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Abstract

Introduction: Aging-related processes such as cellular senescence are believed to underlie the 
accumulation of diseases in time, causing (co-)morbidity, including cancer, thromboembolism and 
stroke. Intervening into these processes may delay, stop or reverse morbidity. To study the link 
between (co-)morbidity and aging, by exploring biomarkers and molecular mechanisms of disease-
triggered deterioration, we will recruit 50 patients with pancreatic ductal adenocarcinoma, 50 patients 
with (thromboembolic) ischemic stroke and 50 controls, at Rostock University Medical Center. 
Methods and Analysis: We will gather routine blood data, clinical performance measurements and 
patient-reported outcomes at up to 9 points in time, and in-depth transcriptomics & proteomics at 
two early time points. Aiming for clinically relevant biomarkers, the primary outcome is a composite 
of probable sarcopenia, clinical performance (described by ECOG Performance Status for patients with 
pancreatic ductal adenocarcinoma and the Modified Rankin Scale for patients with stroke) and quality 
of life. Further outcomes cover other aspects of morbidity such as cognitive decline, and of comorbidity 
such as vascular or cancerous events. The data analysis is comprehensive in that it includes biostatistics 
& machine learning, both following standard role models & additional explorative approaches. 
Predictive biomarkers for interventions addressing senescence may become available if the biomarkers 
that we find are predominantly related to aging / cellular senescence. Similarly, diagnostic biomarkers 
will be explored for their relationship to aging / cellular senescence. Our findings will require validation 
in independent studies, and our dataset shall be useful to validate the findings of other studies. In 
some of the explorative analyses, we shall include insights from systems biology modeling as well as 
insights from preclinical animal models. We humbly suggest that our detailed study protocol and data 
analysis plan may also guide other biomarker exploration trials. Ethics and Dissemination: The study 
was approved by the local ethics committee, registered at the German Clinical Trials Register, and 
results will be published following standard guidelines. 
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Article summary 
Strengths and limitations of this study:

 In-depth measurements of both relevant outcomes and potential biomarkers. 
 Comparatively low number of participants, for both patients and controls.
 In-depth and detailed data analysis plan.
 Investigation of the deterioration of health and (co-)morbidities, not just of survival.
 Two co-morbid diseases investigated in almost identical ways in two sub-studies. 

Introduction 

Study Rationale and Aims. The primary aim of the SASKit (“Senescence-Associated Systems 
diagnostics Kit for cancer and stroke”) study is to discover a set of molecular biomarkers for outcomes 
after pancreatic ductal adenocarcinoma (PDAC) and ischemic stroke (IS), which are specifically useful 
to predict disease-triggered deterioration of health (“disease deterioration” for short) in terms of 
probable sarcopenia 1, reduced clinical performance  and quality of life (QoL). The outcomes also 
include the (co-)morbidity of vascular events (here defined as stroke, myocardial infarction, and 
venous or arterial thromboembolism) in patients with PDAC, which are observed frequently apart from 
sarcopenia. Also included is the (co-)morbidity of any kind of cancer and of cognitive decline following 
IS. Moreover, we consider mortality, as the most canonical outcome. Following up on the primary aim, 
we will investigate the nature of the molecular biomarkers to find out whether cellular senescence and 
other aging-associated processes are contributing to disease deterioration. As a secondary aim, we will 
search for diagnostic biomarkers related to cellular senescence and other aging-related processes that 
may differentiate healthy controls from PDAC or IS patients. Therefore, in the following we motivate 
our study by describing the prevalence and the outcomes of PDAC and IS, the known predictors of 
these outcomes, and the specific prevalence of co-morbidity and known predictors for this co-
morbidity. The role of cellular senescence in aging and disease is described in Box 1. The background 
of the cancerous and vascular comorbidity is described in Box 2. Avoiding unclear or circular 
terminology, we define a biomarker in a very general fashion, simply as a feature (data point) f1 that 
successfully predicts another feature f2 at a later time-point 2, in a biomedical context. Here, features 
may be composite ones, based on the measurement of individual features. Often, feature f1 refers to 
molecular data, while feature f2 refers to phenotypic data, such as clinical outcomes. Ultimately, we 
aim to identify biomarkers that are easy to measure, and that are then validated in other studies to 
predict a clinically relevant outcome. 

Pancreatic ductal adenocarcinoma: prevalence and outcomes. The incidence of pancreatic cancer is 
increasing; in 2017 the global incidence was 5.7 per 100,000 person-years 3. Age is the most important 
risk factor, and incidence peaks at 65 to 69 years in males and 75 to 79 years in females 3. Pancreatic 
ductal adenocarcinoma (PDAC) is the most common histological type of pancreatic cancer 4. The 
disease is characterized by late clinical presentation 5, early metastases and poor prognosis, with a 
one-year survival rate in Europe of only 15% 6. Many patients have unresectable disease at the time of 
diagnosis, either as locally advanced disease or already with metastases. Therefore therapy is palliative 
consisting of chemotherapy and/or best supportive care. Disease deterioration with weight loss and 
low muscle strength, that is, cachexia and sarcopenia 7, will follow, for some patients rapidly (within a 
few weeks) and for others during a longer interval of one or two years. Recent developments in 
oncology have not shown much benefit in clinical trials of patients with PDAC 8. Inflammation, 
desmoplasia and early metastases are deemed responsible for the difficulties in targeting the disease. 
Moreover, vascular events are frequent problems in the course of PDAC and may contribute to disease 
deterioration or early death. Venous thromboembolism is the most common event occurring in up to 
34% of patients with metastatic PDAC 9 10, but arterial ischemic events, like stroke, are also reported 
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11-14, see also Box 2. Therefore, deterioration and mortality in PDAC can not only be explained by tumor 
progression as such, but other factors like sarcopenia/cachexia and vascular events contribute as well. 
Furthermore, we suggest that the underlying cause of all these factors are aging-related processes 
such as cellular senescence and chronic inflammation. 

Pancreatic ductal adenocarcinoma: known biomarkers and clinical scores. In PDAC patients there is 
a lack of established scores describing the risk of disease deterioration and the risk of 
sarcopenia/cachexia in particular.  Referring to the endpoint of overall survival, some recent studies 
tried to establish inflammation-based scores to better characterize outcome in PDAC. In a 
retrospective analysis of 386 patients with PDAC of different stages, CRP/Alb ratio, neutrophil–
lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR) and modified Glasgow prognostic score 
(mGPS) were studied 15. In patients with locally advanced and metastatic disease, the CRP/alb ratio 
was an independent factor of poor survival 15. Another retrospective study evaluating CA19-9, CEA, 
CRP, LDH and bilirubin levels in locally advanced and metastatic pancreatic cancer patients treated 
with chemotherapy showed an independent prognostic significance for overall survival only for CA 19-
9 decline during treatment 16. Other studies have evaluated risk factors for thromboembolic events in 
pancreatic cancer patients and more generally in patients with cancer 17 (see also Box 2). The Khorana 
score, developed more than ten years ago, is widely used to estimate venous thromboembolic risk in 
the population of cancer patients 18; it integrates standard laboratory parameters (platelet count, 
hemoglobin, leukocyte count), body mass index (BMI) and the cancer site (with pancreatic cancer and 
gastric cancer classified as very high risk). Still, its performance was questioned in a retrospective 
cohort of pancreatic cancer patients 19 and in a prospective cohort study of patients with different 
cancer types, among them 109 with pancreatic cancer 17. The clinical association of PDAC, 
sarcopenia/cachexia and thromboembolism is well-described 11, but still not understood in its 
pathophysiology 20. Within the SASKit study we aim to identify biomarkers and molecular mechanisms 
contributing to this clinical association, by investigating their relation to clinically relevant outcomes. 

Ischemic stroke, prevalence and outcomes. Ischemic stroke (IS) occurs in the German population with 
an incidence of 236 per 100,000 per year 21. The mean age of acute stroke patients is 73-74 years, with 
more than 80% of patients being over 60 years old. After a first stroke, nearly 5% of patients suffer a 
second stroke within a year. Mortality after IS is about 12% within one year and about 30% within five 
years 21. Mild to moderately disabled stroke survivors showed an elevated prevalence of sarcopenia 
>6 months after onset of stroke compared with non-stroke individuals (13.2% vs 5.3%) 22. The 
mechanisms underlying sarcopenia include loss of muscle mass, reduction of fibre cross-sectional area 
and increased intramuscular fat deposition occurring between 3 weeks and 6 months after stroke in 
both paretic and non-paretic limbs 23. Comorbid, or subsequent cancer may facilitate sarcopenia after 
IS. A US nationwide inpatient sample study reported that 10% of hospitalized IS patients have comorbid 
cancer, 16% of them with gastrointestinal cancer and 1% with PDAC, and that this association may be 
on the rise 24. Additionally, within two years after IS, another 2% to 4% of patients receive a new cancer 
diagnosis 25-27. Within the SASKit study we aim to identify biomarkers to predict outcome after IS in 
terms of general health state (i.e. sarcopenia, deterioration of clinical performance, cognitive 
functioning, frailty) and quality of life, as well as (co-)morbidity, as we do for the PDAC cohort.

Ischemic stroke, known biomarkers and clinical scores. In an early study of 956 patients with acute IS, 
determinants of long-term mortality were age, obesity, cardiac arrhythmias, diabetes mellitus, 
coronary heart disease and organic brain syndrome at discharge from hospital; interestingly, 

Page 5 of 26

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

4
SASKit study protocol V01

hypercholesterolaemia and smoking did not affect long-term outcome 28. More recent studies 
uniformly identified age and stroke severity, usually assessed on the NIHSS or similar scales, as 
biomarkers of long-term functional outcome and mortality after stroke 29 30. Fibrinogen has been 
related to long-term outcome after stroke 31 32. There have been conflicting data on the predictive 
value of serum bilirubin levels on the long term risk of cardiovascular disease. While some studies are 
in favor of a predictive value (e.g.: 33-35), others are not (e.g.: 36). Also, CRP levels have been reported 
to impact the functional long-term outcome after IS 37, and early neurological deterioration after IS has 
been related to decreasing albumin levels, elevated CRP  and fibrinogen levels 38. Potential biomarkers 
for occult cancer in IS patients include elevated D-dimers, fibrinogen, and CRP; infarction in multiple 
vascular territories; and poor nutritional status 39. Interestingly, IS patients with elevation of at least 
two of the following coagulation-related serum markers, that is, D-dimer, prothrombin fragment 1.2, 
thrombin-antithrombin complex and fibrin monomer, in the post-acute phase of stroke, were more 
likely to have occult cancer or recurrent stroke during follow-up for 1.4±0.8 years 40. In another study 
of acute IS patients, high D-dimer levels at admission were independently associated with recurrent 
stroke and all-cause mortality during follow-up for up to 3 years 41. These findings underpin the idea 
of shared risk factors for unfavorable outcomes in IS as well as cancer and they suggest that there may 
be coagulation-related biomarkers indicating an early stage of carcinogenesis or stroke (see also Box 
2). Nevertheless, the clinical biomarkers that currently exist for predicting outcome are limited in their 
performance and clinical utility, and there is a need to overcome the limitations of current predictive 
models 42.

Box 1: Aging and cellular senescence. Extra lifetime gained over the last century led to the widespread 
emergence of age-related diseases that are rarely seen in younger people. Older patients are thus 
more likely to display several comorbidities, which makes treatment difficult and expensive. Over the 
last years, strong evidence has accumulated that the presence of senescent cells (i.e. non-dividing, 
arrested but metabolically active cells that escape apoptosis) is causally involved in diseases such as 
atherosclerosis, cancer, fibrosis, pancreatitis, osteoarthritis, Alzheimer disease and metabolic 
disorders 43 44. Evidence that senescent cells are not only correlated with aging and diseases, but are 
instead causally involved, comes from recent studies, which transplanted senescent cells from old into 
young mice 45. This resulted in persistent functional impairment as well as spread of cellular senescence 
to host tissues. Another strong line of evidence comes from experiments that actually removed 
senescent cells from aged mice by senolytics 45-47. In each case an increase in lifespan and a delay of 
typical age related diseases was observed. Most recently, the results of human pilot trials of putative 
senolytic treatments in case of idiopathic pulmonary fibrosis and osteoarthritis have been reported. 
One team 48 treated idiopathic pulmonary fibrosis patients with dasatinib and quercetin and 
demonstrated safety as well as notable improvements in some physical abilities. Furthermore, a 
human phase-1 study demonstrated that a senolytic compound, which was applied locally in patients 
with osteoarthritis of the knee, was safe and well-tolerated 49. A clinically meaningful improvement in 
several measures, including pain, function, as well as modulation of certain senescence-associated 
secretory phenotype (SASP) factors and disease-related biomarkers was observed after a single dose.

Box 2: Cellular senescence and the comorbidity of cancer and vascular events. Some cancers such as 
PDAC can trigger vascular events by hyper-coagulation, reflecting Trousseau’s syndrome first reported 
150 years ago 11. In turn, strong associations between coagulation, cellular senescence and the SASP 
were demonstrated recently 50. While cellular senescence can suppress PDAC and cancerous 
proliferation in general, it also triggers tumor progression by fostering inflammatory processes, 
including the SASP, while on the other hand, after ischemic stroke, it attenuates recovery 51-55. For both 
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diseases, causal influences can be traced back to molecular determinants: PAI-1 (also known as 
SERPINE1 and part of the SASP) is involved in cancer-triggered thromboembolism 52 54 and stroke 
recovery in animals 56. Other proteins involved in cellular senescence, specifically inflammatory 
cytokines such as IL6, and the lesser known osteopontin and gelsolin, are also markers for both PDAC 
and stroke 57-60. The cyclin-dependent kinase CDK5 61 is implicated in the progression of PDAC as well 
as in the recovery from stroke 55 62. Moreover, apart from being genetic risk factors 63 64, the most 
prominent drivers of cellular senescence (p16/CDKN2A and p21/CDKN1A) also promote PDAC 
progression 65 and endothelial embolic and arteriosclerotic mechanisms of stroke 66. Finally, two small-
molecule interventions into cellular senescence, fisetin and quercetin, are both potential treatments 
of both PDAC and stroke. In case of stroke, the blood-brain-barrier is passed by quercetin which 
improves stroke outcome 67. In case of PDAC it was observed that quercetin inhibits pancreatic cancer 
growth in-vitro and in-vivo 68. Fisetin is found in various fruits (especially strawberries) and it is 
chemically similar to quercetin, with strong putative senolytic effects, extending lifespan of mice even 
when intervention with fisetin started only at an advanced age 69. In a study involving nude mice 
implanted with prostate cancer cells, treatment with fisetin significantly retarded tumor growth 70. 
Also, in case of lung cancer, there is evidence for the beneficial effects of fisetin. One study showed 
that fisetin provides protection against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in albino 
mice 71 and another in vivo study demonstrated the synergistic effects of fisetin and cyclophosphamide 
in reducing the growth of lung carcinoma in mice 72. Several other studies have also demonstrated its 
anticarcinogenic, neurotrophic and anti-inflammatory effects that are beneficial in numerous diseases, 
including pancreatic cancer and stroke 73. 

Methods

The presentation is based on the reporting recommendations for tumor marker prognostic studies 
(REMARK), that is, items (1) – (11) of the REMARK checklist 74.

Study design

The SASKit (“Senescence-Associated Systems diagnostics Kit for cancer and stroke”) study is designed 
as a prospective, observational, cohort study to identify biomarkers for disease deterioration in 
patients with PDAC or with IS and, specifically, for the (co-)morbidities of these diseases including 
vascular events and sarcopenia following the diagnosis of PDAC as well as cancer and cognitive decline 
following IS. All patients will be treated for their diseases in accordance with current guidelines or 
therapy standards and at the physician's discretion. Due to the observational study design, regular 
treatment of the patient is not affected apart from sampling blood (20 to 80 ml at up to 7 time-points 
over the next years). Assessment of disease deterioration will be based on standardized clinical 
performance measurements, and patient reported outcomes based on questionnaires (see below for 
details). Additionally, data from clinical charts and information from the general practitioner will be 
collected. The SASKit study is divided into two subtrials with a common control group, both featuring 
essentially the same outcomes, predictor measurements and data analysis approaches. 

Patient and Public Involvement

It was not possible to involve patients or the public in the design of the study.

Characteristics of participants (patients and controls)

In the first subtrial (PDAC-subtrial), patients with an initial diagnosis of PDAC in locally advanced or 
metastatic stage without previous systemic therapy will be considered for enrollment, whereas 
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patients with a (thromboembolic) IS of the supratentorial brain region within the past 5 to 10 days, 
with a definitive brain infarction volume >10 ml in an assessment by magnetic resonance imaging (MRI) 
will be considered for the second subtrial (IS-subtrial). Except for some explorative analyses, the 
subtrials will be analyzed separately.

Within both subtrials, eligible as controls are those without PDAC or IS and with no other malignant 
disease or other (hemorrhagic) stroke during the past two years. Potential controls will be recruited 
from persons who have lived in the same household as the patient within the last 2 years, have a 
maximum age difference of 12 years and are neither brothers nor sisters (i.e. spouses, second-degree 
relatives or friends). The controls are selected so that the age and gender structure approximately 
reflects the age and gender distribution of the patients. Therefore, the age and gender of the patients 
will be continuously recorded, and the controls selected in such a way that their frequency distribution 
of gender at any time corresponds approximately to that of the currently recruited patients. 

The following criteria lead to exclusion from participation in the study for both patients and controls, 
at time of recruitment:

● previous or current medical tumor therapy

● other cancer within the past 2 years

● previous stroke with persistent deficit

● myocardial infarction within the past 2 years

● therapeutic anticoagulation within the past 2 years for longer than 1 month

● pre-existing dementia

● chronic heart failure stage NYHA IV

● terminal renal insufficiency with hemodialysis

● known HIV infection 

● known active hepatitis C

● pregnancy

● age < 18 years.

Both subtrials will be implemented according to the same standardized protocol. After written 
informed consent of each participant, patients and controls will be followed up at 3, 12, 24, 36 and 48 
months after their inclusion in the trial, whenever possible. The PDAC-subtrial includes an additional 
time-point for examinations at 6 months after inclusion, given that mortality due to PDAC is expected 
to be accelerated as compared to IS. 

The study is expected to start in the second quarter of 2020 and will finish with the last participant's 
follow up at 48 months. Until that time, we expect that 50 PDAC patients, 50 IS patients, and 50 
controls participated in the trial. The study will be conducted at the Rostock University Medical Center 
(UMR), Germany at Clinic III - Hematology, Oncology, Palliative Medicine and at the Department of 
Neurology; the institutions of the other co-authors are supporting the study in a variety of ways. The 
study protocol has been approved by the ethics committee of the UMR. The study is registered at 
German Clinical Trials Register (DRKS00021184) and will be conducted following ICH-GCP. 

General health- and disease-related and demographic data 
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General data of the study participants will be recorded at the beginning of the study (“month 0”) and 
consist of the following: age, sex, BMI, temperature, blood pressure, heart rate (ECG). Furthermore, 
through interviews the following additional data will be recorded: vascular risk factors (arterial 
hypertension, diabetes, hyperlipidaemia, smoking habits), history of vascular events (stroke, 
myocardial infarction, venous or arterial thromboembolism), atrial fibrillation, history of cancer, 
current medication, surgery or blood transfusions in the past three months and vascular or cancerous 
events affecting any first degree relatives. These data may provide influential factors for explorative 
analyses, or be employed to interpret and discuss the results of the study.

Blood sampling

Blood sampling will be done in a standardized fashion, that is, fasting and between 8 and 10 am, for all 
assays. Routine blood parameters will be recorded at the time-points described above (months 0 to 
48). These consist of differential blood count, INR (International normalized ratio of prothrombin time), 
partial thromboplastin time, D-dimers, fibrinogen, factor XII, albumin, bilirubin, high-sensitive CRP, 
CA19-9, cholesterol, and HbA1c. 

Experimental blood analysis (PAI-1 and omics) will be done for patients at month 0 in case of PDAC, at 
month 0 or at month 3 in case of stroke (where the 3-month time point is taken if it reflects a better 
state of the patient as described by the NIHSS), and furthermore at month 3 in case of PDAC, and at 
month 12 in case of stroke. For controls, the experimental blood analysis will be carried out at month 
0 and at month 12, assuming that for these, data do not change much in the 3 months after baseline. 
The justification for taking the better state in case of stroke is the maximization of differences with the 
12 months follow-up data. In terms of practicality (being able to calculate a biomarker signature 
sooner), however, the state at month 0 should be selected for all stroke patients. Since the blood 
sample will be taken pre-processed and frozen at month 0 in all cases, we are in principle able to 
perform the experimental blood analysis for all stroke patients at month 0, and we can do this analysis 
in retrospect if deemed necessary. We also take blood of PDAC patients at month 12, to have the 
option to do an experimental blood analysis if deemed useful. In the following we will refer to the 
baseline time-point (month 0, or month 3 in cases of stroke patients that improved) and the landmark 
time-point (month 3 for PDAC patients and month 12 for stroke patients and controls). The 
experimental blood analysis is done earlier for PDAC because of high expected mortality within the 
first year. 

The experimental blood analysis includes PAI-1 (see Box 2) as well as high-throughput (omics) analyses, 
that is, transcriptomics and proteomics analysis in T-cells and proteomics of serum. T cells are of 
interest because these were reported to carry the strongest signal with respect to cellular senescence, 
based on the marker p16 75. We intend to measure gelsolin and osteopontin as well, provided that 
sufficiently standardized assays become available in due time; the blood collected for this 
measurement shall otherwise be used to measure cytokines/chemokines such as IL6, IL8 and TNFɑ, 
which are part of the SASP, by ELISA assays. At time of writing, we do not yet have reliable estimates 
on the amount of blood cells still available for measuring protein expression, so an antibody-based 
protein array (in case of low amounts), or mass spectrometry (in case of sufficiently high amounts) will 
be used alternatively. For the blood serum, we intend to use the same protein measurement method. 
In the default case of a protein array, we plan to use the novel but dedicated “Senescence Associated 
Secretory Phenotype (SASP) Antibody Sampler Kit” (consisting of approx. 10 SASP-related proteins 
being measured; Cell Signaling Technology) for both cellular and serum proteomics. Further 
exploratory molecular analyses not (yet) funded but permitted based on the ethics approval include 
the following: single-cell analyses of blood, methylation assays for calculating epigenetic clocks 76, 
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genetics by SNP array or whole-genome sequencing, and telomere length. A separate ethics approval 
was granted for an optional skin biopsy; skin microbiome analyses are planned as well. 

Blood sample processing for the experimental analysis will be performed according to standard 
operating procedures (SOP) at the research laboratory of Clinic III - Hematology, Oncology, Palliative 
Medicine. The procedures include flow cytometric control of the sampling quality including distribution 
of cell types and vitality as performed in routine diagnostics. Isolation of peripheral blood mononuclear 
cells (PBMCs) will also be performed following the SOP used by the laboratory in routine diagnostics. 
T-Cell separation will be performed according to an established work flow based on magnetic bead 
purification via Miltenyi MACS following manufacturer’s instructions. T cell fraction purity as well as 
vitality will then be verified by flow cytometric analyses as described above. Nucleic acid isolation as 
well as protein isolation will be further performed according to the SOP of the research laboratory 
performed using column separation (Qiagen, Hilden Germany). RNA integrity values (RIN) will be 
analysed using an Agilent Scientific Instruments Bioanalyzer as instructed by the manufacturer. RIN 
values above 6 will qualify for RNAseq or Clariom D Array analyses; for RNAseq average reads per 
sample will be set at approx. 40 x 10e6.    

Clinical performance measurements and patient-reported outcomes

At baseline and at each follow-up, handgrip strength (“grip strength” for short) is measured using a 
digital hand dynamometer (Jamar Plus). The test is performed while sitting comfortably, shoulder 
adducted, elbow placed on the tabletop and flexed to 90 degrees, with the forearm and wrist in a 
neutral position 77. The highest value of three measurements of maximal isometric contraction of the 
dominant hand, or if paralyzed due to IS, contraction of the unaffected hand, is documented in kg. 
Further, the following clinical performance measurements are evaluated by the study physician or 
study nurse according to standard protocols: ECOG Performance Status (ECOG PS) 78, modified Rankin 
Scale (mRS) 79, Canadian Study on Health & Aging Clinical Frailty Scale (CSHA-CFS) 80, NIH-Stroke Scale 
(NIHSS) 81, Montreal Cognitive Assessment (MOCA) 82. All raters are certified for the applicable scores 
(mRS, NIHSS, MOCA). Patient-reported outcomes (measured by questionnaires) are the following: EQ-
5D-5L and EQ-VAS (generic evaluation of QoL in 5 domains and overall on a visual analog scale) 83, 
HADS-D (evaluation of anxiety and depression) 84, WHODAS 2.0 (WHO Disability Assessment Schedule) 
85, and, for patients with PDAC, FACIT-Pal (evaluating QoL with focus on palliative symptoms and needs) 
86, 87. All questionnaires are administered following the suppliers’ instructions.

Follow up data

Apart from the clinical and patient-reported outcomes, further follow-up data are BMI, temperature, 
blood pressure, heart rate (ECG), atrial fibrillation, current medication, tumor treatment, comorbidity 
(any vascular or cancer event), hospital admissions or palliative care. Additionally, based on clinical 
charts and information from the general practitioner, we will record medication, (co-)morbidity and 
mortality. Just like the general health- and disease-related and demographic data recorded at time of 
recruitment, these data may provide influential factors for explorative analyses, or be employed to 
interpret and discuss the results of the study.

Endpoints 

In both subtrials, the primary endpoint is a composite measure of “disease deterioration” defined as 
the first occurrence within a follow-up interval of at least one of the following.

a. Sarcopenia, measured by grip strength less than 27 kg for males and less than 16 kg for females 
(according to the revised European consensus, EWGSOP2,  1).
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b. Deterioration of clinical performance, that is, of the ECOG PS by at least two points (PDAC-
subtrial), or of the mRS by at least one point (IS-subtrial).

c. Deterioration of QoL, described as a reduction of the EQ-5D-5L by at least 0.07 in the index  
score, and deterioration of at least 7 points  in the EQ-VAS (ranging from 0-100).

Deterioration will be considered between baseline (month 0) and the respective follow-up 
investigation. As described above, for patients with IS who have improved their condition (measured 
by NIHSS) within the first 3 months, this time point (month 3) will be used as a baseline instead. Item 
(a) is the deterioration from “no sarcopenia” to “probable sarcopenia” as defined by current consensus 
1. Grip strength has been widely used for assessing muscle strength, which is currently used as the 
most reliable measure of muscle function, loss of which indicating sarcopenia 1. ECOG PS is established 
in describing the general condition of patients with cancer, whereas mRS is established in patients with 
stroke. Death is reflected by both scores as ECOG PS of 5 or mRS of 6, and it will always consider death 
from any cause. The EQ-5D-5L evaluates QoL in five dimensions (mobility, self-care, usual activity, 
pain/discomfort, and anxiety/depression), all relevant for patients with PDAC and IS. Furthermore, it 
is a generic score so that results will be comparable for different diseases (as recently described in 
patients with stroke 88) and for the general population 89). Even though disease-specific scores might 
evaluate symptom burden in even more detail, the EQ-5D-5L was recently shown to be comparable to 
QoL scores developed specifically for pulmonary embolism and deep vein thrombosis (that is, PEmb-
QoL, VEINES-QOL/Sym and PACT-Q2) in terms of acceptability, validity and responsiveness 90. A clinical 
deterioration in EQ-5D-5L is described as a minimal important difference in the range from 0.07 to 0.09 
index points and in VAS from 7 to 10 91 which is the basis for the definition of item (c). Controls reach 
their endpoint by the same definition as the subcohort for which they serve as control; in any 
integrative analysis of both subtrials, a deterioration of the mRS by at least one point will be used as 
the criterion (instead of ECOG PS), because stroke patients in general have a slower deterioration than 
PDAC patients, and controls naturally have the slowest expected deterioration.

The primary composite endpoint and all secondary endpoints will be evaluated in a first analysis, based 
on data obtained until summer 2021, and in a second analysis, based on data obtained until summer 
2023, and in a third analysis at the end of the study. The second analysis may be delayed until data of 
90% of the study participants are available (at least including the month 12 follow up) and it may then 
constitute the “main” analysis of the study.

The following secondary endpoints are evaluated:

● each component of the primary endpoint (separately);
● occurrence of disease-specific (co-)morbidities, as follows

o new vascular events (stroke, myocardial infarction, venous or arterial 
thromboembolism), specifically in patients with PDAC;

o new cancer, specifically in patients with IS; 
o probable sarcopenia (based on grip strength);
o cognitive decline (deterioration of MOCA by 3 points from best value at baseline);

● frailty, defined as a CSHA-CFS level of 6, 7, or 8;
● all-cause mortality. 

