1	TLSPFTPLL	1
IVKPFIPLL4IWSRFIPLL1ILMPFLPLL1ILSPFILLL3ILNPFMPPL1IMSPVVPLL1IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ILSPFMSLL3IMSPFLPLL1ILSPYMPLL1TLSPFLLF3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFLTLL1ILSSFMPLL1ILTPFIPLL3ILSPFMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1ILSPFIPLF3ILNPFLPLL1ILNHFLPLL1ILSPFIPLF3ILSPFIPLL1ILNHFLPLL1ILRPFMPLL3ILSPFIPLL1ILSPFIQLL1ILRPFMPLL3ILSPFIPLL1ILSPFIQLL1IVKPFLPLL3ILSPFMLLL1ILSPFIQLL1	TLKPFLPLL	4	ILSLFMPLL	1	ILSPFIPLI	1
ILSPFILL3ILNPFMPPL1IMSPVVPLL1IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ILSPFMSLL3IMSPFLPLL1ILSPYMPLL1TLSPFLLF3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFLTLL1ILSSFMPLL1ILTPFIPLL3ILSPLMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1ILSPFIPLF3INSPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFMPLL1ILSPFIQLL1IVKPFLPLL3ILSPFMLL1ILSPFIQLL1	IVKPFIPLL	4	IWSRFIPLL	1	ILMPFLPLL	1
IVRPFLPLL3IVRHFIPLL1ILSPCTPLL1ILSPFMSLL3IMSPFLPLL1ILSPYMPLL1TLSPFLLLF3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFLTLL1ILSSFMPLL1ILTPFIPLL3ILSPFMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1ILSPFIPLF3ILNPFLPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1ILSPFIQLL1IVKPFLPLL3ILSPFMLLL11	ILSPFILLL	3	ILNPFMPPL	1	IMSPVVPLL	1
ILSPFMSLL3IMSPFLPLL1ILSPYMPLL1TLSPFLLF3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFLTLL1ILSSFMPLL1ILTPFIPLL3ILSPLMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1ILSPFIPLF3ILNPFLPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1ILSPFIQLL1IVKPFLPLL3ILSPFMLLL1I1	IVRPFLPLL	3	IVRHFIPLL	1	ILSPCTPLL	1
TLSPFLLLF3ILSPFMPLF1ILSPSLPLL1ISSPFIPLL3ILSPFLTLL1ILSSFMPLL1ILTPFIPLL3ILSPLMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILSPFIPLF3ILSPFIPLV1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1ILSPFIQLL1IVKPFLPLL3ILSPFMLLL1I1	ILSPFMSLL	3	IMSPFLPLL	1	ILSPYMPLL	1
ISSPFIPLL3ILSPFLTLL1ILSSFMPLL1ILTPFIPLL3ILSPLMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1TLRPFLPLL3IWSPFIPLL1ILNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1TLSPFIQLL1IVKPFLPLL3ILSPFMLLL1	TLSPFLLLF	3	ILSPFMPLF	1	ILSPSLPLL	1
ILTPFIPLL3ILSPLMPLL1ILSPFLPRL1ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1TLRPFLPLL3IWSPFIPLL1TLNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1TLSPFIQLL1IVKPFLPLL3ILSPFMLLL1	ISSPFIPLL	3	ILSPFLTLL	1	ILSSFMPLL	1
ILNPFLPLF3ILNPFFPLL1ILNPYIQLL1TLRPFLPLL3IWSPFIPLL1TLNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1TLSPFIQLL1IVKPFLPLL3ILSPFMLLL1	ILTPFIPLL	3	ILSPLMPLL	1	ILSPFLPRL	1
TLRPFLPLL3IWSPFIPLL1TLNPFIPLL1ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1TLSPFIQLL1IVKPFLPLL3ILSPFMLLL1	ILNPFLPLF	3	ILNPFFPLL	1	ILNPYIQLL	1
ILSPFIPLF3ILNPFLPQL1ILNHFLPLL1ILRPFMPLL3ILSPFIPVL1TLSPFIQLL1IVKPFLPLL3ILSPFMLLL1	TLRPFLPLL	3	IWSPFIPLL	1	TLNPFIPLL	1
ILRPFMPLL3ILSPFIPVL1TLSPFIQLL1IVKPFLPLL3ILSPFMLLL1	ILSPFIPLF	3	ILNPFLPQL	1	ILNHFLPLL	1
IVKPFLPLL 3 ILSPFMLLL 1	ILRPFMPLL	3	ILSPFIPVL	1	TLSPFIQLL	1
	IVKPFLPLL	3	ILSPFMLLL	1		

