
Biometrika (2017), pp. 1–9
C© 2012 Biometrika Trust
Printed in Great Britain

Online Supplement to “Identifying Causal Effects With
Proxy Variables of an Unmeasured Confounder”

BY WANG MIAO

Guanghua School of Management, Peking University, 5 Summer Palace Road, Haidian
District, Beijing 100871, P.R.C. 5

mwfy@pku.edu.cn

ZHI GENG

School of Mathematical Sciences, Peking University, 5 Summer Palace Road, Haidian District,
Beijing 100871, P.R.C.
zhigeng@pku.edu.cn 10

AND ERIC TCHETGEN TCHETGEN

Department of Biostatistics, Harvard University, 677 Huntington Avenue, Boston,
Massachusetts 02115, U.S.A.
etchetge@hsph.harvard.edu

This supplement includes a counterexample illustrating lack of identification of the error 15

mechanism pr(w | u) for model (f); a counterexample showing non-identification of pr{y |
do(x)} for model (a); proof and extension of Theorems 1–2; simulations evaluating the per-
formance of the testing strategy; discussion on existence of a solution to the integral equation (6)
and proof of Proposition 1; and computation details for Example 1.

A.1. NON-IDENTIFICATION OF pr(w | u) IN MODEL (f) 20

Suppose the true data generating mechanism pr(x, y, u, z, w) is encoded by the following
probability matrices: for i = 1, 2,

P (X) =

(
5
5

)
/10, P (Z | X) =

(
14 9
7 12

)
/21, P (U | Z, xi) =

(
8− 2i 9− i
2 + 2i 1 + i

)
/10,

P (y1,W | U, xi) =

(
6i 22i− 14

24i+ 16 4i+ 20

)
/100, P (y2,W | U, xi) =

(
20− 6i 54− 22i
64− 24i 40− 4i

)
/10025

then we have

P (W | U, xi) = P (W | U) =

(
2 4
8 6

)
/10.

Thus, the data generating process satisfies model (f). The true causal effect is pr{y1 | do(xi)} =
0.122 + 0.285i for i = 1, 2. The distribution of observed variables is captured by P (X), P (Z |
X) and P (y,W | Z, x) = P (y,W | U, x)P (U | Z, x) for y = y1, y2 and x = x1, x2. 30



2 WANG MIAO ET AL.

However, we can construct a different data generating process with identical observed data
distribution. Letting

A =

(
1.1 −0.4
−0.1 1.4

)
,

and

P2(U | Z, xi) = A−1P (U | Z, xi) =

(
24− 4i 26− 2i
6 + 4i 4 + 2i

)
/30,

P2(y1,W | U, xi) = P (y1,W | U, xi)A =

(
7 + 22i 142i− 98

78 + 130i 108− 20i

)
/500,35

P2(y2,W | U, xi) = P (y1,W | U, xi)A =

(
83− 22i 338− 142i

332− 130i 152 + 20i

)
/500,

then the new data generating process pr2(x, y, u, w, z) encoded by {P2(U | Z, xi), P2(y,W |
U, xi), P2(X) = P (X), P2(Z | X) = P (Z | X)} satisfies model (f) with

P2(W | U, xi) = P2(W | U) = P (W | U)A =

(
18 48
82 52

)
/100,

which is different from P (W | U). However, the distribution of observed variables remains the
same, because for all (x, y),40

P2(y,W | Z, x) = P2(y,W | U, x)P2(U | Z, x) = P (y,W | Z, x).

Therefore, P (W | U) cannot be identified. But applying (5), the causal effect is identified by
pr{y1 | do(xi)} = 0.122 + 0.285i for i = 1, 2, which can also be verified from pr(x, y, u, z, w).

A.2. NON-IDENTIFICATION OF pr{y | do(x)} IN (a)

When condition (i) in the article is not met, for example, when only one proxy is available,
the causal effect pr{y | do(x)} is in general not identifiable. We illustrate with a counterexample45

below. Suppose the true data generating mechanism pr(x, y, u, z) for (a) is determined by the
following probability matrices

P (X) =

(
5
5

)
/10, P (U | X) =

(
8 9
2 1

)
/10, P (Z | U) =

(
2 4
8 6

)
/10,

P (Y | U, x1) =

(
2 6
8 4

)
/10, P (Y | U, x2) =

(
3 5
7 5

)
/10.50

The causal effect is pr{y1 | do(xi)} = (7i+ 19)/100 for i = 1, 2. Letting

Λ(U | x) =

(
pr(u1 | x) 0

0 pr(u2 | x)

)
for x = x1, x2,

the observed variable distribution is captured by P (X) and P (Y,Z | x) = P (Y | U, x)Λ(U |
x)P (Z | U)T for x = x1, x2.

