

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Incidence and risk factors for healthcare-associated infection among pediatric patients in a teaching hospital: a prospective study in southeast Ethiopia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037997
Article Type:	Original research
Date Submitted by the Author:	25-Feb-2020
Complete List of Authors:	Sahiledengle, Biniyam; Madda Walabu University, Public Health Seyoum, Fekadu; Madda Walabu University, Department of Pediatrics Abebe, Daniel; Madda Walabu University, Department of Pediatrics Geleta, Eshetu; Madda Walabu University, Department of Medical Laboratory Science; Hawassa University College of Medicine and Health Sciences, Hawassa University Comprehensive specialized Hospital Negash, Getahun; Madda Walabu University, Department of Medical Laboratory Science Kalu, Abdurhaman; Madda Walabu University, Public Health Woldeyohannes, Demelash; Madda Walabu University, Public Health Tekalegn, Yohannes; Madda Walabu University, Public Health Zenbaba, Demisu; Madda Walabu University, Public Health Edward Quisido, Bruce John ; Madda Walabu University, Department of Nursing
Keywords:	Paediatric infectious disease & immunisation < PAEDIATRICS, PAEDIATRICS, NEONATOLOGY, PUBLIC HEALTH
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
27
25
20
27
28
29
30
31
32
22
24
34
35
36
37
38
39
40
41
/∩
42
45
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
50
コゴ

1 2

4

5

6

Incidence and risk factors for healthcare-associated infection 1 among pediatric patients in a teaching hospital: a 2 prospective study in southeast Ethiopia 3

Biniyam Sahiledengle^{1*}, Fekadu Seyoum², Daniel Abebe², Eshetu Nigussie³, Getahun Negash³, Abdurhaman Kalu¹, Demelash Woldeyohannes¹, Yohannes Tekalegn¹, Demisu Zenbaba¹, Bruce

Iohn	Edward	Quisido
John	Euwaru	Quisido

¹Madda Walabu University Goba Referral hospital, School of Health Science, Department of 7 Public Health, Bale-Goba, Ethiopia 8

²Madda Walabu University Goba Referral hospital, School of Medicine, Department of 9 Pediatrics, Bale-Goba, Ethiopia 10

³Madda Walabu University Goba Referral hospital, School of Medicine, Department of Medical 11 Laboratory Science, Bale-Goba, Ethiopia 12

⁴Madda Walabu University Goba Referral hospital, School of Medicine, Department of Nursing, 13

Bale-Goba, Ethiopia 14

*Corresponding author 15

- Email: biniyam.sahiledengle@gmail.com 16
- 17 ORCID iD: https://orcid.org/0000-0002-1114-4849

19 Abstract

Objectives: Healthcare-associated infections are harmful and costly and can result in
 substantial morbidity and mortality for hospitalized children. In Ethiopia, data about the
 occurrence of healthcare-associated infections among hospitalized pediatric patients are lacking.
 Therefore, the study aims to determine the incidence and risk factors of healthcare-associated
 infections among admitted pediatric in Ethiopia.

16 25 **Design**: A prospective study

18 26 **Setting:** A teaching hospital in southeast Ethiopia

Participants: 448 hospitalized pediatric patients admitted between November 1, 2018 and
 June 30, 2019.

23
 29 Primary and secondary outcome measures: Incidence and risk factors of healthcare 30 associated infections.

Results: A total of 448 pediatric patients were followed for 3,227 patient days. The median age of the patients was 8 months (interquartile range (IQR): 2-26 months). The incidence rate of healthcare-associated infection was 17.7 per 1000 pediatrics days of follow up while the overall cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. Children who stayed greater than 6 days (median day) [adjusted RR: 2.58, 95%CI (1.52-4.38), p-value< 0.001] and children with underlying disease conditions of severe acute malnutrition [adjusted RR: 2.83, 95% CI (1.61-4.97), p-value< 0.001] had higher risk of developing hospital-acquired infection.

38 Conclusions: The present study has revealed that healthcare-associated infections affected 13 39 in 100 admitted pediatric patients – which is a significant burden in the morbidity rate among 40 pediatric patients. Length of stay in the hospital and the presence of underlying diseases increase 41 the risk of developing a healthcare-associated infection. Avoiding unnecessary length of stay 42 could save lives and minimize the occurrence of healthcare-acquired infections.

Keywords: Nosocomial infection, Healthcare-acquired infection, Pediatric patients, Ethiopia

Strengths and limitations of this study

- To the best of our knowledge, this is the first prospective study to examine the incidence • and risk factors of healthcare-associated infection among pediatric patients in Ethiopia
- Pediatric and neonates inpatients were recruited and followed-up •
- The full burden of healthcare-associated infections could not be captured in this specific • study as our study, was limited to in-hospital assessment only and leaving outpatients who may potentially develop an infection after discharge.

eass. patients were utcare-associated 1. us limited to in-hospite. Ut develop an infection after dis

54 Introduction

There is a "perfect storm" on healthcare-associated infections (HAIs) among hospitalized patients at any point in time throughout the globe. HAI is defined as an infection occurring in a patient during the process of care in a hospital or other healthcare facility that is not manifested or incubating at the time of admission¹. Currently, it is a growing public health problem that concerns both the medical and the general community, and a rising issue for patient safety and quality of care at every level²⁻⁸. About 80% of the patients with HAIs are died, directly or indirectly connected to HAIs⁹. Available evidence also showed that financial burden, increased resistance of microorganisms to antimicrobials, prolonged hospital stay, and sometimes deaths are caused by HAIs ^{10, 11, 12}.

Worldwide, it is estimated that hundreds of millions of patients every year, in both developed and developing countries, are affected by HAIs⁷. In some Australian public hospitals, HAIs affect one in every 74 hospitalizations¹³. In Europe, the total annual number of patients with HAI in 2011–2012 was estimated at 3.2 million. The prevalence of patients with at least one HAI in acute care hospitals was 6.0% (country range 2.3%-10.8%)¹⁴. Moreover, throughout Europe, HAIs accounted for 16 million additional days with total costs estimated at approximately €7 billion^{14,15,16}. In the United States, approximately two million patients developed HAIs, and nearly a hundred thousand of these patients were estimated to die annually. This ranked HAI as the fifth leading cause of death in acute care hospitals and the risk of acquiring infection is 2 -20 times higher in some developing countries^{17,18}.

In some developing countries, the magnitude of HAIs remains underestimated and uncertain¹². There is little information available on the epidemiology of HAI in African countries as well ^{19,20}. Although data are sparse, evidence suggested that HAIs are considerably adding to the available high burden of infections in some sub-Saharan African countries²¹. A systematic review by Nejad et al reported the hospital-wide HAI prevalence in Africa varied between 2.5% and 14.8%. This review has shown that published studies were only conducted in 10 African countries – highlighted there were paucities of information available among the epidemiology of HAI in many African countries¹⁹. In addition to this, a recent review by Irek et al (2018) indicated that there was a scarcity of studies on HAIs in Africa - of the 35 eligible articles

BMJ Open

retrieved, more than half (n = 21, 60%) were from East Africa only 20 . In lieu of the paucity of data, most of the HAI literature just focused on adults, and data on HAIs among the pediatric population in sub-Saharan Africa are hardly available 15,19,22 . For example, a systematic review conducted by the World Health Organization (WHO) in the year 2010, identified no reports on pediatric nosocomial bacteremia in African countries between 1995 and 2008 15 .

In Ethiopia, HAIs can result in substantial morbidity for hospitalized children; however, little is known about the incidence and prevalence of HAIs in the neonatal and pediatric populations. Also, previously conducted studies by far focused only on adults, and many of these were limited to surgical site infections ²³⁻²⁸, with an estimated prevalence of 10.9% ²⁴ to 66.5% ²⁷. And the overall incidence rate of 35.8 per 100 patients²⁶. Furthermore, the urinary tract and bloodstream infections were found to be the commonest forms of HAIs in Ethiopia ²⁹⁻³³.

To the best of our knowledge, there is no single currently available published report on the
incidence and risk factors of HAIs among pediatric patients in Ethiopia. Therefore, this study
was designed to determine the incidence and risk factors of HAIs among pediatric patients in
Goba Referral Hospital, Southeast Ethiopia.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

99 Methods

100 Study design and setting

A hospital-based prospective follow up study was conducted from November 1, 2018, to June 30, 2019, at Madda Walabu University Goba Referral Hospital, Southeast Ethiopia. Goba Referral Hospital is the only referral and teaching hospital in the Bale zone, serving over 1,787,575 million people. Goba Referral Hospital is located 445 km far from the capital city (Addis Ababa) of Ethiopia. According to the 2018 annual report of Goba Referral Hospital, the average outpatient flow is over 96,661 and the annual admission is over 7,886 patients, of which 1,335 were admitted in the pediatrics ward and NICU. The hospital has a total of 127 inpatients beds – of which 30 and 15 were in pediatrics and NICU, respectively.

109 Study population and eligibility criteria

All patients (age less than 18 years) admitted to the pediatric ward and neonatal intensive care
unit (NICU) were enrolled and those who at least stayed for 48 hours were eligible for the study.
Pediatric showed signs of infection and/or asymptomatic within the first 48 hours were excluded
from the study.

114 Data collection procedures

Data were collected using a structured questionnaire and checklist after written consent from the parents/guardians was sought. Data were collected during the entire hospital stay of pediatric patients. Accordingly, socio-demographic and clinical data were collected. Following this, a detailed history from each patient was collected from available reports and the medical record folders. Data were collected by trained general physicians and one pediatrician. The Center for Diseases Control and Prevention (CDC)/ National Health Care Safety Network (CDC/NHSN) Surveillance Definition for hospital-acquired infections were used³⁴. First, all patients were followed for the first 48 hours and pediatrics who have developed any form of infection within 48 hours of admission were excluded from the study. All the rest of the pediatric patients were followed until discharge for the occurrence of HAIs. HAIs were confirmed by senior physician specialists working in the respective NICU and pediatrics ward. In this study, the use of any

antimicrobials was recorded and information on different medical devices collected at the time of
hospital admission and before the diagnosis of HAIs, respectively (S1 File).

128 Study variables

The outcome variable of the study was the occurrence of healthcare-associated infections (HAIs). Presence of HAIs were confirmed when the patients met the criteria for signs and symptoms determined by the Center for Disease Control and Prevention³⁴, wherein, the independent variables included: socio-demographic characteristics (age of the child, sex, place of residence, and previous hospitalization), and clinical and other related variables (duration of hospitalization, insertion of a urinary catheter, received anti-microbial, American Society of Anesthesiology (ASA) classification, presence of central vascular catheter, presence of peripheral vascular catheter, presence of peripheral intravenous line, intubation, surgery after admission, underline disease, mechanical ventilator, and HIV status).

Data processing and analysis

Data were entered into Epi-data version 3.1 and exported to STATA version 14 statistical software for further analysis. Descriptive statistics were computed to present the frequency distribution of important variables. The incidence rate of HAIs was reported per 1000 patient days. And cumulative incidence (incidence proportion) was calculated; it is the probability of developing HAIs over a stated period. A Generalized Linear Model (GLM) was used to identify the risk factors. An adjusted risk ratio (ARR) with a 95% confidence interval (CI) was used to determine the strength of association. A p-value < 0.05 was used to declare statistical significance. Multicollinearity diagnosis was performed between categorical variables by looking at values of variance inflation factor (VIF). The final model fitness was assessed by using the Hosmer-Lemeshow goodness of fit test.

Operational definition

Healthcare-Associated Infection (HAI) - localized or systemic condition that results from an
adverse reaction to the presence of an infectious agent or its toxin and occurring 48 hours or
longer after hospital admission that was not incubating at the time of admission.

1 2		
3	153	Severe Anemia - haemoglobin <50 g/L (for patients older than 28 days) or haemoglobin <90 g/L
4 5	154	(for neonates)
6 7	155	
8 9	156	Late-Onset Neonatal Sepsis - sepsis reported after 72 hrs. of admission.
10 11	157	
12	158	Patient and public involvement
13 14	159	This research was done without patient involvement. Patients were not invited to comment on
15 16	160	the study design and were not consulted to develop patient relevant outcomes or interpret the
17 18	161	results. Patients were not invited to contribute to the writing or editing of this document for
19 20	162	readability or accuracy.
21	100	
22	164	
24 25	104	
26 27		
28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40		
41		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54		
55 56		
57 58		8
59		For peer review only - http://bmiopen.bmi.com/site/about/auidelines.xhtml
00		

Results

167 Socio-demographic characteristics of the study participants

A total of 487 pediatrics were enrolled in this study. However, 39 pediatric patients showed signs of infection and/or asymptomatic within the first 48 hours and were excluded from the study. The rest 448 pediatric patients were followed for the occurrence of HAIs until hospital discharge, referred to other healthcare facilities or death. Of the total patients included in the study, 201 (44.9%) were from the neonatal intensive care unit (NICU) and the remaining were from the pediatric ward. Two hundred fourthly eight (55.4%) of the study participants were male with an overall male-to-female ratio of 1.24: 1. The median age of the participants was 8 months (interguartile range (IOR): 2-26 months). Three hundred and ninety (71.2%) of the study participants were from rural areas. The median hospital stay of the patients was 6 days (IQR: 3-9 days) (Table 1).

²⁷₂₈ 178 Clinical characteristics of patients

In this study, 46 (10.3%) of the participants had a history of the previous hospitalization within
the last 30 days. An underlying disease condition, which is severe acute malnutrition (SAM) was
reported by 54 (12.1%) participants. Severe anemia was reported by 41 (9.2%) respondents.
Overall, one hundred and seventy-one (38.2%) patients received antimicrobial at the time of the
study (Table 1).

³⁸ 184 Incidence and type of healthcare-associated infection

During the study period, 448 pediatric patients were followed for a total of 3,227 patient days. A total of 57 patients experienced HAI. The mean onset of HAIs in Goba referral hospital is 7.20 (95% CI: 6.72, 7.66) patient days. The overall incidence rate of HAIs was 17.7 per 1000 pediatrics days of follow up while the cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. The mean length of stay for the infected pediatric patients was 11.5 days (95% CI: 9.5-13.4), while it was lower for the remaining patients at 6.5 days.

Table 2 illustrates the proportion of HAIs among pediatrics in Goba referral hospital. Hospitalacquired pneumonia was the most common type of HAI that was observed among pediatrics with
a proportion of 56.1% (95%CI: 43.9-68.4), followed by late-onset neonatal sepsis 10.5%
(95%CI: 3.5-19.3), and the least HAI observed was early onset of neonatal sepsis and surgical

BMJ Open

site infections with an overall proportion of 1.8% each. In this study, the stratification of type of
HAIs by ward of admission revealed significant variability (p-value= 0.007) (S3 File).