Further, a sum-score summarizing all measurements of phenotypic variables (grip strength, clinical 
performance measurements, comorbid events, mortality) will be considered as a surrogate for “aging”, 
normalizing all continuous-scaled components in order to obtain a common scale with an average of 
zero and standard deviation of one. The components of the sum-score will all be given equal weight.
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Predictors

While all phenotypic features (grip strength, clinical performance, patient reported outcomes, 
comorbid events, mortality) are contributing to the definition of endpoints (as dependent 
variables/parameters), all routine and experimental blood features (PAI-1, omics) are considered to be 
potential predictors; these are also called the independent variables/parameters. This delineation is 
justified by (a) the paradigm that (clinical) relevance is tied to high-level phenotypes describing health 
and survival, specifically including QoL 2, and (b) the goal of developing a “senescence-associated 
systems diagnostics kit” that includes a careful selection of biomarkers contributing, as much as 
possible, also to molecular-mechanistic insights into PDAC, IS and their (co-)morbidity, which we 
hypothesize to be related to cellular senescence and aging. Age and gender will be included as 
mandatory covariates (also termed confounders, that is, predictors which we do not aim to explore, 
or which we wish to improve upon) in all statistical models. Further covariates are smoking, the 
baseline NIHSS score in case of IS, as well as locally-advanced vs metastatic PDAC and modality of 
treatment in case of PDAC. As described, the successful predictors identified by our study, following 
the statistical analyses outlined below, are called biomarkers; we wish to stress that these are only 
candidates for the ultimate goal of clinically validated biomarkers; in particular, they still need to be 
validated in further studies (based, e.g., on other cohorts). A set of biomarkers is also called a 
biomarker signature.

Blinding and pseudonymization 

No blinding will be done during the study. However, the primary composite endpoint will be 
documented without subjective influence due to standardized definitions. Thus, detection bias will be 
kept at a minimal extent. Furthermore, information bias will be minimized as we will use simple 
measurements, which are applied in daily practice or are self-reported and easy to perform (e.g. EQ-
5D-5L). The rigorous inclusion of all eligible patients within the recruitment period will help to minimize 
selection bias. All patient data are pseudonymized to all investigators except for the attending 
physician and study nurse. Since all major data analyses are based on known information about the 
outcomes (e.g., supervised machine learning with cross-validation), the data analysis will also be 
performed based on the pseudonymized data. Protection of personal and clinical data of all patients 
and controls will follow all relevant legal regulations. 

Sample size

No formal sample size calculation was performed a-priori for this observational study. The prevalence 
of PDAC combined with the requirement to complete the study within a reasonable timeframe implied 
a target of 50 patients per group (PDAC, IS and control group). Nevertheless, a power analysis revealed 
that a sample size of 50 patients will have 80% power to detect a significant difference by a non-
parametric Wilcoxon statistic between an AUC of 0.75 for a particular biomarker signature compared 
to the null hypothesis value of 0.5 at a significance level of 5% under the assumption that about three 
times as many patients will reach the primary endpoint, compared to patients who will not reach the 
primary endpoint 92.

Data Analysis Plan

General considerations: The guiding criteria for biomarker identification in the SASKit study are the 
maximization of the predictive signal, clinical relevance/utility, biomedical/molecular/clinical 
interpretability, and practicality/cost. Given the relatively low number of participants in this in-depth 
study, to maximize the signal for the endpoints and predictors given as outlined above, we must aim 
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to use all available information. Regarding endpoints, whenever possible, we thus wish to consider the 
(censored) time-to-event information inherent in the baseline and follow-up examinations, and in the 
mortality data. The primary endpoint was defined to integrate expected clinical utility and maximum 
signal. In defining the (secondary) endpoints, we considered an array of clinically relevant single 
endpoints as well as a sum-score of all phenotypic measurements; we hypothesize that the latter 
carries the largest amount of signal. Given the small sample, we cannot set aside an extra validation 
dataset. (For the predictors considered to be covariates/confounders, please see the section on 
“Predictors”, above.)

Data quality assessment and cleaning: The need for (and the amount of) data cleaning cannot easily 
be estimated beforehand; we plan to follow the MarkAGE guidelines 93 to deal with missing values, 
and to detect and rectify outliers and batch artefacts.

Predictor/Feature integration: Regarding predictors (features), we first need to remember that we 
measure at baseline (at months 0 or 3) and at one landmark (main followup, that is, at months 3 or 
12). While use of baseline features is unrestricted, use of landmark features is, of course, restricted to 
predict outcomes after the landmark. Further, we need to handle the high dimensionality of the omics 
features. Here, upfront feature integration, e.g., by averaging measurements as described below, is 
considered preferable specifically for the high-dimensional omics data, for the following reasons.

1) A small feature space allows for an easier understanding and interpretation, see, e.g., 94.
2) Integrated features can be used as input for both the standard biostatistics and the standard  

machine learning parts of the analysis. 
3) Use of few features is more time-tested than newer methods featuring the joint calculation of 

the prediction model and the selection of the features, albeit the latter are quite often claimed 
to be superior by their developers. 

4) Naturally, feature integration avoids multicollinearity and overfitting, and multiple testing is 
less of an issue. This counters the “curse of dimensionality” and “de-noises” the data towards 
better prediction performance 94 95. 

5) Feature integration allows the handling of feature heterogeneity, which in our case refers to 
routine blood measurements as well as various omics data types. 

6) In the explorative analyses, systems biology modelling and the parallelogram approach are 
both supposed to deliver further small sets of integrated, highly informative features, which 
may, e.g., dominate systems behaviour, or which are believed to translate well from animal 
models to humans (see below).

While most features will be available for the baseline and the landmark time-point, utilizing baseline 
data is clinically more useful, simply because the prediction for the endpoint is available much earlier. 
Nevertheless, in the explorative analyses, we will investigate the predictive power of changes in 
feature measurements from baseline to landmark, given that such changes may be more informative 
about future disease deterioration (and other endpoints) than just baseline values. 

Specific omics data feature integration: Notably, we face a heterogeneous “multi-view” dataset, 
usually referred to as “multi-omics”. Our feature integration approach (see above) is also known as  a 
“late integration” type of analysis, implying that measurements for different omics data types are 
reduced early on to activation scores for pathways or subnetworks that are then integrated at a “late” 
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level. To calculate the activation scores for subnetworks, we use, by default, the 
ExprEssence/FocusHeuristics linkscore 96 97, taking the links (gene/protein interactions) from a 
functional interaction network defaulting to STRING. Our experience with the linkscore motivates us 
to include this method as one of the approaches proposed for feature integration in the following, 
influencing the calculation of up to 10 features on which the standard biostatistics and machine 
learning shall be based. Specifically, we take the average expression measurement for all patients 
(as a list of expression values, one per gene) and the average for all controls (as a list of expression 
values, one per gene) to calculate a linkscore for each STRING interaction, and assemble a 
“condensed” network including all interactions with a linkscore in that percentile for which the 50 
highest-scoring interactions are shown. These interactions form subnetworks. We then take the 
average linkscore for each subnetwork as the subnetwork activation score. Alternative methods 
such as keypathwayminer will be used in the exploratory analyses, see below. For the pathways (such 
as KEGG), we will calculate pathway activation scores using Gene Set Variation Analysis (GSVA) 98. This 
method calculates pathway activation scores from expression data, is suited for use with microarray 
as well as RNAseq data and performed strongly in a recent benchmarking analysis 99. The GSVA-based 
pathway activation scores can subsequently be compared between patients and controls in the same 
way as normal gene expression data, calculating, for each pathway, a fold-change of the pathway 
activation scores between patients and controls. Here, we average over all patients and over all 
controls, respectively, using the limma R package and adjusting for age and gender of the individual 
patient/control pathway activation. An example of this approach is given in the GSVA publication, 
where differential pathway activation was identified between acute lymphoblastic lymphoma and 
mixed-lineage lymphoma 98. The major downside of feature integration may be information loss; 
subsequent statistical and machine-learning-based analyses receive only a tiny fraction of the amount 
of information that is available in total. 
Gene expression data (transcriptomics) will be our preferred omics data type. Nevertheless, proteins 
are closer to the phenotype than transcripts, so we wish to not ignore these. Therefore, we prepare to 
deal with both kinds of proteome data that we may expect (see “Experimental blood analyses”, above), 
as follows. 

1. Large-scale data, likely based on mass spectrometry, in the order of hundreds or more proteins 
that can be identified and measured in all the conditions investigated differentially. 

2. Small-scale data, likely based on antibody arrays, in  the order of tens or less. 
Except for the raw data preprocessing depending on the platform, once log-fold changes describing 
differential expression are established, we thus expect to handle the large-scale proteome data 
essentially the same as the transcriptomics data, and the small-scale proteome data similarly to the 
blood routine data, for cells and serum alike. Overall, the omics data are expected to come along three 
main coordinates, that is, 

1. as blood cell transcriptomics and proteomics as well as serum proteomics; 
2. longitudinal in time (for baseline and landmark); and 
3. for PDAC, IS and control. 

All coordinates can be exploited for differential analyses, even though the PDAC and IS data will be 
analyzed separately except for some integrative explorative analyses (see below). In the explorative 
analyses, the longitudinal transcriptomics of the patients and controls will also be analyzed together, 
see below. For the standard biostatistics and machine learning analyses, we plan to employ 5 
approaches to feature integration, each yielding a shortlist of 5 integrated features, as follows. 
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1) (5 features) A first shortlist of features will consist of the following expert selection from the 
routine blood measurements (incl. PAI-1): neutrophil-lymphocyte-ratio, fibrinogen, high-
sensitive C-reactive protein, albumin and PAI-1. 

2) (5 features) For the cellular gene expression measurements, we use 
ExprEssence/FocusHeuristics (see above) to calculate the top-5 subnetworks scoring highest. 

3) (5 features) Again for the cellular gene expression measurements, we use GSVA (see above) 
to calculate the top-5 most strongly changing pathways as features.

4) +     5)     (10 features) 
a) In case of dealing with large-scale serum proteomics data, we proceed as in (2) + (3);
b) In case of dealing with small-scale serum proteomics data, we proceed as follows: 

i) if the number of features measured successfully is in the order of 10, we 
refrain from any processing; 

ii) if the number of features is in the order of around 10-100, we select the 10 
features with the smallest p-values indicating differences between the mean 
values of patient and control, based on a t-test. 

For genomic features as per (2), the feature measurements for an individual patient or control will 
then be the average linkscores of the 5 selected subnetworks. For genomic features as per (3), the 
feature measurements for each patient/control will be the GSVA scores of the 5 selected pathways. By 
construction, we expect the resulting features to reflect the up/downregulation of disease-related 
transcripts/proteins or pathways/subnetworks. Using the GSVA-based integrated features as input to 
the biostatistical analyses employing Cox proportional hazard models, we are in fact closely following 
the “Survival analysis in ovarian carcinoma” example as described in the GSVA publication 98. Regarding 
the expert selection from the routine blood measurements, we are aware that some of these features 
may be considered to have an almost trivial relationship to outcome prediction for the diseases we 
study; e.g. fibrinogen may correlate strongly with the size of the stroke-damaged brain area and may 
thus be considered a covariate. However, to our knowledge, none of these features are validated 
clinical biomarkers, and it is quite possible that a combination of simple biomarkers is key to the best 
possible prediction. We selected the neutrophil-lymphocyte-ratio specifically because it is cheap to 
measure; it is, however, like many other blood-based features, easily influenced by acute infection.

Exploratory feature integration: Apart from the FocusHeuristics/ExprEssence linkscore, we employ 
alternatives such as keypathwayminer 100. Further, we calculate pathway activation scores for the 
following senescence-related KEGG pathways, which include PAI-1 (see the Introduction) but do not 
refer to a specific disease, as of February 2020: Cellular senescence, HIF-1 signaling pathway, p53 
signaling pathway, Apelin signaling pathway, Hippo signaling pathway, Complement and coagulation 
cascades. “Early integration” by, e.g., first averaging transcript and protein expression on a single-gene 
basis, is also planned. 

Choice of data analysis methods for biomarker discovery: We will consider two main approaches of 
data analysis, one motivated by statistical methods, the other by machine learning approaches. While 
this delineation may ultimately be meaningless, we consider that regression is the core ingredient of 
the former, while supervised learning characterizes the latter. We will apply “standard” methods 
(mostly in biostatistics) and explore novel approaches (mostly in machine learning; preserving signal 
implies a focus on supervised approaches in this case). Data analysis for biomarker discovery trials in a 
clinical  setting is usually described with a biostatisticians’ mindset, who also developed methods to 
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cope with the high dimensionality of omics data (see below). On the other hand, the challenges of 
omics data also spurred the recent publication of many methods adopting machine learning, which 
however did not yet make it into clinical trial analysis routine, but which we wish to test (see below). 
We will focus on methods readily available in SAS or as R packages. Notably, the correct choice of 
method depends in part on known unknowns such as the strength of the signal (incl. the amount of 
missing data) in the routine blood measurements and the omics. 

Prediction model quality measures: Unlike intervention trials with their highly standardized aim of 
establishing a statistically significant superiority (or non-inferiority) of one intervention compared to 
another (or to standard of care), observational biomarker trials are a more recent development with 
fewer precisely quantified criteria of success, and a stronger need to consider the effect size: even if a 
biomarker signature enables a significant improvement in predicting an outcome, raising the accuracy 
of the prediction, say, from 70% to 75% may not be clinically meaningful, depending on prevalence of 
the condition to be predicted, the cost of the biomarker measurement, etc. We thus aim to identify 
biomarkers making a maximum of difference in prediction accuracy, if we are able to compare to 
established scores (see also below). For the biostatistics part, the concordance statistics (c-index) will 
be used as an overall measure of predictive accuracy, and time-dependent ROC curves and AUC will 
be used to summarize the predictive accuracy at different cut-off points in time. For the machine 
learning part, the cross-validated accuracy and AUC/c-index, following 94, are used, and to take care of 
a potential Simpson’s paradox we will either analyse the data stratified by gender, or we will add such 
an analysis and check for consistency. More generally, to investigate the role of confounders (and, if 
necessary, to correct for these) in the machine learning part, we wish to use the permutation technique 
described 101. We expect that we can identify a set of biomarkers that affords an accuracy of 75% or 
more or an AUC of 0.75 or more in correctly predicting the primary endpoint with a precision of +/- 
12%  102. This estimate of precision is based on half the width of a 95% confidence interval (CI) for a 
probability of 75%, by extension of item 6 of the tables of Sorzano et al 102, which shows precision up 
to a sample size of N=30.

Standard  biostatistical analyses: A Cox proportional hazards regression model adjusted for age and 
gender will be used to estimate the hazard ratio (HR) and corresponding 95% CI to predict the primary 
composite endpoint separately within the PDAC cohort and IS cohort. The 5 shortlists of  5 features 
(see above) will be providing the canonical predictors, analyzed together. For selection of the most 
important features that might be related to the primary endpoint we will use a procedure proposed 
by Sauerbrei et al. 103, as follows. First, 100 bootstrap samples will be generated. Then, a multivariate 
Cox proportional hazards regression model with backward elimination with selection level of 0.05 will 
be fitted to each replication of the original data set. In a second step features with a relative selection 
frequency of 30% or less over all bootstrap samples will be eliminated. In a third step each feature Xi 
for which the hypothesis of independence in combination with a feature Xj can be rejected will be 
eliminated if Xi is less important when Xj is included in the model, or if it does not gain importance 
when Xj is excluded from the model. All remaining features will be included in the final model. 
Graphical and numerical methods will be performed to establish the validity of the proportionality 
assumption 104 in the final model. Results will be reported as p-values, HRs and corresponding 95%-CIs. 
A p-value of p ≤0.05 will be interpreted as indicating statistical significance. From the final model a risk 
score will be calculated by multiplying the individual feature measurement of a patient with the 
estimated regression coefficient of each feature.  The c-index will be used as an overall measure of 
predictive accuracy of the resulting score, a time-dependent ROC curve and AUC will be used to 
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summarize the predictive accuracy of the score at specific times. All secondary endpoints will be 
evaluated using the same approach as for the primary endpoint except for the sum-score used as a 
surrogate for “aging”. For this endpoint, a linear mixed effects model with random intercept and spatial 
power covariance structure will be fitted to the data to estimate the progression of “aging”. The 
covariance structure is chosen to reflect the unequal intervals of follow up investigations. Model 
assumptions and model fit will be checked by visual inspection of residuals, and influence diagnostics. 
Missing values will be taken into account by a likelihood-based approach within the framework of 
mixed linear models with the assumption that missing values occur at random. Results will be reported 
as p-value assessed at a level of significance of 5% accompanied by the value of the test statistic and 
degrees of freedom. In addition, 95% CIs for the progression (slope) will be provided. 

Additional exploratory biostatistical analyses: Again, the primary composite endpoint as well as all 
secondary endpoints will be evaluated separately within the PDAC cohort and IS cohort of the 
respective sub-trials. In a first approach, univariate Cox proportional hazard models adjusted for age 
and gender will be calculated for each omics feature (R package survival) using a cut-off of 0.05 on the 
false discovery rate. In a second approach, all omics features will be simultaneously considered in a 
multivariate Cox model, adjusted for age and gender. Towards this aim, a component-wise likelihood-
based boosting algorithm proposed by Binder and Schumacher 2008 105 (R package CoxBoost) will be 
used to develop a biomarker signature. 

Standard  machine learning: For the machine learning part, the primary outcome and all secondary 
outcomes give rise to an assignment of predictor/feature lists to survival times, one such list per study 
participant, for which biomarkers are then learned in a supervised fashion. As described, in the 
standard analyses, feature integration (see above) will precede the actual calculation of the model 
(“deep” learning approaches that take in “all” features are part of the exploratory analyses, see below). 
In the same way as the standard  biostatistics analyses, the same 5 shortlists of 5 features each (see 
above) will be providing the canonical predictors, analyzed together. Exploiting time-to-event 
information, we will employ random survival forests (RSF) as described by 106 with the following 
advantages. 

1. RSF can now be considered a time-tested approach, and it was the subject of a recent 
extensive review 65 and of a systematic comparison with LASSO approaches in the case without 
feature selection (see item 7 of the tables of Pi et al 107, for its competitive performance which 
is not reflected in their abstract). 

2. RSF can also work on essentially all features, without a preceding feature integration/selection 
step, and then be compared, in the explorative machine learning analyses described below, to 
survival support vector machines (SSVM) and to a novel method Path2Surv that “conjointly” 
performs feature selection and model training, see 94. 

3. RSF was recently compared to Cox-nnet 108, a neural network approach which we consider as 
very promising for the exploratory part, see also below. 

4. RSF offers a considerable degree of interpretability, given that RSFs are derived from decision 
trees. 

5. RSF is considered “completely data driven and thus independent of model assumptions” and 
“in case of high dimensional data, limitations of univariate regression approaches such as 
overfitting, unreliable estimation of regression coefficients, inflated standard errors or 
convergence problems do not apply” 65. 
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In the machine learning part, we calculate accuracy and AUC/c-index using cross-validation to make 
the best use of our limited sample size, following the setup of 94 and 107 (who, however, set aside 
separate validation datasets). 

Additional exploratory machine learning: Apart from the more time-tested standard machine learning 
described above, we will also explore methods that were proposed recently, for which it is less 
straightforward to tell whether these methods are fit-for-purpose in our case, even though they are 
usually claimed to be superior by their developers based on some test/validation data sets. Specifically, 
as mentioned above, we expect to test Path2Surv and SSVM 94 as well as Cox-nnet 108 (without prior 
feature integration); the latter in  particular promises a high degree of interpretability. We further 
explore CNet (employing the censored-data variant), for interpretable biomarkers. We also plan to 
employ the PASNet 109, SurvivalNet 110 and SVRc 70 packages. The longitudinal transcriptomics of the 
patients and the controls may also be analyzed integratively based on the “optimal discovery 
procedure” 111, considering, however, that landmark feature data can only be used to predict events 
after the landmark. Finally, we will map the differential omics data onto a human “healthspan pathway 
map” 112, that is, a set of clusters/pathways based on health-related genetic data that we assembled 
recently.

Explorative systems biology modelling, explorative parallelogram approach and transfer learning: 
As mentioned, systems biology modelling and parallelogram 113 114 extrapolation are supposed to 
deliver small sets of highly informative features, by contributing features that are dominating model 
behaviour or that are shown to translate from the SASKIt animal model data. Given the comparatively 
small number of study participants (but in-depth measurements), we also wish to explore “transfer 
learning”, which aims to utilize large amounts of public knowledge in the form of latent variables. 
Specifically, we plan to use, and wish to develop further, the Multiplier 115 approach motivated by the 
analysis of rare-disease data. Multiplier utilizes the RNASeq-based recount2 compendium, and apart 
from the functional network and pathway data that we use in the feature selection part, this 
compendium is expected to be our main source of biological knowledge that enters the calculations 
for biomarker discovery.

Miscellaneous exploratory approaches and discovery of diagnostic biomarkers: We will also use 
unsupervised machine learning to generate descriptive multi-omics correlation networks, as they were 
most recently employed by 116, there supplemented by linear mixed effects models using (un-
)restricted maximum likelihood approaches; in this very recent biomarker discovery trial of similar 
design as ours, but with many more longitudinal omics measurement time-points than ours, we could 
not identify other biomarker discovery methods being used. If genetic data become available, we will 
include these in some analyses; specifically, we will investigate the added value of expression 
quantitative trait loci (eQTL) analyses. PDAC and IS data will be analyzed together in some integrative 
exploratory analyses. In that case, the occurence of specific endpoints will be evaluated according to 
the group membership (PDAC or IS). This means that in addition to the biomarker signature, a group 
variable, indicating PDAC or IS patients, will be included in the analysis, to assess the difference in the 
progression of the respective endpoints between PDAC and IS patients. We also wish to compare PDAC 
and IS patient data to data of healthy controls (adjusted for age and gender) by means of logistic 
regression models with the aim of identifying candidate biomarkers for the diagnosis of the respective 
disease; we then specifically investigate the association of these diagnostic biomarker candidates with 
cellular senescence and other aging-related processes (see also the next paragraph).

Page 18 of 26

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

17
SASKit study protocol V01

Further analyses, and comparison with existing biomarkers and biomarker signatures: Towards the 
end, we will investigate the overlap for the various biomarker identification approaches we employed, 
assuming that the most frequently found biomarkers may be the most robust and valid ones. 
Moreover, we will compare with existing biomarkers and signatures. Regarding the prediction of 
vascular events, we will specifically calculate the Khorana and related scores 17 for comparison, and 
report the difference in performance. Further, for all biomarkers we find, we will check their 
association with cellular senescence, by manual inspection, literature investigation, comparison to 
CellAge 117 and the SASP Atlas 50 or by formal enrichment analyses if the number of biomarkers is 
sufficiently large to do this in a meaningful way.  Also, in a final step, we plan to identify and filter out 
the biomarkers that are volatile in the controls. In addition, a comparison of the biomarker profiles 
before and after the co-morbid event is aimed for. Finally, for publicly available data of other trials 
with a sufficient overlap with our predictors, we will use these as validation datasets.
  
Discussion

Limitations 

Arguably, the most serious limitation of the SASKit study is the low number of participants. We 
mentioned above that in the 4-year-time-frame of the entire study, at the Rostock University Medical 
Center we cannot expect to recruit many more than the 50 PDAC patients to be included in this study; 
we could recruit more stroke patients and more controls, but given the call for proposals that allowed 
this exploratory (not confirmatory) study to be applied for and funded, we considered that within a 
limited budget, in-depth omics characterization, animal models (to be detailed in a follow up 
publication) and a comprehensive data analysis plan including systems biology modelling were 
important aspects of our study that we did not want to exclude. 

The two most obvious risks to the main goal of finding good biomarkers for the primary outcome based 
on the standard data analysis are the following. First, we found it hard to estimate the distribution of 
events as defined by the primary outcome; we cannot exclude that too many events take place already 
at the start of the study, or until the first follow-up, specifically in the PDAC subtrial, limiting the 
amount of information available to the subsequent time-to-event analyses. Then again, had we 
defined the primary outcome more conservatively, there would have been a chance that not enough 
events happen until the end of the study. Second, we could not identify role-model publications 
reporting results of biomarker explorations that made use of machine learning methods, except for, 
to some extent, 116, so that we enter unknown territory to some degree. The two most obvious risks 
to our goal of investigating the role of cellular senescence in the (co-)morbidity of PDAC and IS could 
be an insufficient prevalence of co-morbid events, and the complex role of treatment in case of PDAC, 
where additional cellular senescence is most likely triggered by therapeutic intervention 118. Then 
again, all molecular high-throughput analyses are essentially explorative and we are open to 
discovering biomarkers of disease that do not relate to any of our pre-specified hypotheses.

Implications 

We designed the SASKit study to synergistically deliver upon a couple of aims that we consider to be 
of relevance for specific disease prognosis and treatment as well as for primary, secondary and tertiary 
prevention. Employing clinical performance measurements and patient-reported outcomes, we aim 
for clinical relevance and we suggest that prognostic biomarker signatures for general health and QoL 
are perhaps more important than (progression-free) survival, although there is much more data about 
the latter than the former. Moreover, good disease treatment options are still lacking for PDAC as well 
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as for stroke, and the more we find cellular senescence implicated in disease deterioration, at least in 
a subgroup of patients with a specific biomarker signature, the more confidently we can suggest, and 
further explore, seno-therapeutic interventions for these two diseases. 

Notably, we are in the process of starting a parallel human study testing, in healthy elderly people, 
interventions into cellular senescence, based on food rich in seno-interventional compounds, and we 
expect that many aspects of the study design presented herein will be adopted in that parallel study. 
That study will also investigate aging- and senescence-related outcomes, and as such it can be seen as 
a test of a cautious yet potentially very effective approach to primary prevention; if the diagnostic 
biomarkers we find in the SASKit study relate to cellular senescence, this observation would constitute 
further evidence for (cautious) seno-interventions, moving towards a kind of universal approach of 
disease prevention by tackling fundamental aging-related processes (see Boxes 1 and 2). 

Secondary prevention, aiming to reduce the impact of a disease that has already occurred, can 
ultimately be supported by the SASKit study, if we can demonstrate, and (in follow up studies) confirm, 
a distinctive role of cellular senescence (and/or other aging-related processes such as 
inflammation/inflammaging 119) in disease deterioration as defined here. Finally, evidence for tertiary 
prevention by seno-therapeutic intervention, aiming to attenuate the impact of an ongoing disease, is 
also an option based on how accurate, relevant and specific our biomarkers will be. 

Last but not least, we expect that the in-depth molecular analyses that we wish to conduct will provide 
mechanistic insights into the etiology of the diseases we study here, which we just see as models for 
the investigation of the fundamental role of aging in general and cellular senescence in particular in 
disease and dysfunction. 

Abbreviations: 

AUC Area Under the Curve
BMI Body Mass Index
CA19-9 Carbohydrate Antigen
CEA Carcinoembryonic antigen
CI Confidence interval
CRP C-reactive protein
ECOG Eastern Cooperative Oncology Group
HR Hazard ratio
INR International normalized ratio
IS Ischemic Stroke
LDH Lactate dehydrogenase
NIHSS NIH-Stroke Scale
NYHA New York Heart Association
PDAC Pancreatic Ductal Adenocarcinoma
PS Performance status
QoL Quality of Life
ROC Receiver-Operator Characteristic
RSF Random survival forests
SASKit Senescence-Associated Systems diagnostics Kit for cancer and stroke
SASP Senescence Associated Secretory Phenotype
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Abstract

Introduction: Aging-related processes such as cellular senescence are believed to underlie the 
accumulation of diseases in time, causing (co-)morbidity, including cancer, thromboembolism and 
stroke. Intervening into these processes may delay, stop or reverse morbidity. To study the link 
between (co-)morbidity and aging, by exploring biomarkers and molecular mechanisms of disease-
triggered deterioration, we will recruit 50 patients with pancreatic ductal adenocarcinoma, 50 patients 
with (thromboembolic) ischemic stroke and 50 controls, at Rostock University Medical Center. 
Methods and Analysis: We will gather routine blood data, clinical performance measurements and 
patient-reported outcomes at up to 7 points in time, and in-depth transcriptomics & proteomics at 
two early time points. Aiming for clinically relevant biomarkers, the primary outcome is a composite 
of probable sarcopenia, clinical performance (described by ECOG Performance Status for patients with 
pancreatic ductal adenocarcinoma and the Modified Rankin Scale for patients with stroke) and quality 
of life. Further outcomes cover other aspects of morbidity such as cognitive decline, and of comorbidity 
such as vascular or cancerous events. The data analysis is comprehensive in that it includes biostatistics 
& machine learning, both following standard role models & additional explorative approaches. 
Predictive biomarkers for interventions addressing senescence may become available if the biomarkers 
that we find are predominantly related to aging / cellular senescence. Similarly, diagnostic biomarkers 
will be explored for their relationship to aging / cellular senescence. Our findings will require validation 
in independent studies, and our dataset shall be useful to validate the findings of other studies. In 
some of the explorative analyses, we shall include insights from systems biology modeling as well as 
insights from preclinical animal models. We humbly suggest that our detailed study protocol and data 
analysis plan may also guide other biomarker exploration trials. Ethics and Dissemination: The study 
was approved by the local ethics committee, registered at the German Clinical Trials Register, and 
results will be published following standard guidelines. 
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Article summary 
Strengths and limitations of this study:

 In-depth measurements of both relevant outcomes and potential biomarkers. 
 Comparatively low number of participants, for both patients and controls.
 In-depth and detailed data analysis plan.
 Investigation of the deterioration of health and (co-)morbidities, not just of survival.
 Two co-morbid diseases investigated in almost identical ways in two sub-studies. 

