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SUPPLEMENTARY METHODS  

This section provides detailed explanations of select laboratory methods as well as the  

statistical procedures and parameters that were used for data analysis. The R workspace and  

script required to reproduce all analyses can be found at the link below:   

https://github.com/sasugden/Coyote_microbiome   

  

Sample collection  

 Samples were collected in the winters of 2017-2018 and 2018-2019, with all but three  

samples collected between October and April (inclusive) of each year. Road-killed carcasses  

were obtained from the City of Edmonton Animal Care and Control Centre, which retrieves  

roadkill within 24 hours of death. Trapped carcasses were provided by Animal Damage Control,  

which ran fur trapping lines that were checked daily throughout the study period. Lethally  

managed coyotes were collected at the moment of death by the City of Edmonton Police Service.  

All samples were therefore obtained and frozen within 24 hours of death. In addition, average  

monthly temperatures ranged from -19.4°C to 4.6°C during our sampling period, with average  

temperatures above freezing only in October and April. Samples would have begun freezing  

naturally soon after death. Both winters were also marked by similar maximum snow depths (34  

cm in 2017-2018 and 37 cm in 2018-2019). Later analysis confirmed that there were no  

detectable differences in microbiome composition associated with collection season or sample  

preservation (Fig. S16).   

  

DNA extraction and sequencing  

 All DNA extractions were performed manually in single tubes. This approach has been  

shown to reduce the risk of well-to-well contamination in sequencing experiments
1
. We tested  

extracted DNA samples for purity using a Nanodrop spectrophotometer and quantified yield  

using Qubit 1.0 (Thermo-Fisher) before submitting samples for sequencing. All coyote samples  

were submitted on a single 96-well plate with one negative control; the remaining control  

samples were submitted on separate plates.  

  

  

  

https://github.com/sasugden/Coyote_microbiome


 

 

Data processing  

All statistical analyses were performed in R 3.6.2
2
. There were a small number of cases 

where a coyote was missing a physiological measurement; for example, two coyotes were 

decapitated for rabies testing prior to sample acquisition, so body mass and length data could not 

be measured. In these cases, missing data were imputed using linear regressions constructed with 

data from the remaining samples, with available physiological measures as predictors. The 

composite health index was generating using principal components analysis implementing using 

the ‘rda’ function in the R package vegan
3
. Axis scores on the first principal component 

explained 83.7% of variation among individuals and were used as a single index of physical 

condition (Table S6).  

16S rRNA sequence data was processed to generate amplicon sequence variants (ASVs) 

using the R package dada2
4
 following a previously described method

5
. In brief, forward and 

reverse reads were truncated at 240 bp and 160 bp, respectively, and low-quality reads were 

removed using the dada2 default filtering parameters. Because dada2 evaluates error rates for an 

entire sequencing run, and is therefore more accurate when more samples from the same run are 

evaluated together, the 16S rRNA sequence data described in this experiment was processed in 

dada2 alongside data from concurrently sequenced experiments in our lab. The sequence data 

from separate experiments was removed immediately after the dada2 processing pipeline. 

Five coyote fecal samples with fewer than 4,500 reads were excluded from downstream 

analysis; this cutoff threshold was determined based on a visual examination of our read count 

distributions across all samples and supplemented by an evaluation of sample completeness 

measures calculated using iNext
6
. ASVs were then aligned against taxa in the RDP reference 

database (release 11.5)
7
 using the naïve Bayesian classifier method implemented in dada2

8
. We 

removed 11 ASVs that were identified as chloroplasts or mitochondria, as well as 21 ASVs 

identified as contaminants using a prevalence-based detection threshold of 0.25 in the R package 

decontam
9
, and confirmed that contaminants were neither abundant nor prevalent in our 

experimental data (Fig. S13). We then used the package phangorn
10

 to generate a generalized 

time-reversible maximum likelihood phylogenetic tree for our data following previously 

described procedures
11

. The resulting feature table, taxonomic information, and phylogenetic tree 

were imported into the package phyloseq
12

 for analysis. 