Supplementary Table S1.2 190 unique HBs370-379 peptides from 5855 unique full-length

HBs protein. And the corresponding frequency.

HBs370-Peptides	Frequency	HBs370-	Frequency	HBs370-	Frequency
		Peptides		Peptides	
NILSPFLPLL(vrt9)	1410	NTLSPFLLLF	2	NILSPLMPLL	1
NILSPFIPLL(vrt10)	1125	NILNLFLPLL	2	NILNPFFPLL	1
SILSPFLPLL(vrt11)	921	NILTPFIPLL	2	SIWSPFIPLL	1
NILSPFMPLL(vrt12)	874	SIVRPFLPLL	2	SIVKPFLPLL	1
NILNPFLPLL(vrt13)	491	SNLSPFIPLL	2	NILNPFLPQL	1
SILSPFIPLL(vrt14)	158	STLSPYLPLF	2	HILNPFLPLL	1
SIVSPFIPLL(vrt0)	151	NILSPFIPLF	2	SILSPFIPVL	1
NILNPFIPLL(vrt16)	63	NIVSPFLPLL	2	TTLSPFIPLL	1
SIVRPFIPLL	59	SILSPLLPLL	2	NILSPFMLLL	1
RILSPFLPLL	51	IILSPFLPLL	2	NTLRPFLPLL	1
STLSPFLPLL	48	DILSPFMPLL	2	NILSPFLPLV	1
TILSPFLPLL	32	RTLSPFLPLL	2	NILSPFLPTL	1
NTLSPFMPLL	28	SILSHFIPLL	2	NILSPFLQLL	1
NTLSPFLPLL	24	SILSPFSPLL	2	SNLSPFLPLL	1
NILNPFMPLL	24	NIVKPFLPLL	2	SIVKPFIPLL	1
NILKPFLPLL	20	NILTPFMPLL	1	NILSSFLPLL	1
NILRPFLPLL	16	SIVNPFIPLL	1	NILNPFTPLL	1
SILRPFLPLL	13	NIVRPFLPLL	1	NIMNPFMPLL	1
NTLSPFIPLL	12	NILNLFIPLL	1	RILSPFSPLL	1
NILSPFLPLF	8	SIGSPFIPLL	1	STLRPFIPLL	1
NILKPFIPLL	8	RISSPFLPLL	1	NIVRPFMPLL	1
TILSPFMPLL	8	TILNPFLPLL	1	NILTLFIPLL	1
NTLNPFLPLL	8	RIVSPFIPLL	1	RFLSPFLPLL	1
SILNPFLPLL	7	NILSPFMPVL	1	NILNSFLPLL	1
NIVSPFIPLL	7	NTLRPFLQLL	1	SILTPFIPLL	1
NILSPFFPLL	6	STVSPFIPLL	1	TIWSPLLPLL	1
NILRPFIPLL	6	STLSPFLPLS	1	RTLSPFILLF	1
NILSPFTPLL	6	NILSPFSPLL	1	NILNTFLPLL	1
SILRPFIPLL	6	SILSPFLALL	1	NNLNPFLPLL	1
SILSPFLLLL	5	HTLSPFLPLL	1	DILSPFLPLL	1
SILSPFLPLF	5	SILSLFIPLL	1	NILSHFLPLF	1
RILSPFIPLL	5	TILKPFLPLL	1	STLSPFLTLL	1
NILSLFIPLL	5	NILRPFTPLL	1	NILSPFITLL	1
RILSPFLLLL	5	RILRPFLPLL	1	TILSPYLPLL	1
NIVNPFLPLL	5	NILSPFISLL	1	STVKPFIPLL	1