Introduction 

Study Rationale and Aims. The primary aim of the SASKit (“Senescence-Associated Systems 
diagnostics Kit for cancer and stroke”) study is to discover a set of molecular biomarkers for outcomes 
after pancreatic ductal adenocarcinoma (PDAC) and ischemic stroke (IS), which are specifically useful 
to predict disease-triggered deterioration of health (“disease deterioration” for short) in terms of 
probable sarcopenia 1, reduced clinical performance and quality of life (QoL). The outcomes also 
include the (co-)morbidity of vascular events (here defined as stroke, myocardial infarction, and 
venous or arterial thromboembolism) in patients with PDAC, which are observed frequently apart from 
sarcopenia. Also included is the (co-)morbidity of any kind of cancer and of cognitive decline following 
IS. Moreover, we consider mortality, as the most canonical outcome. Following up on the primary aim, 
we will investigate the nature of the molecular biomarkers to find out whether cellular senescence and 
other aging-associated processes are contributing to disease deterioration. As a secondary aim, we will 
search for diagnostic biomarkers related to cellular senescence and other aging-related processes that 
may differentiate healthy controls from PDAC or IS patients. Therefore, in the following we motivate 
our study by describing the prevalence and the outcomes of PDAC and IS, the known predictors of 
these outcomes, and the specific prevalence of co-morbidity and known predictors for this co-
morbidity. The role of cellular senescence in aging and disease is described in Box 1. The background 
of the cancerous and vascular comorbidity is described in Box 2. Importantly, despite differences in 
disease pathology, dynamics and prognosis, there is a lot of evidence that cellular senescence is, in 
part, an important contributor to disease etiology, progression and consequences for both diseases. 
Avoiding unclear or circular terminology, we define a biomarker in a very general fashion, simply as a 
feature (data point) f1 that successfully predicts another feature f2 at a later time-point 2, in a 
biomedical context. Here, features may be composite ones, based on the measurement of individual 
features. Often, feature f1 refers to molecular data, while feature f2 refers to phenotypic data, such as 
clinical outcomes. Ultimately, we aim to identify biomarkers that are easy to measure, and that are 
then validated in other studies to predict a clinically relevant outcome. The study design is illustrated 
in Figure 1, while the data analysis plan is summarized in Figure 2.

Pancreatic ductal adenocarcinoma: prevalence and outcomes. The incidence of pancreatic cancer is 
increasing; in 2017 the global incidence was 5.7 per 100,000 person-years 3. Age is the most important 
risk factor, and incidence peaks at 65 to 69 years in males and 75 to 79 years in females 3. Pancreatic 
ductal adenocarcinoma (PDAC) is the most common histological type of pancreatic cancer 4. The 
disease is characterized by late clinical presentation 5, early metastases and poor prognosis, with a 
one-year survival rate in Europe of only 15% 6. Many patients have unresectable disease at the time of 
diagnosis, either as locally advanced disease or already with metastases. Therefore therapy is palliative 
consisting of chemotherapy and/or best supportive care. Disease deterioration with weight loss and 
low muscle strength, that is, cachexia and sarcopenia 7, will follow, for some patients rapidly (within a 
few weeks) and for others during a longer interval of one or two years. Recent developments in 
oncology have not shown much benefit in clinical trials of patients with PDAC 8. Inflammation, 
desmoplasia and early metastases are deemed responsible for the difficulties in targeting the disease. 
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Moreover, vascular events are frequent problems in the course of PDAC and may contribute to disease 
deterioration or early death. Venous thromboembolism is the most common event occurring in up to 
34% of patients with metastatic PDAC 9 10, but arterial ischemic events, like stroke, are also reported 
11-14 15 16, see also Box 2. Therefore, deterioration and mortality in PDAC can not only be explained by 
tumor progression as such, but other factors like sarcopenia/cachexia and vascular events contribute 
as well. Furthermore, we suggest that the underlying cause of all these factors are aging-related 
processes such as cellular senescence and chronic inflammation. 

Pancreatic ductal adenocarcinoma: known biomarkers and clinical scores. In PDAC patients there is 
a lack of established scores describing the risk of disease deterioration and the risk of 
sarcopenia/cachexia in particular. Referring to the endpoint of overall survival, some recent studies 
tried to establish inflammation-based scores to better characterize outcome in PDAC. In a 
retrospective analysis of 386 patients with PDAC of different stages, CRP/Alb ratio, neutrophil–
lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR) and modified Glasgow prognostic score 
(mGPS) were studied 17. In patients with locally advanced and metastatic disease, the CRP/alb ratio 
was an independent factor of poor survival 17. Another retrospective study evaluating CA19-9, CEA, 
CRP, LDH and bilirubin levels in locally advanced and metastatic pancreatic cancer patients treated 
with chemotherapy showed an independent prognostic significance for overall survival only for CA 19-
9 decline during treatment 18. Other studies have evaluated risk factors for thromboembolic events in 
pancreatic cancer patients and more generally in patients with cancer 19 (see also Box 2). The Khorana 
score, developed more than ten years ago, is widely used to estimate venous thromboembolic risk in 
the population of cancer patients 20; it integrates standard laboratory parameters (platelet count, 
hemoglobin, leukocyte count), body mass index (BMI) and the cancer site (with pancreatic cancer and 
gastric cancer classified as very high risk). Still, its performance was questioned in a retrospective 
cohort of pancreatic cancer patients 21 and in a prospective cohort study of patients with different 
cancer types, among them 109 with pancreatic cancer 19. The clinical association of PDAC, 
sarcopenia/cachexia and thromboembolism is well-described 11, but still not understood in its 
pathophysiology 22. Within the SASKit study we aim to identify biomarkers and molecular mechanisms 
contributing to this clinical association, by investigating their relation to clinically relevant outcomes. 

Ischemic stroke, prevalence and outcomes. Ischemic stroke (IS) occurs in the German population with 
an incidence of 236 per 100,000 per year 23. The mean age of acute stroke patients is 73-74 years, with 
more than 80% of patients being over 60 years old. After a first stroke, nearly 5% of patients suffer a 
second stroke within a year. Mortality after IS is about 12% within one year and about 30% within five 
years 23. Mild to moderately disabled stroke survivors showed an elevated prevalence of sarcopenia 
>6 months after onset of stroke compared with non-stroke individuals (13.2% vs 5.3%) 24. The 
mechanisms underlying sarcopenia include loss of muscle mass, reduction of fibre cross-sectional area 
and increased intramuscular fat deposition occurring between 3 weeks and 6 months after stroke in 
both paretic and non-paretic limbs 25. Comorbid, or subsequent cancer may facilitate sarcopenia after 
IS. A US nationwide inpatient sample study reported that 10% of hospitalized IS patients have comorbid 
cancer, 16% of them with gastrointestinal cancer and 1% with PDAC, and that this association may be 
on the rise 26. Additionally, within two years after IS, another 2% to 4% of patients receive a new cancer 
diagnosis 27-29. Within the SASKit study we aim to identify biomarkers to predict outcome after IS in 
terms of general health state (i.e. sarcopenia, deterioration of clinical performance, cognitive 
functioning, frailty) and quality of life, as well as (co-)morbidity, as we do for the PDAC cohort.
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Ischemic stroke, known biomarkers and clinical scores. In an early study of 956 patients with acute IS, 
determinants of long-term mortality were age, obesity, cardiac arrhythmias, diabetes mellitus, 
coronary heart disease and organic brain syndrome at discharge from hospital; interestingly, 
hypercholesterolaemia and smoking did not affect long-term outcome 30. More recent studies 
uniformly identified age and stroke severity, usually assessed on the NIHSS or similar scales, as 
biomarkers of long-term functional outcome and mortality after stroke 31 32. Fibrinogen has been 
related to long-term outcome after stroke 33 34. There have been conflicting data on the predictive 
value of serum bilirubin levels on the long term risk of cardiovascular disease. While some studies are 
in favor of a predictive value (e.g.: 35-37), others are not (e.g.: 38). Also, CRP levels have been reported 
to impact the functional long-term outcome after IS 39, and early neurological deterioration after IS has 
been related to decreasing albumin levels, elevated CRP and fibrinogen levels 40. Potential biomarkers 
for occult cancer in IS patients include elevated D-dimers, fibrinogen, and CRP; infarction in multiple 
vascular territories; and poor nutritional status 41. Interestingly, IS patients with elevation of at least 
two of the following coagulation-related serum markers, that is, D-dimer, prothrombin fragment 1.2, 
thrombin-antithrombin complex and fibrin monomer, in the post-acute phase of stroke, were more 
likely to have occult cancer or recurrent stroke during follow-up for 1.4±0.8 years 42. In another study 
of acute IS patients, high D-dimer levels at admission were independently associated with recurrent 
stroke and all-cause mortality during follow-up for up to 3 years 43. These findings underpin the idea 
of shared risk factors for unfavorable outcomes in IS as well as cancer and they suggest that there may 
be coagulation-related biomarkers indicating an early stage of carcinogenesis or stroke (see also Box 
2). Nevertheless, the clinical biomarkers that currently exist for predicting outcome are limited in their 
performance and clinical utility, and there is a need to overcome the limitations of current predictive 
models 44.

Box 1: Aging and cellular senescence. Extra lifetime gained over the last century led to the widespread 
emergence of age-related diseases that are rarely seen in younger people. Older patients are thus 
more likely to display several comorbidities, which makes treatment difficult and expensive. Over the 
last years, strong evidence has accumulated that the presence of senescent cells (i.e. non-dividing, 
arrested but metabolically active cells that escape apoptosis) is causally involved in diseases such as 
atherosclerosis, cancer, fibrosis, pancreatitis, osteoarthritis, Alzheimer disease and metabolic 
disorders 45 46. Evidence that senescent cells are not only correlated with aging and diseases, but are 
instead causally involved, comes from recent studies, which transplanted senescent cells from old into 
young mice 47. This resulted in persistent functional impairment as well as spread of cellular senescence 
to host tissues. Another strong line of evidence comes from experiments that actually removed 
senescent cells from aged mice by senolytics 47-49. In each case an increase in lifespan and a delay of 
typical age related diseases was observed. Most recently, the results of human pilot trials of putative 
senolytic treatments in case of idiopathic pulmonary fibrosis and osteoarthritis have been reported. 
One team 50 treated idiopathic pulmonary fibrosis patients with dasatinib and quercetin and 
demonstrated safety as well as notable improvements in some physical abilities. Furthermore, a 
human phase-1 study demonstrated that a senolytic compound, which was applied locally in patients 
with osteoarthritis of the knee, was safe and well-tolerated 51. A clinically meaningful improvement in 
several measures, including pain, function, as well as modulation of certain senescence-associated 
secretory phenotype (SASP) factors and disease-related biomarkers was observed after a single dose.

Box 2: Cellular senescence and the comorbidity of cancer and vascular events. Some cancers such as 
PDAC can trigger vascular events by hyper-coagulation, reflecting Trousseau’s syndrome first reported 
150 years ago 11. In turn, strong associations between coagulation, cellular senescence and the SASP 
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were demonstrated recently 52. While cellular senescence can suppress PDAC and cancerous 
proliferation in general, it also triggers tumor progression by fostering inflammatory processes, 
including the SASP, while on the other hand, after ischemic stroke, it attenuates recovery 53-57. For both 
diseases, causal influences can be traced back to molecular determinants: PAI-1 (also known as 
SERPINE1 and part of the SASP) is involved in cancer-triggered thromboembolism 54 56 and stroke 
recovery in animals 58. Other proteins involved in cellular senescence, specifically inflammatory 
cytokines such as IL6, and the lesser known osteopontin and gelsolin, are also markers for both PDAC 
and stroke 59-62. The cyclin-dependent kinase CDK5 63 is implicated in the progression of PDAC as well 
as in the recovery from stroke 57 64. Moreover, apart from being genetic risk factors 65 66, the most 
prominent drivers of cellular senescence (p16/CDKN2A and p21/CDKN1A) also promote PDAC 
progression 67 and endothelial embolic and arteriosclerotic mechanisms of stroke 68. Finally, two small-
molecule interventions into cellular senescence, fisetin and quercetin, are both potential treatments 
of both PDAC and stroke. In case of stroke, the blood-brain-barrier is passed by quercetin which 
improves stroke outcome 69. In case of PDAC it was observed that quercetin inhibits pancreatic cancer 
growth in-vitro and in-vivo 70. Fisetin is found in various fruits (especially strawberries) and it is 
chemically similar to quercetin, with strong putative senolytic effects, extending lifespan of mice even 
when intervention with fisetin started only at an advanced age 71. In a study involving nude mice 
implanted with prostate cancer cells, treatment with fisetin significantly retarded tumor growth 72. 
Also, in case of lung cancer, there is evidence for the beneficial effects of fisetin. One study showed 
that fisetin provides protection against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in albino 
mice 73 and another in vivo study demonstrated the synergistic effects of fisetin and cyclophosphamide 
in reducing the growth of lung carcinoma in mice 74. Several other studies have also demonstrated its 
anticarcinogenic, neurotrophic and anti-inflammatory effects that are beneficial in numerous diseases, 
including pancreatic cancer and stroke 75. 

Methods

The presentation is based on the reporting recommendations for tumor marker prognostic studies 
(REMARK), that is, items (1) – (11) of the REMARK checklist 76. The study design is illustrated in Figure 
1, while the data analysis plan is summarized in Figure 2.

Study design

The SASKit (“Senescence-Associated Systems diagnostics Kit for cancer and stroke”) study is designed 
as a prospective, observational, cohort study to identify biomarkers for disease deterioration in 
patients with PDAC or with IS and, specifically, for the (co-)morbidities of these diseases including 
vascular events and sarcopenia following the diagnosis of PDAC as well as cancer and cognitive decline 
following IS. All patients will be treated for their diseases in accordance with current guidelines or 
therapy standards and at the physician's discretion. Due to the observational study design, regular 
treatment of the patient is not affected apart from sampling blood (20 to 80 ml at up to 7 time-points 
over the next years). Assessment of disease deterioration will be based on standardized clinical 
performance measurements, and patient reported outcomes based on questionnaires (see below for 
details). Additionally, data from clinical charts and information from the general practitioner will be 
collected. The SASKit study is divided into two subtrials with a common control group, both featuring 
essentially the same outcomes, predictor measurements and data analysis approaches. 

Patient and Public Involvement

It was not possible to involve patients or the public in the design of the study.

Page 7 of 29

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

6
SASKit study protocol V01

Characteristics of participants (patients and controls)

In the first subtrial (PDAC-subtrial), patients with an initial diagnosis of PDAC in locally advanced or 
metastatic stage without previous systemic therapy will be considered for enrollment, whereas 
patients with a (thromboembolic) IS of the supratentorial brain region within the past 3 to 10 days, 
with a definitive brain infarction volume >10 ml in an assessment by magnetic resonance imaging (MRI) 
will be considered for the second subtrial (IS-subtrial). Except for some explorative analyses, the 
subtrials will be analyzed separately.

Within both subtrials, eligible as controls are those without PDAC or IS and with no other malignant 
disease or other (hemorrhagic) stroke during the past two years. Potential controls will be recruited 
from persons who have lived in the same household as the patient within the last 2 years, have a 
maximum age difference of 12 years and are neither brothers nor sisters (i.e. spouses, second-degree 
relatives or friends). The controls are selected so that the age and gender structure approximately 
reflects the age and gender distribution of the patients. Therefore, the age and gender of the patients 
will be continuously recorded, and the controls selected in such a way that their frequency distribution 
of gender at any time corresponds approximately to that of the currently recruited patients. 

The following criteria lead to exclusion from participation in the study for both patients and controls, 
at time of recruitment:

● previous or current medical tumor therapy

● other cancer within the past 2 years

● previous stroke with persistent deficit

● myocardial infarction within the past 2 years

● therapeutic anticoagulation within the past 2 years for longer than 1 month

● pre-existing dementia

● chronic heart failure stage NYHA IV

● terminal renal insufficiency with hemodialysis

● known HIV infection 

● known active hepatitis C

● pregnancy

● age < 18 years.

Both subtrials will be implemented according to the same standardized protocol. After written 
informed consent of each participant, patients and controls will be followed up at 3, 12, 24, 36 and 48 
months after their inclusion in the trial, whenever possible. The PDAC-subtrial includes an additional 
time-point for examinations at 6 months after inclusion, given that mortality due to PDAC is expected 
to be accelerated as compared to IS. 

The study is expected to start in the second quarter of 2020 and will finish with the last participant's 
follow up at 48 months. Until that time, we expect that 50 PDAC patients, 50 IS patients, and 50 
controls participated in the trial. The study will be conducted at the Rostock University Medical Center 
(UMR), Germany at Clinic III - Hematology, Oncology, Palliative Medicine and at the Department of 
Neurology; the institutions of the other co-authors are supporting the study in a variety of ways. The 
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study protocol has been approved by the ethics committee of the UMR. The study is registered at 
German Clinical Trials Register (DRKS00021184) and will be conducted following ICH-GCP. 

General health- and disease-related and demographic data 

General data of the study participants will be recorded at the beginning of the study (“month 0”) and 
consist of the following: age, sex, BMI, temperature, blood pressure, heart rate (ECG). Furthermore, 
through interviews the following additional data will be recorded: vascular risk factors (arterial 
hypertension, diabetes, hyperlipidaemia, smoking habits), history of vascular events (stroke, 
myocardial infarction, venous or arterial thromboembolism), atrial fibrillation, history of cancer, 
current medication, surgery or blood transfusions in the past three months and vascular or cancerous 
events affecting any first degree relatives. These data may provide influential factors for explorative 
analyses, or be employed to interpret and discuss the results of the study.

Blood sampling

Blood sampling will be done in a standardized fashion, that is, fasting and between 8 and 10 am, for all 
assays. Routine blood parameters will be recorded at the time-points described above (months 0 to 
48). These consist of differential blood count, INR (International normalized ratio of prothrombin time), 
partial thromboplastin time, D-dimers, fibrinogen, factor XII, albumin, bilirubin, high-sensitive CRP, 
CA19-9, cholesterol, and HbA1c. Among the standard measurements, we also measure the liver 
parameters ALT, AST and AP as surrogate markers of liver disease.

Experimental blood analysis (PAI-1 and omics) will be done for patients at month 0 in case of PDAC, at 
month 0 or at month 3 in case of stroke (where the 3-month time point is taken if it reflects a better 
state of the patient as described by the NIHSS), and furthermore at month 3 in case of PDAC, and at 
month 12 in case of stroke. For controls, the experimental blood analysis will be carried out at month 
0 and at month 12, assuming that for these, data do not change much in the 3 months after baseline. 
The justification for taking the better state in case of stroke is the maximization of differences with the 
12 months follow-up data. In terms of practicality (being able to calculate a biomarker signature 
sooner), however, the state at month 0 should be selected for all stroke patients. Since the blood 
sample will be taken pre-processed and frozen at month 0 in all cases, we are in principle able to 
perform the experimental blood analysis for all stroke patients at month 0, and we can do this analysis 
in retrospect if deemed necessary. We also take blood of PDAC patients at month 12, to have the 
option to do an experimental blood analysis if deemed useful. In the following we will refer to the 
baseline time-point (month 0, or month 3 in cases of stroke patients that improved) and the landmark 
time-point (month 3 for PDAC patients and month 12 for stroke patients and controls). The 
experimental blood analysis is done earlier for PDAC because of high expected mortality within the 
first year. 

The experimental blood analysis includes PAI-1 (see Box 2) as well as high-throughput (omics) analyses, 
that is, transcriptomics and proteomics analysis in T-cells and proteomics of serum. T cells are of 
interest because these were reported to carry the strongest signal with respect to cellular senescence, 
based on the marker p16 77. We intend to measure gelsolin and osteopontin as well, provided that 
sufficiently standardized assays become available in due time; the blood collected for this 
measurement shall otherwise be used to measure cytokines/chemokines such as IL6, IL8 and TNFɑ, 
which are part of the SASP, by ELISA assays. At time of writing, we do not yet have reliable estimates 
on the amount of blood cells still available for measuring protein expression, so an antibody-based 
protein array (in case of low amounts), or mass spectrometry (in case of sufficiently high amounts) will 
be used alternatively. For the blood serum, we intend to use the same protein measurement method. 
In the default case of a protein array, we plan to use the novel but dedicated “Senescence Associated 
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Secretory Phenotype (SASP) Antibody Sampler Kit” (consisting of approx. 10 SASP-related proteins 
being measured; Cell Signaling Technology) for both cellular and serum proteomics. Further 
exploratory molecular analyses not (yet) funded but permitted based on the ethics approval include 
the following: single-cell analyses of blood, methylation assays for calculating epigenetic clocks 78, 
genetics by SNP array or whole-genome sequencing, and telomere length. A separate ethics approval 
was granted for an optional skin biopsy; skin microbiome analyses are planned as well. More 
specifically, participants have the option to provide a skin biopsy of 5 mm from an area that is not 
usually visible. We expect that about 30-50% of the participants will opt in. We keep the biopsy in 
culture for several days and divide it into several pieces. Using these, we measure biomarkers of 
cellular senescence (specifically, senescence-associated beta-galactosidase, which cannot easily be 
measured in blood) and we treat some pieces with compounds that may affect cellular senescence, 
such as quercetin or fisetin. Moreover, we plan to sample the microbiome of the forehead using a 
standard swab. This is a very simple procedure, motivated by the claim that a competitive epigenetic 
aging clock can be based on such a sample 79.

Blood sample processing for the experimental analysis will be performed according to standard 
operating procedures (SOP) at the research laboratory of Clinic III - Hematology, Oncology, Palliative 
Medicine. The procedures include flow cytometric control of the sampling quality including distribution 
of cell types and vitality as performed in routine diagnostics. Isolation of peripheral blood mononuclear 
cells (PBMCs) will also be performed following the SOP used by the laboratory in routine diagnostics. 
T-Cell separation will be performed according to an established work flow based on magnetic bead 
purification via Miltenyi MACS following manufacturer’s instructions. T cell fraction purity as well as 
vitality will then be verified by flow cytometric analyses as described above. Nucleic acid isolation as 
well as protein isolation will be further performed according to the SOP of the research laboratory 
performed using column separation (Qiagen, Hilden Germany). RNA integrity values (RIN) will be 
analysed using an Agilent Scientific Instruments Bioanalyzer as instructed by the manufacturer. RIN 
values above 6 will qualify for RNAseq or Clariom D Array analyses; for RNAseq average reads per 
sample will be set at approx. 40 x 10e6.    

Clinical performance measurements and patient-reported outcomes

At baseline and at each follow-up, handgrip strength (“grip strength” for short) is measured using a 
digital hand dynamometer (Jamar Plus). The test is performed while sitting comfortably, shoulder 
adducted, elbow placed on the tabletop and flexed to 90 degrees, with the forearm and wrist in a 
neutral position 80. The highest value of three measurements of maximal isometric contraction of the 
dominant hand, or if paralyzed due to IS, contraction of the unaffected hand, is documented in kg. 
Further, the following clinical performance measurements are evaluated by the study physician or 
study nurse according to standard protocols: ECOG Performance Status (ECOG PS) 81, modified Rankin 
Scale (mRS) 82, Canadian Study on Health & Aging Clinical Frailty Scale (CSHA-CFS) 83, NIH-Stroke Scale 
(NIHSS) 84, Montreal Cognitive Assessment (MOCA) 85. All raters are certified for the applicable scores 
(mRS, NIHSS, MOCA). Patient-reported outcomes (measured by questionnaires) are the following: EQ-
5D-5L and EQ-VAS (generic evaluation of QoL in 5 domains and overall on a visual analog scale) 86, 
HADS-D (evaluation of anxiety and depression) 87, WHODAS 2.0 (WHO Disability Assessment Schedule) 
88, and, for patients with PDAC, FACIT-Pal (evaluating QoL with focus on palliative symptoms and needs) 
89, 90. All questionnaires are administered following the suppliers’ instructions.

Follow up data

Apart from the clinical and patient-reported outcomes, further follow-up data are BMI, temperature, 
blood pressure, heart rate (ECG), atrial fibrillation, current medication, tumor treatment, comorbidity 
(any vascular or cancer event), hospital admissions or palliative care. Additionally, based on clinical 
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charts and information from the general practitioner, we will record medication, (co-)morbidity and 
mortality. Just like the general health- and disease-related and demographic data recorded at time of 
recruitment, these data may provide influential factors for explorative analyses, or be employed to 
interpret and discuss the results of the study.

Endpoints 

In both subtrials, the primary endpoint is a composite measure of “disease deterioration” defined as 
the first occurrence within a follow-up interval of at least one of the following.

a. Sarcopenia, measured by grip strength less than 27 kg for males and less than 16 kg for females 
(according to the revised European consensus, EWGSOP2,  1).

b. Deterioration of clinical performance, that is, of the ECOG PS by at least two points (PDAC-
subtrial), or of the mRS by at least one point (IS-subtrial).

c. Deterioration of QoL, described as a reduction of the EQ-5D-5L by at least 0.07 in the index 
score, and deterioration of at least 7 points in the EQ-VAS (ranging from 0-100).

Deterioration will be considered between baseline (month 0) and the respective follow-up 
investigation. As described above, for patients with IS who have improved their condition (measured 
by NIHSS) within the first 3 months, this time point (month 3) will be used as a baseline instead. Item 
(a) is the deterioration from “no sarcopenia” to “probable sarcopenia” as defined by current consensus 
1. Grip strength has been widely used for assessing muscle strength, which is currently used as the 
most reliable measure of muscle function, loss of which indicating sarcopenia 1. ECOG PS is established 
in describing the general condition of patients with cancer, whereas mRS is established in patients with 
stroke. Death is reflected by both scores as ECOG PS of 5 or mRS of 6, and it will always consider death 
from any cause. The EQ-5D-5L evaluates QoL in five dimensions (mobility, self-care, usual activity, 
pain/discomfort, and anxiety/depression), all relevant for patients with PDAC and IS. Furthermore, it 
is a generic score so that results will be comparable for different diseases (as recently described in 
patients with stroke 91) and for the general population 92). Even though disease-specific scores might 
evaluate symptom burden in even more detail, the EQ-5D-5L was recently shown to be comparable to 
QoL scores developed specifically for pulmonary embolism and deep vein thrombosis (that is, PEmb-
QoL, VEINES-QOL/Sym and PACT-Q2) in terms of acceptability, validity and responsiveness 93. A clinical 
deterioration in EQ-5D-5L is described as a minimal important difference in the range from 0.07 to 0.09 
index points and in VAS from 7 to 10 94 which is the basis for the definition of item (c). Controls reach 
their endpoint by the same definition as the subcohort for which they serve as control; in any 
integrative analysis of both subtrials, a deterioration of the mRS by at least one point will be used as 
the criterion (instead of ECOG PS), because stroke patients in general have a slower deterioration than 
PDAC patients, and controls naturally have the slowest expected deterioration.

The primary composite endpoint and all secondary endpoints will be evaluated in a first analysis, based 
on data obtained until summer 2021, and in a second analysis, based on data obtained until summer 
2023, and in a third analysis at the end of the study. The second analysis may be delayed until data of 
90% of the study participants are available (at least including the month 12 follow up) and it may then 
constitute the “main” analysis of the study.

The following secondary endpoints are evaluated:

● each component of the primary endpoint (separately);
● occurrence of disease-specific (co-)morbidities, as follows

o new vascular events (stroke, myocardial infarction, venous or arterial 
thromboembolism), specifically in patients with PDAC;
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o new cancer, specifically in patients with IS; 
o probable sarcopenia (based on grip strength);
o cognitive decline (deterioration of MOCA by 3 points from best value at baseline);

● frailty, defined as a CSHA-CFS level of 6, 7, or 8;
● all-cause mortality. 

Further, a sum-score summarizing all measurements of phenotypic variables (grip strength, clinical 
performance measurements, comorbid events, mortality) will be considered as a surrogate for “aging”, 
normalizing all continuous-scaled components in order to obtain a common scale with an average of 
zero and standard deviation of one. The components of the sum-score will all be given equal weight.

Predictors

While all phenotypic features (grip strength, clinical performance, patient reported outcomes, 
comorbid events, mortality) are contributing to the definition of endpoints (as dependent 
variables/parameters), all routine and experimental blood features (PAI-1, omics) are considered to be 
potential predictors; these are also called the independent variables/parameters. This delineation is 
justified by (a) the paradigm that (clinical) relevance is tied to high-level phenotypes describing health 
and survival, specifically including QoL 2, and (b) the goal of developing a “senescence-associated 
systems diagnostics kit” that includes a careful selection of biomarkers contributing, as much as 
possible, also to molecular-mechanistic insights into PDAC, IS and their (co-)morbidity, which we 
hypothesize to be related to cellular senescence and aging. Age and gender will be included as 
mandatory covariates (also termed confounders, that is, predictors which we do not aim to explore, 
or which we wish to improve upon) in all statistical models. Further covariates are smoking, liver 
dysfunction or disease, the baseline NIHSS score in case of IS, as well as locally-advanced vs metastatic 
PDAC and modality of treatment in case of PDAC. As described, the successful predictors identified by 
our study, following the statistical analyses outlined below, are called biomarkers; we wish to stress 
that these are only candidates for the ultimate goal of clinically validated biomarkers; in particular, 
they still need to be validated in further studies (based, e.g., on other cohorts). A set of biomarkers is 
also called a biomarker signature.