 

 

For all downstream analyses, we present results obtained using an unrarefied, centered 

log ratio (CLR)-transformed feature table, as the CLR transformation best accounts for the 

compositional nature of microbiome data
13

. Total ASV richness, Shannon diversity, and Faith’s 

phylogenetic diversity were determined as asymptotic estimates calculated from rarefaction 

curves implemented in the packages iNext
6
 and iNextPD

14
, and the nearest taxon index (NTI) 

was calculated using the package picante
15

. To ensure that our results were robust to the analysis 

method we chose, we additionally averaged ASV abundances across 1,000 rarefactions to the 

minimum remaining library size of 4,559 reads. Alpha- and beta-diversity analyses were 

repeated using this rarefied feature table, with alpha diversity measures calculated directly from 

rarefied data rather than estimated from rarefaction curves.  

 

Regression models 

We used linear regressions to determine if any of our measures of body condition, diet, or 

microbiome richness or diversity varied significantly between urban and rural coyotes, while 

controlling for any effects of sex and age. In these analyses, stomach content volumes were 

natural log-transformed with a pseudocount of 0.01 ml to meet the assumptions of a normal 

distribution. Significance (Type II ANOVA) was measured as p<0.05. The effects of sex, age, 

and location on E. multilocularis infection status were similarly evaluated using a logistic 

regression. Because there was a significant association between E. multilocularis infection and 

coyote location, the effects of E. multilocularis infection on body condition, diet, and 

microbiome alpha diversity were tested while controlling for location in addition to age. All 

regression models were implemented using the ‘lm’ and ‘glm’ functions in R, with the exception 

of models predicting ASV richness, which was fit with a negative binomial distribution with the 

‘glm.nb’ function in the R package MASS
16

. 

To determine which measures were the best indicators of the four microbiome metrics 

(richness, Shannon diversity, Faith’s PD, and NTI), we used GLMs with the microbiome metric 

as the response variable and stable isotope measures, stomach contents, E. multilocularis 

infection status, the physical condition index, and spleen mass as predictors. Continuous 

predictors were centered and standardized prior to model construction, and we confirmed that no 

predictor had a variance inflation factor greater than two. We examined all models subsets using 

the package MuMIn
17

 and evaluated the relative importance of each predictor by 1) summing the 



 

 

AIC model weights for each model in which the predictor appeared
18

 and 2) comparing model-

averaged coefficients across models with a ΔAICc less than two. To control for even slight 

collinearity among predictors, we standardized predictor coefficients by the partial standard 

deviation of their variables before averaging coefficients across top-ranked models, following the 

recommendations of Cade (2015)
19

. 

 

Microbiome community analyses 

 Differential abundance analyses were performed at the phylum, class, order, family, and 

genus levels using the R package ALDEx2
20

. Tests were performed using the ‘aldex.glm’ 

function and a pre-specified model matrix to control for confounding variables. Specifically, 

differential abundance was tested based on 1) sex, controlling for the effect of age; 2) location, 

controlling for the effects of sex and age; and 3) E. multilocularis infection status, controlling for 

the effects of location. 

 Random forest models trained to predict coyote location from CLR-transformed taxon 

abundances were implemented using the R package randomForest
21

. Models were run with 

1,000 trees and included only ASVs with an average relative abundance greater than 0.01%.  

 We used an Aitchison distance-based permutational multivariate analysis of variance 

(PERMANOVA) with 1,000 permutations to test for differences in overall microbiome 

composition due to sex, age, location, or E. multilocularis infection. This analysis was 

implementing using the ‘adonis’ function in the R package vegan. We also mapped continuous 

diet and health measures onto a principal component analysis using the ‘envfit’ function in 

vegan. These analyses were repeated using the Bray-Curtis and Jaccard distance calculated from 

rarefied data and using the weighted and unweighted UniFrac distances
22

 to test for potential 

phylogenetic clustering effects.  

 

Relationships with taxon abundances 

Multivariate associations among CLR-transformed abundances, short- and long-term diet 

measures, the physical condition index, spleen mass, and age were investigated using regularized 

canonical correlation analysis (rCCA) with three components, implemented in the package 

mixOmics
23

. We used correlation distance-based hierarchical clustering on the resulting 

similarity matrix to identify taxa that responded similarly to the various explanatory variables 



 

 

and determined the importance of individual taxa based on the sum of the absolute values of their 

relevance scores.  

