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This supplement includes a counterexample illustrating lack of identification of the error s
mechanism pr(w | u) for model (f); a counterexample showing non-identification of pr{y |
do(z)} for model (a); proof and extension of Theorems 1-2; simulations evaluating the per-
formance of the testing strategy; discussion on existence of a solution to the integral equation (6)
and proof of Proposition 1; and computation details for Example 1.

A.1. NON-IDENTIFICATION OF pr(w | u) IN MODEL (f) 20

Suppose the true data generating mechanism pr(z,y,u, z,w) is encoded by the following
probability matrices: fori = 1, 2,

P(X) = <§> /10, P(Z|X) = (174 192> /21, PWU | Z, x;) = (2;;2?;2) /10,

6i 22i—14 20 — 6i 54 — 22i
Py WU, z) = (24i+16 4i + 20 ) /100, Plyo, W | U, z:) = (64—24@' 40 — 4 > /100

then we have

P(W |U,z;) = P(W | U) = (g 2) /10.

Thus, the data generating process satisfies model (f). The true causal effect is pr{y; | do(z;)} =
0.122 4 0.285: for ¢ = 1, 2. The distribution of observed variables is captured by P(X), P(Z
X)and P(y,W | Z,x) = P(y, W | U,z)P(U | Z,x) fory = y1,y2 and x = z1, 2. %0
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However, we can construct a different data generating process with identical observed data

distribution. Letting
1.1-04
A= (—0.1 1.4) ’

PQ(U | Z,SUZ) :A—IP(U | Z,ﬂjl) _ <24—42 26-22) /30’

and

6+4144+ 2

7+ 225 1427 — 98
78 + 1307 108 — 20i> /500,

83 — 22i 338 — 142i
332 — 130i 152 + 20i ) /500,

Py, W | Usa) = Plys, W | Uy ) A — (

P2(ﬂ2>W | Uaxl) = P(be | U,.’,UZ)A = <

then the new data generating process pry(x,y, u,w, z) encoded by {P(U | Z, x;), Pa(y, W |
U,x;), Po(X) = P(X),P(Z | X) = P(Z | X)} satisfies model (f) with
18 48
PAW | U) = (W | 0) = POV | 04 = (5 5 ) /100,

which is different from P(W | U). However, the distribution of observed variables remains the
same, because for all (z,y),

Po(y, W | Z,z) = Po(y, W | U,x) (U | Z,2) = Py, W | Z, ).

Therefore, P(W | U) cannot be identified. But applying (5), the causal effect is identified by
pr{y1 | do(x;)} = 0.122 + 0.285i for i = 1,2, which can also be verified from pr(z, y, u, z, w).

A.2. NON-IDENTIFICATION OF pr{y | do(x)} IN (a)

When condition (i) in the article is not met, for example, when only one proxy is available,
the causal effect pr{y | do(z)} is in general not identifiable. We illustrate with a counterexample
below. Suppose the true data generating mechanism pr(z, y, u, z) for (a) is determined by the
following probability matrices

P(X) = <§> /10,  PU|X)= (2?) /0, P(Z|U)= (;g) /10,

26 35
P(Y]U,:cl):<84> /10, P(Y]U,xg):<75>/10.
The causal effect is pr{y; | do(z;)} = (77 + 19)/100 for ¢ = 1, 2. Letting
_(pr(wfz) 0 _
AU | x) = < 0 pr(us | ) for z = x1, x9,

the observed variable distribution is captured by P(X) and P(Y,Z | x) = P(Y | U,z)A(U |
2)P(Z | U)T for x = 1, 2o.
We construct a new data generating process pry(z, y, u, z) with

P(U | X) = <§ ‘é) /10, Po(Z | U) = (22 éé) /100,
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4115 3729
Py(Y | U,zp) = <59 85) /100, Py(Y | U, zp) = <63 71> /100,

and P(X) = P(X). Letting

_ (prp(wafz) 0 _
Ao (U | z) = < 0 pry(us | 7) for x = 1, x2,

we have Po(Y |U,x)=P(Y |U,2)A(x), Py(Z|U)=P(Z|U)BY and Ay(U|z)=
A(z)"'A(U | ) B~ for x = x1, 29, with 60

48 112 675 1050 3 7
Alzy) = <52 _12> /100,  A(wg) = (325 _50> /1000, B = (13 _3> /10.

