Supplementary Information

Comparison of computational chemistry methods for the discovery of quinone-based electroactive compounds for energy storage

Qi Zhang^{1,2,3}, Abhishek Khetan^{1,2}, Süleyman Er^{1,2*}

¹ DIFFER – Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands

² CCER – Center for Computational Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands

³ Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

* E-mail: <u>s.er@differ.nl</u>

Explanation of the abbreviations used in the below tables:

SMILES: simplified molecular-input line-entry system DFT: density functional theory SEQM: semi-empirical quantum mechanics DFTB: density functional tight-binding FF: Force Field OPT: geometry optimization SPE: single-point energy SOL : implicit aqueous medium R^2 : the coefficient of fit RMSE : the root mean squared error

Figure S1. Performance of (a) ΔU_{rxn} and (b) ΔG_{rxn}^{o} descriptors for the prediction of experimentally measured redox potentials, E_{exp}^{o} . The DFT calculations were performed using the PBE functional.

Figure S2. Performance comparisons of different DFT exchange-correlation functionals for the prediction of experimentally measured redox potentials, E_{exp}^{o} . The bar plot shows R² values for all the functionals considered in this work. The color green represents both OPT and SPE in gas-phase, the color orange represents OPT in gas-phase followed by SPE with SOL (i.e., including implicit aqueous solvation), and color blue represents both OPT and SPE with SOL.

Figure S3. The effects of (a) –SO₃H and (b) –OH chemical functionalization groups on the redox potentials of anthraquinone-derivatives.

Figure S4. Performance comparisons of low-level methods: FF, SEQM and DFTB. (a) shows R^2 for SPEs calculated at these three different levels of theory. Similarly, (b) shows R^2 for DFT calculated SPE data on the geometries obtained from these three different levels of theory. In (b), the solid bars show SPE results without the implicit solvation effect, whereas the dashed bars show the results with the implicit solvation effects taken into account.

#	Molecule	Smiles	E ^o exp	E ^o pre_g	E ^o pre_s	E ^o pre_aq	Reference
1		O=C1C(=O)C=C C=C1	0.831	0.768	0.764	0.765	[4]
2		O=C1C(=O)C=Cc (c12)cccc2	0.547	0.574	0.535	0.531	[4]
3	, V	O=C1C=CC(=O) C=C1	0.699	0.617	0.671	0.673	[4]
4	C Ļ	O=C1C=CC(=O)c (c12)cccc2	0.470	0.436	0.462	0.460	[4]
5	ĊĻĊ	c1cccc(c12)C(=O) c3c(C2=O)cccc3	0.090	0.178	0.158	0.155	[4]
6	Š	c1cccc(c12)c3c(C (=O)C2=O)cccc3	0.442	0.477	0.420	0.418	[4]
7		O=S(=O)(O)c(c1 O)ccc(c12)C(=O) c3c(C2=O)ccc(c3 O)S(=O)(=O)O	0.116	0.246	0.185	0.154	[3]
8	но,5 С Зо,н	c1cc(S(=O)(=O)O)cc(c12)C(=O)c3c (C2=O)ccc(c3)S(=O)(=O)O	0.21	0.280	0.294	0.253	[1]
9	SO ₃ H	c1cccc(C2=O)c1C (=O)c(c23)cc(cc3) S(=O)(=O)O	0.187	0.227	0.234	0.211	[1]

Table S1. A summary of 2D structures, SMILES representations, experimental and predicted redoxpotentials (V versus SHE) of the compounds.

