Gigantol ameliorates CCl₄-induced liver injury via preventing activation of JNK/cPLA2/12-LOX inflammatory pathway

Yaru Xue^{1,2}, Qiangqiang Deng¹, Qingli Zhang³, Zhenghua Ma^{4,5,6}, Binfan Chen^{1,2}, Xiaolu Yu^{1,2}, Huige Peng¹, Sheng Yao^{1,4,5}, Jia Liu³, Yang Ye^{1,4,5,6*}, Guoyu Pan^{1,2*}

¹Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ²University of Chinese Academy of Sciences, Beijing 100049, China. ³Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. ⁴State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. ⁵SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai 201203, China. ⁶School of Life Science and Technology, Shanghai Tech University, Shanghai 201203, China. ^{*}E-mail: gypan@simm.ac.cn; yye@simm.ac.cn.

Supplementary data

Supplementary Table S1. The fold changes of AA and its metabolites concentration between the vehicle group and the CCl₄ group or the CCl₄ group and the (CCl₄+gigantol) group. $^{\#\#}P<0.001$, $^{\#\#}P<0.001$, $^{\#}P<0.05$ the CCl₄ group *vs*. the vehicle group; $^{**}P<0.01$, $^{*}P<0.05$ the (CCl₄+gigantol) group *vs*. the CCl₄ group; $^{+\infty}$ means positive infinity; n=6 mice for each group.

AA and AA metabolites	CCl ₄ /vehicle	CCl ₄ /(CCl ₄ +gigantol)
AA	1.33#	1.08
9-HETE	2.26	1.77
11-HETE	2.92##	1.70*
5-HETE	4.08###	1.22
8-HETE	+~###	2.11**
12-HETE	6.67#	2.85*
15-HETE	2.58##	1.68
LTC ₄	0.61	1.24
20-HETE	1.12	1.68*
5, 6-DHET	4.45###	1.48**
8, 9-DHET	2.06###	1.34**
PGD2	3.01#	1.17
PGF2	1.06	0.95
PGH2	4.72#	1.11
6-keto-PGF1α	3.58	1.23
TXB2	3.15	1.05
PGE2	1.86	0.98

Gene name	Direction	Sequence	
GAPDH	Forward	AAGTGCATCATCGTTGTTCATACA	
	Reverse	GAGGATACCACTCCCAACAGACC	
PLA2	Forward	GCAGGCAGAGCGATATGATG	
	Reverse	CAGCTCCGTCTCGATCTTCT	
Alox5	Forward	AACGATCACCCACCTTCTGC	
	Reverse	TCGCAGATAAGCTGTTCCCG	
Alox12	Forward	TCCCTCAACCTAGTGCGTTTG	
	Reverse	GTTGCAGCTCCAGTTTCGC	
Alox15	Forward	TGGATGGGATCAAGGCCAAT	
	Reverse	ATCCAAGGGCGTGAAAATCG	
COX2	Forward	CAGGTCATTGGTGGAGAGGTGTATC	
	Reverse	CCAGGAGGATGGAGTTGTTGTAGAG	

Supplementary Table S2. The primers sequences for real-time PCR

Figure S1. Protective effect of gigantol on an HIRI model. (a) An overview of the experimental scheme used for the HIRI. (b) Serum ALT, AST and LDH levels. (c) Representative histological sections of liver tissues stained with H & E. Symbols: black arrow- centrilobular necrosis; rectangle-tumefaction and steatosis; solid triangle-inflammatory infiltration; circle-congestion. CV-centrilobular veins; PV-portal veins. Scale bar = 50 μ m. (d) The quantitative results of H & E staining, as determined by Suzuki scores. Representative results are shown as the mean \pm SD, n=6 mice in each group. ###P<0.001 vs. the sham group; ***P<0.05 vs. the I/R group.

Figure S2. Inhibitory effect of NDGA on the protein expression of lipoxygenases. NDGA (10, 40 mg/kg, dissolved in 10% β -cyclodextrin in saline) was intragastrically administrated for 7 days before CCl₄ induction. (a) The representative western blot bands of 5-LOX, platelet- and leukocyte-type 12-LOX in mouse livers , n=3 experiments. (b-d) The quantitative results are represented as the mean \pm SD, n=6 mice in each group. ^{###}*P*<0.001, [#]*P*<0.05 *vs.* the vehicle group; ***P*<0.01, **P*<0.05 *vs.* the CCl₄ group.

Figure S3. Uncropped images of Figure 1B

Figure S4. Uncropped images of Figure 1D

Figure S5. Uncropped images of Figure 3A

Figure S6. Uncropped images of Figure 5B

Figure S7. Uncropped images of Figure S2