Blinding and pseudonymization 

No blinding will be done during the study. However, the primary composite endpoint will be 
documented without subjective influence due to standardized definitions. Thus, detection bias will be 
kept at a minimal extent. Furthermore, information bias will be minimized as we will use simple 
measurements, which are applied in daily practice or are self-reported and easy to perform (e.g. EQ-
5D-5L). The rigorous inclusion of all eligible patients within the recruitment period will help to minimize 
selection bias. All patient data are pseudonymized to all investigators except for the attending 
physician and study nurse. Since all major data analyses are based on known information about the 
outcomes (e.g., supervised machine learning with cross-validation), the data analysis will also be 
performed based on the pseudonymized data. Protection of personal and clinical data of all patients 
and controls will follow all relevant legal regulations. 

Sample size

No formal sample size calculation was performed a-priori for this observational study. The prevalence 
of PDAC combined with the requirement to complete the study within a reasonable timeframe implied 
a target of 50 patients per group (PDAC, IS and control group). Nevertheless, a power analysis revealed 
that a sample size of 50 patients will have 80% power to detect a significant difference by a non-
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parametric Wilcoxon statistic between an AUC of 0.75 for a particular biomarker signature compared 
to the null hypothesis value of 0.5 at a significance level of 5% under the assumption that about three 
times as many patients will reach the primary endpoint, compared to patients who will not reach the 
primary endpoint 95.

Data Analysis Plan

General considerations: The guiding criteria for biomarker identification in the SASKit study are the 
maximization of the predictive signal, clinical relevance/utility, biomedical/molecular/clinical 
interpretability, and practicality/cost. Given the relatively low number of participants in this in-depth 
study, to maximize the signal for the endpoints and predictors given as outlined above, we must aim 
to use all available information. Regarding endpoints, whenever possible, we thus wish to consider the 
(censored) time-to-event information inherent in the baseline and follow-up examinations, and in the 
mortality data. The primary endpoint was defined to integrate expected clinical utility and maximum 
signal. In defining the (secondary) endpoints, we considered an array of clinically relevant single 
endpoints as well as a sum-score of all phenotypic measurements; we hypothesize that the latter 
carries the largest amount of signal. Given the small sample, we cannot set aside an extra validation 
dataset. For the predictors considered to be covariates/confounders, please see the section on 
“Predictors”, above. The data analysis plan is summarized in Figure 2.

Data quality assessment and cleaning: The need for (and the amount of) data cleaning cannot easily 
be estimated beforehand; we plan to follow the MarkAGE guidelines 96 to deal with missing values, 
and to detect and rectify outliers and batch artefacts.

Predictor/Feature integration: Regarding predictors (features), we first need to remember that we 
measure at baseline (at months 0 or 3) and at one landmark (main follow-up, that is, at months 3 or 
12). While use of baseline features is unrestricted, use of landmark features is, of course, restricted to 
predict outcomes after the landmark. Further, we need to handle the high dimensionality of the omics 
features. Here, upfront feature integration, e.g., by averaging measurements as described below, is 
considered preferable specifically for the high-dimensional omics data, for the following reasons.

1) A small feature space allows for an easier understanding and interpretation, see, e.g., 97.
2) Integrated features can be used as input for both the standard biostatistics and the standard 

machine learning parts of the analysis. 
3) Use of few features is more time-tested than newer methods featuring the joint calculation of 

the prediction model and the selection of the features, albeit the latter are quite often claimed 
to be superior by their developers. 

4) Naturally, feature integration avoids multicollinearity and overfitting, and multiple testing is 
less of an issue. This counters the “curse of dimensionality” and “de-noises” the data towards 
better prediction performance 97 98. 

5) Feature integration allows the handling of feature heterogeneity, which in our case refers to 
routine blood measurements as well as various omics data types. 

6) In the explorative analyses, systems biology modelling and the parallelogram approach are 
both supposed to deliver further small sets of integrated, highly informative features, which 
may, e.g., dominate systems behaviour, or which are believed to translate well from animal 
models to humans (see below).
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While most features will be available for the baseline and the landmark time-point, utilizing baseline 
data is clinically more useful, simply because the prediction for the endpoint is available much earlier. 
Nevertheless, in the explorative analyses, we will investigate the predictive power of changes in 
feature measurements from baseline to landmark, given that such changes may be more informative 
about future disease deterioration (and other endpoints) than just baseline values. 

Specific omics data feature integration: Notably, we face a heterogeneous “multi-view” dataset, 
usually referred to as “multi-omics”. Our feature integration approach (see above) is also known as a 
“late integration” type of analysis, implying that measurements for different omics data types are 
reduced early on to activation scores for pathways or subnetworks that are then integrated at a “late” 
level. To calculate the activation scores for subnetworks, we use, by default, the 
ExprEssence/FocusHeuristics linkscore 99 100, taking the links (gene/protein interactions) from a 
functional interaction network defaulting to STRING. Our experience with the linkscore motivates us 
to include this method as one of the approaches proposed for feature integration in the following, 
influencing the calculation of up to 10 features on which the standard biostatistics and machine 
learning shall be based. Specifically, we take the average expression measurement for all patients 
(as a list of expression values, one per gene) and the average for all controls (as a list of expression 
values, one per gene) to calculate a linkscore for each STRING interaction, and assemble a 
“condensed” network including all interactions with a linkscore in that percentile for which the 50 
highest-scoring interactions are shown. These interactions form subnetworks. We then take the 
average linkscore for each subnetwork as the subnetwork activation score. Alternative methods 
such as keypathwayminer will be used in the exploratory analyses, see below. For the pathways (such 
as KEGG), we will calculate pathway activation scores using Gene Set Variation Analysis (GSVA) 101. This 
method calculates pathway activation scores from expression data, is suited for use with microarray 
as well as RNAseq data and performed strongly in a recent benchmarking analysis 102. The GSVA-based 
pathway activation scores can subsequently be compared between patients and controls in the same 
way as normal gene expression data, calculating, for each pathway, a fold-change of the pathway 
activation scores between patients and controls. Here, we average over all patients and over all 
controls, respectively, using the limma R package and adjusting for age and gender of the individual 
patient/control pathway activation. An example of this approach is given in the GSVA publication, 
where differential pathway activation was identified between acute lymphoblastic lymphoma and 
mixed-lineage lymphoma 101. The major downside of feature integration may be information loss; 
subsequent statistical and machine-learning-based analyses receive only a tiny fraction of the amount 
of information that is available in total. 
Gene expression data (transcriptomics) will be our preferred omics data type. Nevertheless, proteins 
are closer to the phenotype than transcripts, so we wish to not ignore these. Therefore, we prepare to 
deal with both kinds of proteome data that we may expect (see “Experimental blood analyses”, above), 
as follows. 

1. Large-scale data, likely based on mass spectrometry, in the order of hundreds or more proteins 
that can be identified and measured in all the conditions investigated differentially. 

2. Small-scale data, likely based on antibody arrays, in the order of tens or less. 
Except for the raw data preprocessing depending on the platform, once log-fold changes describing 
differential expression are established, we thus expect to handle the large-scale proteome data 
essentially the same as the transcriptomics data, and the small-scale proteome data similarly to the 
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blood routine data, for cells and serum alike. Overall, the omics data are expected to come along three 
main coordinates, that is, 

1. as blood cell transcriptomics and proteomics as well as serum proteomics; 
2. longitudinal in time (for baseline and landmark); and 
3. for PDAC, IS and control. 

All coordinates can be exploited for differential analyses, even though the PDAC and IS data will be 
analyzed separately except for some integrative explorative analyses (see below). In the explorative 
analyses, the longitudinal transcriptomics of the patients and controls will also be analyzed together, 
see below. For the standard biostatistics and machine learning analyses, we plan to employ 5 
approaches to feature integration, each yielding a shortlist of 5 integrated features, as follows. 

1) (5 features) A first shortlist of features will consist of the following expert selection from the 
routine blood measurements (incl. PAI-1): neutrophil-lymphocyte-ratio, fibrinogen, high-
sensitive C-reactive protein, albumin and PAI-1. 

2) (5 features) For the cellular gene expression measurements, we use 
ExprEssence/FocusHeuristics (see above) to calculate the top-5 subnetworks scoring highest. 

3) (5 features) Again for the cellular gene expression measurements, we use GSVA (see above) 
to calculate the top-5 most strongly changing pathways as features.

4) +     5)     (10 features) 
a) In case of dealing with large-scale serum proteomics data, we proceed as in (2) + (3);
b) In case of dealing with small-scale serum proteomics data, we proceed as follows: 

i) if the number of features measured successfully is in the order of 10, we 
refrain from any processing; 

ii) if the number of features is in the order of around 10-100, we select the 10 
features with the smallest p-values indicating differences between the mean 
values of patient and control, based on a t-test. 

For genomic features as per (2), the feature measurements for an individual patient or control will 
then be the average linkscores of the 5 selected subnetworks, contrasting each patient with average 
control data, and each control with average patient data. For genomic features as per (3), the feature 
measurements for each patient/control will be the GSVA scores of the 5 selected pathways. By 
construction, we expect the resulting features to reflect the up/downregulation of disease-related 
transcripts/proteins or pathways/subnetworks. Using the GSVA-based integrated features as input to 
the biostatistical analyses employing Cox proportional hazard models, we are in fact closely following 
the “Survival analysis in ovarian carcinoma” example as described in the GSVA publication 101. 
Regarding the expert selection from the routine blood measurements, we are aware that some of 
these features may be considered to have an almost trivial relationship to outcome prediction for the 
diseases we study; e.g. fibrinogen may correlate strongly with the size of the stroke-damaged brain 
area and may thus be considered a covariate. However, to our knowledge, none of these features are 
validated clinical biomarkers, and it is quite possible that a combination of simple biomarkers is key to 
the best possible prediction. We selected the neutrophil-lymphocyte-ratio specifically because it is 
cheap to measure; it is, however, like many other blood-based features, easily influenced by acute 
infection.

Exploratory feature integration: Apart from the FocusHeuristics/ExprEssence linkscore, we employ 
alternatives such as keypathwayminer 103. Further, we calculate pathway activation scores for the 
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following senescence-related KEGG pathways, which include PAI-1 (see the Introduction) but do not 
refer to a specific disease, as of February 2020: Cellular senescence, HIF-1 signaling pathway, p53 
signaling pathway, Apelin signaling pathway, Hippo signaling pathway, Complement and coagulation 
cascades. “Early integration” by, e.g., first averaging transcript and protein expression on a single-gene 
basis, is also planned. 

Choice of data analysis methods for biomarker discovery: We will consider two main approaches of 
data analysis, one motivated by statistical methods, the other by machine learning approaches. While 
this delineation may ultimately be meaningless, we consider that regression is the core ingredient of 
the former, while supervised learning characterizes the latter. We will apply “standard” methods 
(mostly in biostatistics) and explore novel approaches (mostly in machine learning; preserving signal 
implies a focus on supervised approaches in this case). Data analysis for biomarker discovery trials in a 
clinical setting is usually described with a biostatisticians’ mindset, who also developed methods to 
cope with the high dimensionality of omics data (see below). On the other hand, the challenges of 
omics data also spurred the recent publication of many methods adopting machine learning, which 
however did not yet make it into clinical trial analysis routine, but which we wish to test (see below). 
We will focus on methods readily available in SAS or as R packages. Notably, the correct choice of 
method depends in part on known unknowns such as the strength of the signal (incl. the amount of 
missing data) in the routine blood measurements and the omics. 

Prediction model quality measures: Unlike intervention trials with their highly standardized aim of 
establishing a statistically significant superiority (or non-inferiority) of one intervention compared to 
another (or to standard of care), observational biomarker trials are a more recent development with 
fewer precisely quantified criteria of success, and a stronger need to consider the effect size: even if a 
biomarker signature enables a significant improvement in predicting an outcome, raising the accuracy 
of the prediction, say, from 70% to 75% may not be clinically meaningful, depending on prevalence of 
the condition to be predicted, the cost of the biomarker measurement, etc. We thus aim to identify 
biomarkers making a maximum of difference in prediction accuracy, if we are able to compare to 
established scores (see also below). For the biostatistics part, the concordance statistics (c-index) will 
be used as an overall measure of predictive accuracy, and time-dependent ROC curves and AUC will 
be used to summarize the predictive accuracy at different cut-off points in time. For the machine 
learning part, the cross-validated accuracy and AUC/c-index, following 97, are used, and to take care of 
a potential Simpson’s paradox we will either analyse the data stratified by gender, or we will add such 
an analysis and check for consistency. More generally, to investigate the role of confounders (and, if 
necessary, to correct for these) in the machine learning part, we wish to use the permutation technique 
described 104. We expect that we can identify a set of biomarkers that affords an accuracy of 75% or 
more or an AUC of 0.75 or more in correctly predicting the primary endpoint with a precision of +/- 
12% 105. This estimate of precision is based on half the width of a 95% confidence interval (CI) for a 
probability of 75%, by extension of item 6 of the tables of Sorzano et al 105, which shows precision up 
to a sample size of N=30.

Standard biostatistical analyses: A Cox proportional hazards regression model adjusted for age and 
gender will be used to estimate the hazard ratio (HR) and corresponding 95% CI to predict the primary 
composite endpoint separately within the PDAC cohort and IS cohort. The 5 shortlists of 5 features 
(see above) will be providing the canonical predictors, analyzed together. For selection of the most 
important features that might be related to the primary endpoint we will use a procedure proposed 
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by Sauerbrei et al. 106, as follows. First, 100 bootstrap samples will be generated. Then, a multivariate 
Cox proportional hazards regression model with backward elimination with selection level of 0.05 will 
be fitted to each replication of the original data set. In a second step features with a relative selection 
frequency of 30% or less over all bootstrap samples will be eliminated. In a third step each feature Xi 
for which the hypothesis of independence in combination with a feature Xj can be rejected will be 
eliminated if Xi is less important when Xj is included in the model, or if it does not gain importance 
when Xj is excluded from the model. All remaining features will be included in the final model. 
Graphical and numerical methods will be performed to establish the validity of the proportionality 
assumption 107 in the final model. Results will be reported as p-values, HRs and corresponding 95%-CIs. 
A p-value of p ≤0.05 will be interpreted as indicating statistical significance. From the final model a risk 
score will be calculated by multiplying the individual feature measurement of a patient with the 
estimated regression coefficient of each feature. The c-index will be used as an overall measure of 
predictive accuracy of the resulting score, a time-dependent ROC curve and AUC will be used to 
summarize the predictive accuracy of the score at specific times. All secondary endpoints will be 
evaluated using the same approach as for the primary endpoint except for the sum-score used as a 
surrogate for “aging”. For this endpoint, a linear mixed effects model with random intercept and spatial 
power covariance structure will be fitted to the data to estimate the progression of “aging”. The 
covariance structure is chosen to reflect the unequal intervals of follow up investigations. Model 
assumptions and model fit will be checked by visual inspection of residuals, and influence diagnostics. 
Missing values will be taken into account by a likelihood-based approach within the framework of 
mixed linear models with the assumption that missing values occur at random. Results will be reported 
as p-value assessed at a level of significance of 5% accompanied by the value of the test statistic and 
degrees of freedom. In addition, 95% CIs for the progression (slope) will be provided. 

Additional exploratory biostatistical analyses: Again, the primary composite endpoint as well as all 
secondary endpoints will be evaluated separately within the PDAC cohort and IS cohort of the 
respective sub-trials. In a first approach, univariate Cox proportional hazard models adjusted for age 
and gender will be calculated for each omics feature (R package survival) using a cut-off of 0.05 on the 
false discovery rate. In a second approach, all omics features will be simultaneously considered in a 
multivariate Cox model, adjusted for age and gender. Towards this aim, a component-wise likelihood-
based boosting algorithm proposed by Binder and Schumacher 2008 108 (R package CoxBoost) will be 
used to develop a biomarker signature. 

Standard machine learning: For the machine learning part, the primary outcome and all secondary 
outcomes give rise to an assignment of predictor/feature lists to survival times, one such list per study 
participant, for which biomarkers are then learned in a supervised fashion. As described, in the 
standard analyses, feature integration (see above) will precede the actual calculation of the model 
(“deep” learning approaches that take in “all” features are part of the exploratory analyses, see below). 
In the same way as the standard biostatistics analyses, the same 5 shortlists of 5 features each (see 
above) will be providing the canonical predictors, analyzed together. Exploiting time-to-event 
information, we will employ random survival forests (RSF) as described by 109 with the following 
advantages. 

1. RSF can now be considered a time-tested approach, and it was the subject of a recent 
extensive review 67 and of a systematic comparison with LASSO approaches in the case without 
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feature selection (see item 7 of the tables of Pi et al 110, for its competitive performance which 
is not reflected in their abstract). 

2. RSF can also work on essentially all features, without a preceding feature integration/selection 
step, and then be compared, in the explorative machine learning analyses described below, to 
survival support vector machines (SSVM) and to a novel method Path2Surv that “conjointly” 
performs feature selection and model training, see 97. 

3. RSF was recently compared to Cox-nnet 111, a neural network approach which we consider as 
very promising for the exploratory part, see also below. 

4. RSF offers a considerable degree of interpretability, given that RSFs are derived from decision 
trees. 

5. RSF is considered “completely data driven and thus independent of model assumptions” and 
“in case of high dimensional data, limitations of univariate regression approaches such as 
overfitting, unreliable estimation of regression coefficients, inflated standard errors or 
convergence problems do not apply” 67. 

In the machine learning part, we calculate accuracy and AUC/c-index using cross-validation to make 
the best use of our limited sample size, following the setup of 97 and 110 (who, however, set aside 
separate validation datasets), and we assess the features as biomarkers by ranking them by their 
variable importance score. 

Additional exploratory machine learning: Apart from the more time-tested standard machine learning 
described above, we will also explore methods that were proposed recently, for which it is less 
straightforward to tell whether these methods are fit-for-purpose in our case, even though they are 
usually claimed to be superior by their developers based on some test/validation data sets. Specifically, 
as mentioned above, we expect to test Path2Surv and SSVM 97 as well as Cox-nnet 111 (without prior 
feature integration); the latter in particular promises a high degree of interpretability. We further 
explore CNet (employing the censored-data variant), for interpretable biomarkers. We also plan to 
employ the PASNet 112, SurvivalNet 113 and SVRc 72 packages. The longitudinal transcriptomics of the 
patients and the controls may also be analyzed integratively based on the “optimal discovery 
procedure” 114, considering, however, that landmark feature data can only be used to predict events 
after the landmark. Finally, we will map the differential omics data onto a human “healthspan pathway 
map” 115, that is, a set of clusters/pathways based on health-related genetic data that we assembled 
recently.

Explorative systems biology modelling, explorative parallelogram approach and transfer learning: 
As mentioned, systems biology modelling and parallelogram 116 117 extrapolation are supposed to 
deliver small sets of highly informative features, by contributing features that are dominating model 
behaviour or that are shown to translate from the SASKIt animal model data. Given the comparatively 
small number of study participants (but in-depth measurements), we also wish to explore “transfer 
learning”, which aims to utilize large amounts of public knowledge in the form of latent variables. 
Specifically, we plan to use, and wish to develop further, the Multiplier 118 approach motivated by the 
analysis of rare-disease data. Multiplier utilizes the RNASeq-based recount2 compendium, and apart 
from the functional network and pathway data that we use in the feature selection part, this 
compendium is expected to be our main source of biological knowledge that enters the calculations 
for biomarker discovery.
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Miscellaneous exploratory approaches and discovery of diagnostic biomarkers: We will also use 
unsupervised machine learning to generate descriptive multi-omics correlation networks, as they were 
most recently employed by 119, there supplemented by linear mixed effects models using (un-
)restricted maximum likelihood approaches; in this very recent biomarker discovery trial of similar 
design as ours, but with many more longitudinal omics measurement time-points than ours, we could 
not identify other biomarker discovery methods being used. If genetic data become available, we will 
include these in some analyses; specifically, we will investigate the added value of expression 
quantitative trait loci (eQTL) analyses. PDAC and IS data will be analyzed together in some integrative 
exploratory analyses. In that case, the occurrence of specific endpoints will be evaluated according to 
the group membership (PDAC or IS). This means that in addition to the biomarker signature, a group 
variable, indicating PDAC or IS patients, will be included in the analysis, to assess the difference in the 
progression of the respective endpoints between PDAC and IS patients. We also wish to compare PDAC 
and IS patient data to data of healthy controls (adjusted for age and gender) by means of logistic 
regression models with the aim of identifying candidate biomarkers for the diagnosis of the respective 
disease; we then specifically investigate the association of these diagnostic biomarker candidates with 
cellular senescence and other aging-related processes (see also the next paragraph).

Further analyses, and comparison with existing biomarkers and biomarker signatures: Towards the 
end, we will investigate the overlap for the various biomarker identification approaches we employed, 
assuming that the most frequently found biomarkers may be the most robust and valid ones. 
Moreover, we will compare with existing biomarkers and signatures. Regarding the prediction of 
vascular events, we will specifically calculate the Khorana and related scores 19 for comparison, and 
report the difference in performance. Further, for all biomarkers we find, we will check their 
association with cellular senescence, by manual inspection, literature investigation, comparison to 
CellAge 120 and the SASP Atlas 52 or by formal enrichment analyses if the number of biomarkers is 
sufficiently large to do this in a meaningful way. Also, in a final step, we plan to identify and filter out 
the biomarkers that are volatile in the controls. In addition, a comparison of the biomarker profiles 
before and after the co-morbid event is aimed for. Finally, for publicly available data of other trials 
with a sufficient overlap with our predictors, we will use these as validation datasets.
  
Discussion

Limitations 

Arguably, the most serious limitation of the SASKit study is the low number of participants. We 
mentioned above that in the 4-year-time-frame of the entire study, at the Rostock University Medical 
Center we cannot expect to recruit many more than the 50 PDAC patients to be included in this study; 
we could recruit more stroke patients and more controls, but given the call for proposals that allowed 
this exploratory (not confirmatory) study to be applied for and funded, we considered that within a 
limited budget, in-depth omics characterization, animal models (to be detailed in a follow up 
publication) and a comprehensive data analysis plan including systems biology modelling were 
important aspects of our study that we did not want to exclude. 

The two most obvious risks to the main goal of finding good biomarkers for the primary outcome based 
on the standard data analysis are the following. First, we found it hard to estimate the distribution of 
events as defined by the primary outcome; we cannot exclude that too many events take place already 
at the start of the study, or until the first follow-up, specifically in the PDAC subtrial, limiting the 
amount of information available to the subsequent time-to-event analyses. Then again, had we 
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defined the primary outcome more conservatively, there would have been a chance that not enough 
events happen until the end of the study. Second, we could not identify role-model publications 
reporting results of biomarker explorations that made use of machine learning methods, except for, 
to some extent, 119, so that we enter unknown territory to some degree. The two most obvious risks 
to our goal of investigating the role of cellular senescence in the (co-)morbidity of PDAC and IS could 
be an insufficient prevalence of co-morbid events, and the complex role of treatment in case of PDAC, 
where additional cellular senescence is most likely triggered by therapeutic intervention 121. Then 
again, all molecular high-throughput analyses are essentially explorative and we are open to 
discovering biomarkers of disease that do not relate to any of our pre-specified hypotheses.

Implications 

We designed the SASKit study to synergistically deliver upon a couple of aims that we consider to be 
of relevance for specific disease prognosis and treatment as well as for primary, secondary and tertiary 
prevention. Employing clinical performance measurements and patient-reported outcomes, we aim 
for clinical relevance and we suggest that prognostic biomarker signatures for general health and QoL 
are perhaps more important than (progression-free) survival, although there is much more data about 
the latter than the former. Moreover, good disease treatment options are still lacking for PDAC as well 
as for stroke, and the more we find cellular senescence implicated in disease deterioration, at least in 
a subgroup of patients with a specific biomarker signature, the more confidently we can suggest, and 
further explore, seno-therapeutic interventions for these two diseases. 

Notably, we are in the process of starting a parallel human study testing, in healthy elderly people, 
interventions into cellular senescence, based on food rich in seno-interventional compounds, and we 
expect that many aspects of the study design presented herein will be adopted in that parallel study. 
That study will also investigate aging- and senescence-related outcomes, and as such it can be seen as 
a test of a cautious yet potentially very effective approach to primary prevention; if the diagnostic 
biomarkers we find in the SASKit study relate to cellular senescence, this observation would constitute 
further evidence for (cautious) seno-interventions, moving towards a kind of universal approach of 
disease prevention by tackling fundamental aging-related processes (see Boxes 1 and 2). 

Secondary prevention, aiming to reduce the impact of a disease that has already occurred, can 
ultimately be supported by the SASKit study, if we can demonstrate, and (in follow up studies) confirm, 
a distinctive role of cellular senescence (and/or other aging-related processes such as 
inflammation/inflammaging 122) in disease deterioration as defined here. Finally, evidence for tertiary 
prevention by seno-therapeutic intervention, aiming to attenuate the impact of an ongoing disease, is 
also an option based on how accurate, relevant and specific our biomarkers will be. 

Last but not least, we expect that the in-depth molecular analyses that we wish to conduct will provide 
mechanistic insights into the etiology of the diseases we study here, which we just see as models for 
the investigation of the fundamental role of aging in general and cellular senescence in particular in 
disease and dysfunction. 

Abbreviations: 

ALT Alanine Aminotransferase
AP Alkaline Phosphatase
AST Aspartate Aminotransferase
AUC Area Under the Curve
BMI Body Mass Index
CA19-9 Carbohydrate Antigen
CEA Carcinoembryonic antigen
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CI Confidence interval
CRP C-reactive protein
ECOG Eastern Cooperative Oncology Group
HR Hazard ratio
INR International normalized ratio
IS Ischemic Stroke
LDH Lactate dehydrogenase
NIHSS NIH-Stroke Scale
NYHA New York Heart Association
PDAC Pancreatic Ductal Adenocarcinoma
PS Performance status
QoL Quality of Life
ROC Receiver-Operator Characteristic
RSF Random survival forests
SASKit Senescence-Associated Systems diagnostics Kit for cancer and stroke
SASP Senescence Associated Secretory Phenotype
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Figure Legends

Figure 1: Study design of the SASKit study (human cohort; mouse studies designed to mirror the human 
study in part will be presented elsewhere). Predictor and outcome measurements along the time axis 
are described.

Figure 2: Data analysis plan of the SASKit study (human cohort). Input, methods and output of the 
standard (but not the explorative) analyses based on biostatistics and machine learning are described 
in detail.
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Abstract

Introduction: Aging-related processes such as cellular senescence are believed to underlie the 
accumulation of diseases in time, causing (co-)morbidity, including cancer, thromboembolism and 
stroke. Interfering with these processes may delay, stop or reverse morbidity. To study the link 
between (co-)morbidity and aging, by exploring biomarkers and molecular mechanisms of disease-
triggered deterioration, we will recruit 50 patients with pancreatic ductal adenocarcinoma, 50 
patients with (thromboembolic) ischemic stroke and 50 controls, at Rostock University Medical 
Center. Methods and Analysis: We will gather routine blood data, clinical performance 
measurements and patient-reported outcomes at up to 7 points in time, alongside in-depth 
transcriptomics & proteomics at two of the early time points. Aiming for clinically relevant 
biomarkers, the primary outcome is a composite of probable sarcopenia, clinical performance 
(described by ECOG Performance Status for patients with pancreatic ductal adenocarcinoma and the 
Modified Rankin Scale for patients with stroke) and quality of life. Further outcomes cover other 
aspects of morbidity such as cognitive decline, and of comorbidity such as vascular or cancerous 
events. The data analysis is comprehensive in that it includes biostatistics & machine learning, both 
following standard role models & additional explorative approaches. Prognostic and predictive 
biomarkers for interventions addressing senescence may become available if the biomarkers that we 
find are specifically related to aging / cellular senescence. Similarly, diagnostic biomarkers will be 
explored. Our findings will require validation in independent studies, and our dataset shall be useful 
to validate the findings of other studies. In some of the explorative analyses, we shall include insights 
from systems biology modelling as well as insights from preclinical animal models. We anticipate that 
our detailed study protocol and data analysis plan may also guide other biomarker exploration trials. 
Ethics and Dissemination: The study was approved by the local ethics committee (Ethikkommission 
an der Medizinischen Fakultät der Universität Rostock, A2019-0174), registered at the German 
Clinical Trials Register (DRKS00021184), and results will be published following standard guidelines. 
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Article summary 
Strengths and limitations of this study:

 In-depth measurements of both relevant outcomes and potential biomarkers. 
 Comparatively low number of participants, for both patients and controls.
 In-depth and detailed data analysis plan.
 Investigation of the deterioration of health and (co-)morbidities, not just of survival.
 Two co-morbid diseases investigated in almost identical ways in two sub-studies. 