Suppleme	entary Table S2. pHLA	used for testing the	e specificity of TC	CR0 (WT) and TCF	₹15ª
HLA	Peptide	Derived from	TCR0 binding	TCR15 binding	
A0201	TLSPFLPLL	HBs	3 4uM	0.46uM	

HLA	Peptide	Derived from TCR0 binding TCR1		TCR15 binding
A0201	ILSPFLPLL	HBs	3.4µM	0.46µM
A0201	SLLMWITQC	NY-ESO-1	NB	NB
A0201	VLDFAPPGA	WT1	NB	NB
A0201	LLMPLLSVI	MAGE-B4	NB	NB
A0201	AASDNVFSTV	SAGE1	NB	NB
A0201	LLMPLLGVI	MAGE-B2	NB	NB
A0201	GIYDGILHSI	MAGEB6	NB	NB
A0201	FIWRAISI	CX048	NB	NB
A0201	RLTEVIASII	TERT	NB	NB

NILTPFLPLL

NILSPFLPLS

NTLGPFLPLL

PILSPFLPLL

HILSPFLPLL

TILSPFIPLL

SIVSPFLPLL

STLSPFIPLL

NISSPFLPLL

SILSPFMPLL

SILTPFLPLL

NILSPFMSLL

SILSPYLPLL

NIWSPFLPLL

NISSPFIPLL

SILNPFIPLL

NILNPFLPLF

SILSRFLPLL

NIVRPFIPLL

NILRPFMPLL

TTLSPFLPLL

NIVKPFIPLL

NTLKPFLPLL

NTLTPFIPLL

NILSHFIPLL

STLSPFLLLL

NTLSPFTLLL

NILSRFLPLL

NILSPFIPLS

5

5

5

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

NILSPFMPLS

NILSHFLPLL

SILSPFILLL

TIVSPFIPLL

NILNPLIPLL

NIASPFLPLL

NIFSPFIPLL

STLTPFLPLL

SILSPYILLL

STLRPFLPLL

NILSPFMQLL

NILSRFIPLL

NILKHFMPLL

SILSHFLPLL

NILSPFLPPL

HIFSPFLPLL

NILSPFIQLL

NILIPFLPLL

TTLRPFLPLL

NILSLFMPLL

NIWSRFIPLL

DILNPFLPLL

NILNPFMPPL

SIVRHFIPLL

NIMSPFLPLL

NILSPFMPLF

SILSPFIPLF

TTLKPFLPLL

SILSPFLTLL

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SISRPFIPLL

STVSPFILLL

NILSPFIPLY

NTLKPFIPLL

SILSPFLPML

NIWNPFLHLS

NILSPCMPLL

NILSPFTLLL

NIWSPFMPLL

NTLTPFMPLL

STVSPFLPLL

RTLSPFLLLF

TTLSPFTPLL

CILSPFLPLL

NILSPFIPLI

SIWSPFLPLL

SILMPFLPLL

SIMSPVVPLL

HILSPCTPLL

NILSPYMPLL

NILSPSLPLL

NILSSFMPLL

NILSPFLPRL

NILNPYIQLL

NTLNPFIPLL

SILNHFLPLL

NTLSPFIQLL

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Г

A0201	LMSVYVVEL	TERT	NB	NB
A0201	SVYDFFVWL	TYRP2	NB	NB
A0201	GLYDGMEHL	MAGEA10	NB	NB
A0201	KVTDLVQFL	MAGEA10	NB	NB
A0201	LMSVYVVELL	TERT	NB	NB
A0201	YTWDFGDSSGTL	PMEL	NB	NB
A0201	ILTIRLTAA	CTG1B	NB	NB
A0201	ALLPSLSHC	K9MRS9	NB	NB
A0201	FLNGTGGQTHL	TYRP1	NB	NB
A1101	SVFGEPWKLITK	MAGE-B2	NB	NB
A2401	LYATVTQNV	SAGE1	NB	NB

a. Shown are the biochemical affinities, as determined by ProteOn analysis. NB, none binding.