Risk factors of hospital-acquired infections

Table 3 showed the risk factors of HAIs among paediatric patients in Goba Referral Hospital.
HAIs were statistically associated with children's hospital duration, receiving antimicrobial
medications, presence of drainage tube, and presence of underlying diseases (SAM) in the
bivariate analysis.

In the adjusted model, the risk of HAIs was 2.58 times more likely to be higher among children
who stayed longer than or equal to 6 days (median day) than to those children who stayed less
[adjusted RR: 2.58, 95%CI (1.72-4.38)]. Patients with underlying disease conditions had 2.83
times higher risk of developing HAIs compared to their counterparts [adjusted RR: 2.83, 95% CI
(1.61-4.97)]. Socio-demographic and some clinically related confounders could not show any
statistically significant associations (Table 4).

Discussion

Healthcare-associated infections (HAIs) are a current global challenge with increased morbidity, mortality and massive economic cost ³⁵⁻³⁹. Yet, there remain limited data on the occurrences of HAIs in hospitalized pediatric in Sub-Saharan African, including Ethiopia. This study was designed to determine the incidence and risk factors of HAIs among pediatric patients in a teaching hospital, southeast Ethiopia. The overall incidence rate of HAIs was 17.75 per 1000 pediatrics days of follow up while the cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. Children who stayed longer than the median day (6 days) in the hospital and children with underlying disease conditions had higher risk of developing HAIs.

In this study, the risk of pediatrics HAIs was almost 18 per 1000 admissions. This finding is lower than a related study by Ali et al (2018) from Southwest Ethiopia, which reports the incidence of HAIs was 28.15 per 1000 patient days ³⁹. The difference might be associated with the nature of this study which involved only pediatrics patients including those in intensive care; however, a study by Ali et al includes adult study participants. Also, variation in studies could be attributed to differences in geographical locations and the setting of studies (specialized hospital). Our finding has also revealed that the overall cumulative incidence of HAIs was 12.7%; a finding which is comparable to those reported from the United States $(11.9\%)^{36}$, 11.2%in Germany ³⁷, and (13.3%) in Poland ³⁸. Also, the present 12.7% of HAIs noted in our study population fell in the ranges of 9.8-15.8% reported elsewhere 14, 40, 41 and the WHO pooled estimated for low-income countries 10.1%¹⁸. Conversely, other similar studies from Turkey reported a much higher prevalence of HAIs ranging between 22.2 and 68.4% ^{42,43}, and in a multicenter prospective study from Europe reported 18.5% 44.

The present study also demonstrated that, the occurrence of HAIs was higher among male participants (52.6%) than females. This result was also supported by other studies conducted elsewhere 40, 45-47. In the same vein, a study carried out by Luksamijarulkul et al in Thailand found that an infection rate of males was almost double that of the females (24.6% and 12.9%), respectively 48.

The most common type of HAI observed in this study was hospital-acquired pneumonia (HAP),
which contributed to a proportion of 56.1% of the total HAIs. It may not be a surprise to see such

Page 13 of 32

BMJ Open

a high proportion of HAI in the NICU and pediatrics ward since most of the patients admitted in intensive care are incapacitated and critical. Moreover, compared to adults, infants and neonates are immunologically immature, and in many cases, vulnerable ^{49,50}. The finding was similar to the study done in Tikur Anbessa Hospital, Ethiopia ³³. It is also true for other settings-in Iran 43.7% ⁵¹, India 50% ⁵², Vietnam 41.9% ⁵³, Morocco 34.5% ⁵⁴, Saudi Arabia 46.7% ⁵⁵, 52.2% China ⁵⁶, and in a European multicenter prospective study 53% ⁴⁴. The high burden of HAP among hospitalized pediatrics has an important implication in terms of hospital length of stay, healthcare cost, and mortality. The overall mortality attributed to HAP has been as high as 30 to 50% 57.

In this study, the risks of developing HAIs were three times higher among children who stayed longer than or equal to the median six days than their counterparts. This was correlated with the findings of Sarvikivi et al in Finland, who disclosed the overall hospitalization of >7 days and were found to be associated with an increased prevalence of HAI by 8% ⁵⁸. It is also consistent with several findings conducted in Ethiopia ²⁴ and studies conducted elsewhere ^{59, 60}. In our findings, the presence of underlying diseases such as SAM was recognized as the main risk factor for HAIs. This was consistent with the finding from another study in Ethiopia ²⁴ underlying illnesses increased the susceptibility of patients, which predisposed them to infections secondary to the reduction of the patient's immune response that exacerbated the illnesses thru which in many cases had a significant factor that contributed more to the acquisition of HAIs in neonates and pediatric patients 41, 61, 62.

Limitations of the study

Several limitations on this prospective study need to be considered. First, we did not assess the healthcare workers' infection prevention practices that would have been associated with the prevalence of HAIs. Second, the researchers did not examine the number of HAIs after the patients were discharged. Third, despite we followed patient until discharge the full burden of HAI could not be captured in this specific study as our study, was limited to in-hospital assessment only and leaving outpatients who may potentially develop HAI after discharge. Since the study was conducted in teaching referral hospital, generalization of the study findings is limited to these facilities.

Conclusions

The present study revealed that HAIs had affected 13 in 100 admitted pediatric patients, which is a major concern and burden in the morbidity rate of the community. And the overall incidence rate of HAIs was 17.75 per 1000 pediatrics days. Prolonged hospital length of stay and the presence of underlying diseases were predictors for HAIs. Avoiding unnecessary length of stay could save lives and minimize the occurrence of healthcare-acquired infections.

275 Acknowledgments

We would like to thank all study participants involved in the undertaking of the study and Madda
Walabu University for financial support. Also, we would like to thank all data collectors, Goba
referral hospital staff, pediatric ward and NICU coordinators for their cooperation and support.

Contributors

BS has made substantial contributions to conception and design, acquisition of data, analysis and interpretation of data. He has written the draft manuscript and provided final approval of the version to be published. FS, DA, EN, GN, AK, DW, YT, DZ, and BJ has made substantial contributions to design, acquisition of data and analysis, interpretation of data and revised the article critically for important intellectual content and provided final approval of the version to be published. All authors read and approved the final manuscript.

286 Funding

The data collection was supported by Madda Walabu University Research Community
Engagement and Technology Transfer Directorate. The funders had no role in study design, data
collection, and analysis, decision to publish, or preparation of the manuscript.

Competing interests

291 The authors declare that they have no competing interests.

292 Ethics approval

Ethical clearance was obtained from the Ethical Review Committee of Madda Walabu
University (Ref.No: RMW 14/66/64) and a formal letter from Madda Walabu University
Research Community Engagement and Technology Transfer Vice President Office was

submitted. Written consent from the parents/ legal guardians was obtained after explaining the objectives of the study. Identified pediatric patients having hospital-acquired infections were formally communicated to the physicians and nurses who were in charge of the patients for additional health care services. Throughout the data collection period, confidentiality and privacy of the patients were observed, and a unique identification code rather than their names were substituted.

302 Data sharing statement

303 Data will be available upon request from the corresponding authors.

305 **References**

1 2 3

4 5 6

7 8

9

57 58

59

- Prevention of hospital-acquired infections: a practical guide. Geneva: World Health
 Organization; 2002.
- 10 308 2. Emerson CB, Eyzaguirre LM, Albrecht JS, Comer AC, Harris AD, and Furuno JP.
 12 309 Healthcare-Associated Infection and Hospital Readmission. Infection control and hospital
 13 and an epidemiology: the official journal of the Society of Hospital Epidemiologists of America.
 15 311 2012;33(6):539-44
- 312 3. Bates DW, Larizgoitia I, Prasopa-Plaizier N, Jha AK. Global priorities for patient safety
 research. BMJ 2009; 338: b1775.
- 314
 314
 WHO. WHO Guidelines on Hand Hygiene in Health Care: a Summary. World Health
 315
 Organization (WHO). 2009. Geneva, Switzerland,
- 316 5. Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the Hospital Infection Surveillance System).
 318 Dtsch Ärztebl Int. 2011; 108(6):87–93.
- 319
 319
 310
 320
 310
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
 320
- 32
 321 7. Allegranzi B, Storr J, Dziekan G, Leotsakos A, Donaldson L & Pittet D. The First Global
 34
 322 Patient Safety Challenge "Clean Care is Safer Care": from launch to current progress and
 36
 323 achievements. Journal of Hospital Infection. 2007; 65(s2):115–123.
- Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Memish ZA, Al-Mousa HH, Balkhy H, Hu B, Alvarez-Moreno C, Medeiros EA, Apisarnthanarak A. International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012.
 Device-associated module. American journal of infection control. 2014 Sep 1;42(9):942-56.
- 328
 44
 45
 46
 47
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
 329
- 48 330 10. Pittet D, Donaldson L. Clean Care is Safer Care: a worldwide priority. Lancet 2005; 366:
 331 1246-7
- 332 11. Uwaezuoke S, Obu H. Nosocomial infections in neonatal intensive care facilities:
 333 cost-effective control strategies in resource-limited countries. Nigeria Journal of
 334 Pediatrics. 2013; 40(2): 125-132.
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

1 2		
3	335	12. Allegranzi B, Pittet D. Preventing infections acquired during healthcare delivery. Lancet
4 5	336	2008; 372: 1719-20
6 7	337	13. Independent Hospital Pricing Authority (AU). Activity Based Funding Admitted Patient Care
8 9	338	2015-16, acute admitted episodes, excluding same day.
10	339	14. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of
12	340	healthcare associated infections and antimicrobial use in European acute care hospitals.
13 14	341	Stockholm: ECDC. 2013.
15 16	342	15. Allegranzi B, Bagheri S, Combescure C, Graafmans W, Attar H, Donaldson L et al. Burden
17	343	of Endemic Health Care-Associated Infection in developing countries: Sysetamtic review and
18 19	344	meta-analysis. Lancet. 2011; 377: 288-241.
20 21	345	16. Shelley S, Walter H, Robyn K, Christine B, Bonnie B, et al. Prevalence of
22 23	346	HealthcareAssociated Infections in Acute Care Hospitals in Jacksonville, Florida. Infection
24	347	control and hospital epidemiology.2012; 33(3):283-91
25 26	348	17. Nelson S, Stone PW, Jordan S, Pogorzelska M, Halpin H, Vanneman M, Larson E. Patient
27 28	349	safety climate: Variation in perceptions by infection preventionists and quality directors.
29 30	350	Interdisciplinary perspectives on infectious diseases. 2011;2011.
31	351	18. World health organization (WHO). Infection prevention and control in health care: time for
32 33	352	collaborative action. Regional Committee for the Eastern Mediterranean. EM/RC57/6. WHO.
34 35	353	2010.
36 37	354	19. Nejad SB, Allegranzi B, Syed SB, Ellis B, Pittet D. Health-care-associated infection in
38	355	Africa: a systematic review. Bulletin of the World Health Organization. 2011;89:757-65.
39 40	356	20. Irek EO, Amupitan AA, Obadare TO, Aboderin AO. A systematic review of healthcare-
41 42	357	associated infections in Africa: An antimicrobial resistance perspective. African journal of
43	358	laboratory medicine. 2018;7(2):1-9.
45	359	21. Rothe C, Schlaich C, Thompson S. Healthcare-associated infections in sub-Saharan Africa. J
46 47	360	Hosp Infect. 2013;85(4):257–67
48 49	361	22. Zaidi AK, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA. Hospital-acquired
50 51	362	neonatal infections in developing countries. Lancet 2005; 365: 1175-88
52	363	23. Habte-Gabr E, Gedebou M, Kronvall G. Hospital-acquired infections among surgical patients
53 54	364	in Tikur Anbessa hospital, Addis Ababa, Ethiopia. American journal of infection control.
55 56	365	1988 Feb 1;16(1):7-13.
57 58		16
		10

BMJ Open

3 ⊿	366	24. Mulu W, Kibru G, Beyene G, Damtie M. Postoperative nosocomial infections and
5	367	antimicrobial resistance pattern of bacteria isolates among patients admitted at Felege Hiwot
6 7	368	Referral Hospital, Bahirdar, Ethiopia. Ethiopian journal of health sciences. 2012;22(1):7-18.
8 9	369	25. Gedebou M, Habte-Gabr E, Kronvall G, Yoseph S. Hospital-acquired infections among
10	370	obstetric and gynaecological patients at Tikur Anbessa hospital, Addis Ababa. J Hosp Infect.
12	371	1988;11(1):50–9.
13 14	372	26. Endalafer N, Gebre-Selassie S, Kotiso B. Nosocomial bacterial infections in a tertiary
15 16	373	hospital in Ethiopia. J Infect Prev. 2011;12(1):38–43.
17	374	27. Feleke T, Eshetie S, Dagnew M, Endris M, Abebe W, Tiruneh M, Moges F. Multidrug-
18 19	375	resistant bacterial isolates from patients suspected of nosocomial infections at the University
20 21	376	of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC research notes.
22 23	377	2018 Dec;11(1):602.
24	378	28. Amenu D, Belachew T, Araya F. Surgical site infection rate and risk factors among obstetric
25 26	379	cases of Jimma University Specialized Hospital, Southwest Ethiopia. Ethiopian journal of
27 28	380	health sciences. 2011;21(2):91-100.
29 30	381	29. Melaku S, Gebre-Selassie S, Damtie M, Alamrew K. Hospital acquired infections among
31	382	surgical, gynaecology and obstetrics patients in Felege-Hiwot referral hospital, Bahir Dar,
32 33	383	northwest Ethiopia. Ethiopian medical journal. 2012 Apr;50(2):135-44
34 35	384	30. Messele G, Woldemedhin Y, Demissie M, Mamo K, Geyid A. Common causes of
36 37	385	nosocomial infections and their susceptibility patterns in two hospitals in Addis Ababa.
38	386	Ethiop J Health Biomed Sci 2009; 2: 3-8.
39 40	387	31. Melaku S, Kibret M, Abera B, Gebre-Sellassie S. Antibiogram of nosocomial urinary tract
41 42	388	infections in Felege Hiwot referral hospital, Ethiopia. African health sciences.
43	389	2012;12(2):134-9.
44	390	32. Walelegn W, Abera K, & Feleke M (2016). Point prevalence of hospital-acquired infections
46 47	391	in two teaching hospitals of amhara region in Ethiopia. Drug, Healthcare and Patient
48 49	392	Safety.8:71-76.
50	393	33. Mikyas D, Sileshi L. The Prevalence of Nosocomial Infections and Associated Risk Factors
51 52	394	in Pediatric Patients in Tikur Anbessa Hospital. Ethiopian Journal of Pediatrics and Child
53 54	395	Health. 2008; 5(5):4-16.
55 56		
57		
58 59		17
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4

BMJ Open

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59

60

396 34. CDC/NHSN. CDC/NHSN surveillance definition of health care-associated infection and
 397 criteria for specific types of infections in the acute care setting. Am Journal Infect Control.
 398 2008; 36:309-32.