We construct a new data generating process pr2(x, y, u, z) with

P2(U | X) =

(
5 4
5 6

)
/10, P2(Z | U) =

(
34 14
66 86

)
/100,55
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P2(Y | U, x1) =

(
41 15
59 85

)
/100, P2(Y | U, x2) =

(
37 29
63 71

)
/100,

and P2(X) = P (X). Letting

Λ2(U | x) =

(
pr2(u1 | x) 0

0 pr2(u2 | x)

)
for x = x1, x2,

we have P2(Y | U, x) = P (Y | U, x)A(x), P2(Z | U) = P (Z | U)BT and Λ2(U | x) =
A(x)−1Λ(U | x)B−1 for x = x1, x2, with 60

A(x1) =

(
48 112
52 −12

)
/100, A(x2) =

(
675 1050
325 −50

)
/1000, B =

(
3 7
13 −3

)
/10.

The new data generating process results in identical distribution of observed variables, because
for x = x1, x2,

P2(Y, Z | x) = P2(Y | U, x)Λ2(U | x)P2(Z | U)T

= P (Y | U, x)Λ(U | x)P (Z | U)T 65

= P (Y,Z | x);

but with a different causal effect pr2{y1 | do(xi)} = (5.7i+ 21)/100 for i = 1, 2.

A.3. PROOF OF THEOREM1
THEOREM 1. Assuming model (f) and condition (ii), for any solution h(w, x, y) to (6),

pr(y | u, x) =

∫ +∞

−∞
h(w, x, y)f(w | u)dw,

pr{y | do(x)} =

∫ +∞

−∞
h(w, x, y)f(w)dw.

Proof. For any (x, y), suppose h(w, x, y) solves (6): for all z, 70

pr(y | z, x) =

∫ +∞

−∞
h(w, x, y)f(w | z, x)dw,

then under model (f), for all z,∫ +∞

−∞
pr(y | u, x)f(u | z, x)du =

∫ +∞

−∞
h(w, x, y)

{∫ +∞

−∞
f(w | u)f(u | z, x)du

}
dw.

Under the completeness condition (ii), we must have

pr(y | u, x) =

∫ +∞

−∞
h(w, x, y)f(w | u)dw;

taking expectation over u on both sides, we obtain

pr{y | do(x)} =

∫ +∞

−∞
h(w, x, y)f(w)dw.
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A.4. PROOF OF THEOREM 2 AND EXTENSION

To prove Theorem 2, we need the following lemma, which is Theorem 1.12 of Shao (2003).75

LEMMA 1. Let X1, X2, . . . and Y be random k-vectors satisfying an(Xn − c)→ Y in distri-
bution, where c ∈ Rk and {an} is a sequence of positive numbers with limn→+∞ an = +∞. Let
g be a function from Rk to R. Suppose that g has continuous partial derivatives of order m > 1
in a neighborhood of c, with all the partial derivatives of order smaller than m− 1 vanishing at
c, but with the mth-order partial derivatives not all vanishing at c. Then80

amn {g(Xn)− g(c)} → 1

m!

k∑
i1=1

· · ·
k∑

im=1

∂mg

∂xi1 · · · ∂xim

∣∣∣∣
x=c

Yi1 × · · · × Yim in distribution,

where Yj is the jth component of Y .

Lemma 1 concerns the approximate distribution for a function of a series of variable/vector that
converge in distribution. We use Slutsky’s theorem and Lemma 1 to prove Theorem 2.

THEOREM 2. Assuming model (f), conditions (iv) and (10)–(11), if H0 is correct, then
n1/2ξy → N(0,Ωy) in distribution, with Ωy = I − Σ

−1/2
y QT(QΣ−1y QT)−1QΣ

−1/2
y of rank85

r = ij − k, and Ty → χ2
r in distribution.

Proof of Theorem 2. 1. Given that Q̂→ Q, Σ̂y → Σ in probability and n1/2(q̂y − qy)→
N(0,Σy) in distribution, applying Slutsky’s theorem, we have n1/2(ξy − ΩyΣ

−1/2
y qy)→

N(0,Ωy) in distribution with Ωy = I − Σ
−1/2
y QT(QΣ−1y QT)−1QΣ

−1/2
y . If H0 is correct,

then qTy = P (y | U)P (W | U)−1Q, and thus ΩyΣ
−1/2
y qy = 0, which implies that n1/2ξy →90

N(0,Ωy) in distribution. Because QΣ
−1/2
y has rank k, Σ

−1/2
y QT(QΣ−1y QT)−1QΣ

−1/2
y is an

idempotent matrix (Banerjee & Roy, 2014, Corollary 11.5) of rank k, i.e., it has k eigenvalues
equal to one and ij − k eigenvalues equal to zero. Hence, Ωy is an idempotent matrix of rank
r = ij − k.