Supplementary Table S3.1 vrt1 (ILSPFLPLL) and vrt0 (SIVSPFIPLL) alanine scanning

peptides

vrt1	ILSPFLPLL	vrt0	SIVSPFIPLL
		vrt0-1	A IVSPFIPLL
vrt1-1	A LSPFLPLL	vrt0-2	SAVSPFIPLL
vrt1-2	IASPFLPLL	vrt0-3	SI A SPFIPLL
vrt1-3	IL A PFLPLL	vrt0-4	SIV A PFIPLL
vrt1-4	ILS A FLPLL	vrt0-5	SIVS A FIPLL
vrt1-5	ILSP A LPLL	vrt0-6	SIVSPAIPLL
vrt1-6	ILSPF A PLL	vrt0-7	SIVSPF A PLL
vrt1-7	ILSPFL A LL	vrt0-8	SIVSPFI A LL
vrt1-8	ILSPFLP A L	vrt0-9	SIVSPFIPAL
vrt1-9	ILSPFLPL A	vrt0-10	SIVSPFIPL A

Supplementary Table S3.2 vrt1 (ILSPFLPLL) and vrt0 (SIVSPFIPLL) potential cross-

reactive human peptides

	vrt1: ILSPFLPLL vrt0: SIVSPFIPLL			PFIPLL	
2 mismate	h aa	3 mismatch aa fix F5 & L8		2 mismatch and 3 mismatch ad	
vrt1-A	FLSPLLPLL	vrt1-L16	6 QLTPFLILL vrt0-A AIVSPI		A IVSPFI f LL
3 mismate	h aa fix F5 & L8	vrt1-L17	IL QR FLPL I	vrt0-B	SIVS CA IILL
vrt1-L1	A L AS FLPLL	vrt1-L18	IL YL FL A LL	4 mismatch	aa & fix F6 & L9
vrt1-L2	I IL PFL I LL	vrt1-L19	L L GC FLPLL	vrt0-L1	CIVFGFIILL
vrt1-L3	L LS G FVPLL	vrt1-L20	IL LG FL G LL	vrt0-L2	SMVSGFTPLI

vrt1-L4	IL mn fl y LL	vrt1-L21	IL T PF N PL R	vrt0-L3	SMVSGFGPLI
vrt1-L5	I V SPF if ll	vrt1-L22	IL KG F D PLL	vrt0-L4	SLVGRFIHLL
vrt1-L6	FIVPFLPLL	vrt1-L23	IL VV FL L LL	vrt0-L5	SCVSGFFILL
vrt1-L7	IL IN FL D LL	vrt1-L24	Q LS G FL E LL	vrt0-L6	KM VS G FIPL K
vrt1-L8	Q LS E F D PLL	vrt1-L25	T L GF FLPLL	vrt0-L7	S m VS g f a pl i
vrt1-L9	M LS Y F K PLL	vrt1-L26	ILS v fl y L f	vrt0-L8	A IV ll FI M LL
vrt1-L10	S LS C FL L LL	vrt1-L27	IL CI FL G LL	vrt0-L9	S ymv pfipl y
vrt1-L11	ILSPF WG L I	vrt1-L28	S L Y PFL C LL	vrt0-L10	r i r sifi w ll
vrt1-L12	l ls v fl h ll	vrt1-L29	MLEPFLILL		
vrt1-L13	v l iy flpll	vrt1-L30	SL EM FLPLL		
vrt1-L14	G L f PFL V LL	vrt1-L31	T L RH FLPLL		
vrt1-L15	IL MC FL D LL	vrt1-L32	MLAPFL l LL		

The mismatches are in bold.

Supplementary Table S4. The HLA genotyping information of PBMC from health donors.