Introduction 

Study Rationale and Aims. The primary aim of the SASKit (“Senescence-Associated Systems 
diagnostics Kit for cancer and stroke”) study is to discover a set of molecular biomarkers for outcomes 
after pancreatic ductal adenocarcinoma (PDAC) and ischemic stroke (IS), which are specifically useful 
to predict disease-triggered deterioration of health (“disease deterioration” for short) in terms of 
probable sarcopenia 1, reduced clinical performance and quality of life (QoL). The outcomes also 
include the (co-)morbidity of vascular events (here defined as stroke, myocardial infarction, and 
venous or arterial thromboembolism) in patients with PDAC, which are observed frequently apart from 
sarcopenia. Also included is the (co-)morbidity of any kind of cancer and of cognitive decline. 
Moreover, we consider mortality, as the most canonical outcome. Following up on the primary aim, 
we will investigate the nature of the molecular biomarkers to find out whether cellular senescence and 
other aging-associated processes are contributing to disease deterioration. As a secondary aim, we will 
search for potential diagnostic biomarkers related to cellular senescence and other aging-related 
processes that may differentiate healthy controls from PDAC or IS patients. Therefore, in the following 
we motivate our study by describing the prevalence and the outcomes of PDAC and IS, the known 
predictors of these outcomes, and the specific prevalence of co-morbidity as well as known predictors 
for this co-morbidity. The role of cellular senescence in aging and disease is described in Box 1. The 
background of the cancerous and vascular comorbidity is described in Box 2. Importantly, despite 
differences in disease pathology, dynamics and prognosis, there is a lot of evidence that cellular 
senescence is an important contributor to disease etiology, progression and consequences for both 
diseases. Avoiding unclear or circular terminology, we define a biomarker in a very general fashion, 
simply as a feature (data point) f1 that successfully predicts another feature f2 at a later time-point 2, in 
a biomedical context. Here, features may be composites, based on the measurement of individual 
features. Often, feature f1 refers to molecular data, while feature f2 refers to phenotypic data, such as 
clinical outcomes. Ultimately, we aim to identify biomarkers that are easy to measure, and that can 
then be validated in other studies to predict a clinically relevant outcome. The study design is 
illustrated in Figure 1, while the data analysis plan is summarized in Figure 2.

Pancreatic ductal adenocarcinoma: prevalence and outcomes. The incidence of pancreatic cancer is 
increasing; in 2017 the global incidence was 5.7 per 100,000 person-years 3. Age is the most important 
risk factor, and incidence peaks at 65 to 69 years in males and 75 to 79 years in females 3. Pancreatic 
ductal adenocarcinoma (PDAC) is the most common histological type of pancreatic cancer 4. The 
disease is characterized by late clinical presentation 5, early metastases and poor prognosis, with a 
one-year survival rate in Europe of only 15% 6. Many patients have unresectable disease at the time of 
diagnosis, either as locally advanced disease or already with metastases. In these cases, therapy is 
palliative consisting of chemotherapy and/or best supportive care. Disease deterioration with weight 
loss and low muscle strength, that is, cachexia and sarcopenia 7, will follow, for some patients rapidly 
(within a few weeks) and for others during a longer interval of one or two years. Recent developments 
in oncology have not shown much benefit in clinical trials of patients with PDAC 8. Inflammation, 
desmoplasia and early metastases are deemed responsible for the difficulties in targeting the disease. 
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Moreover, vascular events are frequently observed in the course of PDAC and may contribute to 
disease deterioration or early death. Venous thromboembolism is the most common event occurring 
in up to 34% of patients with metastatic PDAC 9 10, but arterial ischemic events, like stroke, are also 
reported 11-14 15 16, see also Box 2. Therefore, deterioration and mortality in PDAC can be explained not 
only by tumor progression, but also with other factors like sarcopenia/cachexia and vascular events 
contributing as well. Furthermore, we suggest that the underlying cause of all these factors are aging-
related processes such as cellular senescence and chronic inflammation.

Pancreatic ductal adenocarcinoma: known biomarkers and clinical scores. In PDAC patients there is 
a lack of established scores describing the risk of disease deterioration and the risk of 
sarcopenia/cachexia in particular. Referring to the endpoint of overall survival, some recent studies 
tried to establish inflammation-based scores to better characterize outcome in PDAC. In a 
retrospective analysis of 386 patients with PDAC of different stages, CRP/Alb ratio, neutrophil–
lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR) and modified Glasgow prognostic score 
(mGPS) were studied 17. In patients with locally advanced and metastatic disease, the CRP/Alb ratio 
was an independent factor of poor survival 17. Another retrospective study evaluating CA19-9, CEA, 
CRP, LDH and bilirubin levels in locally advanced and metastatic pancreatic cancer patients treated 
with chemotherapy showed an independent prognostic significance for overall survival only for CA 19-
9 decline during treatment 18. Other studies have evaluated risk factors for thromboembolic events in 
pancreatic cancer patients and more generally in patients with cancer 19 (see also Box 2). The “Khorana 
score”, developed more than ten years ago, is widely used to estimate venous thromboembolic risk in 
the population of cancer patients 20. This score integrates standard laboratory parameters (platelet 
count, hemoglobin, leukocyte count), body mass index (BMI) and the cancer site (with pancreatic 
cancer and gastric cancer classified as very high risk). Still, its performance was questioned in a 
retrospective cohort of pancreatic cancer patients 21 and in a prospective cohort study of patients with 
different cancer types, among them 109 with pancreatic cancer 19. The clinical association of PDAC, 
sarcopenia/cachexia and thromboembolism is well-described 11, but still not understood in its 
pathophysiology 22. Within the SASKit study we aim to identify biomarkers and molecular mechanisms 
contributing to this clinical association, by investigating their relation to clinically relevant outcomes. 

Ischemic stroke, prevalence and outcomes. Ischemic stroke (IS) occurs in the German population with 
an incidence of 236 per 100,000 per year 23. The mean age of acute stroke patients is 73-74 years, with 
more than 80% of patients being over 60 years old. After a first stroke, nearly 5% of patients suffer a 
second stroke within a year. Mortality after IS is about 12% within one year and about 30% within five 
years 23. Mild to moderately disabled stroke survivors showed an elevated prevalence of sarcopenia 
>6 months after onset of stroke compared with non-stroke individuals (13.2% vs 5.3%) 24. The 
mechanisms underlying sarcopenia include loss of muscle mass, reduction of fibre cross-sectional area 
and increased intramuscular fat deposition occurring between 3 weeks and 6 months after stroke in 
both paretic and non-paretic limbs 25. Comorbid, or subsequent cancer may facilitate sarcopenia after 
IS. A US nationwide inpatient sample study reported that 10% of hospitalized IS patients have comorbid 
cancer, 16% of them with gastrointestinal cancer and 1% with PDAC, and that this association may be 
on the rise 26. Additionally, within two years after IS, another 2% to 4% of patients receive a new cancer 
diagnosis 27-29. Within the SASKit study we aim to identify biomarkers to predict outcome after IS in 
terms of general health state (i.e. sarcopenia, deterioration of clinical performance, cognitive 
functioning, frailty) and quality of life, as well as (co-)morbidity, as we do for the PDAC cohort.
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Ischemic stroke, known biomarkers and clinical scores. In an early study of 956 patients with acute IS, 
determinants of long-term mortality were age, obesity, cardiac arrhythmias, diabetes mellitus, 
coronary heart disease and organic brain syndrome at discharge from hospital; interestingly, 
hypercholesterolemia and smoking did not affect long-term outcome 30. More recent studies uniformly 
identified age and stroke severity, usually assessed on the NIHSS or similar scales, as biomarkers of 
long-term functional outcome and mortality after stroke 31 32. Fibrinogen has been related to long-term 
outcome after stroke 33 34. There have been conflicting data on the predictive value of serum bilirubin 
levels on the long term risk of cardiovascular disease. While some studies are in favor of a predictive 
value 35-37, others are not 38. Also, CRP levels have been reported to impact the functional long-term 
outcome after IS 39, and early neurological deterioration after IS has been related to decreasing 
albumin levels, elevated CRP and fibrinogen levels 40. Potential biomarkers for occult cancer in IS 
patients include elevated D-dimers, fibrinogen, and CRP; infarction in multiple vascular territories; and 
poor nutritional status 41. Interestingly, IS patients with elevation of at least two of the following 
coagulation-related serum markers, that is, D-dimer, prothrombin fragment 1.2, thrombin-
antithrombin complex and fibrin monomer, in the post-acute phase of stroke, were more likely to have 
occult cancer or recurrent stroke during follow-up for 1.4±0.8 years 42. In another study of acute IS 
patients, high D-dimer levels at admission were independently associated with recurrent stroke and 
all-cause mortality during follow-up for up to 3 years 43. These findings underpin the idea of shared risk 
factors for unfavorable outcomes in IS as well as cancer and they suggest that there may be 
coagulation-related biomarkers indicating an early stage of carcinogenesis or stroke (see also Box 2). 
Nevertheless, the clinical biomarkers that currently exist for predicting outcome are limited in their 
performance and clinical utility, and there is a need to overcome the limitations of current predictive 
models 44.

Box 1: Aging and cellular senescence. Extra lifetime gained over the last century led to the widespread 
emergence of age-related diseases that are rarely seen in younger people. Older patients are thus 
more likely to display several comorbidities, making treatment difficult and expensive. Over the last 
years, strong evidence has accumulated that the presence of senescent cells (i.e. non-dividing but 
secretory, damaged, and metabolically active cells that escape apoptosis) is causally involved in 
diseases such as atherosclerosis, cancer, fibrosis, pancreatitis, osteoarthritis, Alzheimer disease and 
metabolic disorders 45 46. Evidence that senescent cells are not only correlated with aging and diseases, 
but are also causally involved, comes from recent studies, which transplanted senescent cells from old 
into young mice 47. This resulted in persistent functional impairment as well as spread of cellular 
senescence to host tissues. Another strong line of evidence comes from experiments that actually 
removed senescent cells from aged mice by senolytics 47-49. In each case an increase in lifespan and a 
delay of typical age related diseases was observed. Most recently, the results of human pilot trials of 
putative senolytic treatments in case of idiopathic pulmonary fibrosis and osteoarthritis have been 
reported. One team 50 treated idiopathic pulmonary fibrosis patients with dasatinib and quercetin and 
demonstrated safety as well as notable improvements in some physical abilities. Furthermore, a 
human phase-1 study demonstrated that a senolytic compound, which was applied locally in patients 
with osteoarthritis of the knee, was safe and well-tolerated 51. A clinically meaningful improvement in 
several measures, including pain, function, as well as modulation of certain senescence-associated 
secretory phenotype (SASP) factors and disease-related biomarkers was observed after a single dose.

Box 2: Cellular senescence and the comorbidity of cancer and vascular events. Some cancers such as 
PDAC can trigger vascular events by hyper-coagulation, reflecting Trousseau’s syndrome first reported 
150 years ago 11. In turn, strong associations between coagulation, cellular senescence and the SASP 
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were recently demonstrated 52 53. While cellular senescence can suppress PDAC and cancerous 
proliferation in general, it also triggers tumor progression by fostering inflammatory processes, 
including the SASP, while on the other hand, after ischemic stroke, it attenuates recovery 54-58. For both 
diseases, causal influences can be traced back to molecular determinants: PAI-1 (also known as 
SERPINE1 and part of the SASP) is involved in cancer-triggered thromboembolism 55 57 and stroke 
recovery in animals 59. Other proteins involved in cellular senescence, specifically inflammatory 
cytokines such as IL6, and the lesser known osteopontin and gelsolin, are also markers for both PDAC 
and stroke 60-63. The cyclin-dependent kinase CDK5 64 is implicated in the progression of PDAC as well 
as in the recovery from stroke 58 65. Moreover, apart from being genetic risk factors 66 67, the most 
prominent drivers of cellular senescence (p16/CDKN2A and p21/CDKN1A) also promote PDAC 
progression 68 and endothelial embolic and arteriosclerotic mechanisms of stroke 69. Finally, two small-
molecule interventions into cellular senescence, fisetin and quercetin, are both potential therapeutic 
agents of PDAC and stroke. In case of stroke, the blood-brain-barrier is passed by quercetin which 
improves stroke outcome 70. In case of PDAC it was observed that quercetin inhibits pancreatic cancer 
growth in-vitro and in-vivo 71. Fisetin is found in various fruits (especially strawberries) and it is 
chemically similar to quercetin, with strong putative senolytic effects, extending lifespan of mice even 
when intervention with fisetin started only at an advanced age 72. In a study involving nude mice 
implanted with prostate cancer cells, treatment with fisetin significantly retarded tumor growth 73. 
Also, in case of lung cancer, there is evidence for the beneficial effects of fisetin. One study showed 
that fisetin provides protection against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in albino 
mice 74 and another in vivo study demonstrated the synergistic effects of fisetin and cyclophosphamide 
in reducing the growth of lung carcinoma in mice 75. Several other studies have also demonstrated its 
anticarcinogenic, neurotrophic and anti-inflammatory effects that are beneficial in numerous diseases, 
including pancreatic cancer and stroke 76. 

Methods

The presentation is based on the reporting recommendations for tumor marker prognostic studies 
(REMARK), that is, items (1) – (11) of the REMARK checklist 77. The study design is illustrated in Figure 
1, while the data analysis plan is summarized in Figure 2.

Study design

The SASKit (“Senescence-Associated Systems diagnostics Kit for cancer and stroke”) study is designed 
as a prospective, observational, cohort study to identify biomarkers for disease deterioration in 
patients with PDAC or with IS and, specifically, for the (co-)morbidities of these diseases including 
vascular events and sarcopenia following the diagnosis of PDAC as well as cancer and cognitive decline 
following IS. All patients will be treated for their diseases in accordance with current guidelines or 
therapy standards and at the physician's discretion. Due to the observational study design, regular 
treatment of the patient is not affected apart from sampling blood (20 to 80 ml at up to 7 time-points 
over the next years). Assessment of disease deterioration will be based on standardized clinical 
performance measurements, and patient reported outcomes based on questionnaires (see below for 
details). Additionally, data from clinical charts and information from the general practitioner will be 
collected. The SASKit study is divided into two subtrials with a common control group, both featuring 
essentially the same outcomes, predictor measurements and data analysis approaches. 

Patient and Public Involvement

It was not possible to involve patients or the public in the design of the study.
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Characteristics of participants (patients and controls)

In the first subtrial (PDAC-subtrial), patients with an initial diagnosis of PDAC in locally advanced or 
metastatic stage without previous systemic therapy will be considered for enrolment, whereas 
patients with a (thromboembolic) IS of the supratentorial brain region within the past 3 to 10 days, 
with a definitive brain infarction volume >10 ml in an assessment by magnetic resonance imaging (MRI) 
will be considered for the second subtrial (IS-subtrial). Except for some explorative analyses, the 
subtrials will be analyzed separately.

Within both subtrials, eligible as controls are those without PDAC or IS and with no other malignant 
disease or other (hemorrhagic) stroke during the past two years. Potential controls will be recruited 
from persons who have lived in the same household as the patient within the last 2 years, have a 
maximum age difference of 12 years and are neither brothers nor sisters (i.e. spouses, second-degree 
relatives or friends). The controls are selected so that the age and gender structure approximately 
reflects the age and gender distribution of the patients. Therefore, the age and gender of the patients 
will be continuously recorded, and the controls selected in such a way that their frequency distribution 
of gender at any time corresponds approximately to that of the currently recruited patients. 

The following criteria lead to exclusion from participation in the study for both patients and controls, 
at time of recruitment:

● previous or current medical tumor therapy

● other cancer within the past 2 years

● previous stroke with persistent deficit

● myocardial infarction within the past 2 years

● therapeutic anticoagulation within the past 2 years for longer than 1 month

● pre-existing dementia

● chronic heart failure stage NYHA IV

● terminal renal insufficiency with hemodialysis

● known HIV infection 

● known active hepatitis C

● pregnancy

● age < 18 years.

Both subtrials will be implemented according to the same standardized protocol. After written 
informed consent of each participant, patients will be followed up at 3, 12, 24, 36 and 48 months after 
their inclusion in the trial, whenever possible. The PDAC-subtrial includes an additional time-point for 
examinations at 6 months after inclusion, given that mortality due to PDAC is expected to be 
accelerated as compared to IS.  Controls will be followed up at 12, 24, 36, 48 months.  

The study is expected to start in the second quarter of 2020 and will finish with the last participant's 
follow up at 48 months. Until that time, we expect that 50 PDAC patients, 50 IS patients, and 50 
controls participated in the trial. The study will be conducted at the Rostock University Medical Center 
(UMR), Germany at Clinic III - Hematology, Oncology, Palliative Medicine and at the Department of 
Neurology; the institutions of the other co-authors are supporting the study in a variety of ways. The 
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study is registered at German Clinical Trials Register (DRKS00021184) and will be conducted following 
ICH-GCP. 

General health- and disease-related and demographic data 

General data of the study participants will be recorded at the beginning of the study (“month 0”) and 
consist of the following: age, sex, BMI, temperature, blood pressure, heart rate (ECG). Furthermore, 
through interviews the following additional data will be recorded: vascular risk factors (arterial 
hypertension, diabetes, hyperlipidaemia, smoking habits), history of vascular events (stroke, 
myocardial infarction, venous or arterial thromboembolism), atrial fibrillation, history of cancer, 
current medication, surgery or blood transfusions in the past three months and vascular or cancerous 
events affecting any first-degree relatives. These data may provide influential factors for explorative 
analyses, or be employed to interpret and discuss the results of the study.

Blood sampling

Blood sampling will be done in a standardized fashion, that is, fasting and between 8 and 10 am, for all 
assays. Routine blood parameters will be recorded at the time-points described above (months 0 to 
48). These consist of differential blood count, reticulocytes, INR (International normalized ratio of 
prothrombin time), partial thromboplastin time, D-dimers, fibrinogen, factor XII, albumin, bilirubin, 
LDH, high-sensitive CRP, CA19-9, cholesterol, and HbA1c. Among the standard measurements, we also 
measure the liver parameters ALT, AST and AP as surrogate markers of liver disease.

Experimental blood analysis (PAI-1 and omics) will be done for patients at month 0 in case of PDAC, at 
month 0 or at month 3 in case of stroke (where the 3-month time point is taken if it reflects a better 
state of the patient as described by the NIHSS) (“baseline”). It will furthermore be repeated at month 
3 in the case of PDAC, and at month 12 in the case of stroke (“landmark”). For controls, the 
experimental blood analysis will be carried out at month 0 and at month 12, assuming that for these, 
data do not change much in the 3 months after baseline. The justification for taking the better clinical 
state in case of stroke is the maximization of differences with the month 12 follow-up data. In terms 
of practicality (being able to calculate a biomarker signature sooner), however, the state at month 0 
should be selected for all stroke patients. Since the blood sample will be taken pre-processed and 
frozen at month 0 in all cases, we are in principle able to perform the experimental blood analysis for 
all stroke patients at month 0, and we can do this analysis in retrospect if deemed necessary. We also 
take blood of PDAC patients at month 12, to have the option to do an experimental blood analysis 
based on these samples, if deemed useful. In the following we will refer to the baseline time-point 
(month 0, or month 3 in cases of stroke patients that improved) and the landmark time-point (month 
3 for PDAC patients and month 12 for stroke patients and controls). The experimental blood analysis 
is done earlier for PDAC because of high expected mortality within the first year. 

The experimental blood analysis includes PAI-1 (see Box 2) as well as high-throughput (omics) analyses, 
that is, transcriptomics and proteomics analysis in T cells and proteomics of serum. T cells are of 
interest because these cells were reported to carry the strongest signal with respect to cellular 
senescence, based on the marker p16 78. We intend to measure gelsolin and osteopontin as well, 
provided that sufficiently standardized assays become available in due time; the blood collected for 
this measurement shall otherwise be used to measure cytokines/chemokines such as IL6, IL8 and TNFɑ, 
which are part of the SASP, by ELISA assays. At time of writing, we do not yet have reliable estimates 
on the amount of blood cells still available for measuring protein expression, so an antibody-based 
protein array (in case of low amounts), or mass spectrometry (in case of sufficiently high amounts) will 
be used alternatively. For the blood serum, we intend to use the same protein measurement method. 
In the default case of a protein array, we plan to use the novel but dedicated “Senescence Associated 
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Secretory Phenotype (SASP) Antibody Sampler Kit” (consisting of approx. 10 SASP-related proteins 
being measured; Cell Signaling Technology) for both cellular and serum proteomics. Further 
exploratory molecular analyses not (yet) funded but permitted based on the ethics approval include 
the following: single-cell analyses of blood, methylation assays for calculating epigenetic clocks 79, 
genetics by SNP array or whole-genome sequencing, and telomere length. A separate ethics approval 
was granted for an optional skin biopsy; skin microbiome analyses are planned as well. More 
specifically, participants have the option to provide a skin biopsy of 5 mm from an area that is not 
usually visible. We expect that about 30-50% of the participants will opt in. We keep the biopsy in 
culture for several days and divide it into several pieces. Using these, we measure biomarkers of 
cellular senescence (specifically, senescence-associated -galactosidase, which cannot easily be 
measured in blood) and we treat some pieces with compounds that may affect cellular senescence, 
such as quercetin or fisetin. Moreover, we plan to sample the microbiome of the forehead using a 
standard swab. This is a very simple procedure, motivated by the claim that a competitive epigenetic 
aging clock can be based on such a sample 80.

Blood sample processing for the experimental analysis will be performed according to standard 
operating procedures (SOP) at the research laboratory of Clinic III - Hematology, Oncology, Palliative 
Medicine. The procedures include flow cytometric control of the sampling quality including distribution 
of cell types and vitality as performed in routine diagnostics. Isolation of peripheral blood mononuclear 
cells (PBMCs) will also be performed following the SOP used by the laboratory in routine diagnostics. 
T Cell separation will be performed according to an established work flow based on magnetic bead 
purification via Miltenyi MACS following manufacturer’s instructions. T-Cell fraction purity as well as 
vitality will then be verified by flow cytometric analyses as described above. Nucleic acid isolation as 
well as protein isolation will be further performed according to the SOP of the research laboratory 
performed using column separation (Qiagen, Hilden Germany). RNA integrity values (RIN) will be 
analysed using an Agilent Scientific Instruments Bioanalyzer as instructed by the manufacturer. RIN 
values above 6 will qualify for RNAseq or Clariom D Array analyses; for RNAseq average reads per 
sample will be set at approx. 40 x 10e6.    

Clinical performance measurements and patient-reported outcomes

At baseline and at each follow-up, handgrip strength (“grip strength” for short) is measured using a 
digital hand dynamometer (Jamar Plus). The test is performed while sitting comfortably, shoulder 
adducted, elbow placed on the tabletop and flexed to 90 degrees, with the forearm and wrist in a 
neutral position 81. The highest value of three measurements of maximal isometric contraction of the 
dominant hand, or if paralyzed due to IS, contraction of the unaffected hand, is documented in kg. 
Further, the following clinical performance measurements are evaluated by the study physician or 
study nurse according to standard protocols: ECOG Performance Status (ECOG PS) 82, modified Rankin 
Scale (mRS) 83, Canadian Study on Health & Aging Clinical Frailty Scale (CSHA-CFS) 84, NIH-Stroke Scale 
(NIHSS) 85, Montreal Cognitive Assessment (MOCA) 86. All raters are certified for the applicable scores 
(mRS, NIHSS, MOCA). Patient-reported outcomes (measured by questionnaires) are the following: EQ-
5D-5L and EQ-VAS (generic evaluation of QoL in 5 domains and overall on a visual analog scale) 87, 
HADS-D (evaluation of anxiety and depression) 88, WHODAS 2.0 (WHO Disability Assessment Schedule) 
89, PASE (physical activity scale for the elderly) 90, and, for patients with PDAC, FACIT-Pal (evaluating 
QoL with focus on palliative symptoms and needs) 91 92. All questionnaires are administered following 
the suppliers’ instructions.

Follow up data

Apart from the clinical and patient-reported outcomes, further follow-up data are BMI, temperature, 
blood pressure, heart rate (ECG), atrial fibrillation, current medication, tumor treatment, comorbidity 
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(any vascular or cancer event), hospital admissions or palliative care. Additionally, based on clinical 
charts and information from the general practitioner, we will record medication, (co-)morbidity and 
mortality. Just like the general health- and disease-related and demographic data recorded at time of 
recruitment, these data may provide influential factors for explorative analyses, or be employed to 
interpret and discuss the results of the study.

Endpoints 

In both subtrials, the primary endpoint is a composite measure of “disease deterioration” defined as 
the first occurrence within a follow-up interval of at least one of the following.

a. Sarcopenia, measured by grip strength less than 27 kg for males and less than 16 kg for females 
(according to the revised European consensus, EWGSOP2  1).

b. Deterioration of clinical performance, that is, of the ECOG PS by at least two points (PDAC-
subtrial), or of the mRS by at least one point (IS-subtrial).

c. Deterioration of QoL, described as a reduction of the EQ-5D-5L by at least 0.07 in the index 
score, and deterioration of at least 7 points in the EQ-VAS (ranging from 0-100).

Deterioration will be considered between baseline (month 0) and the respective landmark (follow-up) 
investigation. As described above, for patients with IS who have improved their condition (measured 
by NIHSS) within the first 3 months, this time point (month 3) will be used as a baseline instead. Item 
(a) is the deterioration from “no sarcopenia” to “probable sarcopenia” as defined by current consensus 
1. Grip strength has been widely used for assessing muscle strength, which is currently used as the 
most reliable measure of muscle function, loss of which indicating sarcopenia 1. ECOG PS is established 
in describing the general condition of patients with cancer, whereas mRS is established in patients with 
stroke. Death is reflected by both scores as ECOG PS of 5 or mRS of 6, and it will always consider death 
from any cause. The EQ-5D-5L evaluates QoL in five dimensions (mobility, self-care, usual activity, 
pain/discomfort, and anxiety/depression), all relevant for patients with PDAC and IS. Furthermore, it 
is a generic score so that results will be comparable for different diseases (as recently described in 
patients with stroke 93 and for the general population 94). Even though disease-specific scores might 
evaluate symptom burden in even more detail, the EQ-5D-5L was recently shown to be comparable to 
QoL scores developed specifically for pulmonary embolism and deep vein thrombosis (that is, PEmb-
QoL, VEINES-QOL/Sym and PACT-Q2) in terms of acceptability, validity and responsiveness 95. A clinical 
deterioration in EQ-5D-5L is described as a minimal important difference in the range from 0.07 to 0.09 
index points and in VAS from 7 to 10 points 96, which is the basis for the definition of item (c). Controls 
reach their endpoint by the same definition as the subcohort for which they serve as control; in any 
integrative analysis of both subtrials, a deterioration of the mRS by at least one point will be used as 
the criterion (instead of ECOG PS), because stroke patients in general have a slower deterioration than 
PDAC patients, and controls naturally have the slowest expected deterioration.

The primary composite endpoint and all secondary endpoints will be evaluated in a first analysis, based 
on data obtained until summer 2021, and in a second analysis, based on data obtained until summer 
2023, and in a third analysis at the end of the study. The second analysis may be delayed until data of 
90% of the study participants are available (at least including the month 12 follow-up) and it may then 
constitute the “main” analysis of the study. To address potential impacts of COVID-19 on the primary 
and secondary endpoints, the typical COVID-19 symptoms as well as confirmed diagnosis of COVID-19 
are recorded for all study participants at each study visit. In addition, at month 12 the presence of 
serum anti-SARS-CoV-2 IgG antibodies will be analysed. 

The following secondary endpoints will be evaluated:
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● each component of the primary endpoint (separately);
● occurrence of disease-specific (co-)morbidities, as follows

o new vascular events (stroke, myocardial infarction, venous or arterial 
thromboembolism), specifically in patients with PDAC;

o new cancer, specifically in patients with IS; 
o probable sarcopenia (based on grip strength);
o cognitive decline (deterioration of MOCA by 3 points from best value at baseline);

● frailty, defined as a CSHA-CFS level of 6, 7, or 8;
● all-cause mortality. 

Further, a sum-score summarizing all measurements of phenotypic variables (grip strength, clinical 
performance measurements, comorbid events, mortality) will be considered as a surrogate for “aging”, 
normalizing all continuous-scaled components in order to obtain a common scale with an average of 
zero and standard deviation of one. The components of the sum-score will all be given equal weight.

Predictors

While all phenotypic features (grip strength, clinical performance, patient reported outcomes, 
comorbid events, mortality) are contributing to the definition of endpoints (as dependent 
variables/parameters), all routine and experimental blood features (PAI-1, omics) are considered to be 
potential predictors; these are also called the independent variables/parameters. This delineation is 
justified by (a) the paradigm that (clinical) relevance is tied to high-level phenotypes describing health 
and survival, specifically including QoL 2, and (b) the goal of developing a “senescence-associated 
systems diagnostics kit” that includes a careful selection of biomarkers contributing, as much as 
possible, also to molecular-mechanistic insights into PDAC, IS and their (co-)morbidity, which we 
hypothesize to be related to cellular senescence and aging. Age and gender will be included as 
mandatory covariates (also termed confounders, that is, predictors which we do not aim to explore, 
or which we wish to improve upon) in all statistical models. Further covariates are smoking, liver 
dysfunction or disease, the baseline NIHSS score in case of IS, as well as locally-advanced vs metastatic 
PDAC and modality of treatment in case of PDAC. As described, the successful predictors identified by 
our study, following the statistical analyses outlined below, are called biomarkers; we wish to stress 
that these are only candidates for the ultimate goal of clinically validated biomarkers; in particular, 
they still need to be validated in further studies (based, e.g., on other cohorts). A set of biomarkers is 
also called a biomarker signature.