The new data generating process results in identical distribution of observed variables, because
for x = x1, xo,

P(Y,Z |z) = Po(Y | U,z)Ao(U | 2)Po(Z | U)T
=P(Y |Ux)AU | z)P(Z | U)T os
=P(Y,Z | x);

but with a different causal effect pry{y; | do(z;)} = (5.7¢ + 21)/100 fori = 1, 2.

A.3. PROOF OF THEOREM1
THEOREM 1. Assuming model (f) and condition (ii), for any solution h(w, z,y) to (6),

+oo
pr(y | u,z) = / h(w, z,y) f(w | u)dw,

e
priy | do(@)} = [ hw,z,p)f (wdo.

Proof. For any (z,vy), suppose h(w, x,y) solves (6): for all z, 70
+oo
pr(y ’ va) = / h(waxvy)f(w ‘ z,x)dw,
—0oQ
then under model (f), for all z,
—+00 —+00 —+00
/ pr(y | u,z) f(u]| z,2)du —/ hw, z,y) { flw|w)f(u] z,w)du} dw.
—00 —00 —00
Under the completeness condition (ii), we must have
“+o00
pr(y [ w.) = [ hlw,z,)f(w | wd
—0oQ

taking expectation over u on both sides, we obtain

+oo
pr{y | do(x)} = / h(w, 2, ) f (w)dw.
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A.4. PROOF OF THEOREM 2 AND EXTENSION
To prove Theorem 2, we need the following lemma, which is Theorem 1.12 of Shao (2003).

LEMMA 1. Let X1, Xo,...andY be random k-vectors satisfying a, (X, — c¢) — Y in distri-
bution, where ¢ € RF and {an} is a sequence of positive numbers with lim,,_, 4 ~ a,, = +00. Let
g be a function from R* to R. Suppose that g has continuous partial derivatives of order m > 1
in a neighborhood of c, with all the partial derivatives of order smaller than m — 1 vanishing at
¢, but with the mth-order partial derivatives not all vanishing at c. Then

an'{9(Xn) — m! Z Z 351311 85Uzm

i1=1 im=1

Yi, x -+ XY,  indistribution,

Tr=c
where Y} is the jth component of Y .

Lemma 1 concerns the approximate distribution for a function of a series of variable/vector that
converge in distribution. We use Slutsky’s theorem and Lemma 1 to prove Theorem 2.

THEOREM 2. Assuming model (f), conditions (iv) and (10)—(11), if Hy is correct, then
n1/2§y — N(0,9Qy) in distribution, with Q, =1 — E;lmQT(QE;lQT)*lQE;l/Q of rank
r=ij—k,and T, — X2 in distribution.

Proof of Theorem 2. 1. Given that @ - Q, iy — ¥ in probability and n'/ Gy — qy) —
N(0,%,) in distribution, applying Slutsky’s theorem, we have n'/2(¢, — Q, %, 1/ 2qy) —
N(0,9,) in distribution with ©, = I — £, *QT(Q%,Q")~1Q%, />, 1f Hy is correct,
then ¢ = P(y | U)P(W | U)™'Q, and thus ©, %, /*¢, = 0, which implies that n'/2¢, —
N (0, €,) in distribution. Because QE;l/z has rank k, E;l/zQT(QEngT)*IQE;UQ is an
idempotent matrix (Banerjee & Roy, 2014, Corollary 11.5) of rank k, i.e., it has k eigenvalues
equal to one and ij — k eigenvalues equal to zero. Hence, (2, is an idempotent matrix of rank
r=1j — k.

2. For fixed y, applying Lemma 1 with g(z) = zT

x, we have
T, = g(n'/2¢,) — N(0,Q,)"N(0,9,) in distribution.