- 399 35. Joram N, de Saint Blanquat L, Stamm D, Launay E, Gras-Le Guen C. Healthcare-associated
 400 infection prevention in pediatric intensive care units: a review. European journal of clinical
 401 microbiology & infectious diseases. 2012 Oct 1;31(10):2481-90.
- 402 36. Grohskopf LA, Sinkowitz-Cochran RL, Garrett DO, Sohn AH, Levine GL, Siegel JD, Stover
 403 BH, Jarvis WR, Networka PP. A national point-prevalence survey of pediatric intensive care
 404 unit-acquired infections in the United States. The Journal of pediatrics. 2002 Apr
 405 1;140(4):432-8.
- 406 37. Ott E, Saathoff S, Graf K, Schwab F, Chaberny IF. The prevalence of nosocomial and
 407 community acquired infections in a university hospital: an observational study. Deutsches
 408 Ärzteblatt International. 2013 Aug;110(31-32):533.
- 409 38. Deptuła A, Trejnowska E, Ozorowski T, Hryniewicz W. Risk factors for healthcare 410 associated infection in light of two years of experience with the ECDC point prevalence
 411 survey of healthcare-associated infection and antimicrobial use in Poland. Journal of Hospital
 412 Infection. 2015 Aug 1;90(4):310-5.
- 413 39. Ali S, Birhane M, Bekele S, Kibru G, Teshager L, Yilma Y, Ahmed Y, Fentahun N, Assefa
 414 H, Gashaw M, Gudina EK. Healthcare associated infection and its risk factors among
 415 patients admitted to a tertiary hospital in Ethiopia: longitudinal study. Antimicrobial
 Resistance & Infection Control. 2018 Dec;7(1):2.
- 417 40. Askarian M, Yadollahi M, Assadian O. Point prevalence and risk factors of hospital acquired
 418 infections in a cluster of university-affiliated hospitals in Shiraz, Iran. Journal of infection
 419 and public health. 2012 Apr 1;5(2):169-76.
- 420 41. Olivier C, Kunneke H, O'Connell N, Von Delft E, Wates M, Dramowski A. Healthcare421 associated infections in paediatric and neonatal wards: A point prevalence survey at four
 428 422 South African hospitals. South African Medical Journal. 2018;108(5):418-22.
- 423 42. Teke TA, Tanır G, Bayhan Gİ, Öz FN, Metin Ö, Özkan Ş. Clinical and microbiological features of resistant gram-negative bloodstream infections in children. Journal of infection and public health. 2017 Mar 1;10(2):211-8.

3 4	426	43. Atici S, Soysal A, Kadayifci EK, Karaaslan A, Akkoç G, Yakut N, Demir SÖ, Girgin Fİ,
5	427	Çulha G, Altınkanat G, Öztürk N. Healthcare-associated infections in a newly opened
6 7	428	pediatric intensive care unit in Turkey: Results of four-year surveillance. The Journal of
8 9	429	Infection in Developing Countries. 2016 Mar 31;10(03):254-9.
10 11	430	44. Raymond J, Aujard Y, European Study Group. Nosocomial infections in pediatric patients a
12	431	European, multicenter prospective study. Infection Control & Hospital Epidemiology. 2000
13 14	432	Apr;21(4):260-3.
15 16	433	45. Offner PJ, Moore EE, Biffl WL. Male gender is a risk factor for major infections after
17 18	434	surgery. Archives of Surgery. 1999 Sep 1;134(9):935-40.
19	435	46. Wałaszek M, Kosiarska A, Gniadek A, Kołpa M, Wolak Z, Dobroś W, Siadek J. The risk
20 21	436	factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl Epidemiol.
22 23	437	2016;70(1):15-20.
24	438	47. Ahmed M, Alam SN, Khan O, Manzar S. Postoperative wound infection: a surgeon's
25 26	439	dilemma. Pak J Surg. 2007 Jan;23(1):41-7.
27 28	440	48. Luksamijarulkul P, Parikumsil P, Oomsuwan VN. Nosocomial surgical site infection among
29 30	441	Photharam hospital patients with surgery: Incidence, risk factors and development of risk
31	442	screening form. J Med Assoc Thai. 2006; 89(1): 81-9.
32 33	443	49. Brady MT. Health care-associated infections in the neonatal intensive care unit. American
34 35	444	journal of infection control. 2005 Jun 1;33(5):268-75.
36 37	445	50. Saiman L. Risk factors for hospital-acquired infections in the neonatal intensive care unit. In
38	446	Seminars in perinatology. 2002 Oct 1; 26(5):315-321.
39 40	447	51. Behzadnia S, Davoudi A, Rezai MS, Ahangarkani F. Nosocomial infections in pediatric
41 42	448	population and antibiotic resistance of the causative organisms in north of iran. Iranian Red
43	449	Crescent Medical Journal. 2014 Feb;16(2).
44 45	450	52. Singh S, Chaturvedi R, Garg SM, Datta R, Kumar A. Incidence of healthcare associated
46 47	451	infection in the surgical ICU of a tertiary care hospital. Medical journal armed forces India.
48 49	452	2013 Apr 1;69(2):124-9.
50	453	53. Thu TA, Hung NV, Quang NN, Archibald LK, Harun-Or-Rashid M, Sakamoto J. A point-
51 52	454	prevalence study on healthcare-associated infections in Vietnam: public health implications.
53 54	455	Infection Control & Hospital Epidemiology. 2011 Oct;32(10):1039-41.
55 56		
57		
58 59		19

BMJ Open

3
4
5
6
7
/ Q
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
20
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
77 19
40 40
49 50
50
51
52
53
54
55

56 57 58

59

- 456 54. Razine R, Azzouzi A, Barkat A, Khoudri I, Hassouni F, Chefchaouni AC, Abouqal R.
 457 Prevalence of hospital-acquired infections in the university medical center of Rabat,
 458 Morocco. International archives of medicine. 2012 Dec;5(1):26.
- 459
 459
 459
 450
 460
 460
 460
 461
 461
 461
 461
 461
 462
 462
 462
 463
 464
 464
 465
 465
 465
 466
 466
 467
 467
 468
 469
 469
 469
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 461
 461
 461
 461
 461
 461
 461
 462
 462
 462
 463
 464
 464
 465
 465
 465
 465
 466
 467
 467
 467
 468
 469
 469
 469
 469
 460
 460
 460
 460
 461
 461
 461
 462
 461
 462
 461
 462
 462
 461
 462
 462
 462
 463
 464
 464
 465
 465
 465
 465
 466
 467
 467
 467
 468
 468
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
 469
- 463 56. Le NK, Wertheim HF, Vu PD, Khu DT, Le HT, Hoang BT, Vo VT, Lam YM, Vu DT,
 464 Nguyen TH, Thai TQ. High prevalence of hospital-acquired infections caused by gram 465 negative carbapenem resistant strains in Vietnamese pediatric ICUs: A multi-centre point
 466 prevalence survey. Medicine. 2016 Jul;95(27).
- 467 57. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the
 468 management of adults with hospital-acquired, ventilator-associated, and healthcare 469 associated pneumonia. American journal of respiratory and critical care medicine. 2005 Feb
 470 15;171(4):388.
- 471 58. Sarvikivi E, Kärki T, Lyytikäinen O, Finnish NICU Prevalence Study Group. Repeated
 472 prevalence surveys of healthcare-associated infections in Finnish neonatal intensive care
 473 units. Journal of Hospital Infection. 2010 Oct 1;76(2):156-60.
- 474 59. Sangrasi AK, Leghari AA, Memon A, Talpur AK, Qureshi GA, Memon JM. Surgical site
 475 infection rate and associated risk factors in elective general surgery at a public sector medical
 476 university in Pakistan. International wound journal. 2008 Mar;5(1):74-8.
- 477 60. Khaleid M, Haleim A, Zein K. ET: surgical site infections and associated risk factors in Egyptian orthopedic patients. J Am Sci. 2010;6(7):272-80.
- 479 61. Shahunja KM, Ahmed T, Faruque AS, Shahid AS, Das SK, Shahrin L, Hossain MI, Islam
 480 MM, Chisti MJ. Experience with nosocomial infection in children under 5 treated in an urban
 481 diarrheal treatment center in Bangladesh. Global pediatric health. 2016 Mar
 482 4;3:2333794X16634267.
- 483
 483
 484
 484
 484
 484
 485
 485
 485
 485
 486
 486
 486
 487
 486
 486
 487
 487
 488
 480
 480
 480
 481
 481
 482
 483
 484
 484
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 486
 487
 487
 488
 488
 489
 480
 480
 481
 481
 481
 482
 483
 484
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1: Demographic and clinical characteristics of patients who participated in the study in Goba Referral Hospital, southeast Ethiopia 2019 (n=448)

Variables	Category	Frequency	Percent
Age (months)	≤1	103	23.0
	2-5	77	17.2
	6-12	105	23.4
	13-24	51	11.4
	25-49	37	8.3
	>49	75	16.7
Sex	Male	248	55.4
	Female	200	44.6
Ward	NICU	201	44.9
	Pediatrics	247	55.1
Resident	Urban	129	28.8
	Rural	319	71.2
Previous Hospitalization ^a	Yes	46	10.3
-	No	402	89.7
Mechanical Ventilation	Yes	76	17.0
	No	372	83.0
Presence of Peripheral	Yes	430	96.0
Intravenous Line	No	18	4.0
Presence of Peripheral	Yes	9	2.0
Vascular Catheters	No	439	98.0
With Drainage	Yes	53	11.8
	No	395	88.2
Underlying Diseases ^b	Yes	54	12.1
	No	394	87.9
Surgery After Admission	Yes	47	10.5
	No	401	89.5
Patient Received	Yes	171	38.2
Antimicrobials	No	221	49.3
	Unknown	56	12.5
Severe Anemia	Yes	41	9.2
	No	375	83.7
	Unknown	32	7.1
HIV status	Positive	2	0.4
	Negative	393	87.7
	Not tested	53	11.8
American Society of	Normally health patient	72	16.1
Anesthesiology (ASA)	Patient with mild	235	52.5
Classification	systemic diseases		
	Severe systemic	100	22.3
	disease that is not		

^a History of the previous hospitalization for either the same as the current reason of admission or

ust 3k .tion (SAM,

36

5

8.0

1.1

incapacitating

Unknown

other ailments within the last 30 days

^b Severe acute malnutrition (SAM)

diseases that is a constant threat to life

Incapacitating systemic

1 2 3 4 5 6 7 8	
9	489
10 11	/19/1
12	450
13	491
14 15	
16	
17 18	
19	
20	
21	
23	
24 25	
26	
27 28	
29	
30 31	
32	
33 24	
34 35	
36	
37 38	
39	
40 41	
42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53	
54 55	
56	
57 58	

59

mosphul acquired intections	Number	Proportion	95% Cl
Pneumonia/ Lower Respiratory Tract Infections/ ^a	32	56.1	43.9-68
Late-Onset Neonatal Sepsis	6	10.5	3.5-19.3
Intravenous Line (IV) Site Infections	5	8.8	1.8-15.8
Urinary Tract Infections	4	7.0	1.8-14.0
Systemic Infections	4	7.0	1.8-14.0
Skin/Soft Tissue Infections	2	3.5	0.0-8.8
Measles	2	3.5	0.0-8.8
Early Onset Neonatal Sepsis	1	1.8	0.0-5.3
Surgical Site Infections	1	1.8	0.0-7.0

٢	d
1	
1	
2	
3	
4	
4	
5	
6	
7	
/	
8	
g	
	~
I	0
1	1
1	2
1	~
1	3
1	4
1	5
1	2
1	6
1	7
1	Q
	0
1	9
2	0
2	1
2	1
2	2
2	3
2	1
2	4
2	5
2	6
-	7
2	/
2	8
2	9
2	Ś
5	υ
3	1
3	2
2	2
5	5
3	4
3	5
2	c
5	o
3	7
3	8
2	~
3	9
4	0
4	1
-	<u>'</u>
4	2
4	3
Δ	Δ
+	- -
- 4	5

498	Table 3: Factors associated with hospital-acquired infections among patients in Goba

499 Referral Hospital, southeast Ethiopia 2019 (n=448)

Variables	Category	Presence	of HAIs	Crude RR	p-value
		Yes (57)	No (391)		
Sex	Male	30	218	0.88(0.55-1.45)	0.65
	Female	27	173	1	
Age (months)	1-12	33	252	0.78(0.48-1.28)	0.33
	>12	24	139	1	
Residence	Urban	12	117	0.65(0.36-1.20)	0.17
	Rural	45	274	1	
Hospital Duration	≤ 6	17	220	1	
-	> 6	40	171	2.64(1.54-4.51)*	0.00
Admission Unit	NICU	27	174	1.10(0.68-1.79)	0.68
	Pediatrics	30	217	1	
Patient Received	Yes	17	154	1	
Antimicrobials	No	27	194	1.22(0.69-2.17)	0.48
	Unknown	13	43	2.33(1.21-4.50)*	0.01
Previous	Yes	7	39	1.22(0.58-2.53)	0.59
Hospitalization	No	50	352	1	
Mechanical	Yes	12	64	1.30(0.68-2.71)	0.38
Ventilation	No	45	327	1	
Presence of Urinary	Yes	2	7	1.77(0.50-6.17)	0.38
Catheters	No	55	384	1	
With Drainage Tube	Yes	14	39	2.42(1.42-4.12)*	0.00
-	No	43	352	1	
Underlying Diseases ##	Yes	13	41	2.15(1.24-3.73)*	0.00
	No	44	350	1	
Surgery After	Yes	4	43	0.64(0.24-1.69)	0.36
Admission	No	53	348	1	

500

Severe acute malnutrition (SAM); RR: Risk Ratio; * p-value< 0.05 (Crude)

1
2
3
1
4
5
6
7
8
a
10
10
11
12
13
14
15
15
16
17
18
19
20
20
21
22
23
24
27
25
26
27
28
29
20
50
31
32
33
34
25
22
36
37
38
39
10
40
41
42
43
44
15
45
46
47
48

502 Table 4: Multivariable logistic regression analysis on factors associated with hospital-

acquired infections among patients in Goba Referral Hospital, southeast Ethiopia 2019
(n=448)*