Structural equation models were implemented in the R package lavaan
24

. Models were 

designed to test for causal linkages among location, diet, taxon abundances, physical condition 

score, and spleen mass. Where necessary, variables included in each model were log-transformed 

or scaled to meet the assumptions of homogenous variance and a normal distribution: the 

volumes of prey and anthropogenic food in the stomach were log-transformed after the addition 

of a pseudocount of 0.01 ml and then rescaled, and ASV richness was rescaled without 

transformation. To maintain a minimum 10:1 ratio of variables to observations, we limited 

models to nine variables. For each taxon cluster identified in the rCCA, we constructed initial 

models for evaluation that represented general hypotheses of causal linkages among variables, 

and we specified residual correlations among all microbiome features. Additional paths were 

added to the models as recommended by modification indices and non-significant paths (p>0.1) 

were removed. The final models were selected when adding or removing an additional path 

either caused model AIC to increase or caused other fit parameters to exceed conventional 

thresholds, even if the path was non-significant. Model coefficients were standardized in the top 

models to facilitate comparison among paths. 
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SUPPLEMENTARY TABLES & FIGURES 

Table S1: Summary of coyotes included in this study. 

Numbers indicate the numbers of coyotes collected from each location, sex, and source. 

“Managed” refers to coyotes that were lethally managed due to conflict or conflict-prone 

behavior. 

  Urban   Rural 
Totals 

  M F 
 

M F 

Trapped 0 0 
 

34 30 64 

Roadkill 14 11 
 

0 0 25 

Managed 3 2   1 0 6 

Totals 17 13  35 30 95 

 

 

Table S2: Sex-based differences among samples. 

The mean and standard deviation of all measures of body condition, diet, and microbiome 

diversity are shown for each sex. For statistical comparisons, see Table 1 in the main manuscript. 

  Mean Value         

  Male Female   t df p 

Mass (kg) 11.71 9.42 
 

-5.40 93 < 0.001 

Body size (cm) 88.58 84.07 
 

-3.64 93 < 0.001 

Girth (cm) 48.34 44.30 
 

-4.15 93 < 0.001 

Age (yr) 2.85 1.81 
 

-2.31 93 0.023 

Spleen size (g/kg) 1.87 1.94 
 

0.53 93 0.597 

KFI 0.54 0.44 
 

-1.55 93 0.124 

Robustness index 0.04 -0.05 
 

-4.36 93 < 0.001 

       δ13
C (‰) -22.42 -22.49 

 
-0.31 93 0.757 

δ
15

N (‰) 8.97 8.75 
 

-1.55 93 0.125 

Vol. anthro food (ml) 22.51 33.99 
 

0.71 93 0.479 

Vol. prey (ml) 174.31 150.87 
 

-0.75 93 0.456 

Diet diversity 0.27 0.27 
 

0.02 93 0.948 

       ASV Richness 120.61 138.95 
 

1.49 86 0.139 

Shannon index 2.74 2.83   0.55 86 0.585 

 

 

 



 

 

Table S3: ANOVA results evaluating the effects of sex, age, and habitat use on the 

prevalence of dietary items and E. multilocularis. 

The prevalence of dietary items and E. multilocularis was modeled using a logistic regression 

with sex, age, and habitat use as predictors. Significance of each term was tested using an 

ANOVA. 

  
Prevalence 

(%)   Sex   Age   Location 

  Urban Rural   F df p   F df p   F df p 

Empty stomach 20 13.8 
 

0.11 1 0.746 
 

0.67 1 0.413 
 

0.80 1 0.371 

Anthropogenic food 50 53.8 
 

0.00 1 0.992 
 

3.63 1 0.057 
 

0.32 1 0.572 

Natural prey 84.6 70 
 

1.44 1 0.230 
 

0.00 1 0.948 
 

2.88 1 0.090 

Vegetation 80 76.9 
 

0.20 1 0.657 
 

2.26 1 0.133 
 

0.22 1 0.638 

E. multilocularis 53.3 35.4   0.60 1 0.438   6.57 1 0.010   2.27 1 0.132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S4: PERMANOVA results evaluating the effects of age, sex, and habitat use on 

microbiome composition. 

Permutational multivariate analyses of variance were performed with 1,000 permutations. 