Because (2, is an idempotent matrix of rank r = 7j — k, there exists a unitary matrix V' such
that VQyVT = diag(1,...,1,0,...,0), a diagonal matrix with r eigenvalues equal to one.
Thus, VN(0,Q,) ~ N{0, diag(1,...,1,0,...,0)}, and

N(0, Qy)TN(Oa Qy) = {VN(0, Qy)}T{VN(Oa Qy)} ~ X%'
Therefore, T}, — X2 in distribution.

Theorem 2 can be generalized to account for all levels of a categorical Y. Consider an I-
category outcome and let gT = (¢f, ..., ¢ ,); then under Hy, we have

Q00
¢={P(y |U)PW [U)"} ..., Py | U)PW U)ol
0 0Q
In the below, we use )y to denote the diagonal matrix on the right hand side, which is a
k(l —1) xij(l — 1) matrix and has full row rank. A test statistic aggregating all levels of Y’
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can be constructed by replacing (g, @) with (g, @0) whenever they appear in the construction
of § and T,.
Suppose we have estimators (g, Qo) that satisfy

n'/2(q — q) — N(0,%) in distribution, (12)
Qo — Qo and & — ¥ in probability, with 3, ¥ positive-definite. (13)
We let
E={I-S7°Q5(QoS7'Q0) ' QoS 2yE 1%,
and propose the test statistic 7" = n& €.
Following the proof of Theorem 2, we have the corollary.

COROLLARY 1. Assuming model (f), conditions (iv) and (12)—(13), if Hy is correct, then
n'/2¢ — N(0,Q) in distribution, with Q =T — Z*1/2QE(QOE*1QOT)*1QOE*1/2 of rank
r(l—1), and T — X%(l—l) in distribution.

Aggregating all levels of an [-category outcome leads to a chi-square test with (I — 1) degrees
of freedom. For a continuous Y, discretization is required to perform the proposed chi-square
test, however, in many situations where the average causal effect is of interest, one can use
q={E(Y | Z,11),...,E(Y | Z,2;)}T in construction of the test statistic and perform the test
on the mean scale.

A.5. SIMULATIONS FOR THE TESTING STRATEGY

We conduct simulations to evaluate the performance of the proposed testing strategy. We con-
sider two data generating mechanisms that satisfy model (c). In the first case, we set

3
365 83
P(X)=|3] /10, P(U|X):<745>/10, P(W|U):<27>/10,
4
54 46 32
P(Y |Uax)=(32]/10, P(Y|U=x)=|23]/10, PY|Uas)=|45|/10.
24 41 33

The causal effect is nonzero but cannot be identified.

In the second case, {P(X), P(U | X), P(W | U)} remain the same as in the first case, but
P(Y | U, z) does not vary with z,

54
P(Y |U,z)=P(Y |Uzy)=PY |Uuxs)= | 35 ] /10.
21

Hence, H holds in this case.

Under each case, we generate 1000 datasets under sample sizes 200,400 and 600. In con-
struction of the test statistics Ty,—1 and T', we use empirical probability mass functions to esti-
mate pr(w | z,z) and pr(y | z, z). Under the settings we consider, i = 3,j =1,k =2,1 =3 (Z
treated as a constant), and thus, 7;,—; and 7" lead to a X% and a X% test, respectively.

Table 1 presents the power of the tests when using T',—1 and T as the test statistic, respectively.
The significance level is 0.05. When Hy does not hold, the tests have good empirical power that
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increases toward unity as the sample size increases; when H holds, the empirical type I error
is close to the nominal level of 0.05. Under the settings we consider, T, —1 does not result in a
substantial loss of power compared to 7". Such results confirm that the proposed tests perform
reasonably well when the sample size is moderate.