10	С С С С С С С С С С С С С С С С С С С	c1cccc(C2=O)c1C (=O)c(c23)cc(S(= O)(=O)O)c(O)c3 O	0.082	0.070	0.076	0.091	[1]
11	OH SO ₃ H SO ₃ H OH	c1cccc(C2=O)c1C (=O)c(c23)c(O)c(CS(=O)(=O)O)c(c 3O)CS(=O)(=O)O	0.02	0.061	0.046	0.053	[1]
12		c1cc(S(=O)(=O)O)c(O)c(c12)C(=O) c3c(C2=O)ccc(c3 O)S(=O)(=O)O	0.12	0.192	0.176	0.184	[1]
13	OH SO ₃ H	Oc1c(S(=O)(=O) O)cc(O)c(c12)C(= O)c3c(C2=O)cccc 3	0.09	0.076	0.074	0.055	[3]
14	CH ₃ CH ₃ CH ₃	c1cccc(c12)C(=O) C(=C(C2=O)O)C C=C(C)C	0.333	0.297	0.291	0.306	[2]
15	СССОН	c1cccc(c12)C(=O) C(O)=CC2=O	0.308	0.274	0.333	0.332	[2]
16	он	c1c(O)ccc(c12)C(=O)c3c(C2=O)ccc (c3)O	0.039	0.122	0.087	0.088	[2]
17		c1ccc(O)c(c12)C(=O)c3c(C2=O)ccc c3O	-0.03	-0.016	-0.003	-0.004	[2]
18		Oc1cccc(c12)C(= O)c3c(C2=O)cccc 3O	-0.017	-0.046	-0.010	-0.010	[2]

19	C C C C C C C C C C C C C C C C C C C	Oc1c(O)ccc(c12) C(=O)c3c(C2=O) cccc3	0.005	0.015	0.020	0.017	[2]
20		Oc1ccc(O)c(c12) C(=O)c3c(C2=O) cccc3	-0.001	-0.074	-0.049	-0.046	[2]
21	он он	c1ccc(O)c(c12)C(=O)c3c(C2=O)cc(C(=O)O)cc3O	0.041	0.011	0.055	0.059	[2]
22	он он он	c1ccc(O)c(c12)C(=O)c3c(C2=O)cc(CO)cc3O	-0.008	-0.025	-0.008	-0.039	[2]
23	н _з с он	c1c(C)cc(O)c(c12)C(=O)c3c(C2=O) cc(O)cc3O	-0.040	-0.061	-0.047	-0.041	[2]
24		Oc1ccc(O)c(c12) C(=O)c3c(C2=O) ccc(O)c3O	-0.084	-0.197	-0.165	-0.165	[2]
25	но	OC1=CC(=O)C(O)=CC1=O	0.382	0.264	0.364	0.362	[2]
26	F F F	O=C1C(F)=C(F)C (=O)C(F)=C1F	0.707	0.618	0.645	0.653	[2]
27		O=C1C(O)=C(Cl) C(=O)C(=C1Cl)O	0.394	0.371	0.374	0.381	[2]

28		O=C1C(Cl)=C(Cl)C(=O)C(Cl)=C1 Cl	0.700	0.641	0.653	0.659	[2]
29	но он	O=C1C(O)=C(O) C(=O)C(O)=C1O	0.280	0.368	0.334	0.334	[2]
30	OH Soosh OH OH	O=S(=O)(O)CCS c(c1O)c(SCCS(= O)(=O)O)c(O)c(c 12)C(=O)c3c(C2= O)cccc3	0.113	0.185	0.085	0.102	[3]
31	C C C C C C C C C C C C C C C C C C C	c1ccc(S(=O)(=O) O)c(c12)C(=O)c3 c(C2=O)cccc3	0.195	0.257	0.182	0.183	[3]
32		c1ccc(S(=O)(=O) O)c(c12)C(=O)c3 c(C2=O)cccc3S(= O)(=O)O	0.206	0.288	0.183	0.196	[3]
33	но ₃ 5 у сн	O=S(=O)(O)c(cc1)cc(c12)C(=O)c3c (C2=O)c(O)c(O)c (c3)S(=O)(=O)O	0.133	0.125	0.138	0.130	[3]
34	HO ₃ S HO ₃ S HO ₃ H	c1ccc(S(=O)(=O) O)c(c12)C(=O)c3 c(C2=O)c(S(=O)(=O)O)ccc3	0.239	0.331	0.197	0.199	[3]
35	HO ₃ S	O=S(=O)(O)c(cc1)cc(c12)C(=O)c3c (C2=O)cc(S(=O)(=O)O)cc3	0.228	0.275	0.300	0.360	[3]