No.	HLA-A genotype	No.	HLA-A genotype
#1	HLA-A*11:01:01 / A*33:03:01:01	#16	HLA-A*02:06 / A*24:02:01G
#2	HLA-A*11:01:01 / A*11:01:01	#17	HLA-A*2:01:01 / A*32:01:01:01
#3	HLA-A*2:01:01 / A*02:05:01:01	#18	HLA-A*02:06:01 / A*33:03:01:01
#4	HLA-A*02:01:00 / A*68:02:00	#19	HLA-A*02:01:01 / A*02:07:01
#5	HLA-A*11:01:01 / A*33:03:01:01	#20	HLA-A*11:01:01 / A*33:03:01:01
#6	HLA-A*02:01:01 / A*32:01:01:01	#21	HLA-A*11:01:01 / A*24:02:01G
#7	HLA-A*02:07:01 / A*02:07:01	#22	HLA-A*02:01:01 / A*30:01:01:01
#8	HLA-A*11:01:01 / A*11:263	#23	HLA-A*11:01:01 / A*24:02:01G
#9	HLA-A*02:03:01 / A*68:01:02	#24	HLA-A*11:01:01 / A*24:02:01G
#10	HLA-A*01:01:01:01 / A*11:01:01	#25	HLA-A*02:07:01 / A*11:01:01
#11	HLA-A*24:02:01G / A*33:03:01:01	#26	HLA-A*02:03:01 / A*02:07:01
#12	HLA-A*02:03:01 / A*24:02:01G	#27	HLA-A*11:01:01 / A*24:02:01G
#13	HLA-A*11:01:01 / A*11:263	#28	HLA-A*02:01 / A*24:02:01G
#14	HLA-A*01:01:01:01 / A*24:03:01:01	#29	HLA-A*24:21:01G / A*31:01:02:01
#15	HLA-A*02:07:01 / A*03:01:01:01	#30	HLA-A*02:01:01 / A*02:07:01

Supplementary Table S5. Human normal primary cells (Sciencell) used for verifying the

specificity of TCR15-T.

Cell line Abbreviation Culture Medium HLA-A genotype
--

Human Bronchial	UDSMC	SMCM (Smooth	HBSMC-A	A*11:01:01:01 A*30:01:01
Cells	IDSMC	Medium)	HBSMC-B	A*11:01:01:01 A*30:01:01
Human Aortic		SMCM (Smooth	HASMC-A	A*11:01:01:01 A*24:02:01:01
Cells	HASMC	Muscle Cell Medium)	HASMC-B	A*02:01:01:01 A*03:01:01:01
Human Meningeal	НМС	MCM (Maningaal Call	HMC-A	A*02:01:01:01 A*02:01:01:01
Cells	Invic	Medium)	HMC-B	ND
Human Renal	UDMC	MCM	HRMC-A	A*02:01:01:01 A*30:01:01:01
Mesangial Cells	HKWIC	Medium)	HRMC-B	A*01:01:01:01 A*11:01:01:01
Human Gastric	UCSMC	SMCM (Smooth	HGSMC-A	A*23:01:01 A*80:01:01:01
Cells	HGSMC	Muscle Cell Medium)	HGSMC-B	A*02:01:01:01 A*32:01:01
Human Renal Epithelial Cells		EpiCM	HREpiC-A	A*02:01:01:01 A*32:01:01
	НКЕріС	(Epithelial Cell Medium)	HREpiC-B	A*01:01:01:01 A*29:02:01:01

ND, none detected.

Supplementary Table S6. The EC_{50} of the IFN- γ release of vrt1-HBs371 pulsed T2 cells

incubated with TCR-T.

TCR No.	EC ₅₀ of IFN-y release (M)	Fold TCR0-T EC ₅₀
TCR0-T	6.0E-09	1.0
TCR14-T	1.6E-10	38.0
TCR15-T	2.5E-10	24.0
TCR17-T	8.2E-11	73.1
TCR19-T	1.1E-11	527.8

Supplementary Table S7. The EC_{50} of the IFN- γ release and LDH release of HBs370 or

HBs371 variants pulsed T2 cells incubated with TCR-T.