Variables	Category	Patient with HAIs (n=57)	adjusted RR	P-value
Hospital Duration	≤ 6	17	2.58(1.52-4.38)**	< 0.001
	> 6	40	1	
Patient Received	Yes	17	1	
Antimicrobials	No	27	1.25(0.71-2.19)	0.430
	Unknown	13	1.93(0.84-4.42)	0.120
Drainage Tube	Yes	14	1.77(0.88-3.54)	0.107
Inserted	No	43	1	
Underlying	Yes	13	2.83(1.61-4.97)**	< 0.001
Diseases##	No	44	1	

*Hosmer and Lemeshow Test (p=0.166); RR: Risk Ratio; ** p-value < 0.05 (adjusted)

506 ^{##} Severe acute malnutrition (SAM)

1 ว		
2 3 4	510	Additional Files
5 6 7	511	S1 File: English version of the survey questionnaire
8 9 10	512	S2 File: Different types of HAIs cross-tabulation with number of cases in the NICU and the
11	513	pediatric ward
12 13 14	514	
15 16		
17 18 10		
20 21		
22 23		
23 24		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		26
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Patient ID/CODE
2.	WardBed numberMRN
3.	Age
4.	Sex
5.	Residence A. Urban B. Rural
6.	Reason for admission/Dx at the time of
	admission
7.	Complete admission diagnoses
8.	Date of admisstion
9.	Patient health condition at the time of admission
10	. Is there any other localized infection? Yes No
10 11	. Is there any other localized infection? Yes No . If yes, type of treatment given
10 11 12	. Is there any other localized infection? Yes No . If yes, type of treatment given . . Previous hospitalization Yes No
10 11 12 13	. Is there any other localized infection? Yes No . If yes, type of treatment given . Previous hospitalization Yes No . If yes for question 14:
10. 11. 12. 13.	. Is there any other localized infection? Yes No . If yes, type of treatment given
10 11 12 13	. Is there any other localized infection? Yes No . If yes, type of treatment given
10 11 12 13	. Is there any other localized infection? Yes No . If yes, type of treatment given
10 11 12 13	Is there any other localized infection? Yes No If yes, type of treatment given
10. 11. 12. 13. 14.	. Is there any other localized infection? Yes No . If yes, type of treatment given
10. 11. 12. 13. 14. 15.	Is there any other localized infection? Yes No If yes, type of treatment given
10 11 12 13 13 14 15 16	Is there any other localized infection? Yes No If yes, type of treatment given
10 11 12 13 13 14 15 16 17	Is there any other localized infection? Yes No If yes, type of treatment given

BMJ Open

22. Indication for drainage			
23. Presence of invasive med	ical devices? A.	Yes	B. No
24. If yes for questions 20,21,	,22,26 (more tha	n one answer	is possible)
A. Endotracheal tube?	A. Yes	B. No	
B. NGT	A. Yes	B. No	
C. Chest tube	A. Yes	B. No	
25. Central vascular catheter	A. Yes	B. No	
26. Peripheral vascular cathet	er A. Yes	B. No	
27. Peripheral intravenous lin	e A. Yes	B. No_	
28. Urinary catheter A. Yes_	B. 1	No	
29. Intubation A. Yes	B. No		
30. Underlying diseases? A. Y	Yes	_B. No	
31. If yes, underlying disease	s (more than one	e answer is pos	ssible)
i. Diabetes mellitus	vi. Cardiac d	isorders	
ii. Chronic renal failure	vii. Severe m	alnutrition	
iii. Hypertension	viii. TB		
iv. Chronic liver disease	ix. Cancer		
v. HIV/AIDS	x. Others (sp	pecify)	
32. Surgery since admission A	A. Yes	B. No	
33. Surgical procedure done?	A. Yes	B. No	
If yes for question 36,			
A. Type of surger	y A. Ele	ctive	B. Emergency
B. Type of the pro	ocedure		
C. Date	Tim	ne	
D. Duration of the	e surgery	ł	nours
E. Type of surgica	al wound A. Cle	ean B. Clean o	contaminated C. Conta
Dirty			
34. Antibiotic prophylaxis giv	ven? A. Yes	B	. No

36. Severe anaemia [haemoglobin <50 g/L (for patients older than 28 days) or haem <90 g/L (for neonates)] A. YesB. NoC. Unknown/not tested3. 37. Immune deficiency A. YesB. NoC. Unknown/not tested38. Nutritional status WAZ score (Weight-for-age Z score) A. >-3 B3 to 4 C. 38. Nutritional status WAZ score (Weight-for-age Z score) A. >-3 B3 to 4 C. 39. Available hand washing material in ward A. YesB. No40. 40. Presence of medical waste container at room A. YesB. No41. 41. Available hand washing material in ward A. YesB. No42. 42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition:	
<90 g/L (for neonates)] A. Yes B. No C. Unknown/not tested	oglobin
A. YesB. NoC. Unknown/not tested37. Immune deficiency A. YesB. NoC. Unknown/not tested38. Nutritional status WAZ score (Weight-for-age Z score) A. >-3 B3 to 4 C. 39. Available hand washing material in ward A. YesB. No40. Presence of medical waste container at room A. YesB. No41. Available hand washing material in ward A. YesB. No41. Available hand washing material in ward A. YesB. No42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition:	
 37. Immune deficiency A. YesB. NoC. Unknown/not tested38. Nutritional status WAZ score (Weight-for-age Z score) A. >-3 B3 to 4 C. <-39. Available hand washing material in ward A. YesB. No40. Presence of medical waste container at room A. YesB. No41. Available hand washing material in ward A. YesB. No41. Available hand washing material in ward A. YesB. No41. Available hand washing material in ward A. YesB. No42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases c. Patient with incapacitating systemic diseases that is a constant threat to li d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 	
 38. Nutritional status WAZ score (Weight-for-age Z score) A. >-3 B3 to 4 C. 39. Available hand washing material in ward A. Yes B. No 40. Presence of medical waste container at room A. Yes B. No 41. Available hand washing material in ward A. Yes B. No 42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 	
 39. Available hand washing material in ward A. YesB. No 40. Presence of medical waste container at room A. YesB. No 41. Available hand washing material in ward A. YesB. No 42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 	4
40. Presence of medical waste container at room A. YesB. No 41. Available hand washing material in ward A. YesB. No 42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases c. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition:	
41. Available hand washing material in ward A. YesB. No	
42. McCabe score A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases c. Patient with incapacitating systemic diseases that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition:	
A. Non-Fatal diseases B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic diseases c. Patient with incapacitating systemic diseases that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition:	
B. Ultimately fatal diseases C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic disease that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs:	
C. Rapidly fatal diseases D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic disease that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs:	
D. Unknown 43. American Society of Anesthesiology (ASA) classification a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic disease that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs:	
 43. American Society of Anesthesiology (ASA) classification Normally health patient Patient with mild systemic diseases Patient with severe systemic disease that is not incapacitating Patient with incapacitating systemic diseases that is a constant threat to li Patient with incapacitating systemic C. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: Type of HAIs: Name of data collectors :Signature	
 a. Normally health patient b. Patient with mild systemic diseases c. Patient with severe systemic disease that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs: 	
 b. Patient with mild systemic diseases c. Patient with severe systemic disease that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs: 	
 c. Patient with severe systemic disease that is not incapacitating d. Patient with incapacitating systemic diseases that is a constant threat to li e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs: 	
 d. Patient with incapacitating systemic diseases that is a constant threat to lie. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs: 	
 e. Unknown 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs: 	fe
 44. HIV status A. Reactive B. Non-reactive C. Unknown 45. Presence of HAIs based on CDC definition: 46. Type of HAIs: Mame of data collectors :Signature 	
45. Presence of HAIs based on CDC definition: 46. Type of HAIs: Name of data collectors :Signature	
46. Type of HAIs:	
46. Type of HAIs:	
46. Type of HAIs:	
Name of data collectors : Signature	
Name of data collectors : Signature	
Name of data collectors : Signature	
Name of data collectors : Signature	
	dat
Name of supervisorSignature	dat

	Name of ward type		Total	Chi-Square	
	NICU	Pediatrics		Tests, df, p- value	
Pneumonia/ Lower Respiratory Tract Infections	10	22	32	$X^{2}(21.20),$ df=8.	
Late-Onset Neonatal Sepsis	6	0	6	p-value=0.007	
Intravenous Line (IV) Site Infections	4	1	5		
Urinary Tract Infections	1	3	4		
Systemic Infections	4	0	4		
Skin/Soft Tissue Infections	1	1	2		
Measles	0	2	2		
Early Onset Neonatal Sepsis	1	0	1		
Surgical Site Infections	0	1	1		
Total	27	30	57		

Table 3 : Cross tabulation between types of HAIs by ward in Goba referral hospital, 2019.

BMJ Open

	STROE	3E 2007 (v4) checklist of items to be included in reports of observational studies in epidemiology* Checklist for cohort, case-control, and cross-sectional studies (combined)	
Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods		0r	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	NA
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	NA

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	9-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other information	•	·	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	13

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. **BMJ** Open

BMJ Open

Incidence and risk factors for hospital-acquired infection among pediatric patients in a teaching hospital: a prospective study in southeast Ethiopia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037997.R1
Article Type:	Original research
Date Submitted by the Author:	09-Sep-2020
Complete List of Authors:	Sahiledengle, Biniyam; Madda Walabu University, Public Health Seyoum, Fekadu; Madda Walabu University, Department of Pediatrics Abebe, Daniel; Madda Walabu University, Department of Pediatrics Geleta, Eshetu; Madda Walabu University, Department of Medical Laboratory Science; Hawassa University College of Medicine and Health Sciences, Hawassa University Comprehensive specialized Hospital Negash, Getahun; Madda Walabu University, Department of Medical Laboratory Science Kalu, Abdurhaman; Madda Walabu University, Public Health Woldeyohannes, Demelash; Madda Walabu University, Public Health Tekalegn, Yohannes; Madda Walabu University, Public Health Zenbaba, Demisu; Madda Walabu University, Public Health Edward Quisido, Bruce John ; Madda Walabu University, Department of Nursing
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Infectious diseases, Paediatrics
Keywords:	PAEDIATRICS, NEONATOLOGY, PUBLIC HEALTH, EPIDEMIOLOGY, Infection control < INFECTIOUS DISEASES, Paediatric intensive & critical care < INTENSIVE & CRITICAL CARE
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
48	
10	
50	
50	
57	
52	
22	
54	
55 57	
50	
5/	
58	
59	

1 2

1

2

3

4

5

6

Incidence and risk factors for hospital-acquired infection among pediatric patients in a teaching hospital: a prospective study in southeast Ethiopia

Biniyam Sahiledengle^{1*}, Fekadu Seyoum², Daniel Abebe², Eshetu Nigussie³, Getahun Negash³, Abdurhaman Kalu¹, Demelash Woldeyohannes¹, Yohannes Tekalegn¹, Demisu Zenbaba¹, Bruce John Edward Quisido⁴

¹Madda Walabu University, School of Health Science, Department of Public Health, Bale-Goba, 7 8 Ethiopia

²Madda Walabu University, School of Medicine, Department of Pediatrics, Bale-Goba, Ethiopia 9

³Madda Walabu University, School of Medicine, Department of Medical Laboratory Science, 10

Bale-Goba, Ethiopia 11

⁴Madda Walabu University, School of Medicine, Department of Nursing, Bale-Goba, Ethiopia 12 á.

*Corresponding author 13

Email: biniyam.sahiledengle@gmail.com 14

ORCID iD: https://orcid.org/0000-0002-1114-4849 15

17 Abstract

Objectives: Epidemiological data on the incidence of hospital-acquired infections (HAIs) are necessary because without a valid and precise baseline, the problem remains unnoticed and interventions are not designed nor implemented. In Ethiopia, data about the occurrence of hospital-acquired infections among hospitalized pediatric patients are lacking. We aimed to determine the incidence and risk factors of hospital-acquired infections among pediatric patients in Ethiopia.

Design: A prospective cohort study

Setting: A teaching hospital in southeast Ethiopia

Participants: 448 hospitalized pediatric patients admitted between November 1, 2018 and
June 30, 2019.

Primary and secondary outcome measures: Incidence and risk factors of hospital acquired infections.

Results: A total of 448 pediatric patients were followed for 3,227 patient days. The median age of the patients was 8 months (interquartile range (IQR): 2-26 months). The incidence rate of hospital-acquired infections was 17.7 per 1000 pediatrics days of follow up while the overall cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. Children who stayed greater than 6 days (median day) [adjusted RR: 2.58, 95%CI (1.52-4.38)] and children with underlying disease conditions of severe acute malnutrition [adjusted RR: 2.83, 95% CI (1.61-4.97)] had a higher risk of developing a hospital-acquired infection.

37 Conclusions: The overall cumulative incidence of hospital-acquired infections was about 13
38 per 100 admitted children. Length of stay in the hospital and underling severe acute malnutrition
39 were found to be important factors associated with increased risk of hospital-acquired infections.

40 Keywords: Nosocomial infection, Hospital-acquired infection, Pediatric patients, Ethiopia

Strengths and limitations of this study

- To the best of our knowledge, this is the first prospective study to examine the incidence • and risk factors of hospital-acquired infection among pediatric patients in Ethiopia.
- We did not use laboratory culture to isolate organisms as a guide in addition to the • clinical criteria to confirm the results of HAIs, which could affect our results.
- In this study, we focused on a small number of risk factors for hospital-acquired • infections; some important variables were not included.

ie (we focuse, ne important variable,

50 Introduction

There is a "perfect storm" on hospital-acquired infections (HAIs) among hospitalized patients at any point in time throughout the globe. HAI is defined as an infection occurring in a patient during the process of care in a hospital or other healthcare facility that is not manifested or incubating at the time of admission¹. Currently, it is a growing public health problem that concerns both the medical and the general community, and a rising issue for patient safety and quality of care at every level²⁻⁸. A study by Sheng et al. reported that 80% of hospitalized patient's deaths were linked to nosocomial infection (NI)⁹. Available evidence also showed that financial burden, increased resistance of microorganisms to antimicrobials, prolonged hospital stay, and sometimes deaths are caused by HAIs ^{10, 11, 12}.