36	р С So ₃ н	c1ccc(S(=O)(=O) O)c(c12)C(=O)C= CC2=O	0.532	0.509	0.478	0.504	[3]
37	Ho ₃ s	O=S(=O)(O)c(cc1)cc(c12)C(=O)C= CC2=O	0.534	0.498	0.549	0.550	[3]
38	С С С	O=C1C=CC(=O) C(O)=C1	0.594	0.487	0.559	0.560	[3]
39	CH ₃	CC1=CC(=O)C= CC1=O	0.641	0.593	0.643	0.640	[3]
40	CI	0=C1C=CC(=0) C(Cl)=C1	0.71	0.654	0.678	0.679	[3]
41	So ₃ H	O=c1c(=O)c(S(= O)(=O)O)cc(c2= O)c1c(=O)c(c23)c ccc3	1.21	1.098	1.119	1.072	[3]
42	C ↓ ↓ S SO ₃ H	c1cccc(c12)c(=O) c3c(c2=O)c(=O)c(SCCS(=O)(=O)O) c(c3=O)SCCS(=O)(=O)O	1.08	1.100	1.106	1.108	[3]
43	HO ₃ S	O=c1c(S(=O)(=O)O)cc(=O)c(c2=O)c1c(=O)c(c23)cc cc3	1.05	1.239	1.222	1.228	[3]

Table S2. Performance comparisons of 11 different exchange-correlation functionals for the prediction of experimentally measured redox potentials. DFT_g represents both OPT and SPE in the gas-phase; DFT_s represents OPT in the gas-phase followed by SPE in SOL; DFT_{aq} represents both OPT and SPE in SOL.

Scheme for OPT and SPE	DI	ETg	DF	Ts	DFT _{aq}		
DFT methods	R ² RMSE (V)		R ²	RMSE (V)	R ²	RMSE (V)	
LDA	0.926	0.091	0.935	0.085	-	-	
PBE	0.954	0.072	0.977	0.051	0.975	0.053	
PBE-D3	0.953	0.073	0.977	0.050	-	-	
BLYP	0.960 0.067		0.979	0.048	-	-	
BLYP-D3	0.958	0.068	0.980	0.047	-	-	
B3LYP	0.966	0.062	0.982	0.045	0.979	0.049	
B3LYP-D3	0.964	0.064	0.982	0.045	-	-	
PBE0	0.966	0.062	0.983	0.043	-	-	
PBE0-D3	0.965	0.063	0.984	0.043	-	-	
HSE06	0.967	0.061	0.983	0.044	-	-	
M08-HX	0.971	0.057	0.983	0.044	0.981	0.047	

Table S3. Performance comparisons of nine different SEQM methods for the prediction of experimentally measured redox potentials. $SEQM_g$ represents OPT or SPE in gas-phase. PBE_g , $B3LYP_g$ and $M08-HX_g$, represent SPE calculations in gas-phase using these three exchange-correlation functionals.

Scheme for	OPT	OPT:SEQM _g		OPT:SEQM _g		OPT:SEQM _g		OPT:SEQM _g	
OPT and SPE	SPE:SEQM _g		SPE:PBE _g		SPE:B3LYP _g		SPE:M08-HXg		
Method	\mathbb{R}^2	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
AM1	0.899	0.107	0.963	0.064	0.958	0.068	0.955	0.071	
MNDO	0.773	0.159	0.840	0.134	0.852	0.129	0.860	0.125	
MNDOD	0.748	0.168	0.847	0.131	0.860	0.125	0.867	0.122	
PM3	0.864	0.123	0.952	0.073	0.957	0.070	0.956	0.070	
PM6	0.863	0.124	0.928	0.090	0.916	0.097	0.891	0.111	
PM6-D3	0.870	0.121	0.919	0.095	0.907	0.102	0.895	0.108	
PM6-D3H4X	0.877	0.117	0.947	0.077	0.943	0.080	0.933	0.087	
PM7	0.906	0.103	0.954	0.072	0.961	0.066	0.967	0.061	
RM1	0.846	0.131	0.958	0.069	0.956	0.071	0.952	0.074	

Table S4. Performance comparisons of nine different SEQM methods for the prediction of experimentally measured redox potentials. $SEQM_g$ represents OPT or SPE in gas-phase. PBE_s, B3LYP_s and M08-HX_s, represent SPE calculations in SOL using these three exchange-correlation functionals.