Blinding and pseudonymization 

No blinding will be done during the study. However, the primary composite endpoint will be 
documented without subjective influence due to standardized definitions. Thus, detection bias will be 
kept at a minimal extent. Furthermore, information bias will be minimized as we will use simple 
measurements, which are applied in daily practice or are self-reported and easy to perform (e.g. EQ-
5D-5L). The rigorous inclusion of all eligible patients within the recruitment period will help to minimize 
selection bias. All patient data are pseudonymized to all investigators except for the attending 
physician and study nurse. Since all major data analyses are based on known information about the 
outcomes (e.g., supervised machine learning with cross-validation), the data analysis will also be 
performed based on the pseudonymized data. Protection of personal and clinical data of all patients 
and controls will follow all relevant legal regulations. 

Sample size
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No formal sample size calculation was performed a-priori for this observational study. The prevalence 
of PDAC combined with the requirement to complete the study within a reasonable timeframe implied 
a target of 50 patients per group (PDAC, IS and control group). Nevertheless, a power analysis revealed 
that a sample size of 50 patients will have 80% power to detect a significant difference by a non-
parametric Wilcoxon statistic between an AUC of 0.75 for a particular biomarker signature compared 
to the null hypothesis value of 0.5 at a significance level of 5% under the assumption that about three 
times as many patients will reach the primary endpoint, compared to patients who will not reach the 
primary endpoint 97.

Data Analysis Plan

General considerations: The guiding criteria for biomarker identification in the SASKit study are the 
maximization of the predictive signal, clinical relevance/utility, biomedical/molecular/clinical 
interpretability, and practicality/cost. Given the relatively low number of participants in this in-depth 
study, to maximize the signal for the endpoints and predictors given as outlined above, we must aim 
to use all available information. Regarding endpoints, whenever possible, we thus wish to consider the 
(censored) time-to-event information inherent in the baseline and follow-up examinations, and in the 
mortality data. The primary endpoint was defined to integrate expected clinical utility and maximum 
signal. In defining the (secondary) endpoints, we considered an array of clinically relevant single 
endpoints as well as a sum-score of all phenotypic measurements; we hypothesize that the latter 
carries the largest amount of signal. Given the small sample, we cannot set aside an extra validation 
dataset. For the predictors considered to be covariates/confounders, please see the section on 
“Predictors”, above. The data analysis plan is summarized in Figure 2.

Data quality assessment and cleaning: The need for (and the amount of) data cleaning cannot easily 
be estimated beforehand; we plan to follow the MarkAGE guidelines 98 to deal with missing values, 
and to detect and rectify outliers and batch artefacts.

Predictor/Feature integration: Regarding predictors (features), we first need to remember that we 
measure at baseline (at months 0 or 3) and at one landmark (main follow-up, that is, at months 3 or 
12). While use of baseline features is unrestricted, use of landmark features is, of course, restricted to 
prediction of outcomes after the landmark. Further, we need to handle the high dimensionality of the 
omics features. Here, upfront feature integration, e.g., by averaging measurements as described 
below, is considered preferable specifically for the high-dimensional omics data, for the following 
reasons.

1) A small feature space allows for an easier understanding and interpretation 99.
2) Integrated features can be used as input for both the standard biostatistics and the standard 

machine learning parts of the analysis. 
3) Use of few features is more time-tested than newer methods featuring the joint calculation of 

the prediction model and the selection of the features, albeit the latter are quite often claimed 
to be superior by their developers. 

4) Naturally, feature integration avoids multicollinearity and overfitting, and multiple testing is 
less of an issue. This counters the “curse of dimensionality” and “de-noises” the data towards 
better prediction performance 99 100. 

5) Feature integration allows the handling of feature heterogeneity, which in our case refers to 
routine blood measurements as well as various omics data types. 
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6) In the explorative analyses, systems biology modelling and the parallelogram approach are 
both supposed to deliver further small sets of integrated, highly informative features, which 
may, e.g., dominate systems behaviour, or which are believed to translate well from animal 
models to humans.

While most features will be available for the baseline and the landmark time-point, utilizing baseline 
data is clinically more useful, simply because the prediction for the endpoint is available much earlier. 
Nevertheless, in the explorative analyses, we will investigate the predictive power of changes in 
feature measurements from baseline to landmark, given that such changes may be more informative 
about future disease deterioration (and other endpoints) than just baseline values. 

Specific omics data feature integration: Notably, we face a heterogeneous “multi-view” dataset, 
usually referred to as “multi-omics”. Our feature integration approach (see above) is also known as a 
“late integration” type of analysis, implying that measurements for different omics data types are 
reduced early on to activation scores for pathways or subnetworks that are then integrated at a “late” 
level. To calculate the activation scores for subnetworks, we use, by default, the 
ExprEssence/FocusHeuristics linkscore 101 102, taking the links (gene/protein interactions) from a 
functional interaction network defaulting to STRING. Our experience with the linkscore motivates us 
to include this method as one of the approaches proposed for feature integration in the following, 
influencing the calculation of up to 10 features on which the standard biostatistics and machine 
learning shall be based. Specifically, we take the average expression measurement for all patients 
(as a list of expression values, one per gene) and the average for all controls (as a list of expression 
values, one per gene) to calculate a linkscore for each STRING interaction, and assemble a 
“condensed” network including all interactions with a linkscore in that percentile for which the 50 
highest-scoring interactions are shown. These interactions form subnetworks103. We then take the 
average linkscore for each subnetwork as the subnetwork activation score. Alternative methods 
such as keypathwayminer will be used in the exploratory analyses, see below. For the pathways (such 
as KEGG), we will calculate pathway activation scores using Gene Set Variation Analysis (GSVA) 104. This 
method calculates pathway activation scores from expression data, is suited for use with microarray 
as well as RNAseq data and performed strongly in a recent benchmarking analysis 105. The GSVA-based 
pathway activation scores can subsequently be compared between patients and controls in the same 
way as normal gene expression data, calculating, for each pathway, a fold-change of the pathway 
activation scores between patients and controls. Here, we average over all patients and over all 
controls, respectively, using the limma R package and adjusting for age and gender of the individual 
patient/control pathway activation. An example of this approach is given in the GSVA publication, 
where differential pathway activation was identified between acute lymphoblastic lymphoma and 
mixed-lineage lymphoma 104. The major downside of feature integration may be information loss; 
subsequent statistical and machine-learning-based analyses receive only a tiny fraction of the amount 
of information that is available in total. 
Gene expression data (transcriptomics) will be our preferred omics data type. Nevertheless, proteins 
are closer to the phenotype than transcripts, so we wish to not ignore these. Therefore, we prepare to 
deal with both kinds of proteome data that we may expect (see “Experimental blood analyses”, above), 
as follows. 

1. Large-scale data, likely based on mass spectrometry, in the order of hundreds or more proteins 
that can be identified and measured in all the conditions investigated. 
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2. Small-scale data, likely based on antibody arrays, in the order of ten proteins or less. 
Except for the raw data preprocessing depending on the platform, once log-fold changes describing 
differential expression are established, we thus expect to handle the large-scale proteome data 
essentially the same as the transcriptomics data, and the small-scale proteome data similarly to the 
blood routine data, for cells and serum alike. Overall, the omics data are expected to come along three 
main coordinates, that is, 

1. as blood cell transcriptomics and proteomics as well as serum proteomics; 
2. longitudinal in time (for baseline and landmark); and 
3. for PDAC, IS and control. 

All coordinates can be exploited for differential analyses, even though the PDAC and IS data will be 
analyzed separately except for some integrative explorative analyses (see below). In the explorative 
analyses, the longitudinal transcriptomics of the patients and controls will also be analyzed together, 
see below. For the standard biostatistics and machine learning analyses, we plan to employ 5 
approaches to feature integration, each yielding a shortlist of 5 integrated features, as follows. 

1) (5 features) A first shortlist of features will consist of the following expert selection from the 
routine blood measurements (incl. PAI-1): neutrophil-lymphocyte-ratio, fibrinogen, high-
sensitive C-reactive protein, albumin and PAI-1. 

2) (5 features) For the cellular gene expression measurements, we use 
ExprEssence/FocusHeuristics (see above) to calculate the top-5 subnetworks scoring highest. 

3) (5 features) Again for the cellular gene expression measurements, we use GSVA (see above) 
to calculate the top-5 most strongly changing pathways as features.

4) +     5)     (10 features) 
a) In case of dealing with large-scale serum proteomics data, we proceed as in (2) + (3);
b) In case of dealing with small-scale serum proteomics data, we proceed as follows: 

i) if the number of features measured successfully is in the order of 10, we 
refrain from any processing; 

ii) if the number of features is in the order of around 10-100, we select the 10 
features with the smallest p-values indicating differences between the mean 
values of patient and control, based on a t-test. 

For genomic features as per (2), the feature measurements for an individual patient or control will 
then be the average linkscores of the 5 selected subnetworks, contrasting each patient with average 
control data, and each control with average patient data. For genomic features as per (3), the feature 
measurements for each patient/control will be the GSVA scores of the 5 selected pathways. By 
construction, we expect the resulting features to reflect the up/downregulation of disease-related 
transcripts/proteins or pathways/subnetworks. Using the GSVA-based integrated features as input to 
the biostatistical analyses employing Cox proportional hazard models, we are in fact closely following 
the “Survival analysis in ovarian carcinoma” example as described in the GSVA publication 104. 
Regarding the expert selection from the routine blood measurements, we are aware that some of 
these features may be considered to have an almost trivial relationship to outcome prediction for the 
diseases we study; e.g. fibrinogen may correlate strongly with the size of the stroke-damaged brain 
area and may thus be considered a covariate. However, to our knowledge, none of these features are 
validated clinical biomarkers, and it is quite possible that a combination of simple biomarkers is key to 
the best possible prediction. We selected the neutrophil-lymphocyte-ratio specifically because it is 
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cheap to measure; it is, however, like many other blood-based features, easily influenced by acute 
infection.

Exploratory feature integration: Apart from the FocusHeuristics/ExprEssence linkscore, we employ 
alternatives such as keypathwayminer 106. Further, we calculate pathway activation scores for the 
following senescence-related KEGG pathways, which include PAI-1 (see the Introduction) but do not 
refer to a specific disease, as of February 2020: Cellular senescence, HIF-1 signaling pathway, p53 
signaling pathway, Apelin signaling pathway, Hippo signaling pathway, Complement and coagulation 
cascades. “Early integration” by, e.g., first averaging transcript and protein expression on a single-gene 
basis, is also planned. 

Choice of data analysis methods for biomarker discovery: We will consider two main approaches of 
data analysis, one motivated by statistical methods, the other by machine learning approaches. While 
this delineation may ultimately be meaningless, we consider that regression is the core ingredient of 
the former, while supervised learning characterizes the latter. We will apply standard methods (mostly 
in biostatistics) and explore novel approaches (mostly in machine learning; preserving signal implies a 
focus on supervised approaches in this case). Data analysis for biomarker discovery trials in a clinical 
setting is usually described with a biostatisticians’ mindset, who also developed methods to cope with 
the high dimensionality of omics data (see below). On the other hand, the challenges of omics data 
also spurred the recent publication of many methods adopting machine learning, which however did 
not yet make it into clinical trial analysis routine, but which we wish to test (see below). We will focus 
on methods readily available in SAS or as R packages. Notably, the correct choice of method depends 
in part on known unknowns such as the strength of the signal (incl. the amount of missing data) in the 
routine blood measurements and the omics. 

Prediction model quality measures: Unlike intervention trials with their highly standardized aim of 
establishing a statistically significant superiority (or non-inferiority) of one intervention compared to 
another (or to standard of care), observational biomarker trials are a more recent development with 
fewer precisely quantified criteria of success, and a stronger need to consider the effect size: even if a 
biomarker signature enables a significant improvement in predicting an outcome, raising the accuracy 
of the prediction, say, from 70% to 75% may not be clinically meaningful, depending on prevalence of 
the condition to be predicted, the cost of the biomarker measurement, etc. We thus aim to identify 
biomarkers making a maximum of difference in prediction accuracy, if we are able to compare to 
established scores (see also below). For the biostatistics part, the concordance statistics (c-index) will 
be used as an overall measure of predictive accuracy, and time-dependent ROC curves and AUC will 
be used to summarize the predictive accuracy at different cut-off points in time. For the machine 
learning part, the cross-validated accuracy and AUC/c-index, following 99, are used, and to take care of 
a potential Simpson’s paradox we will either analyse the data stratified by gender, or we will add such 
an analysis and check for consistency. More generally, to investigate the role of confounders (and, if 
necessary, to correct for these) in the machine learning part, we wish to use the permutation technique 
described 107. We expect that we can identify a set of biomarkers that affords an accuracy of 75% or 
more or an AUC of 0.75 or more in correctly predicting the primary endpoint with a precision of +/- 
12% 108. This estimate of precision is based on half the width of a 95% confidence interval (CI) for a 
probability of 75%, by extension of item 6 of the tables of Sorzano et al 108, which shows precision up 
to a sample size of N=30.
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Standard biostatistical analyses: A Cox proportional hazards regression model adjusted for age and 
gender will be used to estimate the hazard ratio (HR) and corresponding 95% CI to predict the primary 
composite endpoint separately within the PDAC cohort and IS cohort. The 5 shortlists of 5 features 
(see above) will be providing the canonical predictors, analyzed together. For selection of the most 
important features that might be related to the primary endpoint we will use a procedure proposed 
by Sauerbrei et al. 109, as follows. First, 100 bootstrap samples will be generated. Then, a multivariate 
Cox proportional hazards regression model with backward elimination with selection level of 0.05 will 
be fitted to each replication of the original data set. In a second step features with a relative selection 
frequency of 30% or less over all bootstrap samples will be eliminated. In a third step each feature Xi 
for which the hypothesis of independence in combination with a feature Xj can be rejected will be 
eliminated if Xi is less important when Xj is included in the model, or if it does not gain importance 
when Xj is excluded from the model. All remaining features will be included in the final model. 
Graphical and numerical methods will be performed to establish the validity of the proportionality 
assumption 110 in the final model. Results will be reported as p-values, HRs and corresponding 95%-CIs. 
A p-value of p ≤0.05 will be interpreted as indicating statistical significance. From the final model a risk 
score will be calculated by multiplying the individual feature measurement of a patient with the 
estimated regression coefficient of each feature. The c-index will be used as an overall measure of 
predictive accuracy of the resulting score, a time-dependent ROC curve and AUC will be used to 
summarize the predictive accuracy of the score at specific times. All secondary endpoints will be 
evaluated using the same approach as for the primary endpoint except for the sum-score used as a 
surrogate for “aging”. For this endpoint, a linear mixed effects model with random intercept and spatial 
power covariance structure will be fitted to the data to estimate the progression of “aging”. The 
covariance structure is chosen to reflect the unequal intervals of follow up investigations. Model 
assumptions and model fit will be checked by visual inspection of residuals, and influence diagnostics. 
Missing values will be taken into account by a likelihood-based approach within the framework of 
mixed linear models with the assumption that missing values occur at random. Results will be reported 
as p-value assessed at a level of significance of 5% accompanied by the value of the test statistic and 
degrees of freedom. In addition, 95% CIs for the progression (slope) will be provided. 

Additional exploratory biostatistical analyses: Again, the primary composite endpoint as well as all 
secondary endpoints will be evaluated separately within the PDAC cohort and IS cohort of the 
respective sub-trials. In a first approach, univariate Cox proportional hazard models adjusted for age 
and gender will be calculated for each omics feature (R package survival) using a cut-off of 0.05 on the 
false discovery rate. In a second approach, all omics features will be simultaneously considered in a 
multivariate Cox model, adjusted for age and gender. Towards this aim, a component-wise likelihood-
based boosting algorithm proposed by Binder and Schumacher 2008 111 (R package CoxBoost) will be 
used to develop a biomarker signature. 

Standard machine learning: For the machine learning part, the primary outcome and all secondary 
outcomes give rise to an assignment of predictor/feature lists to survival times, one such list per study 
participant, for which biomarkers are then learned in a supervised fashion. As described, in the 
standard analyses, feature integration (see above) will precede the actual calculation of the model 
(“deep” learning approaches that take in “all” features are part of the exploratory analyses, see below). 
In the same way as the standard biostatistics analyses, the same 5 shortlists of 5 features each (see 
above) will be providing the canonical predictors, analyzed together. Exploiting time-to-event 
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information, we will employ random survival forests (RSF) as described by 112 with the following 
advantages. 

1. RSF can now be considered a time-tested approach, and it was the subject of a recent 
extensive review 68 and of a systematic comparison with LASSO approaches in the case without 
feature selection (see item 7 of the tables of Pi et al 113 for its competitive performance which 
is not reflected in their abstract). 

2. RSF can also work on essentially all features, without a preceding feature integration/selection 
step, and then be compared, in the explorative machine learning analyses described below, to 
survival support vector machines (SSVM) and to a novel method Path2Surv that “conjointly” 
performs feature selection and model training, see 99. 

3. RSF was recently compared to Cox-nnet 114, a neural network approach which we consider as 
very promising for the exploratory part, see also below. 

4. RSF offers a considerable degree of interpretability, given that RSFs are derived from decision 
trees. 

5. RSF is considered “completely data driven and thus independent of model assumptions” and 
“in case of high dimensional data, limitations of univariate regression approaches such as 
overfitting, unreliable estimation of regression coefficients, inflated standard errors or 
convergence problems do not apply” 68. 

In the machine learning part, we calculate accuracy and AUC/c-index using cross-validation to make 
the best use of our limited sample size, following the setup of 99 and 113 (who, however, set aside 
separate validation datasets), and we assess the features as biomarkers by ranking them by their 
variable importance score. 

Additional exploratory machine learning: Apart from the more time-tested standard machine learning 
described above, we will also explore methods that were proposed recently, for which it is less 
straightforward to tell whether these methods are fit-for-purpose in our case, even though they are 
usually claimed to be superior by their developers based on some test/validation data sets. Specifically, 
as mentioned above, we expect to test Path2Surv and SSVM 99 as well as Cox-nnet 114 (without prior 
feature integration); the latter in particular promises a high degree of interpretability. We further 
explore CNet (employing the censored-data variant), for interpretable biomarkers. We also plan to 
employ the PASNet 115, SurvivalNet 116 and SVRc 73 packages. The longitudinal transcriptomics of the 
patients and the controls may also be analyzed integratively based on the “optimal discovery 
procedure” 117, considering, however, that landmark feature data can only be used to predict events 
after the landmark. Finally, we will map the differential omics data onto a human “healthspan pathway 
map” 118, that is, a set of clusters/pathways based on health-related genetic data that we assembled 
recently.

Explorative systems biology modelling, explorative parallelogram approach and transfer learning: 
As mentioned, systems biology modelling and parallelogram 119 120 extrapolation are supposed to 
deliver small sets of highly informative features, by contributing features that are dominating model 
behaviour or that are shown to translate from the SASKit animal model data. Given the comparatively 
small number of study participants (but in-depth measurements), we also wish to explore “transfer 
learning”, which aims to utilize large amounts of public knowledge in the form of latent variables. 
Specifically, we plan to use, and wish to develop further, the Multiplier 121 approach motivated by the 
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analysis of rare-disease data. Multiplier utilizes the RNASeq-based recount2 compendium, and apart 
from the functional network and pathway data that we use in the feature selection part, this 
compendium is expected to be a main source of biological knowledge that enters the calculations for 
biomarker discovery.

Miscellaneous exploratory approaches and discovery of diagnostic biomarkers: We will also use 
unsupervised machine learning to generate descriptive multi-omics correlation networks, as they were 
most recently employed by 122, there supplemented by linear mixed effects models using (un-
)restricted maximum likelihood approaches; in this very recent biomarker discovery trial of similar 
design as ours, but with many more longitudinal omics measurement time-points than ours, we could 
not identify other biomarker discovery methods being used. If genetic data become available, we will 
include these in some analyses; specifically, we will investigate the added value of expression 
quantitative trait loci (eQTL) analyses. PDAC and IS data will be analyzed together in some integrative 
exploratory analyses. In that case, the occurrence of specific endpoints will be evaluated according to 
the group membership (PDAC or IS). This means that in addition to the biomarker signature, a group 
variable, indicating PDAC or IS patients, will be included in the analysis, to assess the difference in the 
progression of the respective endpoints between PDAC and IS patients. We also wish to compare PDAC 
and IS patient data to data of healthy controls (adjusted for age and gender) by means of logistic 
regression models with the aim of identifying candidate biomarkers for the diagnosis of the respective 
disease; we then specifically investigate the association of these diagnostic biomarker candidates with 
cellular senescence and other aging-related processes (see also the next paragraph).

Further analyses, and comparison with existing biomarkers and biomarker signatures: Towards the 
end, we will investigate the overlap for the various biomarker identification approaches we employed, 
assuming that the most frequently found biomarkers may be the most robust and valid ones. 
Moreover, we will compare with existing biomarkers and signatures. Regarding the prediction of 
vascular events, we will specifically calculate the Khorana and related scores 19 for comparison, and 
report the difference in performance. Further, for all biomarkers we find, we will check their 
association with cellular senescence, by manual inspection, literature investigation, comparison to 
CellAge 123 and the SASP Atlas 52 or by formal enrichment analyses if the number of biomarkers is 
sufficiently large to do this in a meaningful way. Also, in a final step, we plan to identify and filter out 
the biomarkers that are volatile in the controls. In addition, a comparison of the biomarker profiles 
before and after the co-morbid event is aimed for. Finally, for publicly available data of other trials 
with a sufficient overlap with our predictors, we will use these as validation datasets.
  
Discussion

Limitations 

Arguably, the most serious limitation of the SASKit study is the low number of participants. We 
mentioned above that in the 4-year-time-frame of the entire study, at the Rostock University Medical 
Center we cannot expect to recruit many more than the 50 PDAC patients to be included in this study; 
we could recruit more stroke patients and more controls, but given the call for proposals that allowed 
this exploratory (not confirmatory) study to be applied for and funded, we considered that within a 
limited budget, in-depth omics characterization, animal models (to be detailed in a follow up 
publication) and a comprehensive data analysis plan including systems biology modelling were 
important aspects of our study that we did not want to exclude. 
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The two most obvious risks to the main goal of finding good biomarkers for the primary outcome based 
on the standard data analysis are the following. First, we found it hard to estimate the distribution of 
events as defined by the primary outcome; we cannot exclude that too many events take place already 
at the start of the study, or until the first follow-up, specifically in the PDAC subtrial, limiting the 
amount of information available to the subsequent time-to-event analyses. Then again, had we 
defined the primary outcome more conservatively, there would have been a chance that not enough 
events happen before the end of the study. Second, we could not identify role-model publications 
reporting results of biomarker explorations that made use of machine learning methods, except for, 
to some extent, Schussler-Fiorenza et al 122, so that we enter unknown territory to some degree. The 
two most obvious risks to our goal of investigating the role of cellular senescence in the (co-)morbidity 
of PDAC and IS could be an insufficient prevalence of co-morbid events, and the complex role of 
treatment in case of PDAC, where additional cellular senescence is most likely triggered by therapeutic 
intervention 124. Then again, all molecular high-throughput analyses are essentially explorative and we 
are open to discovering biomarkers of disease that do not relate to any of our pre-specified 
hypotheses.

Implications 

We designed the SASKit study to synergistically deliver upon multiple aims that we consider to be of 
relevance for specific disease prognosis and treatment as well as for primary, secondary and tertiary 
prevention. Employing clinical performance measurements and patient-reported outcomes, we aim 
for clinical relevance and we suggest that prognostic biomarker signatures for general health and QoL 
are perhaps more important than (progression-free) survival, although there is much more data about 
the latter. Moreover, good disease treatment options are still lacking for PDAC as well as for stroke, 
and the more we find cellular senescence implicated in disease deterioration, at least in a subgroup of 
patients with a specific biomarker signature, the more confidently we can suggest, and further explore, 
seno-therapeutic interventions for these two diseases. 

Notably, we are in the process of starting a parallel human study testing, in healthy elderly people, 
interventions into cellular senescence, based on food rich in seno-interventional compounds, and we 
expect that many aspects of the study design presented herein will be adopted in that parallel study. 
That study will also investigate aging- and senescence-related outcomes, and as such it can be seen as 
a test of a cautious yet potentially very effective approach to primary prevention; if the diagnostic 
biomarkers we find in the SASKit study relate to cellular senescence, this observation would constitute 
further evidence for (cautious) seno-interventions, moving towards a kind of universal approach of 
disease prevention by tackling fundamental aging-related processes (see Boxes 1 and 2). 

Secondary prevention, aiming to reduce the impact of a disease that has already occurred, can 
ultimately be supported by the SASKit study, if we can demonstrate, and (in follow up studies) confirm, 
a distinctive role of cellular senescence (and/or other aging-related processes such as 
inflammation/inflammaging 125) in disease deterioration as defined here. Finally, evidence for tertiary 
prevention by seno-therapeutic intervention, aiming to attenuate the impact of an ongoing disease, is 
also an option based on how accurate, relevant and specific our biomarkers will be. 

Last but not least, we expect that the in-depth molecular analyses that we wish to conduct will provide 
mechanistic insights into the etiology of the diseases we study here, which we just see as models for 
the investigation of the fundamental role of aging in general, and of cellular senescence in particular, 
in disease and dysfunction. 

Ethics and dissemination
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The study protocol has been approved by the ethics committee of the UMR (Ethikkommission an der 
Medizinischen Fakultät der Universität Rostock, A2019-0174). Results shall be published after 
completion of the study, following standard guidelines.

Abbreviations: 

ALT Alanine Aminotransferase
AP Alkaline Phosphatase
AST Aspartate Aminotransferase
AUC Area Under the Curve
BMI Body Mass Index
CA19-9 Carbohydrate Antigen
CEA Carcinoembryonic antigen
CI Confidence interval
COVID-19 Coronavirus disease 2019
CRP C-reactive protein
CSHA-CFS Canadian Study on Health & Aging Clinical Frailty Scale
ECOG Eastern Cooperative Oncology Group
EQ-5D-5L EuroQoL 5-Dimension 5-Level
EQ-VAS EuroQol Visual Analogue Scale
FACIT-Pal Functional Assessment of Chronic Illness Therapy-Palliative
HADS-D Hospital Anxiety and Depression Scale - German Version
HR Hazard ratio
INR International normalized ratio
IS Ischemic Stroke
LDH Lactate dehydrogenase
MOCA Montreal Cognitive Assessment
mRS Modified Rankin Scale
NIHSS NIH-Stroke Scale
NYHA New York Heart Association
PASE Physical activity scale of the elderly
PDAC Pancreatic Ductal Adenocarcinoma
PS Performance status
QoL Quality of Life
ROC Receiver-Operator Characteristic
RSF Random survival forests
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SASKit Senescence-Associated Systems diagnostics Kit for cancer and stroke
SASP Senescence Associated Secretory Phenotype
WHODAS WHO Disability Assessment Schedule
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Figure Legends

Figure 1: Study design of the SASKit study. Predictor and outcome measurements along the time axis 
are described.

Figure 2: Data analysis plan of the SASKit study. Input, methods and output of the standard (but not 
the explorative) analyses based on biostatistics and machine learning are described in detail.
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Abstract

Introduction: Aging-related processes such as cellular senescence are believed to underlie the 
accumulation of diseases in time, causing (co-)morbidity, including cancer, thromboembolism and 
stroke. Interfering with these processes may delay, stop or reverse morbidity. The aim of this study is 
to investigate the link between (co-)morbidity and aging, by exploring biomarkers and molecular 
mechanisms of disease-triggered deterioration in patients with pancreatic ductal adenocarcinoma, 
and (thromboembolic) ischemic stroke. Methods and Analysis: We will recruit 50 patients with 
pancreatic ductal adenocarcinoma, 50 patients with (thromboembolic) ischemic stroke and 50 
controls, at Rostock University Medical Center, Germany. We will gather routine blood data, clinical 
performance measurements and patient-reported outcomes at up to 7 points in time, alongside in-
depth transcriptomics & proteomics at two of the early time points. Aiming for clinically relevant 
biomarkers, the primary outcome is a composite of probable sarcopenia, clinical performance 
(described by ECOG Performance Status for patients with pancreatic ductal adenocarcinoma and the 
Modified Rankin Scale for patients with stroke) and quality of life. Further outcomes cover other 
aspects of morbidity such as cognitive decline, and of comorbidity such as vascular or cancerous 
events. The data analysis is comprehensive in that it includes biostatistics & machine learning, both 
following standard role models & additional explorative approaches. Prognostic and predictive 
biomarkers for interventions addressing senescence may become available if the biomarkers that we 
find are specifically related to aging / cellular senescence. Similarly, diagnostic biomarkers will be 
explored. Our findings will require validation in independent studies, and our dataset shall be useful 
to validate the findings of other studies. In some of the explorative analyses, we shall include insights 
from systems biology modelling as well as insights from preclinical animal models. We anticipate that 
our detailed study protocol and data analysis plan may also guide other biomarker exploration trials. 
Ethics and Dissemination: The study was approved by the local ethics committee (Ethikkommission 
an der Medizinischen Fakultät der Universität Rostock, A2019-0174), registered at the German 
Clinical Trials Register (DRKS00021184), and results will be published following standard guidelines. 
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Article summary 
Strengths and limitations of this study:

 In-depth measurements of both relevant outcomes and potential biomarkers. 
 Comparatively low number of participants, for both patients and controls.
 In-depth and detailed data analysis plan.
 Investigation of the deterioration of health and (co-)morbidities, not just of survival.
 Two co-morbid diseases investigated in almost identical ways in two sub-studies. 