Worldwide, it is estimated that hundreds of millions of patients every year, in both developed and developing countries, are affected by HAIs⁷. In some Australian public hospitals, HAIs affect one in every 74 hospitalizations¹³. In Europe, the total annual number of patients with HAI in 2011–2012 was estimated at 3.2 million. The prevalence of patients with at least one HAI in acute care hospitals was 6.0% (country range 2.3%-10.8%)¹⁴. Moreover, throughout Europe, HAIs accounted for 16 million additional days with total costs estimated at approximately €7 billion^{14,15,16}. In the United States, approximately two million patients developed HAIs, and nearly a hundred thousand of these patients were estimated to die annually. This ranked HAI as the fifth leading cause of death in acute care hospitals and the risk of acquiring infection is 2 -20 times higher in some developing countries^{17,18}.

In some developing countries, the magnitude of HAIs remains underestimated and uncertain 1^{12} . There is little information available on the epidemiology of HAI in African countries ^{19,20}. Although data are sparse, evidence suggested that HAIs are considerably adding to the available high burden of infections in some sub-Saharan African countries²¹. A systematic review by Nejad et al reported that hospital-wide HAI prevalence in Africa varied between 2.5% and 14.8%. This review has shown that published studies were only conducted in 10 African countries – emphasize there were paucities of information available among the epidemiology of HAI in many African countries¹⁹. In addition to this, a recent review by Irek et al (2018) indicated that there was a scarcity of studies on HAIs in Africa - of the 35 eligible articles

BMJ Open

retrieved, more than half (n = 21, 60%) were from East Africa only ²⁰. And most of the HAI literature just focused on adults, and data on HAIs among the pediatric population in sub-Saharan Africa are hardly available ^{15,19,22}. For example, a systematic review conducted by the World Health Organization (WHO) in the year 2010, identified no reports on pediatric nosocomial bacteremia in African countries between 1995 and 2008 ¹⁵.

In Ethiopia, HAIs can result in substantial morbidity for hospitalized children; however, little is known about the incidence and prevalence of HAIs in the neonatal and pediatric populations. Also, previously conducted studies by far focused only on adults, and many of these were limited to surgical site infections $^{23-28}$, with an estimated prevalence of 10.9% 24 to 66.5% 27 . The overall cumulative incidence was 35.8 per 100 patients²⁶. Furthermore, the urinary tract and bloodstream infections were found to be the commonest forms of HAIs in Ethiopia ²⁹⁻³³. Surgery since admission^{23,26}, underlying medical conditions^{23,25}, patients' with catheter ^{23,25,26}, the patient put on mechanical ventilation²⁶, immune-deficient patients ^{23,25}, patient age ^{26,32,33}, hospital type ³², the type of ward, and prolonged hospitalization³³ were found to be important factors associated with increased risk of HAIs in Ethiopia.

To the best of our knowledge, there is no single currently available published report on the incidence and risk factors of HAIs among pediatric patients in Ethiopia. Epidemiological data on the incidence of HAI are necessary because without a valid and precise baseline, the problem remains unnoticed and interventions are not designed nor implemented, and neither can their impact be assessed. Therefore, this study was designed to determine the incidence and risk factors of HAIs among pediatric patients in Goba Referral Hospital, Southeast Ethiopia. The current study helps policymakers to improve their decision making and input for healthcare professionals for the improvement of patient care.

103 Methods

104 Study design and setting

A hospital-based prospective follow up study was conducted from November 1, 2018, to June 30, 2019, at Madda Walabu University Goba Referral Hospital, Southeast Ethiopia. Goba Referral Hospital is the only referral and teaching hospital in the Bale zone, serving over 1,787,575 million people. Goba Referral Hospital is located 445 km far from the capital city (Addis Ababa) of Ethiopia. According to the 2018 annual report of Goba Referral Hospital, the average outpatient flow is over 96,661 and the annual admission is over 7,886 patients, of which 1,335 were admitted in the pediatrics ward and Neonatal Intensive Care Unit (NICU). The hospital has a total of 127 inpatients beds – of which 30 and 15 are in the pediatric ward and NICU, respectively.

26 114 Study population and eligibility criteria

All patients (age less than 18 years) admitted to the pediatric ward and neonatal intensive care
unit (NICU) were enrolled and those who at least stayed for 48 hours were eligible for the study.
Enrolled patients showed signs of infection and/or symptoms of infection within the first 48
hours were excluded from the study.

119 Data collection procedures

First, consent was sought from each child's parents/guardians before commencing any study procedures. On admission, all children were evaluated clinically to exclude community-acquired infections by a pediatrician. Afterward, socio-demographic and clinical data were collected by a structured questioner using an individual patient chart investigation approach-accordingly-a detailed clinical history of patients were taken and recorded. Patients presenting with no new signs or symptoms of infection after the first 48 hours of admission were included and followed prospectively for the development of HAIs during their stay in the hospital. Data were collected from enrolled patients on a daily bases: children were followed by a pediatrician daily, charts were reviewed and discussions with nurses and physician caring for the patient were held. HAIs

were confirmed by senior pediatrician specialists working in the respective NICU and pediatricsward.

Data were collected by trained physicians and one pediatrician. The Center for Diseases Control and Prevention (CDC)/ National Health Care Safety Network (CDC/NHSN) Surveillance Definition for hospital-acquired infections were used³⁴. In this study, the use of any antimicrobials was recorded and information on different medical devices collected at the time of hospital admission and before the diagnosis of HAIs, respectively (S1 File).

136 Data quality control

The data collection tool was adapted from different related pieces of literature based on the available evidence to HAIs^{1,23,26,32}. To ensure the quality of data, the tool was pre-tested before the data collection period. The training was given for data collectors on study procedures and with practical exercise sessions. Data collection was closely supervised by a principal investigator and the collected data were checked for completeness, accuracy, and consistency.

Operational definition

Hospital-Acquired Infection (HAI) - localized or systemic condition that results from an
adverse reaction to the presence of an infectious agent or its toxin and occurring 48 hours or
longer after hospital admission that was not incubating at the time of admission.

Severe Anemia - haemoglobin <50 g/L (for patients older than 28 days) or haemoglobin <90 g/L
(for neonates)

43 148

Study variables

The outcome variable of the study was the occurrence of hospital-acquired infections (HAIs). The presence of HAIs was confirmed when the patients met the criteria for signs and symptoms determined by the Center for Disease Control and Prevention³⁴, wherein, the independent variables included: socio-demographic characteristics (age of the child, sex, place of residence, and previous hospitalization), and clinical and other related variables (duration of hospitalization, Page 9 of 35

BMJ Open

insertion of a urinary catheter, presence of peripheral intravenous (IV) catheter, received antimicrobial, American Society of Anesthesiology (ASA) classification, intubation, surgery after
admission, underline disease-refers to Severe acute malnutrition (SAM) presenting at the time of
admission, mechanical ventilator, and HIV status).

Data processing and analysis

Data were entered into Epi-data version 3.1 and exported to STATA version 14 statistical software for further analysis. Descriptive statistics were computed to present the frequency distribution of important variables. The cumulative incidence (incidence proportion) was calculated as the number of new HAIs cases per person in the population over a defined period; and it is the probability of developing HAIs over a stated study period (8 months). We estimated incidence rate as the number of HAIs cases per unit of time, and the denominator is the total amount of time "at-risk" without experiencing HAIs for all children who were being followed for 8 months. The incidence rate of HAIs was reported per 1000 patient days. Multivariable logistic regression was used to identify factors with an increased risk of HAIs. An adjusted risk ratio (ARR) with a 95% confidence interval (CI) was used to determine the strength of association. A p-value < 0.05 was used to declare statistical significance. Multicollinearity diagnosis was performed between categorical variables by looking at values of variance inflation factor (VIF). The final model fitness was assessed by using the Hosmer-Lemeshow goodness of fit test.

Patient and public involvement

Patients and the public were not involved in the planning, designing, and interpreting this dataanalysis. However, consent was sought from all patients involved in this study.

Results

180 Socio-demographic characteristics of the study participants

A total of 487 pediatrics patients were enrolled in this study. However, 39 pediatric patients showed signs of infection and/or symptoms of the infection within the first 48 hours were excluded from the study. The rest 448 pediatric patients were followed for the occurrence of HAIs until hospital discharge, referred to other healthcare facilities or death. Of the total patients included in the study, 201 (44.9%) were from the neonatal intensive care unit (NICU) and the remainder were from the pediatric ward. Two hundred forty-eight (55.4%) of the study participants were male with an overall male-to-female ratio of 1.24: 1. The median age of the participants was 8 months (interquartile range (IOR): 2-26 months). The age distribution of study participants by sex was presented in Figure 1. Three hundred and ninety (71.2%) of the study participants were from rural areas. The median hospital stay of the patients was 6 days (IQR: 3-9 days). Of the study participants, 24 (5.4%) died. Therefore, the overall incidence density rate of admitted pediatrics mortality was 7.44 per 1000 pediatrics days of follow up (Table 1).

193 Clinical characteristics of patients

In this study, 46 (10.3%) of the participants had a history of the previous hospitalization within the last 30 days. Fifty-four, (12.1%) of children were diagnosed with severe acute malnutrition (SAM) at the time of admission. Severe anemia was reported by 41 (9.2%) respondents. Overall, one hundred and seventy-one (38.2%) patients received antimicrobial at the time of the study (**Table 1**).

¹ 199 Incidence and type of hospital-acquired infection

During the study period, 448 pediatric patients were followed for a total of 3,227 patient days. A total of 57 patients experienced HAI. The mean time of diagnosis of HAIs in Goba referral hospital is 7.20 (95% CI: 6.72, 7.66) patient days. The overall incidence rate of HAIs was 17.7 per 1000 pediatrics days of follow up while the cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. The mean length of stay for the infected pediatric patients was 11.5 days (95% CI: 9.5-13.4), while it was lower for the remaining patients at 6.5 days.

Table 2 illustrates the proportion of HAIs among pediatrics patients in Goba referral hospital.
Hospital-acquired pneumonia was the most common type of HAI that was observed among

1 2 3

4
5
6
7
/
8
9
10
11
12
12
15
14
15
16
17
18
19
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
3/
25
35
36
37
38
39
40
41
12
∠ד∠ ⊿ר
43 44
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
50

pediatrics patients with a proportion of 56.1% (95%CI: 43.9-68.4), followed by late-onset 208 neonatal sepsis 10.5% (95%CI: 3.5-19.3), and the least HAI observed was an early onset of 209 210 neonatal sepsis and surgical site infections with an overall proportion of 1.8% each. In this study, the stratification of type of HAIs by ward of admission revealed significant variability (p-value= 211 0.007) (Figure 2). 212

Risk factors of hospital-acquired infections 214

Table 3 showed the risk factors of HAIs among pediatric patients in Goba Referral Hospital. 215 Bivariate analysis of risk ratio has indicated that hospital duration (> 6 days), the patient received 216 antimicrobial medications, presence of drainage tube, and children diagnosed for SAM were 217 predispose for HAIs. 218

In the adjusted model, the risk of HAIs was 2.58 times more likely to be higher among children 219 who stayed longer than or equal to 6 days (median day) than to those children who stayed less 220 [adjusted RR: 2.58, 95%CI (1.72-4.38)]. Patients with SAM conditions had a 2.83 times higher 221 risk of developing HAIs compared to their counterparts [adjusted RR: 2.83, 95% CI (1.61-4.97)]. 222 Socio-demographic and some clinically related confounders could not show any statistically 223 significant associations (Table 4). 224

In this study, we estimated the attributable risk which estimates the excess risk of disease in 225 those exposed compared with those non-exposed. The excess occurrence of HAIs among 226 children with underlying SAM diseases attributable to their SAM condition is 13 per 100 (Table 227

228

231

4).

- 229
- 230

Discussion

Hospital-acquired infections (HAIs) are a current global challenge with increased morbidity, mortality, and massive economic cost ³⁵⁻³⁹. Yet, there remain limited data on the occurrences of HAIs in hospitalized pediatric in Sub-Saharan African, including Ethiopia. This study was designed to determine the incidence and risk factors of HAIs among pediatric patients in a teaching hospital, southeast Ethiopia. The overall incidence rate of HAIs was 17.75 per 1000 pediatrics days of follow up while the cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. Children who stayed longer than the median day (6 days) in the hospital and children with underlying disease conditions (Severe acute malnutrition) had a higher risk of developing HAIs.

In this study, the overall incidence rate of HAIs was 17.7 per 1000 pediatrics days of follow up. This finding is lower than a related study by Ali et al (2018) from Southwest Ethiopia, which reports the incidence of HAIs was 28.15 per 1000 patient days ³⁹. The difference might be associated with the nature of this study which involved only pediatrics patients including those in intensive care; however, a study by Ali et al includes adult study participants. Also, variation in studies could be attributed to differences in geographical locations and the setting of studies (specialized hospital). One previous a before-and-after study conducted in a teaching hospital in Indonesia involving children admitted to the pediatric intensive care unit and pediatric wards reported the incidence density rate of HAI 29.1 per 1000 patient days, which is similar with our finding.36

Our finding has also revealed that the overall cumulative incidence of HAIs was 12.7%; a finding which is comparable to those reported from the United States (11.9%) ³⁷ studies conducted in the pediatric intensive care unit, and (13.3%) in Poland ³⁸. Also, the present 12.7% of HAIs noted in our study population fell in the ranges of 9.8-15.8% reported elsewhere ^{14, 40, 41}, and the WHO pooled estimated for low-income countries 10.1%¹⁸. Conversely, other similar studies from Turkey reported a much higher prevalence of HAIs among children ranging between 22.2 and 68.4% ^{42,43}, and in a multicenter prospective study from Europe reported 18.5%⁴⁴ among pediatric patients.

BMJ Open

The present study also demonstrated that the occurrence of HAIs was higher among male participants (52.6%) than females. This result was also supported by other studies conducted elsewhere ^{40, 45-47}. In the same vein, one study carried out by Koch et al in Norway reported that males present higher overall HAIs prevalence than females⁴⁸.