2. For fixed y, applying Lemma 1 with g(x) = xTx, we have95

Ty = g(n1/2ξy)→ N(0,Ωy)TN(0,Ωy) in distribution.

Because Ωy is an idempotent matrix of rank r = ij − k, there exists a unitary matrix V such
that V ΩyV

T = diag(1, . . . , 1, 0, . . . , 0), a diagonal matrix with r eigenvalues equal to one.
Thus, V N(0,Ωy) ∼ N{0,diag(1, . . . , 1, 0, . . . , 0)}, and

N(0,Ωy)TN(0,Ωy) = {V N(0,Ωy)}T{V N(0,Ωy)} ∼ χ2
r .

Therefore, Ty → χ2
r in distribution.

Theorem 2 can be generalized to account for all levels of a categorical Y . Consider an l-100

category outcome and let qT = (qT1 , . . . , q
T
l−1); then under H0, we have

q = {P (y1 | U)P (W | U)−1, . . . , P (yl−1 | U)P (W | U)−1}

Q 0 0

:
. . . :

0 0 Q

 .

In the below, we use Q0 to denote the diagonal matrix on the right hand side, which is a
k(l − 1)× ij(l − 1) matrix and has full row rank. A test statistic aggregating all levels of Y
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can be constructed by replacing (q̂y, Q̂) with (q̂, Q̂0) whenever they appear in the construction
of ξy and Ty. 105

Suppose we have estimators (q̂, Q̂0) that satisfy

n1/2(q̂ − q)→ N(0,Σ) in distribution, (12)

Q̂0 → Q0 and Σ̂→ Σ in probability, with Σ̂,Σ positive-definite. (13)

We let

ξ = {I − Σ̂−1/2Q̂T
0 (Q̂0Σ̂

−1Q̂T
0 )−1Q̂0Σ̂

−1/2}Σ̂−1/2q̂,

and propose the test statistic T = nξTξ.
Following the proof of Theorem 2, we have the corollary.

COROLLARY 1. Assuming model (f), conditions (iv) and (12)–(13), if H0 is correct, then 110

n1/2ξ → N(0,Ω) in distribution, with Ω = I − Σ−1/2QT
0 (Q0Σ

−1QT
0 )−1Q0Σ

−1/2 of rank
r(l − 1), and T → χ2

r(l−1) in distribution.

Aggregating all levels of an l-category outcome leads to a chi-square test with r(l − 1) degrees
of freedom. For a continuous Y , discretization is required to perform the proposed chi-square
test, however, in many situations where the average causal effect is of interest, one can use 115

q = {E(Y | Z, x1), . . . , E(Y | Z, xi)}T in construction of the test statistic and perform the test
on the mean scale.

A.5. SIMULATIONS FOR THE TESTING STRATEGY

We conduct simulations to evaluate the performance of the proposed testing strategy. We con-
sider two data generating mechanisms that satisfy model (c). In the first case, we set 120

P (X) =

3
3
4

 /10, P (U | X) =

(
3 6 5
7 4 5

)
/10, P (W | U) =

(
8 3
2 7

)
/10,

P (Y | U, x1) =

5 4
3 2
2 4

 /10, P (Y | U, x2) =

4 6
2 3
4 1

 /10, P (Y | U, x3) =

3 2
4 5
3 3

 /10.

The causal effect is nonzero but cannot be identified.
In the second case, {P (X), P (U | X), P (W | U)} remain the same as in the first case, but

P (Y | U, x) does not vary with x, 125

P (Y | U, x1) = P (Y | U, x2) = P (Y | U, x3) =

5 4
3 5
2 1

 /10.

Hence, H0 holds in this case.
Under each case, we generate 1000 datasets under sample sizes 200, 400 and 600. In con-

struction of the test statistics Ty=1 and T , we use empirical probability mass functions to esti-
mate pr(w | z, x) and pr(y | z, x). Under the settings we consider, i = 3, j = 1, k = 2, l = 3 (Z 130

treated as a constant), and thus, Ty=1 and T lead to a χ2
1 and a χ2

2 test, respectively.
Table 1 presents the power of the tests when using Ty=1 and T as the test statistic, respectively.