EC ₅₀ of peptide	EC ₅₀ of IFN	-y release (M)	EC ₅₀ of LDI	H release (M)
pulsed T2	TCR0-T	TCR15-T	TCR0-T	TCR15-T
vrt1	7.4E-09	2.0E-10	3.7E-09	2.9E-10
vrt2	6.7E-10	9.7E-11	4.7E-11	4.4E-12
vrt3	9.3E-10	2.9E-10	2.0E-10	4.4E-11
vrt4	0	0	0	0
vrt5	1.2E-10	6.4E-11	4.8E-11	1.9E-11
vrt6	~8.0E-06	4.1E-09	-	1.3E-10
vrt7	0	0	0	0
vrt8	0	0	0	0
vrt9	1.1E - 07	5.1E-09	4.6E-08	1.9E-09
vrt10	2.3E-09	3.6E-10	6.8E-10	5.6E-11
vrt11	1.3E-08	1.3E-09	8.6E-09	9.9E-11
vrt12	1.3E-08	2.0E-09	8.3E-10	5.7E-11
vrt13	0	0	0	0
vrt14	5.5E-10	8.3E-11	1.3E-10	1.5E-11
vrt0	7.8E-10	3.4E-10	4.3E-11	1.2E-11
vrt16	0	0	0	0

Supplementary Table S8. Percentage of CD3 and CD8 positive T-cells in all cells of the tumor.

All pictures were taken under 400×, scale bar, 90µm.

1 00												
	CD3 of PBS					CD8 of PBS						
Piture	P1	P2	P3	P4	P5	P6	P1	P2	Р3	P4	P5	P6
Positive cells	0	0	0	0	0	0	0	0	0	0	0	0
Total cells	1569	1760	1133	1351	1222	1478	1511	1691	1695	1372	1419	1689
Positive	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
rate%												
Average%			0	.0			0.0					

PBS

TCR-A6-T (3.0×10⁷)

	CD3 of TCR-A6-T (3.0×10 ⁷)					CD8 of TCR-A6-T (3.0×10 ⁷)						
Piture	P1	P2	P3	P4	P5	P6	P1	P2	P3	P4	P5	P6
Positive cells	21	26	14	15	23	15	0	0	0	0	0	0
Total cells	1944	2440	2511	2604	2464	2461	2608	1811	1740	2116	2372	2420
Positive	1.1	1.1	0.6	0.6	0.9	0.6	0.0	0.0	0.0	0.0	0.0	0.0
rate%												
Average%			0	.8			0.0					

TCR0-T (3.0×10⁷)

	CD3 of TCR0-T (3.0×10 ⁷)					CD8 of TCR0-T (3.0×10 ⁷)						
Piture	P1	P2	P3	P4	P5	P6	P1	P2	P3	P4	P5	P6
Positive cells	188	248	175	187	190	151	88	57	62	81	5	83
Total cells	1467	1694	1588	1483	1650	1546	1388	1686	1597	1428	1728	1576
Positive	12.8	14.6	11.0	12.6	11.5	9.8	6.3	3.4	3.9	5.7	0.3	5.3
rate%												
Average%			12	2.1			4.1					

TCR15-T (3.3×10⁶)

	CD3 of TCR15-T (3.3×10 ⁶)					CD8 of TCR15-T (3.3×10 ⁶)						
Piture	P1	P2	Р3	P4	P5	P6	P1	P2	Р3	P4	P5	P6
Positive cells	449	528	606	352	582	271	264	274	393	425	280	112
Total cells	1704	1632	1841	1634	2089	1920	2057	2123	1449	1686	1802	1504
Positive	26.3	32.4	32.9	21.5	27.9	14.1	12.8	12.9	27.1	25.2	15.5	7.4
rate%												
Average%			25	5.9			16.8					

TCR15-T (1.0×10⁷)

	CD3 of TCR15-T (1.0×10 ⁷)						CD8 of TCR15-T(1.0×10 ⁷)					
Piture	P1	P2	P3	P4	P5	P6	P1	P2	P3	P4	P5	P6
Positive cells	1561	1627	1158	761	1274	510	1192	1121	1055	800	675	823
Total cells	2278	2295	2222	1759	1742	1460	2570	2525	2462	2435	2526	2131
Positive	68.5	70.9	52.1	43.3	73.1	34.9	46.4	44.4	42.9	32.9	26.7	38.6
rate%												
Average%			57	.1			38.6					