The most common type of HAI observed in this study was hospital-acquired pneumonia (HAP). which contributed to a proportion of 56.1% of the total HAIs. It may not be a surprise to see such a high proportion of HAI in the NICU and pediatrics ward since most of the patients admitted in intensive care are incapacitated and critical. Moreover, compared to adults, infants and neonates are immunologically immature, and in many cases, vulnerable ^{49,50}. The finding was similar to the study done in Tikur Anbessa Hospital, Ethiopia ³³. It is also true for other settings-in Iran 43.7% ⁵¹, India 50% ⁵², Vietnam 41.9% ⁵³, Morocco 34.5% ⁵⁴, Saudi Arabia 46.7% ⁵⁵, 52.2% China ⁵⁶, and in a European multicenter prospective study 53% ⁴⁴. The high burden of HAP among hospitalized pediatrics patients has an important implication in terms of hospital length of stay, healthcare cost, and mortality. The overall mortality attributed to HAP has been as high as 30 to 50% ⁵⁷. In this study, ventilator-associated pneumonia (VAP) developed in 9.21% [7/76] of children undergoing mechanical ventilation. Our estimate is in line with studies conducted on children, reporting VAP occurs in 3 to 10% of ventilated pediatric ICU patients.^{36,58,59,60}

In this study, the risks of developing HAIs were three times higher among children who stayed longer than or equal to the median six days than their counterparts. Despite this positive association, this is not proof that decreasing the length of stays neither increasing admission days decreased/increase the occurrence of HAIs. Possible revered causation may be one of the mechanisms why this prolonged length of stay is associated with HAIs. Moreover, there is evidence that HAIs cause a prolonged length of stay ⁶¹⁻⁶⁵. In our findings, the presence of underlying diseases such as SAM was recognized as the main risk factor for HAIs. This was consistent with the finding from another study in Ethiopia²⁴ underlying illnesses increased the susceptibility of patients, which predisposed them to infections secondary to the reduction of the patient's immune response that exacerbated the illnesses thru which in many cases had a significant factor that contributed more to the acquisition of HAIs in neonates and pediatric patients 41, 66, 67.

Limitations of the study

Several limitations on this prospective study need to be considered. First, we did not assess the healthcare workers' infection prevention practices that would have been associated with the prevalence of HAIs. Second, the researchers did not examine the number of HAIs after the patients were discharged. Third, despite we followed patient until discharge the full burden of HAI could not be captured in this specific study as our study, was limited to in-hospital assessment only and leaving outpatients who may potentially develop HAI after discharge. Fourth, we focused on a small number of risk factors for hospital-acquired infections; some important variables were not included. Fifth, the used analysis does not take any time-varying risk into account. Finally, we did not use laboratory culture to isolate organisms as a guide in addition to the clinical criteria to confirm the results of HAIs because of financial constraints, laboratory facilities, and expertise. Given the lack of microbiology data, endogenous infections may be misclassified as HAIs. Since the study was conducted in a teaching referral hospital, the generalization of the study findings is limited to these facilities.

Conclusions

The present study revealed that the cumulative incidence of hospital-acquired infections (HAIs) was about 13 per 100 admitted children. And the overall incidence rate of HAIs was 17.75 per 1000 pediatrics days. Length of stay in the hospital and patients with severe acute malnutrition (SAM) conditions were associated with increased risk of hospital-acquired infections. Further studies are strongly recommended to identify other important factors including isolating the bacterial, fungal, and viral agents responsible for HAIs in the region.

310 Acknowledgments

First and foremost, we would like to thank all participants of this study, data collectors, Goba
referral hospital staff, and pediatric ward coordinators. We would like to extend our sincere
gratitude to Madda Walabu University for financial support.

Contributors

Page 15 of 35

BMJ Open

BS has made substantial contributions to conception and design, acquisition of data, analysis, and interpretation of data. He has written the draft manuscript and provided final approval of the version to be published. FS, DA, EN, GN, AK, DW, YT, DZ, and BJEQ has made substantial contributions to design, acquisition of data and analysis, interpretation of data and revised the article critically for important intellectual content and provided final approval of the version to be published. All authors read and approved the final manuscript.

322 Funding

The data collection was supported by Madda Walabu University Research Community
Engagement and Technology Transfer Directorate. The funders had no role in study design, data
collection, and analysis, decision to publish, or preparation of the manuscript. Grant Number:
NA.

Competing interests

328 The authors declare that they have no competing interests.

Ethics approval

Ethical clearance was obtained from the Ethical Review Committee of Madda Walabu University (Ref.No: RMW 14/66/64) and a formal letter from Madda Walabu University Research Community Engagement and Technology Transfer Vice President Office was submitted. Written consent from the parents/ legal guardians was obtained after explaining the objectives of the study. Identified pediatric patients having hospital-acquired infections were formally communicated to the physicians and nurses who were in charge of the patients for additional health care services. Throughout the data collection period, confidentiality and privacy of the patients were observed, and a unique identification code rather than their names were substituted.

3Data sharing statement

340 Data will be available upon request from the corresponding authors.

342 **References**

1 2 3

4 5 6

7 8

9

57 58

59

- Prevention of hospital-acquired infections: a practical guide. Geneva: World Health
 Organization; 2002.
- 10 345 2. Emerson CB, Eyzaguirre LM, Albrecht JS, Comer AC, Harris AD, and Furuno JP.
 12 346 Healthcare-Associated Infection and Hospital Readmission. Infection control and hospital
 13 at7 epidemiology: the official journal of the Society of Hospital Epidemiologists of America.
 15 348 2012;33(6):539-44
- 349 3. Bates DW, Larizgoitia I, Prasopa-Plaizier N, Jha AK. Global priorities for patient safety research. BMJ 2009; 338: b1775.
- 351 4. WHO. WHO Guidelines on Hand Hygiene in Health Care: a Summary. World Health
 352 Organization (WHO). 2009. Geneva, Switzerland,
- 353 5. Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in
 354 Germany: epidemiological data from KISS (the Hospital Infection Surveillance System).
 355 Dtsch Ärztebl Int. 2011; 108(6):87–93.
- ²⁹ 356
 ³⁰ 357
 ³⁵⁷ Countries. The Open Infectious Diseases Journal. 2010; 4:125-131
- 32 33
 358
 358
 358
 359
 360
 360
 37
 380
 390
 391
 391
 391
 391
 392
 393
 393
 394
 394
 395
 394
 395
 396
 396
 397
 398
 398
 399
 399
 390
 390
 391
 391
 391
 391
 391
 392
 393
 394
 394
 395
 396
 396
 396
 396
 397
 398
 398
 398
 398
 398
 399
 399
 390
 390
 390
 390
 390
 391
 391
 391
 391
 391
 391
 391
 391
 391
 392
 392
 393
 393
 394
 394
 394
 394
 395
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 396
 397
 397
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
 398
- 361 8. Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Memish ZA, Al-Mousa HH, Balkhy H,
 37
 38 361 8. Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Memish ZA, Al-Mousa HH, Balkhy H,
 362 Hu B, Alvarez-Moreno C, Medeiros EA, Apisarnthanarak A. International Nosocomial
 363 Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012.
 364 Device-associated module. American journal of infection control. 2014 Sep 1;42(9):942-56.
- 365
 365
 366
 366
 366
 367
 368
 368
 369
 360
 360
 360
 360
 360
 361
 361
 362
 363
 364
 365
 365
 366
 366
 366
 367
 367
 368
 368
 369
 369
 369
 360
 360
 360
 360
 360
 361
 361
 362
 362
 363
 364
 365
 365
 366
 366
 366
 367
 367
 368
 368
 369
 369
 369
 360
 360
 360
 360
 360
 361
 361
 361
 362
 362
 363
 364
 365
 365
 366
 366
 366
 367
 367
 368
 368
 368
 369
 369
 369
 369
 360
 360
 360
 360
 361
 361
 361
 362
 362
 363
 364
 365
 365
 366
 366
 366
 367
 367
 368
 368
 368
 368
 369
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
- 48 367 10. Pittet D, Donaldson L. Clean Care is Safer Care: a worldwide priority. Lancet 2005; 366:
 368 1246-7
- 369 11. Uwaezuoke S, Obu H. Nosocomial infections in neonatal intensive care facilities:
 370 cost-effective control strategies in resource-limited countries. Nigeria Journal of
 371 Pediatrics. 2013; 40(2): 125-132.

60

BMJ Open

1 2		
3	372	12. Allegranzi B, Pittet D. Preventing infections acquired during healthcare delivery. Lancet
5	373	2008; 372: 1719-20
6 7	374	13. Independent Hospital Pricing Authority (AU). Activity Based Funding Admitted Patient Care
8 9	375	2015-16, acute admitted episodes, excluding same day.
10 11	376	14. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of
12	377	healthcare associated infections and antimicrobial use in European acute care hospitals.
13 14	378	Stockholm: ECDC. 2013.
15 16	379	15. Allegranzi B, Bagheri S, Combescure C, Graafmans W, Attar H, Donaldson L et al. Burden
17	380	of Endemic Health Care-Associated Infection in developing countries: Sysetamtic review and
18	381	meta-analysis. Lancet. 2011; 377: 288-241.
20 21	382	16. Shelley S, Walter H, Robyn K, Christine B, Bonnie B, et al. Prevalence of
22 23	383	HealthcareAssociated Infections in Acute Care Hospitals in Jacksonville, Florida. Infection
24 25	384	control and hospital epidemiology.2012; 33(3):283–91
25 26	385	17. Nelson S, Stone PW, Jordan S, Pogorzelska M, Halpin H, Vanneman M, Larson E. Patient
27 28	386	safety climate: Variation in perceptions by infection preventionists and quality directors.
29 30	387	Interdisciplinary perspectives on infectious diseases. 2011;2011.
31	388	18. World health organization (WHO). Infection prevention and control in health care: time for
32 33	389	collaborative action. Regional Committee for the Eastern Mediterranean. EM/RC57/6. WHO.
34 35	390	2010.
36 37	391	19. Nejad SB, Allegranzi B, Syed SB, Ellis B, Pittet D. Health-care-associated infection in
38	392	Africa: a systematic review. Bulletin of the World Health Organization. 2011;89:757-65.
39 40	393	20. Irek EO, Amupitan AA, Obadare TO, Aboderin AO. A systematic review of healthcare-
41 42	394	associated infections in Africa: An antimicrobial resistance perspective. African journal of
43 44	395	laboratory medicine. 2018;7(2):1-9.
45	396	21. Rothe C, Schlaich C, Thompson S. Healthcare-associated infections in sub-Saharan Africa. J
46 47	397	Hosp Infect. 2013;85(4):257–67
48 49	398	22. Zaidi AK, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA. Hospital-acquired
50 51	399	neonatal infections in developing countries. Lancet 2005; 365: 1175-88
52	400	23. Yallew WW, Kumie A, Yehuala FM. Risk factors for hospital-acquired infections in
53 54	401	teaching hospitals of Amhara regional state, Ethiopia: A matched-case control study. PloS
55 56	402	one. 2017 Jul 18;12(7):e0181145.
57 58		16
20		10

BMJ Open

3 ⊿	403	24. Mulu W, Kibru G, Beyene G, Damtie M. Postoperative nosocomial infections and
5	404	antimicrobial resistance pattern of bacteria isolates among patients admitted at Felege Hiwot
6 7	405	Referral Hospital, Bahirdar, Ethiopia. Ethiopian journal of health sciences. 2012;22(1):7-18.
8 9	406	25. Gedebou M, Habte-Gabr E, Kronvall G, Yoseph S. Hospital-acquired infections among
10	407	obstetric and gynaecological patients at Tikur Anbessa hospital, Addis Ababa. J Hosp Infect.
12	408	1988;11(1):50–9.
13 14	409	26. Endalafer N, Gebre-Selassie S, Kotiso B. Nosocomial bacterial infections in a tertiary
15 16	410	hospital in Ethiopia. J Infect Prev. 2011;12(1):38-43.
17	411	27. Feleke T, Eshetie S, Dagnew M, Endris M, Abebe W, Tiruneh M, Moges F. Multidrug-
18 19	412	resistant bacterial isolates from patients suspected of nosocomial infections at the University
20 21	413	of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC research notes.
22	414	2018 Dec;11(1):602.
23	415	28. Amenu D, Belachew T, Araya F. Surgical site infection rate and risk factors among obstetric
25 26	416	cases of Jimma University Specialized Hospital, Southwest Ethiopia. Ethiopian journal of
27 28	417	health sciences. 2011;21(2):91-100.
29	418	29. Melaku S, Gebre-Selassie S, Damtie M, Alamrew K. Hospital acquired infections among
30 31	419	surgical, gynaecology and obstetrics patients in Felege-Hiwot referral hospital, Bahir Dar,
32 33	420	northwest Ethiopia. Ethiopian medical journal. 2012 Apr;50(2):135-44
34 35	421	30. Messele G, Woldemedhin Y, Demissie M, Mamo K, Geyid A. Common causes of
36 27	422	nosocomial infections and their susceptibility patterns in two hospitals in Addis Ababa.
37 38	423	Ethiop J Health Biomed Sci 2009; 2: 3-8.
39 40	424	31. Melaku S, Kibret M, Abera B, Gebre-Sellassie S. Antibiogram of nosocomial urinary tract
41 42	425	infections in Felege Hiwot referral hospital, Ethiopia. African health sciences.
43	426	2012;12(2):134-9.
44 45	427	32. Walelegn W, Abera K, Feleke M (2016). Point prevalence of hospital-acquired infections in
46 47	428	two teaching hospitals of amhara region in Ethiopia. Drug, Healthcare and Patient Safety.
48	429	2016; 8:71-76.
49 50	430	33. Mikyas D, Sileshi L. The Prevalence of Nosocomial Infections and Associated Risk Factors
51 52	431	in Pediatric Patients in Tikur Anbessa Hospital. Ethiopian Journal of Pediatrics and Child
53 54	432	Health. 2008; 5(5):4-16.
55		
50 57		
58 59		17
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 35

1 2 3

4

BMJ Open

5	
6	
7	
8	
0	
ז גע	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
27	
3/	
38	
39	
40	
<u></u> Δ1	
40	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50 E 1	
21	
52	
53	
54	
55	
55	
56	
57	
58	
59	

60

433 34. CDC/NHSN. CDC/NHSN surveillance definition of health care–associated infection and
434 criteria for specific types of infections in the acute care setting. Am Journal Infect Control.
435 2008; 36:309-32.