Scheme for	OP	T:SEQM _g	OPT:	SEQMg	OPT: SEQM _g		OPT: SEQM _g	
OPT and SPE	$SPE:SEQM_g$		SPE: PBE _s		SPE: B3LYPs		SPE: M08-HXs	
Method	R ²	RMSE(V)	\mathbb{R}^2	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
AM1	0.899	0.107	0.969	0.059	0.967	0.061	0.960	0.067
MNDO	0.773	0.159	0.892	0.110	0.902	0.105	0.906	0.102
MNDOD	0.748	0.168	0.888	0.112	0.898	0.107	0.902	0.105
PM3	0.864	0.123	0.975	0.053	0.976	0.052	0.974	0.054
PM6	0.863	0.124	0.916	0.097	0.892	0.110	0.849	0.130
PM6-D3	0.870	0.121	0.920	0.095	0.880	0.116	0.867	0.122
PM6-D3H4X	0.877	0.117	0.949	0.076	0.931	0.088	0.905	0.103
PM7	0.906	0.103	0.976	0.051	0.972	0.056	0.969	0.059
RM1	0.846	0.131	0.959	0.068	0.953	0.072	0.940	0.082

Scheme for	OPT:SEQM _{aq}		OPT: SEQM _{aq}		OPT: SEQM _{aq}		OPT: SEQM _{aq}	
OPT and SPE	$SPE:SEQM_{aq}$		SPE: PBE _g		SPE: B3LYP _g		SPE: M08-HX _g	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
AM1	0.886	0.113	0.956	0.070	0.947	0.077	0.937	0.084
MNDO	0.394	0.261	0.654	0.197	0.649	0.198	0.563	0.221
MNDOD	0.820	0.142	0.772	0.160	0.793	0.152	0.812	0.145
PM3	0.861	0.125	0.925	0.092	0.930	0.089	0.930	0.088
PM6	0.927	0.090	0.919	0.095	0.919	0.095	0.914	0.098
PM6-D3	0.926	0.091	0.934	0.086	0.925	0.092	0.919	0.095
PM6-D3H4X	0.909	0.101	0.929	0.089	0.923	0.093	0.918	0.096
PM7	0.915	0.098	0.943	0.080	0.944	0.079	0.950	0.075
RM1	0.869	0.121	0.928	0.090	0.928	0.090	0.923	0.093

Table S5. Performance comparisons of nine different SEQM methods for the prediction of experimentally measured redox potentials. $SEQM_{aq}$ represents OPT or SPE in SOL. PBE_g , $B3LYP_g$ and M08-HX_g, represent SPE calculations in gas-phase with three exchange-correlation functionals.

Scheme for	OPT	OPT:SEQM _{aq}		OPT: SEQM _{aq}		OPT: SEQM _{aq}		OPT: SEQM _{aq}	
OPT and SPE	SPE:SEQM _{aq}		SPE: PBE _s		SPE: B3LYP _s		SPE: M08-HX _s		
Method	R ²	RMSE (V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
AM1	0.886	0.113	0.961	0.066	0.951	0.074	0.941	0.082	
MNDO	0.394	0.261	0.815	0.144	0.796	0.151	0.846	0.131	
MNDOD	0.820	0.142	0.870	0.121	0.886	0.113	0.901	0.105	
PM3	0.861	0.125	0.957	0.069	0.963	0.065	0.965	0.062	
PM6	0.927	0.090	0.940	0.082	0.938	0.084	0.926	0.091	
PM6-D3	0.926	0.091	0.953	0.073	0.940	0.082	0.927	0.090	
PM6-D3H4X	0.909	0.101	0.948	0.076	0.941	0.081	0.937	0.084	
PM7	0.915	0.098	0.962	0.065	0.961	0.066	0.967	0.060	
RM1	0.869	0.121	0.947	0.077	0.944	0.079	0.928	0.090	

Table S6. Performance comparisons of nine different SEQM methods for the prediction of experimentally measured redox potentials. SEQM_{aq} represents OPT or SPE in SOL. PBE_s, B3LYP_s and M08-HX_s, represent SPE calculations in SOL with three exchange-correlation functionals.