    PERMANOVA 

Variable df F R
2
 p 

Aitchison 
    

 
Sex 1 1.091 0.012 0.233 

 
Age 1 1.830 0.020 0.003 

 
Location 1 2.831 0.032 0.001 

      Bray-Curtis 
    

 
Sex 1 1.044 0.012 0.344 

 
Age 1 1.450 0.016 0.103 

 
Location 1 4.026 0.044 0.001 

      Jaccard 
    

 
Sex 1 1.059 0.012 0.311 

 
Age 1 1.373 0.015 0.001 

 
Location 1 2.752 0.031 0.001 

      Weighted UniFrac 
   

 
Sex 1 1.445 0.016 0.181 

 
Age 1 1.324 0.014 0.204 

 
Location 1 4.856 0.053 0.002 

      Unweighted UniFrac 
  

 
Sex 1 1.226 0.013 0.186 

 
Age 1 2.273 0.025 0.005 

  Location 1 4.213 0.046 0.001 



 

 

Table S5: Structural equation model path and fit statistics. 

Three separate structural equation models were run testing for predicted relationships among habitat use, diet, microbiome 

composition, health, and E. multilocularis infection status. Taxa were selected for these models based on the results of a regularized 

canonical correlation analysis (rCCA). Models were run based on based on taxa implicated for their relationships with (1) 

anthropogenic food consumption; (2) protein consumption; and (3) spleen mass. From the proposed models, non-significant paths 

were removed until the removal of an additional path caused the model AIC to increase. For each model, the model chi-squared, 

degrees of freedom (df), and p-value are provided, along with the standardized root mean residual (SRMR), root mean square error of 

approximation (RMSEA), comparative fit index (CFI), and non-normed fit index (NNFI). In addition, R
2
 values for each endogenous 

variable and standardized coefficients and p-values for each path are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  χ2 11.067 SRMR 0.047   
 

  χ2 14.477 SRMR 0.067   
 

  χ2 6.87915 SRMR 0.036   

 
df 19 RMSEA 0 

   
df 19 RMSEA 0 

   
df 16 RMSEA 0 

 

 
p 0.922 CFI 1 

   
p 0.755 CFI 1 

   
p 0.97552 CFI 1 

 

   
NNFI 1.118 

     
NNFI 1.060 

     
NNFI 1.110 

             
 

            
 

            

                    R
2
 Response Predictor Coef. p 

 
R

2
 Response Predictor Coef. p 

 
R

2
 Response Predictor Coef. p 

7.2 Health 
    

6.7 Health 
    

8.0 Health 
   

  
Streptococcus -0.194 0.075 

   
Location -0.185 0.076 

   
Location -0.291 0.009 

  
ASV Richness -0.261 0.017 

   
δ

15
N 

 
0.155 0.137 

   
Lachnospiraceae 0.210 0.058 

27.5 Spleen mass 
   

26.1 Spleen mass 
    

23.6 Spleen mass 
   

  
Location 0.494 < 0.001 

   
Location 

 
0.463 < 0.001 

   
Location 0.439 < 0.001 

  
E. multilocularis -0.166 0.068 

   
E. multilocularis -0.107 0.281 

   
E. multilocularis -0.151 0.113 

  
Enterococcus -0.157 0.083 

   
Anaerobiospirillum -0.231 0.054 

   
Erysipelotrichaceae 0.121 0.232 

34.1 δ
13

C 
      

Sutterella 0.307 0.011 
 

34.1 δ
13

C 
   

  
Location 0.584 < 0.001 

 
2.2 δ

15
N 

       
Location 0.584 < 0.001 

33.9 ASV Richness 
     

Location 
 

-0.148 0.162 
 

17.7 Erysipelotrichaceae 
  

  
Vol. anthro 0.1 0.169 

 
11.6 Vol. prey 

      
Location 0.400 < 0.001 

  
δ

13
C -0.105 0.272 

   
Spleen mass -0.331 0.001 

   
Vol. anthro 0.138 0.073 

  
Location 0.632 < 0.001 

 
11.5 Fusobacterium 

   
12.2 Coriobacteriaceae 

  2.7 Streptococcus 
     

Location 
 

-0.190 0.014 
   

Location 0.335 0.001 

  
Vol. anthro 0.165 0.018 

   
δ

15
N 

 
0.254 0.012 

   
Vol. anthro -0.093 0.219 

9.3 Enterococcus 
   

6.0 Anaerobiospirillum 
   

15.6 Lachnospiraceae 
  

  
Vol. anthro 0.305 0.003 

   
δ

15
N 

 
0.246 0.017 

   
Location 0.395 < 0.001 

5.0 E. multilocularis 
   

4.6 Sutterella 
    

6.9 E. multilocularis 
  

  
Location 0.223 0.032 

   
δ

15
N 

 
0.213 0.041 

   
Location 

 
0.316 0.013 

      
8.4 E. multilocularis 

         

         
Location 

 
0.271 0.009 

                         Vol. prey 0.108 0.316               



 

 

Table S6: Pearson’s correlation coefficients between principal component analysis axis 

scores and the variables used in the analysis. 