- 436 35. Joram N, de Saint Blanquat L, Stamm D, Launay E, Gras-Le Guen C. Healthcare-associated
 437 infection prevention in pediatric intensive care units: a review. European journal of clinical
 438 microbiology & infectious diseases. 2012 Oct 1;31(10):2481-90.
- 439 36. Murni IK, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections
 440 and improving the rational use of antibiotics in a developing country: an effectiveness study.
 441 Arch Dis Child. 2015;100:454–459.
- 442 37. Grohskopf LA, Sinkowitz-Cochran RL, Garrett DO, Sohn AH, Levine GL, Siegel JD, Stover
 443 BH, Jarvis WR, Networka PP. A national point-prevalence survey of pediatric intensive care
 444 unit-acquired infections in the United States. The Journal of pediatrics. 2002 Apr
 445 1;140(4):432-8.
- 446 38. Deptuła A, Trejnowska E, Ozorowski T, Hryniewicz W. Risk factors for healthcare447 associated infection in light of two years of experience with the ECDC point prevalence
 448 survey of healthcare-associated infection and antimicrobial use in Poland. Journal of Hospital
 449 Infection. 2015 Aug 1;90(4):310-5.
- 450 39. Ali S, Birhane M, Bekele S, Kibru G, Teshager L, Yilma Y, Ahmed Y, Fentahun N, Assefa
 451 H, Gashaw M, Gudina EK. Healthcare associated infection and its risk factors among
 452 patients admitted to a tertiary hospital in Ethiopia: longitudinal study. Antimicrobial
 453 Resistance & Infection Control. 2018 Dec;7(1):2.
- 454 40. Askarian M, Yadollahi M, Assadian O. Point prevalence and risk factors of hospital acquired
 455 infections in a cluster of university-affiliated hospitals in Shiraz, Iran. Journal of infection
 456 and public health. 2012 Apr 1;5(2):169-76.
- 457 41. Olivier C, Kunneke H, O'Connell N, Von Delft E, Wates M, Dramowski A. Healthcare458 associated infections in paediatric and neonatal wards: A point prevalence survey at four
 459 South African hospitals. South African Medical Journal. 2018;108(5):418-22.
- 460
 460
 42. Teke TA, Tanır G, Bayhan Gİ, Öz FN, Metin Ö, Özkan Ş. Clinical and microbiological features of resistant gram-negative bloodstream infections in children. Journal of infection and public health. 2017 Mar 1;10(2):211-8.

43. Atici S, Soysal A, Kadavifci EK, Karaaslan A, Akkoc G, Yakut N, Demir SÖ, Girgin Fİ, Culha G, Altınkanat G, Öztürk N. Healthcare-associated infections in a newly opened pediatric intensive care unit in Turkey: Results of four-year surveillance. The Journal of Infection in Developing Countries. 2016 Mar 31;10(03):254-9. 44. Raymond J, Aujard Y, European Study Group. Nosocomial infections in pediatric patients a European, multicenter prospective study. Infection Control & Hospital Epidemiology. 2000 Apr;21(4):260-3. 45. Offner PJ, Moore EE, Biffl WL. Male gender is a risk factor for major infections after surgery. Archives of Surgery. 1999 Sep 1;134(9):935-40. 46. Wałaszek M, Kosiarska A, Gniadek A, Kołpa M, Wolak Z, Dobroś W, Siadek J. The risk factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl Epidemiol. 2016;70(1):15-20. 47. Ahmed M, Alam SN, Khan O, Manzar S. Postoperative wound infection: a surgeon's dilemma. Pak J Surg. 2007 Jan;23(1):41-7. 48. Koch AM, Nilsen RM, Eriksen HM, Cox RJ, Harthug S. Mortality related to hospital-associated infections in a tertiary hospital; repeated cross-sectional studies between 2004-2011; 2015. 49. Brady MT. Health care-associated infections in the neonatal intensive care unit. American journal of infection control. 2005 Jun 1;33(5):268-75. 50. Saiman L. Risk factors for hospital-acquired infections in the neonatal intensive care unit. In Seminars in perinatology. 2002 Oct 1; 26(5):315-321. 51. Behzadnia S, Davoudi A, Rezai MS, Ahangarkani F. Nosocomial infections in pediatric population and antibiotic resistance of the causative organisms in north of iran. Iranian Red Crescent Medical Journal. 2014 Feb;16(2). 52. Singh S, Chaturvedi R, Garg SM, Datta R, Kumar A. Incidence of healthcare associated infection in the surgical ICU of a tertiary care hospital. Medical journal armed forces India. 2013 Apr 1;69(2):124-9. 53. Thu TA, Hung NV, Quang NN, Archibald LK, Harun-Or-Rashid M, Sakamoto J. A point-prevalence study on healthcare-associated infections in Vietnam: public health implications. Infection Control & Hospital Epidemiology. 2011 Oct;32(10):1039-41.

4 5

6

BMJ Open

7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
11	
40	
42	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
ъŏ	
59	

60

493 54. Razine R, Azzouzi A, Barkat A, Khoudri I, Hassouni F, Chefchaouni AC, Abouqal R. 494 Prevalence of hospital-acquired infections in the university medical center of Rabat, 495 Morocco. International archives of medicine. 2012 Dec;5(1):26.

- 496 55. Balkhy HH, Cunningham G, Chew FK, Francis C, Al Nakhli DJ, Almuneef MA, Memish
 497 ZA. Hospital-and community-acquired infections: a point prevalence and risk factors survey
 498 in a tertiary care center in Saudi Arabia. International journal of infectious diseases. 2006 Jul
 499 1;10(4):326-33.
- 500 56. Le NK, Wertheim HF, Vu PD, Khu DT, Le HT, Hoang BT, Vo VT, Lam YM, Vu DT,
 501 Nguyen TH, Thai TQ. High prevalence of hospital-acquired infections caused by gram 502 negative carbapenem resistant strains in Vietnamese pediatric ICUs: A multi-centre point
 503 prevalence survey. Medicine. 2016 Jul;95(27).
- 504 57. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the
 505 management of adults with hospital-acquired, ventilator-associated, and healthcare 506 associated pneumonia. American journal of respiratory and critical care medicine. 2005 Feb
 507 15;171(4):388.
- 508 58. Almuneef M, Memish ZA, Balkhy HH, Alalem H, Abutaleb A. Ventilator-associated
 509 pneumonia in a pediatric intensive care unit in Saudi Arabia: a 30-month prospective
 510 surveillance. Infection Control & Hospital Epidemiology. 2004;25(9):753-8.
- 511 59. Elward AM, Warren DK, Fraser VJ. Ventilator-associated pneumonia in pediatric intensive
 512 care unit patients: risk factors and outcomes. Pediatrics. 2002;109(5):758-64.
- 513 60. Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and pediatric
 intensive care unit patients. Clinical microbiology reviews. 2007;20(3):409-25.
- 515 61. Sarvikivi E, Kärki T, Lyytikäinen O, Finnish NICU Prevalence Study Group. Repeated
 516 prevalence surveys of healthcare-associated infections in Finnish neonatal intensive care
 517 units. Journal of Hospital Infection. 2010 Oct 1;76(2):156-60.
- 518 62. Sangrasi AK, Leghari AA, Memon A, Talpur AK, Qureshi GA, Memon JM. Surgical site
 519 infection rate and associated risk factors in elective general surgery at a public sector medical
 520 university in Pakistan. International wound journal. 2008 Mar;5(1):74-8.
- 521 63. Khaleid M, Haleim A, Zein K. ET: surgical site infections and associated risk factors in 532 Egyptian orthopedic patients. J Am Sci. 2010;6(7):272-80.

64. Arefian H, Hagel S, Fischer D, Scherag A, Brunkhorst FM, Maschmann J, Hartmann M. Estimating extra length of stay due to healthcare-associated infections before and after implementation of a hospital-wide infection control program. PloS one. 2019 17;14(5):e0217159.

- 65. Zhou Q, Fan L, Lai X, Tan L, Zhang X. Estimating extra length of stay and risk factors of mortality attributable to healthcare-associated infection at a Chinese university hospital: a multi-state model. BMC Infectious Diseases. 2019 Dec 1;19(1):975.
- 66. Shahunja KM, Ahmed T, Faruque AS, Shahid AS, Das SK, Shahrin L, Hossain MI, Islam MM, Chisti MJ. Experience with nosocomial infection in children under 5 treated in an urban diarrheal treatment center in Bangladesh. Global pediatric health. 2016 Mar 4;3:2333794X16634267.

67. Dramowski A, Whitelaw A, Cotton MF. Burden, spectrum, and impact of healthcare-associated infection at a south African children's hospital. Journal of Hospital Infection. 2016 Dec 1;94(4):364-72.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

538 Table 1: Demographic and clinical characteristics of patients who participated in the study

539 in Goba Referral Hospital, southeast Ethiopia 2019 (n=448)

Variables	Category	n (%)
Patient age,		
Median (IQR): 8 months (2-26		
months)		
Sex	Male	248 (55.4)
	Female	200 (44.6)
Ward	Neonatal Intensive Care Unit (NICU)	201 (44.9)
	Pediatrics	247 (55.1)
Resident	Urban	129 (28.8)
	Rural	319 (71.2)
Previous Hospitalization ^a	Yes	46 (10.3)
	No	402 (89.7)
Mechanical Ventilation	Yes	76 (17.0)
	No	372 (83.0)
Presence of peripheral	Yes	430 (96.0)
intravenous (IV) catheter ^b	No	18 (4.0)
Presence of Urinary Catheters	Yes	9 (2.0)
, second s	No	439 (98.0)
Drainage Tube Inserted ^c	Yes	53 (11.8)
C	No	395 (88.2)
Underlying Severe acute	Yes	54 (12.1)
malnutrition (SAM) Diseases ^d	No	394 (87.9)
Surgery After Admission	Yes	47 (10.5)
	No	401 (89.5)
Patient Received	Yes	171 (38.2)
Antimicrobials ^e	No	221 (49.3)
	Unknown	56 (12.5)
Severe Anemia	Yes	41 (9.2)
	No	375 (83.7)
	Unknown	32 (7.1)
Hospital Duration (median day)	≤ 6	237 (52.9)
	> 6	211 (47.1)
HIV status	Positive	2 (0.4)
	Negative	393 (87.7)
	Not tested	53 (11.8)
American Society of	Normally health patient	72 (16.1)
Anesthesiology (ASA)	Patient with mild systemic diseases	235 (52.5)
Classification	Severe systemic disease that is not	100 (22.3)
	incapacitating	
	Incapacitating systemic diseases that is a	36 (8.0)
	constant threat to life	

	Unknown	5 (1.1)
Gestational age (n=191)	< 37 weeks	83 (43.5)
	\geq 37 weeks	108 (56.5)
Birth weight (n=191) ^f	< 2500gm	46 (24.1)
	\geq 2500 gm	145 (75.9)

^a History of the previous hospitalization for either the same as the current reason of admission or

other ailments within the last 30 days

- ^bPeripheral intravenous (IV) catheter: A peripheral intravenous (IV) catheter is inserted into
- small peripheral veins to provide access to administer IV fluids and medications.
- ^CDrainage tube: insertion of a chest tube, endotracheal, and nasogastric (NG) intubation.
 - ^d Severe acute malnutrition (SAM) diagnosed at the time of hospital admission.
- ^e The use of antimicrobials before admission either through intravenous (IV), intramuscular (IM)
- or oral (PO) administration.

^fAny neonate weighting less than 2500 gm at birth irrespective of gestational age was considered 2500 5

low birth weight (LBW).

	Hospital-acquired infections	Number	Proportion	95% CI
	Pneumonia/ Lower Respiratory Tract Infections/ ^a	32	56.1	43.9-68.
	Late-Onset Neonatal Sepsis	6	10.5	3.5-19.3
	Intravenous Line (IV) Site Infections	5	8.8	1.8-15.8
	Urinary Tract Infections	4	7.0	1.8-14.0
	Systemic Infections	4	7.0	1.8-14.0
	Skin/Soft Tissue Infections	2	3.5	0.0-8.8
	Measles	2	3.5	0.0-8.8
	Early Onset Neonatal Sepsis	1	1.8	0.0-5.3
	Surgical Site Infections	1	1.8	0.0-7.0
5				

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	/
3	8
3	9
4	1
4	ן ר
4	2
4	3 1
4	4 5
- 4	Э

Table 3: Bi-variate association of factors for the occurrence of hospital-acquired infections

among pediatric patients in Goba Referral Hospital, southeast Ethiopia 2019 (n=448)

Variables	Category Presence		e of HAIs	Crude RR	
		Yes (57) No (391)			
Sex	Male	30	218	0.88(0.55-1.45)	
	Female	27	173	1	
Age (months)	1-12	33	252	0.78(0.48-1.28)	
,	>12	24	139	1	
Residence	Urban	12	117	0.65(0.36-1.20)	
	Rural	45	274	1	
Hospital Duration	≤ 6	17	220	1	
(median day)	> 6	40	171	2.64(1.54-4.51)*	
Admission Unit	NICU	27	174	1.10(0.68-1.79)	
	Pediatrics	30	217	1	
Patient Received	Yes	17	154	1	
Antimicrobials	No	27	194	1.22(0.69-2.17)	
	Unknown	13	43	2.33(1.21-4.50)*	
Previous	Yes	7	39	1.22(0.58-2.53)	
Hospitalization	No	50	352	1	
Mechanical Ventilation	Yes	12	64	1.30(0.68-2.71)	
	No	45	327	1	
Presence of Urinary	Yes	2	7	1.77(0.50-6.17)	
Catheters	No	55	384	1	
Drainage Tube Inserted	Yes	14	39	2.42(1.42-4.12)*	
0	No	43	352	1	
Severe acute	Yes	13	41	2.15(1.24-3.73)*	
malnutrition (SAM)	No	44	350	1	
Surgery After	Yes	4	43	0.64(0.24-1.69)	
• • •	NT	52	3/18	1	

RR: Risk Ratio; * p-value< 0.05 (Crude)

562	Table 4: Multivariable logistic regression analysis on factors associated with hospital-
563	acquired infections among patients in Goba Referral Hospital, southeast Ethiopia 2019
564	(n=448)* [†]

Variables	Category	Patient with HAIs (n=57)	Adjusted RR	Attributable Risk (AR) ^a
Hospital Duration	≤ 6	17	1	
-	> 6	40	2.58(1.52-4.38)**	0.12
Patient Received	Yes	17	1	
Antimicrobials	No	27	1.25(0.71-2.19)	
	Unknown	13	1.93(0.84-4.42)	
Drainage Tube Inserted	Yes	14	1.77(0.88-3.54)	
-	No	43	1	
Severe acute	Yes	13	2.83(1.61-4.97)**	0.13
malnutrition (SAM)	No	44	1	

*Hosmer and Lemeshow Test (p=0.166); RR: Risk Ratio; ** p-value < 0.05 (adjusted)

[†]Adjusted for age, sex, admission unit, mechanical ventilation, and presence of a urinary catheter

⁵⁶⁷ ^aAttributable risk is the difference between the risk HAIs in the exposed group and the

568 unexposed group.