Table S7. Performance comparisons of FF(OPLS3e) in combination with different DFT methods for the prediction of experimentally measured redox potentials. FF_g represents OPT or SPE in gas-phase. FF_{aq} represents OPT or SPE in SOL. PBE_g , $B3LYP_g$ and M08-HX_g, represent SPE calculations in gas-phase with three DFT functionals. PBE_s , $B3LYP_s$ and M08-HX_s represent SPE calculation in SOL with three exchange-correlation functionals.

Scheme for	OP	T:FFg	O	PT: FF _g	OP	T: FFg	OPT	C: FFg	
OPT and SPE	SP	E:FF _g	SP	E: PBE _g	SPE: B3LYPg		SPE: N	108-HX _g	
Method	R ²	R ² RMSE(V)		RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
OPLS3e	0.596 0.213		0.947 0.077		0.945 0.079		0.936	0.085	
Scheme for	OPT:FF _g		Ol	OPT: FF _g		OPT: FF _g		OPT: FF _g	
OPT and SPE	SPE:FF _g		SP	E: PBE _s	SPE:	B3LYP _s	SPE: N	108-HX _s	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
OPLS3e	0.596	0.213	0.969	0.059	0.957	0.070	0.945	0.078	
Scheme for	OP	Γ:FF _{aq}	OPT: FF _{aq}		OP'	T: FF _{aq}	OPT	: FF _{aq}	
OPT and SPE	SPI	E:FF _{aq}	SPE: PBE _g		SPE:	B3LYP _g	SPE: N	108-HX _g	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
OPLS3e	0.06	0.325	0.939	0.083	0.933	0.087	0.926	0.091	
Scheme for	OP	Γ:FF _{aq}	OF	PT: FF _{aq}	OPT: FF _{aq}		OPT: FF _{aq}		
OPT and SPE	SPE:FF _{aq}		SP	E: PBE _s	SPE: B3LYPs		SPE: N	108-HX _s	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	
OPLS3e	0.06	0.325	0.964	0.063	0.951	0.074	0.938	0.083	

Table S8. Performance comparisons of two different DFTB methods for the prediction of experimentally measured redox potentials. $DFTB_g$ represents OPT or SPE in gas-phase. PBE_g , $B3LYP_g$ and M08-HX_g, represent SPE calculations in gas-phase with three exchange-correlation functionals.

Scheme for	OPT:DFTBg		OPT: DFTBg		OPT: DFTBg		OPT: DFTBg	
OPT and SPE	SPE:DFTB _g		SPE: PBEg		SPE: B3LYP _g		SPE: M08-HX _g	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ² RMSE(V)		R ²	RMSE(V)
DFTB-D3	0.953	0.072	0.960	0.067	0.964	0.063	0.964	0.063
GFN1-xTB	0.944	0.079	0.949	0.075	0.961	0.066	0.965	0.062

Table S9. Performance comparisons of two different DFTB methods for the prediction of experimentally measured redox potentials. $DFTB_g$ represents OPT or SPE in gas-phase. PBE_s , $B3LYP_s$ and M08-HX_s, represent SPE calculations in SOL with three exchange-correlation functionals.

Scheme for	OPT:DFTB _g		OPT: DFTBg		OPT: DFTB _g		OPT: DFTB _g	
OPT and SPE	SPE:DFTBg		SPE: PBE _s		SPE: B3LYPs		SPE: M08-HX _s	
Method	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)	R ²	RMSE(V)
DFTB-D3	0.953	0.072	0.978	0.049	0.974	0.054	0.968	0.060
GFN1-xTB	0.944	0.079	0.977	0.051	0.981	0.046	0.976	0.052

References for Supporting Information

- Gerhardt, M. R. et al. Anthraquinone Derivatives in Aqueous Flow Batteries. *Adv. Energy Mater.* 7, 1601488 (2017).
- Wedege, K., Dražević, E., Konya, D. & Bentien, A. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. *Sci. Rep.* 6, 1–13 (2016).
- Tabor, D. P. *et al.* Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries. *J. Mater. Chem. A* 7, 12833–12841 (2019).
- 4. Tobias Johnsson Wass, J. R., Ahlberg, E., Panas, I. & Schiffrin, D. J. Quantum chemical modeling of the reduction of quinones. *J. Phys. Chem. A* **110**, 2005–2020 (2006).