The significance level is 0.05. When H0 does not hold, the tests have good empirical power that
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increases toward unity as the sample size increases; when H0 holds, the empirical type I error
is close to the nominal level of 0.05. Under the settings we consider, Ty=1 does not result in a135

substantial loss of power compared to T . Such results confirm that the proposed tests perform
reasonably well when the sample size is moderate.

Table 1: Power of the test

T Ty=1

Sample size H0 correct H0 incorrect H0 correct H0 incorrect
200 0.052 0.748 0.048 0.695
400 0.057 0.952 0.046 0.943
600 0.062 0.994 0.055 0.994

A.6. DISCUSSION ON EXISTENCE OF A SOLUTION TO (6)
Equation (6) is a Fredholm integral equation of the first kind. A conventional and rigorous ap-

proach to study this problem is the singular value decomposition (Kress, 1989, Theorem 15.16)140

developed in functional analysis. The approach has previously been used by statisticians and
economists (Carrasco et al., 2007; Darolles et al., 2011) to study nonparametric instrumental re-
gression. In the following, we introduce the singular value decomposition of a compact operator
and Picard’s theorem to describe an if and only if condition for existence of a solution, and then
apply Picard’s theorem to prove Proposition 1 in the article.145

According to Kress (1989, Theorem 15.16), given Hilbert spaces H1 and H2, a compact op-
erator K : H1 7−→ H2 and its adjoint operator K∗ : H2 7−→ H1, there exists a singular system
(λn, ϕn, ψn)+∞n=1 of K with nonzero singular values {λn} and orthogonal sequences {ϕn ∈ H1}
and {ψn ∈ H2} such that

Kϕn = λnψn, K∗ψn = λnϕn.

By the means of singular value decomposition, the following result known as Picard’s theorem150

(Kress, 1989, Theorem 15.18) characterizes if and only if conditions for existence of a solution
to the corresponding Fredholm integral equation of the first kind.

LEMMA 2 (PICARD’S THEOREM). Letting K : H1 7−→ H2 be a compact operator with sin-
gular system (λn, ϕn, ψn)+∞n=1, given φ ∈ H2, the equation of the first kind Kh = φ is solvable
if and only if155

1. φ ∈ N (K∗)⊥; and
2.
∑+∞

n=1 λ
−2
n |〈φ, ψn〉|2 < +∞;

whereN (K∗) = {h : K∗h = 0} is the null space of K∗, and ⊥ denotes the orthogonal comple-
ment to a subset.

We apply Lemma 2 to prove Proposition 1 in the article. We let L2{F (t)} denote the space of160

all square integrable functions of t with respect to a cumulative distribution function F (t), which
is a Hilbert space with the inner product

〈g, h〉 =

∫ +∞

−∞
g(t)h(t)dF (t) for all g, h ∈ L2{F (t)}.
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Letting

K(w, z, x) =
f(w, z | x)

f(w | x)f(z | x)
,

for any x, we define the linear operators

Kx : L2{F (w | x)} 7−→ L2{F (z | x)},

Kxh =

∫ +∞

−∞
K(w, z, x)h(w)dF (w | x) = E{h(w) | z, x}, h ∈ L2{F (w | x)},

K∗x : L2{F (z | x)} 7−→ L2{F (w | x)},

K∗xg =

∫ +∞

−∞
K(w, z, x)g(z)dF (z | x) = E{g(z) | w, x}, g ∈ L2{F (z | x)},

which are integral operators with kernelK(w, z, x) and are referred to as conditional expectation 165

operators (Carrasco et al., 2007, Example 2.3, page 5656). One can verify that K∗x is in fact the
adjoint operator of Kx by checking

〈Kxh, g〉 = 〈h,K∗xg〉 = E{h(w)g(z) | x}.

Proposition 1 in the article is an immediate corollary of Lemma 2 by noting that under the
regularity condition (v), Kx is a compact operator, and under the completeness condition (iii),
N (K∗x)⊥ = L2{F (z | x)}. 170

Proof of Proposition 1. First, we note that Kx is a compact operator by assuming∫ +∞
−∞

∫ +∞
−∞ f(w | z, x)f(z | w, x)dwdz < +∞ (Carrasco et al., 2007, Example 2.3, page 5659).