Principal components analysis (PCA) was performed for mass, body size, girth, and the kidney 

fat index (KFI). The first principal component represented all four variables and explained 

83.7% of among-sample variation, and was therefore used as a single composite index of health 

for downstream statistical analyses. 

  PC1 (83.7%)   PC2 (14.4%) 

  R p   R p 

Mass (kg) 0.839 < 0.001 
 

-0.280 0.006 

Body size (cm) 0.949 < 0.001 
 

0.315 0.002 

Girth (cm) 0.876 < 0.001 
 

-0.477 < 0.001 

KFI 0.307 0.002   -0.265 0.010 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S1: Relationship between coyote age and E. multilocularis infection. 

Coyotes infected with E. multilocularis are more likely to be younger. This trend is more evident 

in rural coyotes. Letters indicate significant pairwise differences among samples (Tukey’s post 

hoc test, p<0.05).  

 

 

 

 

 

 

 



 

 

 

Fig. S2: Effects of E. multilocularis infection on microbiome alpha-diversity in urban and 

rural coyotes. 

Coyotes infected with E. multilocularis had increased ASV richness, Shannon diversity, and 

phylogenetic diversity in their fecal microbiome. This effect was more pronounced in rural 

coyotes; urban coyotes already had higher values for these measures, and E. multilocularis 

infection did not further increase them. Letters indicate significant pairwise differences among 

samples (Tukey’s post hoc test, p<0.05).  

 

 

 

 



 

 

 

Fig. S3: Strongest predictors of microbiome alpha-diversity. 

(a) ASV richness, (b) Shannon diversity, (c) Faith’s phylogenetic diversity, and (d) the nearest 

taxon index (NTI) were each modeled as a function of measures of coyote habitat use, E. 

multilocularis infection, diet, and health. All possible model subsets were considered. 

Coefficients (y-axes) were averaged across all top-ranked models (ΔAICC < 2) after being 

standardized by their partial standard deviation, and predictors were ordered along the x-axis 

based on the sum of the AIC model weights of the models in which they appeared (size of 

points). No coefficients are shown for predictors that did not appear in the top-ranked models.  



 

 

 

Fig. S4: Effects of an empty stomach on alpha diversity in urban and rural coyotes. 

Coyotes with no food in their stomachs exhibited lower ASV richness, Shannon diversity, and 

Faith’s phylogenetic diversity (PD) than coyotes with evidence of a recent meal. There was 

limited effect on the nearest taxon index (NTI). This effect was evident in both urban and rural 

coyotes. Letters indicate significant pairwise differences among samples (Tukey’s post hoc test, 

p<0.05).  

 

 

 



 

 

 

Fig. S5: Differential abundance based on sex, age, or E. multilocularis infection 

Differential abundance was tested using ALDEx2 for (a) sex, controlling for age; (b) E. 

multilocularis infection status, controlling for location; and (c) age, controlling for sex. In (a) 

and (b), genera are ranked by the Hedge’s g measure of effect size between groups. In (c), genera 

are ranked by their coefficient in the generalized linear model produced by ALDEx2. No taxa 

were significantly differentially abundant (p<0.05) after the Benjamini-Hochberg adjustment for 

multiple corrections. 

 

 



 

 

 

Fig. S6: Discriminatory ASVs in a random forest model predicting coyote habitat use. 

A random forest model was trained to predict coyote habitat use based on fecal microbiome 

composition. Discriminatory features (ASVs) were ranked by their mean decrease in the Gini 

coefficient. Point size indicates mean relative abundance (%) and colors indicate whether the 

ASV was more abundant in rural (green) or urban (purple) coyotes. 