Introduction 

Pancreatic ductal adenocarcinoma (PDAC) and ischemic stroke (IS) are two aging-associated diseases 
for which cellular senescence is suspected to play a role regarding their (co-)morbidity. In the following, 
we outline an observational study of these two diseases, describing the prevalence and outcomes of 
PDAC and IS, the known predictors of these outcomes, and the specific prevalence of co-morbidity as 
well as known predictors for this co-morbidity. Moreover, we discuss the role of cellular senescence in 
aging and disease (specifically, see Box 1), and the background of the cancerous and vascular 
comorbidity (specifically, see Box 2). We will see that, despite differences in disease pathology, 
dynamics and prognosis, there is a lot of evidence that cellular senescence is an important contributor 
to disease etiology, progression and consequences for both diseases.

Pancreatic ductal adenocarcinoma: prevalence and outcomes. The incidence of pancreatic cancer is 
increasing; in 2017 the global incidence was 5.7 per 100,000 person-years 1. Age is the most important 
risk factor, and incidence peaks at 65 to 69 years in males and 75 to 79 years in females 1. Pancreatic 
ductal adenocarcinoma (PDAC) is the most common histological type of pancreatic cancer 2. The 
disease is characterized by late clinical presentation 3, early metastases and poor prognosis, with a 
one-year survival rate in Europe of only 15% 4. Many patients have unresectable disease at the time of 
diagnosis, either as locally advanced disease or already with metastases. In these cases, therapy is 
palliative consisting of chemotherapy and/or best supportive care. Disease deterioration with weight 
loss and low muscle strength, that is, cachexia and sarcopenia 5, will follow, for some patients rapidly 
(within a few weeks) and for others during a longer interval of one or two years. Recent developments 
in oncology have not shown much benefit in clinical trials of patients with PDAC 6. Inflammation, 
desmoplasia and early metastases are deemed responsible for the difficulties in targeting the disease. 
Moreover, vascular events are frequently observed in the course of PDAC and may contribute to 
disease deterioration or early death. Venous thromboembolism is the most common event occurring 
in up to 34% of patients with metastatic PDAC 7 8, but arterial ischemic events, like stroke, are also 
reported 9-12 13 14, see also Box 2. Therefore, deterioration and mortality in PDAC can be explained not 
only by tumor progression, but also with other factors like sarcopenia/cachexia and vascular events 
contributing as well. Furthermore, we suggest that the underlying cause of all these factors are aging-
related processes such as cellular senescence and chronic inflammation.

Pancreatic ductal adenocarcinoma: known biomarkers and clinical scores. In PDAC patients there is 
a lack of established scores describing the risk of disease deterioration and the risk of 
sarcopenia/cachexia in particular. Referring to the endpoint of overall survival, some recent studies 
tried to establish inflammation-based scores to better characterize outcome in PDAC. In a 
retrospective analysis of 386 patients with PDAC of different stages, CRP/Alb ratio, neutrophil–
lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR) and modified Glasgow prognostic score 
(mGPS) were studied 15. In patients with locally advanced and metastatic disease, the CRP/Alb ratio 
was an independent factor of poor survival 15. Another retrospective study evaluating CA19-9, CEA, 
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CRP, LDH and bilirubin levels in locally advanced and metastatic pancreatic cancer patients treated 
with chemotherapy showed an independent prognostic significance for overall survival only for CA 19-
9 decline during treatment 16. Other studies have evaluated risk factors for thromboembolic events in 
pancreatic cancer patients and more generally in patients with cancer 17 (see also Box 2). The “Khorana 
score”, developed more than ten years ago, is widely used to estimate venous thromboembolic risk in 
the population of cancer patients 18. This score integrates standard laboratory parameters (platelet 
count, hemoglobin, leukocyte count), body mass index (BMI) and the cancer site (with pancreatic 
cancer and gastric cancer classified as very high risk). Still, its performance was questioned in a 
retrospective cohort of pancreatic cancer patients 19 and in a prospective cohort study of patients with 
different cancer types, among them 109 with pancreatic cancer 17. The clinical association of PDAC, 
sarcopenia/cachexia and thromboembolism is well-described 9, but still not understood in its 
pathophysiology 20. Within the SASKit study we aim to identify biomarkers and molecular mechanisms 
contributing to this clinical association, by investigating their relation to clinically relevant outcomes. 

Ischemic stroke, prevalence and outcomes. Ischemic stroke (IS) occurs in the German population with 
an incidence of 236 per 100,000 per year 21. The mean age of acute stroke patients is 73-74 years, with 
more than 80% of patients being over 60 years old. After a first stroke, nearly 5% of patients suffer a 
second stroke within a year. Mortality after IS is about 12% within one year and about 30% within five 
years 21. Mild to moderately disabled stroke survivors showed an elevated prevalence of sarcopenia 
>6 months after onset of stroke compared with non-stroke individuals (13.2% vs 5.3%) 22. The 
mechanisms underlying sarcopenia include loss of muscle mass, reduction of fibre cross-sectional area 
and increased intramuscular fat deposition occurring between 3 weeks and 6 months after stroke in 
both paretic and non-paretic limbs 23. Comorbid, or subsequent cancer may facilitate sarcopenia after 
IS. A US nationwide inpatient sample study reported that 10% of hospitalized IS patients have comorbid 
cancer, 16% of them with gastrointestinal cancer and 1% with PDAC, and that this association may be 
on the rise 24. Additionally, within two years after IS, another 2% to 4% of patients receive a new cancer 
diagnosis 25-27. Within the SASKit study we aim to identify biomarkers to predict outcome after IS in 
terms of general health state (i.e. sarcopenia, deterioration of clinical performance, cognitive 
functioning, frailty) and quality of life, as well as (co-)morbidity, as we do for the PDAC cohort.

Ischemic stroke, known biomarkers and clinical scores. In an early study of 956 patients with acute IS, 
determinants of long-term mortality were age, obesity, cardiac arrhythmias, diabetes mellitus, 
coronary heart disease and organic brain syndrome at discharge from hospital; interestingly, 
hypercholesterolemia and smoking did not affect long-term outcome 28. More recent studies uniformly 
identified age and stroke severity, usually assessed on the NIHSS or similar scales, as biomarkers of 
long-term functional outcome and mortality after stroke 29 30. Fibrinogen has been related to long-term 
outcome after stroke 31 32. There have been conflicting data on the predictive value of serum bilirubin 
levels on the long term risk of cardiovascular disease. While some studies are in favor of a predictive 
value 33-35, others are not 36. Also, CRP levels have been reported to impact the functional long-term 
outcome after IS 37, and early neurological deterioration after IS has been related to decreasing 
albumin levels, elevated CRP and fibrinogen levels 38. Potential biomarkers for occult cancer in IS 
patients include elevated D-dimers, fibrinogen, and CRP; infarction in multiple vascular territories; and 
poor nutritional status 39. Interestingly, IS patients with elevation of at least two of the following 
coagulation-related serum markers, that is, D-dimer, prothrombin fragment 1.2, thrombin-
antithrombin complex and fibrin monomer, in the post-acute phase of stroke, were more likely to have 
occult cancer or recurrent stroke during follow-up for 1.4±0.8 years 40. In another study of acute IS 
patients, high D-dimer levels at admission were independently associated with recurrent stroke and 
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all-cause mortality during follow-up for up to 3 years 41. These findings underpin the idea of shared risk 
factors for unfavorable outcomes in IS as well as cancer and they suggest that there may be 
coagulation-related biomarkers indicating an early stage of carcinogenesis or stroke (see also Box 2). 
Nevertheless, the clinical biomarkers that currently exist for predicting outcome are limited in their 
performance and clinical utility, and there is a need to overcome the limitations of current predictive 
models 42.

Study Rationale and Aims. The primary aim of the SASKit (“Senescence-Associated Systems 
diagnostics Kit for cancer and stroke”) study is to discover a set of molecular biomarkers for outcomes 
after PDAC and IS, which are specifically useful to predict disease-triggered deterioration of health 
(“disease deterioration” for short) in terms of probable sarcopenia 43, reduced clinical performance 
and quality of life (QoL). The outcomes also include the (co-)morbidity of vascular events (here defined 
as stroke, myocardial infarction, and venous or arterial thromboembolism) in patients with PDAC, 
which are observed frequently apart from sarcopenia. Also included is the (co-)morbidity of any kind 
of cancer and of cognitive decline. Moreover, we consider mortality, as the most canonical outcome. 
Following up on the primary aim, we will investigate the nature of the molecular biomarkers to find 
out whether cellular senescence and other aging-associated processes are contributing to disease 
deterioration. As a secondary aim, we will search for potential diagnostic biomarkers related to cellular 
senescence and other aging-related processes that may differentiate healthy controls from PDAC or IS 
patients. Avoiding unclear or circular terminology, we define a biomarker in a very general fashion, 
simply as a feature (data point) f1 that successfully predicts another feature f2 at a later time-point 44, 
in a biomedical context. Here, features may be composites, based on the measurement of individual 
features. Often, feature f1 refers to molecular data, while feature f2 refers to phenotypic data, such as 
clinical outcomes. Ultimately, we aim to identify biomarkers that are easy to measure, and that can 
then be validated in other studies to predict a clinically relevant outcome.

Box 1: Aging and cellular senescence. Extra lifetime gained over the last century led to the widespread 
emergence of age-related diseases that are rarely seen in younger people. Older patients are thus 
more likely to display several comorbidities, making treatment difficult and expensive. Over the last 
years, strong evidence has accumulated that the presence of senescent cells (i.e. non-dividing but 
secretory, damaged, and metabolically active cells that escape apoptosis) is causally involved in 
diseases such as atherosclerosis, cancer, fibrosis, pancreatitis, osteoarthritis, Alzheimer disease and 
metabolic disorders 45 46. Evidence that senescent cells are not only correlated with aging and diseases, 
but are also causally involved, comes from recent studies, which transplanted senescent cells from old 
into young mice 47. This resulted in persistent functional impairment as well as spread of cellular 
senescence to host tissues. Another strong line of evidence comes from experiments that actually 
removed senescent cells from aged mice by senolytics 47-49. In each case an increase in lifespan and a 
delay of typical age related diseases was observed. Most recently, the results of human pilot trials of 
putative senolytic treatments in case of idiopathic pulmonary fibrosis and osteoarthritis have been 
reported. One team 50 treated idiopathic pulmonary fibrosis patients with dasatinib and quercetin and 
demonstrated safety as well as notable improvements in some physical abilities. Furthermore, a 
human phase-1 study demonstrated that a senolytic compound, which was applied locally in patients 
with osteoarthritis of the knee, was safe and well-tolerated 51. A clinically meaningful improvement in 
several measures, including pain, function, as well as modulation of certain senescence-associated 
secretory phenotype (SASP) factors and disease-related biomarkers was observed after a single dose.
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Box 2: Cellular senescence and the comorbidity of cancer and vascular events. Some cancers such as 
PDAC can trigger vascular events by hyper-coagulation, reflecting Trousseau’s syndrome first reported 
150 years ago 9. In turn, strong associations between coagulation, cellular senescence and the SASP 
were recently demonstrated 52 53. While cellular senescence can suppress PDAC and cancerous 
proliferation in general, it also triggers tumor progression by fostering inflammatory processes, 
including the SASP, while on the other hand, after ischemic stroke, it attenuates recovery 54-58. For both 
diseases, causal influences can be traced back to molecular determinants: PAI-1 (also known as 
SERPINE1 and part of the SASP) is involved in cancer-triggered thromboembolism 55 57 and stroke 
recovery in animals 59. Other proteins involved in cellular senescence, specifically inflammatory 
cytokines such as IL6, and the lesser known osteopontin and gelsolin, are also markers for both PDAC 
and stroke 60-63. The cyclin-dependent kinase CDK5 64 is implicated in the progression of PDAC as well 
as in the recovery from stroke 58 65. Moreover, apart from being genetic risk factors 66 67, the most 
prominent drivers of cellular senescence (p16/CDKN2A and p21/CDKN1A) also promote PDAC 
progression 68 and endothelial embolic and arteriosclerotic mechanisms of stroke 69. Finally, two small-
molecule interventions into cellular senescence, fisetin and quercetin, are both potential therapeutic 
agents of PDAC and stroke. In case of stroke, the blood-brain-barrier is passed by quercetin which 
improves stroke outcome 70. In case of PDAC it was observed that quercetin inhibits pancreatic cancer 
growth in-vitro and in-vivo 71. Fisetin is found in various fruits (especially strawberries) and it is 
chemically similar to quercetin, with strong putative senolytic effects, extending lifespan of mice even 
when intervention with fisetin started only at an advanced age 72. In a study involving nude mice 
implanted with prostate cancer cells, treatment with fisetin significantly retarded tumor growth 73. 
Also, in case of lung cancer, there is evidence for the beneficial effects of fisetin. One study showed 
that fisetin provides protection against benzo(a)pyrene [B(a)P]-induced lung carcinogenesis in albino 
mice 74 and another in vivo study demonstrated the synergistic effects of fisetin and cyclophosphamide 
in reducing the growth of lung carcinoma in mice 75. Several other studies have also demonstrated its 
anticarcinogenic, neurotrophic and anti-inflammatory effects that are beneficial in numerous diseases, 
including pancreatic cancer and stroke 76. 

Methods

The presentation is based on the reporting recommendations for tumor marker prognostic studies 
(REMARK), that is, items (1) – (11) of the REMARK checklist 77. The study design is illustrated in Figure 
1, while the data analysis plan is summarized in Figure 2.

Study design

The SASKit (“Senescence-Associated Systems diagnostics Kit for cancer and stroke”) study is designed 
as a prospective, observational, cohort study to identify biomarkers for disease deterioration in 
patients with PDAC or with IS and, specifically, for the (co-)morbidities of these diseases including 
vascular events and sarcopenia following the diagnosis of PDAC as well as cancer and cognitive decline 
following IS. All patients will be treated for their diseases in accordance with current guidelines or 
therapy standards and at the physician's discretion. Due to the observational study design, regular 
treatment of the patient is not affected apart from sampling blood (20 to 80 ml at up to 7 time-points 
over the next years). Assessment of disease deterioration will be based on standardized clinical 
performance measurements, and patient reported outcomes based on questionnaires (see below for 
details). Additionally, data from clinical charts and information from the general practitioner will be 
collected. The SASKit study is divided into two subtrials with a common control group, both featuring 
essentially the same outcomes, predictor measurements and data analysis approaches. 
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Patient and Public Involvement

It was not possible to involve patients or the public in the design of the study.

Characteristics of participants (patients and controls)

In the first subtrial (PDAC-subtrial), patients with an initial diagnosis of PDAC in locally advanced or 
metastatic stage without previous systemic therapy will be considered for enrolment, whereas 
patients with a (thromboembolic) IS of the supratentorial brain region within the past 3 to 10 days, 
with a definitive brain infarction volume >10 ml in an assessment by magnetic resonance imaging (MRI) 
will be considered for the second subtrial (IS-subtrial). Except for some explorative analyses, the 
subtrials will be analyzed separately.

Within both subtrials, eligible as controls are those without PDAC or IS and with no other malignant 
disease or other (hemorrhagic) stroke during the past two years. Potential controls will be recruited 
from persons who have lived in the same household as the patient within the last 2 years, have a 
maximum age difference of 12 years and are neither brothers nor sisters (i.e. spouses, second-degree 
relatives or friends). The controls are selected so that the age and gender structure approximately 
reflects the age and gender distribution of the patients. Therefore, the age and gender of the patients 
will be continuously recorded, and the controls selected in such a way that their frequency distribution 
of gender at any time corresponds approximately to that of the currently recruited patients. 

The following criteria lead to exclusion from participation in the study for both patients and controls, 
at time of recruitment:

● previous or current medical tumor therapy

● other cancer within the past 2 years

● previous stroke with persistent deficit

● myocardial infarction within the past 2 years

● therapeutic anticoagulation within the past 2 years for longer than 1 month

● pre-existing dementia

● chronic heart failure stage NYHA IV

● terminal renal insufficiency with hemodialysis

● known HIV infection 

● known active hepatitis C

● pregnancy

● age < 18 years.

Both subtrials will be implemented according to the same standardized protocol. After written 
informed consent of each participant, patients will be followed up at 3, 12, 24, 36 and 48 months after 
their inclusion in the trial, whenever possible. The PDAC-subtrial includes an additional time-point for 
examinations at 6 months after inclusion, given that mortality due to PDAC is expected to be 
accelerated as compared to IS.  Controls will be followed up at 12, 24, 36, 48 months.  

The study is expected to start in the second quarter of 2020 and will finish with the last participant's 
follow up at 48 months. Until that time, we expect that 50 PDAC patients, 50 IS patients, and 50 
controls participated in the trial. The study will be conducted at the Rostock University Medical Center 
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(UMR), Germany at Clinic III - Hematology, Oncology, Palliative Medicine and at the Department of 
Neurology; the institutions of the other co-authors are supporting the study in a variety of ways. The 
study is registered at German Clinical Trials Register (DRKS00021184) and will be conducted following 
ICH-GCP. 

General health- and disease-related and demographic data 

General data of the study participants will be recorded at the beginning of the study (“month 0”) and 
consist of the following: age, sex, BMI, temperature, blood pressure, heart rate (ECG). Furthermore, 
through interviews the following additional data will be recorded: vascular risk factors (arterial 
hypertension, diabetes, hyperlipidaemia, smoking habits), history of vascular events (stroke, 
myocardial infarction, venous or arterial thromboembolism), atrial fibrillation, history of cancer, 
current medication, surgery or blood transfusions in the past three months and vascular or cancerous 
events affecting any first-degree relatives. These data may provide influential factors for explorative 
analyses, or be employed to interpret and discuss the results of the study.

Blood sampling

Blood sampling will be done in a standardized fashion, that is, fasting and between 8 and 10 am, for all 
assays. Routine blood parameters will be recorded at the time-points described above (months 0 to 
48). These consist of differential blood count, reticulocytes, INR (International normalized ratio of 
prothrombin time), partial thromboplastin time, D-dimers, fibrinogen, factor XII, albumin, bilirubin, 
LDH, high-sensitive CRP, CA19-9, cholesterol, and HbA1c. Among the standard measurements, we also 
measure the liver parameters ALT, AST and AP as surrogate markers of liver disease.

Experimental blood analysis (PAI-1 and omics) will be done for patients at month 0 in case of PDAC, at 
month 0 or at month 3 in case of stroke (where the 3-month time point is taken if it reflects a better 
state of the patient as described by the NIHSS) (“baseline”). It will furthermore be repeated at month 
3 in the case of PDAC, and at month 12 in the case of stroke (“landmark”). For controls, the 
experimental blood analysis will be carried out at month 0 and at month 12, assuming that for these, 
data do not change much in the 3 months after baseline. The justification for taking the better clinical 
state in case of stroke is the maximization of differences with the month 12 follow-up data. In terms 
of practicality (being able to calculate a biomarker signature sooner), however, the state at month 0 
should be selected for all stroke patients. Since the blood sample will be taken pre-processed and 
frozen at month 0 in all cases, we are in principle able to perform the experimental blood analysis for 
all stroke patients at month 0, and we can do this analysis in retrospect if deemed necessary. We also 
take blood of PDAC patients at month 12, to have the option to do an experimental blood analysis 
based on these samples, if deemed useful. In the following we will refer to the baseline time-point 
(month 0, or month 3 in cases of stroke patients that improved) and the landmark time-point (month 
3 for PDAC patients and month 12 for stroke patients and controls). The experimental blood analysis 
is done earlier for PDAC because of high expected mortality within the first year. 

The experimental blood analysis includes PAI-1 (see Box 2) as well as high-throughput (omics) analyses, 
that is, transcriptomics and proteomics analysis in T cells and proteomics of serum. T cells are of 
interest because these cells were reported to carry the strongest signal with respect to cellular 
senescence, based on the marker p16 78. We intend to measure gelsolin and osteopontin as well, 
provided that sufficiently standardized assays become available in due time; the blood collected for 
this measurement shall otherwise be used to measure cytokines/chemokines such as IL6, IL8 and TNFɑ, 
which are part of the SASP, by ELISA assays. At time of writing, we do not yet have reliable estimates 
on the amount of blood cells still available for measuring protein expression, so an antibody-based 
protein array (in case of low amounts), or mass spectrometry (in case of sufficiently high amounts) will 
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be used alternatively. For the blood serum, we intend to use the same protein measurement method. 
In the default case of a protein array, we plan to use the novel but dedicated “Senescence Associated 
Secretory Phenotype (SASP) Antibody Sampler Kit” (consisting of approx. 10 SASP-related proteins 
being measured; Cell Signaling Technology) for both cellular and serum proteomics. Further 
exploratory molecular analyses not (yet) funded but permitted based on the ethics approval include 
the following: single-cell analyses of blood, methylation assays for calculating epigenetic clocks 79, 
genetics by SNP array or whole-genome sequencing, and telomere length. A separate ethics approval 
was granted for an optional skin biopsy; skin microbiome analyses are planned as well. More 
specifically, participants have the option to provide a skin biopsy of 5 mm from an area that is not 
usually visible. We expect that about 30-50% of the participants will opt in. We keep the biopsy in 
culture for several days and divide it into several pieces. Using these, we measure biomarkers of 
cellular senescence (specifically, senescence-associated -galactosidase, which cannot easily be 
measured in blood) and we treat some pieces with compounds that may affect cellular senescence, 
such as quercetin or fisetin. Moreover, we plan to sample the microbiome of the forehead using a 
standard swab. This is a very simple procedure, motivated by the claim that a competitive epigenetic 
aging clock can be based on such a sample 80.

Blood sample processing for the experimental analysis will be performed according to standard 
operating procedures (SOP) at the research laboratory of Clinic III - Hematology, Oncology, Palliative 
Medicine. The procedures include flow cytometric control of the sampling quality including distribution 
of cell types and vitality as performed in routine diagnostics. Isolation of peripheral blood mononuclear 
cells (PBMCs) will also be performed following the SOP used by the laboratory in routine diagnostics. 
T Cell separation will be performed according to an established work flow based on magnetic bead 
purification via Miltenyi MACS following manufacturer’s instructions. T-Cell fraction purity as well as 
vitality will then be verified by flow cytometric analyses as described above. Nucleic acid isolation as 
well as protein isolation will be further performed according to the SOP of the research laboratory 
performed using column separation (Qiagen, Hilden Germany). RNA integrity values (RIN) will be 
analysed using an Agilent Scientific Instruments Bioanalyzer as instructed by the manufacturer. RIN 
values above 6 will qualify for RNAseq or Clariom D Array analyses; for RNAseq average reads per 
sample will be set at approx. 40 x 10e6.    

Clinical performance measurements and patient-reported outcomes

At baseline and at each follow-up, handgrip strength (“grip strength” for short) is measured using a 
digital hand dynamometer (Jamar Plus). The test is performed while sitting comfortably, shoulder 
adducted, elbow placed on the tabletop and flexed to 90 degrees, with the forearm and wrist in a 
neutral position 81. The highest value of three measurements of maximal isometric contraction of the 
dominant hand, or if paralyzed due to IS, contraction of the unaffected hand, is documented in kg. 
Further, the following clinical performance measurements are evaluated by the study physician or 
study nurse according to standard protocols: ECOG Performance Status (ECOG PS) 82, modified Rankin 
Scale (mRS) 83, Canadian Study on Health & Aging Clinical Frailty Scale (CSHA-CFS) 84, NIH-Stroke Scale 
(NIHSS) 85, Montreal Cognitive Assessment (MOCA) 86. All raters are certified for the applicable scores 
(mRS, NIHSS, MOCA). Patient-reported outcomes (measured by questionnaires) are the following: EQ-
5D-5L and EQ-VAS (generic evaluation of QoL in 5 domains and overall on a visual analog scale) 87, 
HADS-D (evaluation of anxiety and depression) 88, WHODAS 2.0 (WHO Disability Assessment Schedule) 
89, PASE (physical activity scale for the elderly) 90, and, for patients with PDAC, FACIT-Pal (evaluating 
QoL with focus on palliative symptoms and needs) 91 92. All questionnaires are administered following 
the suppliers’ instructions.

Follow up data
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Apart from the clinical and patient-reported outcomes, further follow-up data are BMI, temperature, 
blood pressure, heart rate (ECG), atrial fibrillation, current medication, tumor treatment, comorbidity 
(any vascular or cancer event), hospital admissions or palliative care. Additionally, based on clinical 
charts and information from the general practitioner, we will record medication, (co-)morbidity and 
mortality. Just like the general health- and disease-related and demographic data recorded at time of 
recruitment, these data may provide influential factors for explorative analyses, or be employed to 
interpret and discuss the results of the study.

Endpoints 

In both subtrials, the primary endpoint is a composite measure of “disease deterioration” defined as 
the first occurrence within a follow-up interval of at least one of the following.

a. Sarcopenia, measured by grip strength less than 27 kg for males and less than 16 kg for females 
(according to the revised European consensus, EWGSOP2  43).

b. Deterioration of clinical performance, that is, of the ECOG PS by at least two points (PDAC-
subtrial), or of the mRS by at least one point (IS-subtrial).

c. Deterioration of QoL, described as a reduction of the EQ-5D-5L by at least 0.07 in the index 
score, and deterioration of at least 7 points in the EQ-VAS (ranging from 0-100).

Deterioration will be considered between baseline (month 0) and the respective landmark (follow-up) 
investigation. As described above, for patients with IS who have improved their condition (measured 
by NIHSS) within the first 3 months, this time point (month 3) will be used as a baseline instead. Item 
(a) is the deterioration from “no sarcopenia” to “probable sarcopenia” as defined by current consensus 
43. Grip strength has been widely used for assessing muscle strength, which is currently used as the 
most reliable measure of muscle function, loss of which indicating sarcopenia 43. ECOG PS is established 
in describing the general condition of patients with cancer, whereas mRS is established in patients with 
stroke. Death is reflected by both scores as ECOG PS of 5 or mRS of 6, and it will always consider death 
from any cause. The EQ-5D-5L evaluates QoL in five dimensions (mobility, self-care, usual activity, 
pain/discomfort, and anxiety/depression), all relevant for patients with PDAC and IS. Furthermore, it 
is a generic score so that results will be comparable for different diseases (as recently described in 
patients with stroke 93 and for the general population 94). Even though disease-specific scores might 
evaluate symptom burden in even more detail, the EQ-5D-5L was recently shown to be comparable to 
QoL scores developed specifically for pulmonary embolism and deep vein thrombosis (that is, PEmb-
QoL, VEINES-QOL/Sym and PACT-Q2) in terms of acceptability, validity and responsiveness 95. A clinical 
deterioration in EQ-5D-5L is described as a minimal important difference in the range from 0.07 to 0.09 
index points and in VAS from 7 to 10 points 96, which is the basis for the definition of item (c). Controls 
reach their endpoint by the same definition as the subcohort for which they serve as control; in any 
integrative analysis of both subtrials, a deterioration of the mRS by at least one point will be used as 
the criterion (instead of ECOG PS), because stroke patients in general have a slower deterioration than 
PDAC patients, and controls naturally have the slowest expected deterioration.

The primary composite endpoint and all secondary endpoints will be evaluated in a first analysis, based 
on data obtained until summer 2021, and in a second analysis, based on data obtained until summer 
2023, and in a third analysis at the end of the study. The second analysis may be delayed until data of 
90% of the study participants are available (at least including the month 12 follow-up) and it may then 
constitute the “main” analysis of the study. To address potential impacts of COVID-19 on the primary 
and secondary endpoints, the typical COVID-19 symptoms as well as confirmed diagnosis of COVID-19 
are recorded for all study participants at each study visit. In addition, at month 12 the presence of 
serum anti-SARS-CoV-2 IgG antibodies will be analysed. 

Page 11 of 29

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

10
SASKit study protocol V01

The following secondary endpoints will be evaluated:

● each component of the primary endpoint (separately);
● occurrence of disease-specific (co-)morbidities, as follows

o new vascular events (stroke, myocardial infarction, venous or arterial 
thromboembolism), specifically in patients with PDAC;

o new cancer, specifically in patients with IS; 
o probable sarcopenia (based on grip strength);
o cognitive decline (deterioration of MOCA by 3 points from best value at baseline);

● frailty, defined as a CSHA-CFS level of 6, 7, or 8;
● all-cause mortality. 