Thus, there exists a singular value decomposition (λx,n, ϕx,n, ψx,n)+∞n=1 ofKx according to Kress
(1989, Theorem 15.16) and Carrasco et al. (2007, Theorem 2.41). Second, under the complete-
ness condition (iii), we prove N (K∗x)⊥ = L2{F (z | x)} by showing N (K∗x) = {g = 0}. For 175

any g ∈ N (K∗x), we have K∗xg = E{g(z) | w, x} = 0 almost surely; from condition (iii), we
must have g(z) = 0 almost surely. As a result, N (K∗x) = {g = 0}, and therefore, N (K∗x)⊥ =

L2{F (z | x)}. Third, assuming
∫ +∞
−∞ pr2(y | z, x)f(z | x)dz < +∞ for any given (x, y), we

must have pr(y | z, x) ∈ L2{F (z | x)}, and thus pr(y | z, x) ∈ N (K∗x)⊥. Last, together with
(vii), Lemma 2 implies existence of a solution to (6). � 180

A.7. COMPUTATION DETAILS FOR EXAMPLE 1
Under the setting of Example 1 in the article, for all (x, y), we solve h(w, x, y) from the

integral equation:

pr(y | z, x) =

∫ +∞

−∞
f(w | z, x)h(w, x, y)dw,

with

f(w | z, x) =
1

σ(x)
φ

{
w − β0(x)− β1(x)z

σ(x)

}
.

By substitution z′ = {β0(x) + β1(x)z}/σ(x), w′ = w/σ(x), and by letting 185

g(y, z′, x) = pr
{
y | z =

z′σ(x)− β0(x)

β1(x)
, x

}
,
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we can solve h from

g(y, z′, x) =

∫ +∞

−∞
φ(z′ − w′)h{w′σ(x), x, y}dw′,

which is an integral equation of convolution type, and can be solved by applying the Fourier
transform. Letting h1 and h2 denote the Fourier transforms of φ and g respectively:

h1(v) =

∫ +∞

−∞
exp(−ivz′)φ(z′)dz′190

=

∫ +∞

−∞
exp(−ivz)φ(z)dz,

h2(v, x, y) =

∫ +∞

−∞
exp(−ivz′)g(y, z′, x)dz′

=
β1(x)

σ(x)

∫ +∞

−∞
exp

{
−iv

β0(x) + β1(x)z

σ(x)

}
pr(y | z, x)dz,

with i = (−1)1/2 the imaginary unity, we have

h2(v, x, y) = h1(v)×
∫ +∞

−∞
exp(−ivw′)h{w′σ(x), x, y}dw′,

195 ∫ +∞

−∞
exp(−ivw′)h{w′σ(x), x, y}dw′ = h2(v, x, y)

h1(v)
;

by Fourier inversion, we have

h{w′σ(x), x, y} =
1

2π

∫ +∞

−∞
exp(ivw′)

h2(v, x, y)

h1(v)
dv;

by substitution w = w′σ(x), we obtain

h(w, x, y) =
1

2π

∫ +∞

−∞
exp

{
ivw

σ(x)

}
h2(v, x, y)

h1(v)
dv.

When f(x, y, u, w, z) follows a joint normal model, one first applies linear regression to
the observed variables to obtain f(y | z, x) ∼ N(α0 + α1z + α2x, σ

2
1), f(w | z, x) ∼ N(β0 +

β1z + β2x, σ
2
2) and f(w) ∼ N(µ, σ23); then one can verify that (6) has a unique solution200

h(w, x, y) =
1

σ4
φ

(
y − γ01 − α1/β1w − γ1x

σ4

)
,

with γ1 = α2 − α1β2/β1, γ01 = α0 − α1β0/β1 and σ24 = σ21 − α2
1σ

2
2/β

2
1 . The casual effect is

pr{y | do(x)} =

∫ +∞

−∞
h(w, x, y)f(w)dw =

1

σ
φ

(
y − γ0 − γ1x

σ

)
,

with γ0 = γ01 + α1µ/β1 and σ2 = σ24 + α2
1σ

2
3/β

2
1 .

In linear structural models, the path coefficient ∂E(y | u, x)/∂x is of interest. From f(y |
u, x) =

∫ +∞
−∞ h(w, x, y)f(w | u)dw, the path coefficient is identified by:205

∂E(y | u, x)

∂x
=

∫ +∞

−∞

∂
∫ +∞
−∞ yh(w, x, y)dy

∂x
f(w | u)dw = γ1,
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which is in fact consistent with the result of Kuroki & Pearl (2014) obtained via variance analysis

∂E(y | u, x)

∂x
=
σyzσxw − σxyσwz

σxzσxw − σxxσwz
,

where σxy denotes the covariance of X and Y , and similar notation for other variables. One can
verify this by noting

σyz = α1σzz + α2σxz, σyx = α1σxz + α2σxx,

σwz = β1σzz + β2σxz, σwx = β1σxz + β2σxx. 210
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