 

 

 

 

 



 

 

 

Fig. S7: Differences between correctly and incorrectly classified coyotes 

(a) Diet, health, and microbiome measures were compared between urban coyotes that were 

correctly classified as urban in the random forest models and urban coyotes that were classified 

as rural. Comparisons where p<0.05 are indicated by asterisks (**). (b) In addition, classification 

accuracy was predicted in a logistic regression model using the same diet, health, and 

microbiome measures. Predictor coefficients were averaged across all model subsets with ΔAICC 

< 2 and predictors were ranked based on the sum of the weights of the models in which they 

appeared. 



 

 

 

Fig. S8: Alternative distance metrics for evaluating coyote microbiome composition. 

Effects of location, diet, and health and microbiome composition were tested using the (a) Bray-

Curtis, (b) Jaccard, (c) weighted UniFrac, and (d) unweighted UniFrac distance metrics 

calculated from rarefied data. Vectors were fit to principal coordinate analyses using the envfit 

function in the R package ‘vegan,’ and only significant vectors (p<0.05) are shown. 

 



 

 

 

Fig. S9: Effects of sex and E. multilocularis infection on microbiome composition. 

The Aitchison distance-based ordination from Fig. 2e is shown here colored by (a) sex and (b) E. 

multilocularis infection status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S10: Generalized linear models for taxa connecting anthropogenic food consumption to health. 

The CLR-transformed abundances of genera identified using a regularized canonical correlation analysis (see Fig. 4, main text) were 

used as a response variable in generalized linear models with diet and health measures as predictors. All model subsets were 

evaluated. Coefficients were averaged across top-ranked models (ΔAICc < 2) after being standardized by their partial standard 

deviation, and predictors were ranked based on the sum of the AIC model weights of the models in which they appear. For each taxon, 

model-averaged coefficients are shown, ranked along the x-axis in order of decreasing sums of weights. 

 

 



 

 

 

Fig. S11: Generalized linear models for taxa connecting protein consumption to health. 

Generalized linear models for genera associated with protein consumption were evaluated in the same way as Fig. S11. 

 

 



 

 

 

Fig. S12: Generalized linear models for taxa associated with spleen mass. 

Generalized linear models for genera associated with spleen mass were evaluated in the same way as Fig. S11. 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S13: Sample read count distribution. 

(a) Histogram of total read counts from each sample, after sequence pre-processing and ASV 

assignment and prior to any rarefaction or abundance-filtering. The five samples with fewer than 

4,500 reads were excluded from all downstream analyses. (b) Histogram of sample completeness 

calculated using iNext. Samples with fewer than 4,500 reads had sample completeness values 

<90%. (c) Prevalence of detected contaminants in negative controls and experimental samples, 

with 21 contaminants removed from future analysis highlighted in red. (d) Mean relative 

abundance of the 21 putative contaminants. 



 

 

 

Fig. S14: Sequencing control analysis. 

(a) Number of reads in each of the four negative control samples. Low read counts suggest 

minimal contamination, and these negative controls were used as an input to the package 

decontam to remove 22 contaminant ASVs from coyote samples. (b) Genus-level mock 

community relative abundances. We constructed a mock community from DNA available in our 

lab; the community contained 50% Staphylococcus aureus, 30% Vibrio fluvialis, 10% Proteus 

vulgaris, 5% Escherichia coli, and 2.5% each of Sphingomonas wittichii and Methylomicrobium 

album strain BG8. Those abundances were largely preserved in the sequencing results. 

 

 



 

 

 

Fig. S15: Collinearity between age and health. 

Scatter plot showing best-fit linear regressions between age and health. Due to the strong 

correlation between age and health, and the limited spread of ages, age was not included as a 

control in models predicting health. In natural environments, only healthy coyotes live to be old. 

 

 



 

 

 

Fig. S16: Sample collection and preservation do not affect microbiome composition. 

(a) Percent of total sample (95 coyotes) collected in the winters of 2017-2018 and 2018-2019, 

separated by month (bottom) in relation to the average monthly temperature (top). (b) 

Comparison of alpha-diversity measure for lethally managed coyotes, which were frozen shortly 

after death, and roadkill coyotes, which were frozen within 24 hours of death. (c) Aitchison 

distance-based principal components analysis (PCA) comparing lethally managed and roadkill 

coyotes. (d) Aitchison distance-based PCA comparing roadkill coyotes captured during the 

winter (November-April) and those captured in the shoulder season (August-October, May). 

There are no clear indicators of variability due to the differences in sample preservation 

associated with sample source or collection method. 