Further, a sum-score summarizing all measurements of phenotypic variables (grip strength, clinical 
performance measurements, comorbid events, mortality) will be considered as a surrogate for “aging”, 
normalizing all continuous-scaled components in order to obtain a common scale with an average of 
zero and standard deviation of one. The components of the sum-score will all be given equal weight.

Predictors

While all phenotypic features (grip strength, clinical performance, patient reported outcomes, 
comorbid events, mortality) are contributing to the definition of endpoints (as dependent 
variables/parameters), all routine and experimental blood features (PAI-1, omics) are considered to be 
potential predictors; these are also called the independent variables/parameters. This delineation is 
justified by (a) the paradigm that (clinical) relevance is tied to high-level phenotypes describing health 
and survival, specifically including QoL 44, and (b) the goal of developing a “senescence-associated 
systems diagnostics kit” that includes a careful selection of biomarkers contributing, as much as 
possible, also to molecular-mechanistic insights into PDAC, IS and their (co-)morbidity, which we 
hypothesize to be related to cellular senescence and aging. Age and gender will be included as 
mandatory covariates (also termed confounders, that is, predictors which we do not aim to explore, 
or which we wish to improve upon) in all statistical models. Further covariates are smoking, liver 
dysfunction or disease, the baseline NIHSS score in case of IS, as well as locally-advanced vs metastatic 
PDAC and modality of treatment in case of PDAC. As described, the successful predictors identified by 
our study, following the statistical analyses outlined below, are called biomarkers; we wish to stress 
that these are only candidates for the ultimate goal of clinically validated biomarkers; in particular, 
they still need to be validated in further studies (based, e.g., on other cohorts). A set of biomarkers is 
also called a biomarker signature.

Blinding and pseudonymization 

No blinding will be done during the study. However, the primary composite endpoint will be 
documented without subjective influence due to standardized definitions. Thus, detection bias will be 
kept at a minimal extent. Furthermore, information bias will be minimized as we will use simple 
measurements, which are applied in daily practice or are self-reported and easy to perform (e.g. EQ-
5D-5L). The rigorous inclusion of all eligible patients within the recruitment period will help to minimize 
selection bias. All patient data are pseudonymized to all investigators except for the attending 
physician and study nurse. Since all major data analyses are based on known information about the 
outcomes (e.g., supervised machine learning with cross-validation), the data analysis will also be 
performed based on the pseudonymized data. Protection of personal and clinical data of all patients 
and controls will follow all relevant legal regulations. 
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Sample size

No formal sample size calculation was performed a-priori for this observational study. The prevalence 
of PDAC combined with the requirement to complete the study within a reasonable timeframe implied 
a target of 50 patients per group (PDAC, IS and control group). Nevertheless, a power analysis revealed 
that a sample size of 50 patients will have 80% power to detect a significant difference by a non-
parametric Wilcoxon statistic between an AUC of 0.75 for a particular biomarker signature compared 
to the null hypothesis value of 0.5 at a significance level of 5% under the assumption that about three 
times as many patients will reach the primary endpoint, compared to patients who will not reach the 
primary endpoint 97.

Data Analysis Plan

General considerations: The guiding criteria for biomarker identification in the SASKit study are the 
maximization of the predictive signal, clinical relevance/utility, biomedical/molecular/clinical 
interpretability, and practicality/cost. Given the relatively low number of participants in this in-depth 
study, to maximize the signal for the endpoints and predictors given as outlined above, we must aim 
to use all available information. Regarding endpoints, whenever possible, we thus wish to consider the 
(censored) time-to-event information inherent in the baseline and follow-up examinations, and in the 
mortality data. The primary endpoint was defined to integrate expected clinical utility and maximum 
signal. In defining the (secondary) endpoints, we considered an array of clinically relevant single 
endpoints as well as a sum-score of all phenotypic measurements; we hypothesize that the latter 
carries the largest amount of signal. Given the small sample, we cannot set aside an extra validation 
dataset. For the predictors considered to be covariates/confounders, please see the section on 
“Predictors”, above. The data analysis plan is summarized in Figure 2.

Data quality assessment and cleaning: The need for (and the amount of) data cleaning cannot easily 
be estimated beforehand; we plan to follow the MarkAGE guidelines 98 to deal with missing values, 
and to detect and rectify outliers and batch artefacts.

Predictor/Feature integration: Regarding predictors (features), we first need to remember that we 
measure at baseline (at months 0 or 3) and at one landmark (main follow-up, that is, at months 3 or 
12). While use of baseline features is unrestricted, use of landmark features is, of course, restricted to 
prediction of outcomes after the landmark. Further, we need to handle the high dimensionality of the 
omics features. Here, upfront feature integration, e.g., by averaging measurements as described 
below, is considered preferable specifically for the high-dimensional omics data, for the following 
reasons.

1) A small feature space allows for an easier understanding and interpretation 99.
2) Integrated features can be used as input for both the standard biostatistics and the standard 

machine learning parts of the analysis. 
3) Use of few features is more time-tested than newer methods featuring the joint calculation of 

the prediction model and the selection of the features, albeit the latter are quite often claimed 
to be superior by their developers. 

4) Naturally, feature integration avoids multicollinearity and overfitting, and multiple testing is 
less of an issue. This counters the “curse of dimensionality” and “de-noises” the data towards 
better prediction performance 99 100. 
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5) Feature integration allows the handling of feature heterogeneity, which in our case refers to 
routine blood measurements as well as various omics data types. 

6) In the explorative analyses, systems biology modelling and the parallelogram approach are 
both supposed to deliver further small sets of integrated, highly informative features, which 
may, e.g., dominate systems behaviour, or which are believed to translate well from animal 
models to humans.

While most features will be available for the baseline and the landmark time-point, utilizing baseline 
data is clinically more useful, simply because the prediction for the endpoint is available much earlier. 
Nevertheless, in the explorative analyses, we will investigate the predictive power of changes in 
feature measurements from baseline to landmark, given that such changes may be more informative 
about future disease deterioration (and other endpoints) than just baseline values. 

Specific omics data feature integration: Notably, we face a heterogeneous “multi-view” dataset, 
usually referred to as “multi-omics”. Our feature integration approach (see above) is also known as a 
“late integration” type of analysis, implying that measurements for different omics data types are 
reduced early on to activation scores for pathways or subnetworks that are then integrated at a “late” 
level. To calculate the activation scores for subnetworks, we use, by default, the 
ExprEssence/FocusHeuristics linkscore 101 102, taking the links (gene/protein interactions) from a 
functional interaction network defaulting to STRING. Our experience with the linkscore motivates us 
to include this method as one of the approaches proposed for feature integration in the following, 
influencing the calculation of up to 10 features on which the standard biostatistics and machine 
learning shall be based. Specifically, we take the average expression measurement for all patients 
(as a list of expression values, one per gene) and the average for all controls (as a list of expression 
values, one per gene) to calculate a linkscore for each STRING interaction, and assemble a 
“condensed” network including all interactions with a linkscore in that percentile for which the 50 
highest-scoring interactions are shown. These interactions form subnetworks103. We then take the 
average linkscore for each subnetwork as the subnetwork activation score. Alternative methods 
such as keypathwayminer will be used in the exploratory analyses, see below. For the pathways (such 
as KEGG), we will calculate pathway activation scores using Gene Set Variation Analysis (GSVA) 104. This 
method calculates pathway activation scores from expression data, is suited for use with microarray 
as well as RNAseq data and performed strongly in a recent benchmarking analysis 105. The GSVA-based 
pathway activation scores can subsequently be compared between patients and controls in the same 
way as normal gene expression data, calculating, for each pathway, a fold-change of the pathway 
activation scores between patients and controls. Here, we average over all patients and over all 
controls, respectively, using the limma R package and adjusting for age and gender of the individual 
patient/control pathway activation. An example of this approach is given in the GSVA publication, 
where differential pathway activation was identified between acute lymphoblastic lymphoma and 
mixed-lineage lymphoma 104. The major downside of feature integration may be information loss; 
subsequent statistical and machine-learning-based analyses receive only a tiny fraction of the amount 
of information that is available in total. 
Gene expression data (transcriptomics) will be our preferred omics data type. Nevertheless, proteins 
are closer to the phenotype than transcripts, so we wish to not ignore these. Therefore, we prepare to 
deal with both kinds of proteome data that we may expect (see “Experimental blood analyses”, above), 
as follows. 
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1. Large-scale data, likely based on mass spectrometry, in the order of hundreds or more proteins 
that can be identified and measured in all the conditions investigated. 

2. Small-scale data, likely based on antibody arrays, in the order of ten proteins or less. 
Except for the raw data preprocessing depending on the platform, once log-fold changes describing 
differential expression are established, we thus expect to handle the large-scale proteome data 
essentially the same as the transcriptomics data, and the small-scale proteome data similarly to the 
blood routine data, for cells and serum alike. Overall, the omics data are expected to come along three 
main coordinates, that is, 

1. as blood cell transcriptomics and proteomics as well as serum proteomics; 
2. longitudinal in time (for baseline and landmark); and 
3. for PDAC, IS and control. 

All coordinates can be exploited for differential analyses, even though the PDAC and IS data will be 
analyzed separately except for some integrative explorative analyses (see below). In the explorative 
analyses, the longitudinal transcriptomics of the patients and controls will also be analyzed together, 
see below. For the standard biostatistics and machine learning analyses, we plan to employ 5 
approaches to feature integration, each yielding a shortlist of 5 integrated features, as follows. 

1) (5 features) A first shortlist of features will consist of the following expert selection from the 
routine blood measurements (incl. PAI-1): neutrophil-lymphocyte-ratio, fibrinogen, high-
sensitive C-reactive protein, albumin and PAI-1. 

2) (5 features) For the cellular gene expression measurements, we use 
ExprEssence/FocusHeuristics (see above) to calculate the top-5 subnetworks scoring highest. 

3) (5 features) Again for the cellular gene expression measurements, we use GSVA (see above) 
to calculate the top-5 most strongly changing pathways as features.

4) +     5)     (10 features) 
a) In case of dealing with large-scale serum proteomics data, we proceed as in (2) + (3);
b) In case of dealing with small-scale serum proteomics data, we proceed as follows: 

i) if the number of features measured successfully is in the order of 10, we 
refrain from any processing; 

ii) if the number of features is in the order of around 10-100, we select the 10 
features with the smallest p-values indicating differences between the mean 
values of patient and control, based on a t-test. 

For genomic features as per (2), the feature measurements for an individual patient or control will 
then be the average linkscores of the 5 selected subnetworks, contrasting each patient with average 
control data, and each control with average patient data. For genomic features as per (3), the feature 
measurements for each patient/control will be the GSVA scores of the 5 selected pathways. By 
construction, we expect the resulting features to reflect the up/downregulation of disease-related 
transcripts/proteins or pathways/subnetworks. Using the GSVA-based integrated features as input to 
the biostatistical analyses employing Cox proportional hazard models, we are in fact closely following 
the “Survival analysis in ovarian carcinoma” example as described in the GSVA publication 104. 
Regarding the expert selection from the routine blood measurements, we are aware that some of 
these features may be considered to have an almost trivial relationship to outcome prediction for the 
diseases we study; e.g. fibrinogen may correlate strongly with the size of the stroke-damaged brain 
area and may thus be considered a covariate. However, to our knowledge, none of these features are 
validated clinical biomarkers, and it is quite possible that a combination of simple biomarkers is key to 
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the best possible prediction. We selected the neutrophil-lymphocyte-ratio specifically because it is 
cheap to measure; it is, however, like many other blood-based features, easily influenced by acute 
infection.

Exploratory feature integration: Apart from the FocusHeuristics/ExprEssence linkscore, we employ 
alternatives such as keypathwayminer 106. Further, we calculate pathway activation scores for the 
following senescence-related KEGG pathways, which include PAI-1 (see the Introduction) but do not 
refer to a specific disease, as of February 2020: Cellular senescence, HIF-1 signaling pathway, p53 
signaling pathway, Apelin signaling pathway, Hippo signaling pathway, Complement and coagulation 
cascades. “Early integration” by, e.g., first averaging transcript and protein expression on a single-gene 
basis, is also planned. 

Choice of data analysis methods for biomarker discovery: We will consider two main approaches of 
data analysis, one motivated by statistical methods, the other by machine learning approaches. While 
this delineation may ultimately be meaningless, we consider that regression is the core ingredient of 
the former, while supervised learning characterizes the latter. We will apply standard methods (mostly 
in biostatistics) and explore novel approaches (mostly in machine learning; preserving signal implies a 
focus on supervised approaches in this case). Data analysis for biomarker discovery trials in a clinical 
setting is usually described with a biostatisticians’ mindset, who also developed methods to cope with 
the high dimensionality of omics data (see below). On the other hand, the challenges of omics data 
also spurred the recent publication of many methods adopting machine learning, which however did 
not yet make it into clinical trial analysis routine, but which we wish to test (see below). We will focus 
on methods readily available in SAS or as R packages. Notably, the correct choice of method depends 
in part on known unknowns such as the strength of the signal (incl. the amount of missing data) in the 
routine blood measurements and the omics. 

Prediction model quality measures: Unlike intervention trials with their highly standardized aim of 
establishing a statistically significant superiority (or non-inferiority) of one intervention compared to 
another (or to standard of care), observational biomarker trials are a more recent development with 
fewer precisely quantified criteria of success, and a stronger need to consider the effect size: even if a 
biomarker signature enables a significant improvement in predicting an outcome, raising the accuracy 
of the prediction, say, from 70% to 75% may not be clinically meaningful, depending on prevalence of 
the condition to be predicted, the cost of the biomarker measurement, etc. We thus aim to identify 
biomarkers making a maximum of difference in prediction accuracy, if we are able to compare to 
established scores (see also below). For the biostatistics part, the concordance statistics (c-index) will 
be used as an overall measure of predictive accuracy, and time-dependent ROC curves and AUC will 
be used to summarize the predictive accuracy at different cut-off points in time. For the machine 
learning part, the cross-validated accuracy and AUC/c-index, following 99, are used, and to take care of 
a potential Simpson’s paradox we will either analyse the data stratified by gender, or we will add such 
an analysis and check for consistency. More generally, to investigate the role of confounders (and, if 
necessary, to correct for these) in the machine learning part, we wish to use the permutation technique 
described 107. We expect that we can identify a set of biomarkers that affords an accuracy of 75% or 
more or an AUC of 0.75 or more in correctly predicting the primary endpoint with a precision of +/- 
12% 108. This estimate of precision is based on half the width of a 95% confidence interval (CI) for a 
probability of 75%, by extension of item 6 of the tables of Sorzano et al 108, which shows precision up 
to a sample size of N=30.
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Standard biostatistical analyses: A Cox proportional hazards regression model adjusted for age and 
gender will be used to estimate the hazard ratio (HR) and corresponding 95% CI to predict the primary 
composite endpoint separately within the PDAC cohort and IS cohort. The 5 shortlists of 5 features 
(see above) will be providing the canonical predictors, analyzed together. For selection of the most 
important features that might be related to the primary endpoint we will use a procedure proposed 
by Sauerbrei et al. 109, as follows. First, 100 bootstrap samples will be generated. Then, a multivariate 
Cox proportional hazards regression model with backward elimination with selection level of 0.05 will 
be fitted to each replication of the original data set. In a second step features with a relative selection 
frequency of 30% or less over all bootstrap samples will be eliminated. In a third step each feature Xi 
for which the hypothesis of independence in combination with a feature Xj can be rejected will be 
eliminated if Xi is less important when Xj is included in the model, or if it does not gain importance 
when Xj is excluded from the model. All remaining features will be included in the final model. 
Graphical and numerical methods will be performed to establish the validity of the proportionality 
assumption 110 in the final model. Results will be reported as p-values, HRs and corresponding 95%-CIs. 
A p-value of p ≤0.05 will be interpreted as indicating statistical significance. From the final model a risk 
score will be calculated by multiplying the individual feature measurement of a patient with the 
estimated regression coefficient of each feature. The c-index will be used as an overall measure of 
predictive accuracy of the resulting score, a time-dependent ROC curve and AUC will be used to 
summarize the predictive accuracy of the score at specific times. All secondary endpoints will be 
evaluated using the same approach as for the primary endpoint except for the sum-score used as a 
surrogate for “aging”. For this endpoint, a linear mixed effects model with random intercept and spatial 
power covariance structure will be fitted to the data to estimate the progression of “aging”. The 
covariance structure is chosen to reflect the unequal intervals of follow up investigations. Model 
assumptions and model fit will be checked by visual inspection of residuals, and influence diagnostics. 
Missing values will be taken into account by a likelihood-based approach within the framework of 
mixed linear models with the assumption that missing values occur at random. Results will be reported 
as p-value assessed at a level of significance of 5% accompanied by the value of the test statistic and 
degrees of freedom. In addition, 95% CIs for the progression (slope) will be provided. 

Additional exploratory biostatistical analyses: Again, the primary composite endpoint as well as all 
secondary endpoints will be evaluated separately within the PDAC cohort and IS cohort of the 
respective sub-trials. In a first approach, univariate Cox proportional hazard models adjusted for age 
and gender will be calculated for each omics feature (R package survival) using a cut-off of 0.05 on the 
false discovery rate. In a second approach, all omics features will be simultaneously considered in a 
multivariate Cox model, adjusted for age and gender. Towards this aim, a component-wise likelihood-
based boosting algorithm proposed by Binder and Schumacher 2008 111 (R package CoxBoost) will be 
used to develop a biomarker signature. 

Standard machine learning: For the machine learning part, the primary outcome and all secondary 
outcomes give rise to an assignment of predictor/feature lists to survival times, one such list per study 
participant, for which biomarkers are then learned in a supervised fashion. As described, in the 
standard analyses, feature integration (see above) will precede the actual calculation of the model 
(“deep” learning approaches that take in “all” features are part of the exploratory analyses, see below). 
In the same way as the standard biostatistics analyses, the same 5 shortlists of 5 features each (see 
above) will be providing the canonical predictors, analyzed together. Exploiting time-to-event 
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information, we will employ random survival forests (RSF) as described by 112 with the following 
advantages. 

1. RSF can now be considered a time-tested approach, and it was the subject of a recent 
extensive review 68 and of a systematic comparison with LASSO approaches in the case without 
feature selection (see item 7 of the tables of Pi et al 113 for its competitive performance which 
is not reflected in their abstract). 

2. RSF can also work on essentially all features, without a preceding feature integration/selection 
step, and then be compared, in the explorative machine learning analyses described below, to 
survival support vector machines (SSVM) and to a novel method Path2Surv that “conjointly” 
performs feature selection and model training, see 99. 

3. RSF was recently compared to Cox-nnet 114, a neural network approach which we consider as 
very promising for the exploratory part, see also below. 

4. RSF offers a considerable degree of interpretability, given that RSFs are derived from decision 
trees. 

5. RSF is considered “completely data driven and thus independent of model assumptions” and 
“in case of high dimensional data, limitations of univariate regression approaches such as 
overfitting, unreliable estimation of regression coefficients, inflated standard errors or 
convergence problems do not apply” 68. 

In the machine learning part, we calculate accuracy and AUC/c-index using cross-validation to make 
the best use of our limited sample size, following the setup of 99 and 113 (who, however, set aside 
separate validation datasets), and we assess the features as biomarkers by ranking them by their 
variable importance score. 

Additional exploratory machine learning: Apart from the more time-tested standard machine learning 
described above, we will also explore methods that were proposed recently, for which it is less 
straightforward to tell whether these methods are fit-for-purpose in our case, even though they are 
usually claimed to be superior by their developers based on some test/validation data sets. Specifically, 
as mentioned above, we expect to test Path2Surv and SSVM 99 as well as Cox-nnet 114 (without prior 
feature integration); the latter in particular promises a high degree of interpretability. We further 
explore CNet (employing the censored-data variant), for interpretable biomarkers. We also plan to 
employ the PASNet 115, SurvivalNet 116 and SVRc 73 packages. The longitudinal transcriptomics of the 
patients and the controls may also be analyzed integratively based on the “optimal discovery 
procedure” 117, considering, however, that landmark feature data can only be used to predict events 
after the landmark. Finally, we will map the differential omics data onto a human “healthspan pathway 
map” 118, that is, a set of clusters/pathways based on health-related genetic data that we assembled 
recently.

Explorative systems biology modelling, explorative parallelogram approach and transfer learning: 
As mentioned, systems biology modelling and parallelogram 119 120 extrapolation are supposed to 
deliver small sets of highly informative features, by contributing features that are dominating model 
behaviour or that are shown to translate from the SASKit animal model data. Given the comparatively 
small number of study participants (but in-depth measurements), we also wish to explore “transfer 
learning”, which aims to utilize large amounts of public knowledge in the form of latent variables. 
Specifically, we plan to use, and wish to develop further, the Multiplier 121 approach motivated by the 
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analysis of rare-disease data. Multiplier utilizes the RNASeq-based recount2 compendium, and apart 
from the functional network and pathway data that we use in the feature selection part, this 
compendium is expected to be a main source of biological knowledge that enters the calculations for 
biomarker discovery.

Miscellaneous exploratory approaches and discovery of diagnostic biomarkers: We will also use 
unsupervised machine learning to generate descriptive multi-omics correlation networks, as they were 
most recently employed by 122, there supplemented by linear mixed effects models using (un-
)restricted maximum likelihood approaches; in this very recent biomarker discovery trial of similar 
design as ours, but with many more longitudinal omics measurement time-points than ours, we could 
not identify other biomarker discovery methods being used. If genetic data become available, we will 
include these in some analyses; specifically, we will investigate the added value of expression 
quantitative trait loci (eQTL) analyses. PDAC and IS data will be analyzed together in some integrative 
exploratory analyses. In that case, the occurrence of specific endpoints will be evaluated according to 
the group membership (PDAC or IS). This means that in addition to the biomarker signature, a group 
variable, indicating PDAC or IS patients, will be included in the analysis, to assess the difference in the 
progression of the respective endpoints between PDAC and IS patients. We also wish to compare PDAC 
and IS patient data to data of healthy controls (adjusted for age and gender) by means of logistic 
regression models with the aim of identifying candidate biomarkers for the diagnosis of the respective 
disease; we then specifically investigate the association of these diagnostic biomarker candidates with 
cellular senescence and other aging-related processes (see also the next paragraph).

Further analyses, and comparison with existing biomarkers and biomarker signatures: Towards the 
end, we will investigate the overlap for the various biomarker identification approaches we employed, 
assuming that the most frequently found biomarkers may be the most robust and valid ones. 
Moreover, we will compare with existing biomarkers and signatures. Regarding the prediction of 
vascular events, we will specifically calculate the Khorana and related scores 17 for comparison, and 
report the difference in performance. Further, for all biomarkers we find, we will check their 
association with cellular senescence, by manual inspection, literature investigation, comparison to 
CellAge 123 and the SASP Atlas 52 or by formal enrichment analyses if the number of biomarkers is 
sufficiently large to do this in a meaningful way. Also, in a final step, we plan to identify and filter out 
the biomarkers that are volatile in the controls. In addition, a comparison of the biomarker profiles 
before and after the co-morbid event is aimed for. Finally, for publicly available data of other trials 
with a sufficient overlap with our predictors, we will use these as validation datasets.
  
Discussion

Limitations 

Arguably, the most serious limitation of the SASKit study is the low number of participants. We 
mentioned above that in the 4-year-time-frame of the entire study, at the Rostock University Medical 
Center we cannot expect to recruit many more than the 50 PDAC patients to be included in this study; 
we could recruit more stroke patients and more controls, but given the call for proposals that allowed 
this exploratory (not confirmatory) study to be applied for and funded, we considered that within a 
limited budget, in-depth omics characterization, animal models (to be detailed in a follow up 
publication) and a comprehensive data analysis plan including systems biology modelling were 
important aspects of our study that we did not want to exclude. 
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The two most obvious risks to the main goal of finding good biomarkers for the primary outcome based 
on the standard data analysis are the following. First, we found it hard to estimate the distribution of 
events as defined by the primary outcome; we cannot exclude that too many events take place already 
at the start of the study, or until the first follow-up, specifically in the PDAC subtrial, limiting the 
amount of information available to the subsequent time-to-event analyses. Then again, had we 
defined the primary outcome more conservatively, there would have been a chance that not enough 
events happen before the end of the study. Second, we could not identify role-model publications 
reporting results of biomarker explorations that made use of machine learning methods, except for, 
to some extent, Schussler-Fiorenza et al 122, so that we enter unknown territory to some degree. The 
two most obvious risks to our goal of investigating the role of cellular senescence in the (co-)morbidity 
of PDAC and IS could be an insufficient prevalence of co-morbid events, and the complex role of 
treatment in case of PDAC, where additional cellular senescence is most likely triggered by therapeutic 
intervention 124. Then again, all molecular high-throughput analyses are essentially explorative and we 
are open to discovering biomarkers of disease that do not relate to any of our pre-specified 
hypotheses.

Implications 

We designed the SASKit study to synergistically deliver upon multiple aims that we consider to be of 
relevance for specific disease prognosis and treatment as well as for primary, secondary and tertiary 
prevention. Employing clinical performance measurements and patient-reported outcomes, we aim 
for clinical relevance and we suggest that prognostic biomarker signatures for general health and QoL 
are perhaps more important than (progression-free) survival, although there is much more data about 
the latter. Moreover, good disease treatment options are still lacking for PDAC as well as for stroke, 
and the more we find cellular senescence implicated in disease deterioration, at least in a subgroup of 
patients with a specific biomarker signature, the more confidently we can suggest, and further explore, 
seno-therapeutic interventions for these two diseases. 

Notably, we are in the process of starting a parallel human study testing, in healthy elderly people, 
interventions into cellular senescence, based on food rich in seno-interventional compounds, and we 
expect that many aspects of the study design presented herein will be adopted in that parallel study. 
That study will also investigate aging- and senescence-related outcomes, and as such it can be seen as 
a test of a cautious yet potentially very effective approach to primary prevention; if the diagnostic 
biomarkers we find in the SASKit study relate to cellular senescence, this observation would constitute 
further evidence for (cautious) seno-interventions, moving towards a kind of universal approach of 
disease prevention by tackling fundamental aging-related processes (see Boxes 1 and 2). 

Secondary prevention, aiming to reduce the impact of a disease that has already occurred, can 
ultimately be supported by the SASKit study, if we can demonstrate, and (in follow up studies) confirm, 
a distinctive role of cellular senescence (and/or other aging-related processes such as 
inflammation/inflammaging 125) in disease deterioration as defined here. Finally, evidence for tertiary 
prevention by seno-therapeutic intervention, aiming to attenuate the impact of an ongoing disease, is 
also an option based on how accurate, relevant and specific our biomarkers will be. 

Last but not least, we expect that the in-depth molecular analyses that we wish to conduct will provide 
mechanistic insights into the etiology of the diseases we study here, which we just see as models for 
the investigation of the fundamental role of aging in general, and of cellular senescence in particular, 
in disease and dysfunction. 

Ethics and dissemination
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The study protocol has been approved by the ethics committee of the UMR (Ethikkommission an der 
Medizinischen Fakultät der Universität Rostock, A2019-0174). Results shall be published after 
completion of the study, following standard guidelines.

Abbreviations: 

ALT Alanine Aminotransferase
AP Alkaline Phosphatase
AST Aspartate Aminotransferase
AUC Area Under the Curve
BMI Body Mass Index
CA19-9 Carbohydrate Antigen
CEA Carcinoembryonic antigen
CI Confidence interval
COVID-19 Coronavirus disease 2019
CRP C-reactive protein
CSHA-CFS Canadian Study on Health & Aging Clinical Frailty Scale
ECOG Eastern Cooperative Oncology Group
EQ-5D-5L EuroQoL 5-Dimension 5-Level
EQ-VAS EuroQol Visual Analogue Scale
FACIT-Pal Functional Assessment of Chronic Illness Therapy-Palliative
HADS-D Hospital Anxiety and Depression Scale - German Version
HR Hazard ratio
INR International normalized ratio
IS Ischemic Stroke
LDH Lactate dehydrogenase
MOCA Montreal Cognitive Assessment
mRS Modified Rankin Scale
NIHSS NIH-Stroke Scale
NYHA New York Heart Association
PASE Physical activity scale of the elderly
PDAC Pancreatic Ductal Adenocarcinoma
PS Performance status
QoL Quality of Life
ROC Receiver-Operator Characteristic
RSF Random survival forests
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SASKit Senescence-Associated Systems diagnostics Kit for cancer and stroke
SASP Senescence Associated Secretory Phenotype
WHODAS WHO Disability Assessment Schedule
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Figure Legends

Figure 1: Study design of the SASKit study. Predictor and outcome measurements along the time axis 
are described.

Figure 2: Data analysis plan of the SASKit study. Input, methods and output of the standard (but not 
the explorative) analyses based on biostatistics and machine learning are described in detail.
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Study design of the SASKit study (human cohort; mouse studies designed to mirror the human study in part 
will be presented elsewhere). Predictor and outcome measurements along the time axis are described. 
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Data analysis plan of the SASKit study (human cohort). Input, methods and output of the standard (but not 
the explorative) analyses based on biostatistics and machine learning are described in detail. 
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