Table 1: Power of the test

T Ty—1
Sample size H correct Hy incorrect Hy correct H incorrect
200 0.052 0.748 0.048 0.695
400 0.057 0.952 0.046 0.943
600 0.062 0.994 0.055 0.994

A.6. DISCUSSION ON EXISTENCE OF A SOLUTION TO (6)

Equation (6) is a Fredholm integral equation of the first kind. A conventional and rigorous ap-
proach to study this problem is the singular value decomposition (Kress, 1989, Theorem 15.16)
developed in functional analysis. The approach has previously been used by statisticians and
economists (Carrasco et al., 2007; Darolles et al., 2011) to study nonparametric instrumental re-
gression. In the following, we introduce the singular value decomposition of a compact operator
and Picard’s theorem to describe an if and only if condition for existence of a solution, and then
apply Picard’s theorem to prove Proposition 1 in the article.

According to Kress (1989, Theorem 15.16), given Hilbert spaces H; and Ho, a compact op-
erator K : Hy — Hs and its adjoint operator K* : Ho — Hj, there exists a singular system
(Any ©ny ¥n )i of K with nonzero singular values {\,,} and orthogonal sequences {(,, € H;}
and {t, € Ha} such that

KSDn = An¢na K*@Dn = )\nson-

By the means of singular value decomposition, the following result known as Picard’s theorem
(Kress, 1989, Theorem 15.18) characterizes if and only if conditions for existence of a solution
to the corresponding Fredholm integral equation of the first kind.

LEMMA 2 (PICARD’S THEOREM). Letting K : Hy — Hs be a compact operator with sin-
gular system (A, ©n, 1/’71):;2?’ given ¢ € Ho, the equation of the first kind Kh = ¢ is solvable
if and only if

1. ¢ € N(K*)*; and
2. S A2 vn) [P < Ho0;

where N'(K*) = {h : K*h = 0} is the null space of K*, and * denotes the orthogonal comple-
ment to a subset.

We apply Lemma 2 to prove Proposition 1 in the article. We let L2{F(t)} denote the space of
all square integrable functions of ¢ with respect to a cumulative distribution function F'(¢), which
is a Hilbert space with the inner product

+oo
(g, h) :/ g(t)h(t)dF (t) forall g,h € L*{F(t)}.

—0o0
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Letting
o2 = 0
for any z, we define the linear operators
Ko PP | 0)} o LRG| 2)
Kah= [ Kz ah)dF G0 | ) = B{h(w) | 22}, b e D] )}
K:: PG | 0) o 12w | 2)
Kig= [ KGoza)g0F (| 7) = Blo(e) | wah g € ARG | o))

which are integral operators with kernel K (w, z, x) and are referred to as conditional expectation
operators (Carrasco et al., 2007, Example 2.3, page 5656). One can verify that K7 is in fact the
adjoint operator of K, by checking

(Kzh, g) = (h, Ki9) = E{h(w)g(2) | x}.

Proposition 1 in the article is an immediate corollary of Lemma 2 by noting that under the
regularity condition (v), K, is a compact operator, and under the completeness condition (iii),
N(E)* = LH{F(z | 2)}.

Proof of Proposition 1. First, we note that K, is a compact operator by assuming
J52[F2 fw | 2,2) f(2 | w, 2)dwdz < +oo (Carrasco et al., 2007, Example 2.3, page 5659).
Thus, there exists a singular value decomposition (Ay. 1, Yz n, wzn):{g of K, according to Kress
(1989, Theorem 15.16) and Carrasco et al. (2007, Theorem 2.41). Second, under the complete-
ness condition (iii), we prove N (K})* = L2{F(z | x)} by showing N'(K?) = {g = 0}. For
any g € N(K3), we have K'g = F{g(z) | w,x} = 0 almost surely; from condition (iii), we
must have g(z) = 0 almost surely. As a result, N'(K}) = {g = 0}, and therefore, N'(K})* =
L*{F(z | z)}. Third, assuming fjoooo pri(y | z,2)f(z | x)dz < +oo for any given (z,y), we
must have pr(y | z,z) € L2{F(z | x)}, and thus pr(y | z,z) € N(K})*. Last, together with
(vii), Lemma 2 implies existence of a solution to (6). O

A.7. COMPUTATION DETAILS FOR EXAMPLE 1

Under the setting of Example 1 in the article, for all (x,y), we solve h(w,z,y) from the
integral equation:

+oo
pr(y | z,z) = / Fw | 2 2)h(w, 2, y)dw,

with
wl ez = 1 w — Po(z) — Pi(z)z
ol za) = o { LD SARE
By substitution 2" = {By(z) + f1(x)z}/0o(x), w' = w/o(x), and by letting
9(y, 7', @) =pr{y | 2= Wﬂr}
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we can solve h from

+oo
9y, 7', x) = ¢(z' —w)h{w'o(w), 2, y}duw',

—0o0
which is an integral equation of convolution type, and can be solved by applying the Fourier
transform. Letting h; and ho denote the Fourier transforms of ¢ and g respectively:

+oo
hi(v) = / exp(—ivz")p(2")d7’

—00

_ / " exp(—iv2)é(2)dz,

—0o0

+oo
hZ(vaay) = / exp(—ivz/)g(y, z’,:n)dz'

—0o0

_ Bi(=) /+Oo exp {_ivﬂo(x)a‘i(‘f;(ﬁ?)z } pr(y | 2 2)dz,

o(z) Joo

with i = (—1)'/2 the imaginary unity, we have

+00
ha(v,z,y) = hi(v) X / exp(—ivw )h{w'o(x), z,y}dw',

—00

+o0 L
/ exp(—iveh{w'o(z), z, y}du! = "L,
e h1 (21)

by Fourier inversion, we have

/ _ 1 / o 20T Y)
h{w c;*(:z‘),x,g/}—27r . exp(ivw") hi(0) dv;

by substitution w = w’c(z), we obtain
1 [t ivw | ha(v,z,y)
h = — 22 dv.
o= [ e (G5} e

When f(z,y,u,w,z) follows a joint normal model, one first applies linear regression to
the observed variables to obtain f(y | z,z) ~ N(ag + a1z + sz, 02), f(w | z,2) ~ N(Bo +
B1z + Bax,03) and f(w) ~ N(u,o2); then one can verify that (6) has a unique solution

1, (y — 01 — a1/Brw — ’mf)

h —
(w, z,y) p, po,

with v = ag — a1 82/ 51, Y01 = ap — a1 Bo/ 1 and UZ = a% — a%ag/ﬁ% The casual effect is

prly [ o)} = [ hlan ) fwhdar = o (LRZ1E Y

g

with v = v01 + a11/B1 and 02 = o3 + o303 /3%
In linear structural models, the path coefficient OE(y | u,x)/0z is of interest. From f(y |
u, ) = fj;o h(w, z,y) f(w | u)dw, the path coefficient is identified by:

IE(y | u,x) _ /*"O 0 137 yh(w, x,y)dy

" B = f(w | u)dw =i,
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which is in fact consistent with the result of Kuroki & Pearl (2014) obtained via variance analysis

aE(y ‘ u,x) _ Oyz0zw — OzyOwz

)
Ox Oxz202w — OxaOwz

where o, denotes the covariance of X and Y, and similar notation for other variables. One can
verify this by noting

Oyz = Q10 + 20,2, Oyz = 10z + 20z,

Owz = ﬁlazz + 62‘%&27 Owzr = /Blaxz + 620'&::1:-

REFERENCES

BANERJEE, S. & ROY, A. (2014). Linear Algebra and Matrix Analysis for Statistics. Boca Raton: Taylor & Francis.

CARRASCO, M., FLORENS, J. P. & RENAULT, E. (2007). Linear inverse problems in structural econometrics es-
timation based on spectral decomposition and regularization. In Handbook of Econometrics, J. J. Heckman &
E. Leamer, eds., vol. 6B. Amsterdam: Elsevier, pp. 5633-5751.

DAROLLES, S., FAN, Y., FLORENS, J. P. & RENAULT, E. (2011). Nonparametric instrumental regression. Econo-
metrica 79, 1541-1565.

KRESS, R. (1989). Linear Integral Equations. Berlin: Springer.

KUROKI, M. & PEARL, J. (2014). Measurement bias and effect restoration in causal inference. Biometrika 101,
423-437.

SHAO, J. (2003). Mathematical Statistics. New York: Springer, 2nd ed.

210

215

220