570 Figure Legends

571 Figure 1: Bar graph showing the age distribution of study participants by sex.

572 Figure 2: Bar graph showing the type of HAIs by type of admission ward.

tor beet terien only

574	Additional Files
575	S1 File: English version of the survey questionnaire
575 576	S1 File: English version of the survey questionnaire
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	575

BMJ Open

 Frequency

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 31 of 35

BMJ Open

1.	Patient ID/CODE
2.	Ward Bed number
3.	Age
1.	Sex
5.	Residence A. Urban B. Rural
5.	Reason for admission/Dx at the time of admission
	0
7.	Complete admission diagnoses
3.	Date of admisstion
).	Patient health condition at the time of admission
	~
	\bigcirc
10.	. Is there any other localized infection? Yes No
11.	. If yes, type of treatment given
12.	Previous hospitalization Yes No
13.	. If yes for question 14:
	a. Place (including ward)
	b. Time (month/year)
	c. Duration
14.	. Previous antibiotic use for the current illness A. Yes B. No
15.	. If yes for question 15, specify
16	. If yes for question 15, for how many days?days
17.	. Being on mechanical ventilator? A. Yes B. No
18.	. Presence of intravenous line? A. Yes B. No
19.	. Presence of urinary catheters? A. Yes B. No
20.	In yes, for now long

BMJ Open

If yes, for how long	
22. Indication for drainage	
23. Presence of invasive medical devices? A. Yes	B. No
24. If yes for questions 20,21,22,26 (more than one ans	wer is possible)
A. Endotracheal tube? A. YesB. 1	No
B. NGT A. Yes B. 2	No
C. Chest tube A. YesB.	No
25. Peripheral intravenous line (IV) catheter A. Yes	B. No
26. Insertion of a urinary catheter A. Yes	B. No
27. Intubation A. Yes B. No	
28. Underlying diseases? A. Yes B. No	
29. If yes, underlying diseases (more than one answer i	s possible)
i. Diabetes mellitus vi. Cardiac disorders	
ii. Chronic renal failure vii. Severe malnutrition	n (SAM)
iii. Hypertension viii. TB	
iv. Chronic liver disease ix. Cancer	
v. HIV/AIDS x. Others (specify)	
30. Surgery since admission A. Yes B. N	0
31. Surgical procedure done? A. Yes B. N	Vo
If yes for question 36,	
A. Type of surgery A. Elective	B. Emergency
B. Type of the procedure	
C. Date Time	
D. Duration of the surgery	hours
E. Type of surgical wound A. Clean B. Cl	ean contaminated C. Contan
Dirty	
32. Antibiotic prophylaxis given? A. Yes	B. No
If yes for Q36, specify/name of antibiotic	
If yes for Q36, how many doses?	
33. Duration of stay hospital stay in days	

A. Yes B. No C.	Unknown/not tested	
35. Immune deficiency A. YesB. No	C. Unknown/not tested	C < A
30. Nutritional status wAZ score (weight-for-a)	ge Z score) $A. > -3$ B. $-3 104$	C.<-4
A Non Fatal diseases		
 A. Iton-Fatal diseases B. Elltimately fatal diseases 		
C Rapidly fatal diseases		
D. Unknown		
38. American Society of Anesthesiology (ASA)	classification	
a. Normally health patient		
b. Patient with mild systemic diseases		
c. Patient with severe systemic disease	that is not incapacitating	
d. Patient with incapacitating systemic	diseases that is a constant threat	t to life
e. Unknown		
39. HIV status A. Reactive B. Non-reactive C.	Unknown	
40. Presence of HAIs based on CDC definition:		
	12	
41. Type of HAIs:	0,	
	1	
Name of data collectors :	Signature	
	<u> </u>	
Name of supervisor	Signature	

 BMJ Open

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants. 	6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	NA
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	NA
		case-control study—It applicable, explain now matching of cases and controls was addressed	

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	NA
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	9-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion	•		
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other information	1	•	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	13

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
BMJ Open

Incidence and risk factors for hospital-acquired infection among pediatric patients in a teaching hospital: a prospective study in southeast Ethiopia

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-037997.R2
Article Type:	Original research
Date Submitted by the Author:	10-Nov-2020
Complete List of Authors:	Sahiledengle, Biniyam; Madda Walabu University, Public Health Seyoum, Fekadu; Madda Walabu University, Department of Pediatrics Abebe, Daniel; Madda Walabu University, Department of Pediatrics Geleta, Eshetu; Madda Walabu University, Department of Medical Laboratory Science Negash, Getahun; Madda Walabu University, Department of Medical Laboratory Science Kalu, Abdurhaman; Madda Walabu University, Public Health Woldeyohannes, Demelash; Madda Walabu University, Public Health Tekalegn, Yohannes; Madda Walabu University, Public Health Zenbaba, Demisu; Madda Walabu University, Public Health Edward Quisido, Bruce John ; Madda Walabu University, Department of Nursing
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Epidemiology, Infectious diseases, Paediatrics
Keywords:	PAEDIATRICS, NEONATOLOGY, PUBLIC HEALTH, EPIDEMIOLOGY, Infection control < INFECTIOUS DISEASES, Paediatric intensive & critical care < INTENSIVE & CRITICAL CARE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
γ Ω	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
 ⊃⊿	
24 25	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
00	

Incidence and risk factors for hospital-acquired infection 1 among pediatric patients in a teaching hospital: a 2 prospective study in southeast Ethiopia 3 Biniyam Sahiledengle^{1*}, Fekadu Seyoum², Daniel Abebe², Eshetu Nigussie Geleta³, Getahun 4 5 Negash³, Abdurhaman Kalu¹, Demelash Woldeyohannes¹, Yohannes Tekalegn¹, Demisu Zenbaba¹, Bruce John Edward Quisido⁴ 6 ¹Madda Walabu University, School of Health Science, Department of Public Health, Bale-Goba, 7 8 Ethiopia ²Madda Walabu University, School of Medicine, Department of Pediatrics, Bale-Goba, Ethiopia 9 ³Madda Walabu University, School of Medicine, Department of Medical Laboratory Science, 10 Bale-Goba, Ethiopia 11 ⁴Madda Walabu University, School of Medicine, Department of Nursing, Bale-Goba, Ethiopia 12 dl. *Corresponding author 13 Email: biniyam.sahiledengle@gmail.com 14 ORCID iD: https://orcid.org/0000-0002-1114-4849 15

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
-+U / 1	
41	
42	
43	
44	
45	
46	
47	
<u>4</u> 8	
40	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	

17 Abstract

Objectives: In order to maximize the prevention of hospital-acquired infections (HAIs) and antimicrobial resistance, data on the incidence of HAIs are crucial. In Ethiopia, data about the occurrence of HAIs among hospitalized pediatric patients are lacking. We aim to determine the incidence and risk factors of hospital-acquired infections among pediatric patients in Ethiopia.

- **Design**: A prospective cohort study
- 23 **Setting:** A teaching hospital in southeast Ethiopia

Participants: 448 hospitalized pediatric patients admitted between November 1, 2018 and
June 30, 2019.

Primary and secondary outcome measures: Incidence and risk factors of hospital acquired infections.

Results: A total of 448 pediatric patients were followed for 3,227 patient days. The median age of the patients was 8 months (interquartile range (IQR): 2-26 months). The incidence rate of hospital-acquired infections was 17.7 per 1000 pediatrics days of follow up; while the overall cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. Children who stayed greater than 6 days in the hospital (median day) [adjusted RR: 2.58, 95%CI (1.52-4.38)], and children with underlying disease conditions of severe acute malnutrition [adjusted RR: 2.83, 95% CI (1.61-4.97)] had higher risks of developing hospital-acquired infections.

Conclusions: The overall cumulative incidence of hospital-acquired infections was about 13 per 100 admitted children. Length of stay in the hospital and underlying conditions of severe acute malnutrition were found to be important factors associated with increased risk of hospitalacquired infections.

39 **Keywords**: Nosocomial infection, Hospital-acquired infection, Pediatric patients, Ethiopia

41 Strengths and limitations of this study

- To the best of our knowledge, this is the first prospective study that examines the incidence and risk factors of hospital-acquired infections (HAIs) among pediatric patients in Ethiopia.
- We did not use laboratory culture to isolate organisms as a guide in addition to the clinical criteria to confirm the results of HAIs-which could have affected our results.
- In this study, we focused on a small number of risk factors for hospital-acquired • ιe importa.. infections; some important variables were not included, as well.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

50 Introduction

There is a "perfect storm" on hospital-acquired infections (HAIs) among hospitalized patients at any point in time throughout the globe. HAI is defined as an infection occurring in a patient during the process of care in a hospital or other healthcare facilities that is not manifested or incubating at the time of admission¹. Currently, it is a growing public health problem which concerns both the medical and the general community, and a rising issue for patient safety and quality of care in every level²⁻⁸. A study by Sheng et al. reported that 80% of hospitalized patient deaths were linked to nosocomial infection (NI)⁹. Available evidences also showed that financial burden, increased resistance of microorganisms to antimicrobials, prolonged hospital stay, and sometimes deaths, are caused by HAIs ^{10, 11, 12}.

Worldwide, it is estimated that hundreds of millions of patients every year in both developed and developing countries are affected by HAIs⁷. In some Australian public hospitals, HAIs affect one in every 74 hospitalizations¹³. In Europe, the total annual number of patients with HAIs in 2011– 2012 was estimated around 3.2 million. The prevalence of patients with at least one HAI in acute care hospitals was 6.0% (country range 2.3%–10.8%)¹⁴. Moreover, throughout Europe, HAIs accounted for 16 million additional days, with total costs estimated at approximately \notin 7 billion^{14,15,16}. In the United States, approximately two million patients developed HAIs, and nearly a hundred thousand of these patients were estimated to die annually. This ranked HAIs as the fifth leading cause of death in acute care hospitals, and the risk of acquiring infection is 2 -20 times higher in some developing countries^{17,18}.

In some developing countries, the magnitude of HAIs remains underestimated and uncertain¹². There is little information available on the epidemiology of HAIs in African countries ^{19,20}. Although data are sparse, evidence suggested that HAIs are considerably adding to the available high burden of infections in some sub-Saharan African countries²¹. A systematic review by Nejad et al reported that hospital-wide HAI prevalence in Africa varied between 2.5% and 14.8%. This review has shown that published studies were only conducted in 10 African countries – emphasized there were paucities of information available among the epidemiology of HAIs in many African countries¹⁹. In addition to this, a recent review by Irek et al (2018) indicated that there was a scarcity of studies on HAIs in Africa - of the 35 eligible articles

retrieved, more than half (n = 21, 60%) were from East Africa only ²⁰. In addition, most of the HAIs literatures only focused on adults, and the data on HAIs among the pediatric population in sub-Saharan Africa were hardly available ^{15,19,22}. For example, a systematic review conducted by the World Health Organization (WHO) in the year 2010, identified no reports on pediatric nosocomial bacteremia in some African countries between 1995 and 2008¹⁵.

In Ethiopia, little is known about the incidence and prevalence of HAIs in the neonatal and pediatric populations. Moreover, previously conducted studies focused only on adults, and many of these were limited to surgical site infections ²³⁻²⁸, with an estimated prevalence of 10.9% ²⁴ to 66.5% ²⁷. The overall cumulative incidence was 35.8 per 100 patients²⁶. Furthermore, urinary tract and bloodstream infections were found to be the commonest forms of HAIs in Ethiopia ²⁹⁻³³. Surgery after admission ^{23,26}, underlying medical conditions^{23,25}, patients with catheters ^{23,25,26}, patient on mechanical ventilators²⁶, immune-deficient patients ^{23,25}, patients age ^{26,32,33}, hospital types ³², the types of ward, and prolonged hospitalizations³³ were found to be important factors associated with increased risks of HAIs in Ethiopia.

Up to date, there are no surveillance programs at the regional or national levels which targeted HAIs in Ethiopia. The available evidence on HAIs in the country was originated from primary studies. Moreover, to the best of our knowledge, there is not a single published report on the incidence and risk factors of HAIs among pediatric patients in Ethiopia. In order to maximize the prevention of hospital-acquired infections (HAIs) and antimicrobial resistance in Ethiopia, epidemiological data on the incidence of HAIs are crucial because without a valid and precise assessment of HAIs, the problem remains unnoticed. Therefore, this study was designed to determine the incidence and risk factors of HAIs among pediatric patients in Goba Referral Hospital, Southeast Ethiopia. The current study will help policymakers to improve their decision makings and inputs for healthcare professionals, for the improvement of patient care.

104 Methods

105 Study design and setting

A hospital-based prospective follow up study was conducted from November 1, 2018, to June 30, 2019, at Madda Walabu University Goba Referral Hospital, Southeast Ethiopia. Goba Referral Hospital is the only referral and teaching hospital in the Bale zone, serving over 1,787,575 million people. Goba Referral Hospital is located 445 km far from the capital city of Ethiopia. According to the 2018 annual report of Goba Referral Hospital, the average outpatient flow is over 96,661, and the annual admission is over 7,886 patients, of which 1,335 were admitted in the pediatrics ward and Neonatal Intensive Care Unit (NICU). The hospital has a total of 127 inpatients beds – of which 30 and 15 are in the pediatric ward and NICU, respectively.

115 Study population and eligibility criteria

All patients (age less than 18 years) admitted to the pediatric ward and neonatal intensive care unit (NICU) were enrolled, and those who at least stayed for 48 hours, were eligible for the study. Enrolled patients who showed signs of infections and/or symptoms of infection within the first 48 hours were excluded from the study.

120 Data collection procedures

Firstly, consent was sought from each of the child's parent/guardian before commencing any study procedures. On admission, all children were evaluated clinically to exclude community-acquired infections by a pediatrician. Afterwards, socio-demographic and clinical data were collected through a structured questionnaire using individual patient chart investigation approach-accordingly-a detailed clinical history of patients were taken and recorded. Patients with no new signs or symptoms of infection after the first 48 hours from admission were included and followed prospectively for the development of HAIs during their stay in the hospital. Data were collected from enrolled patients on a daily basis: children were followed by a pediatrician daily, charts were reviewed, and discussions with nurses and physician caring for the

patients were held. HAIs were confirmed by senior pediatrician specialists working in the
respective NICU and pediatrics ward (Figure 1).

Data were collected by trained physicians and one pediatrician. The Center for Diseases Control and Prevention (CDC)/ National Health Care Safety Network (CDC/NHSN) Surveillance Definition for hospital-acquired infections was used³⁴. In this study, the usage of any antimicrobials and information on the use of different medical devices at the time of hospital admission and before the diagnosis of HAIs were recorded, respectively (S1 File).

137 Data quality control

The data collection tool was adapted from different related pieces of literatures based on the available evidences of HAIs^{1,23,26,32}. To ensure the quality of data, the data collection tool was pre-tested before the data collection period. The training was given for data collectors on the study procedures, and with practical exercise sessions. Data collection was closely supervised by a principal investigator, and the collected data were checked for completeness, accuracy, and consistency. In order to minimize the potential effects of confounder variables, multivariable logistic regression model was used, and analyses were adjusted to known confounder, such as age. In addition, the researchers try to reduce selection bias by including all admitted patients in our follow ups. Moreover, to reduce the effect of observer bias the data collectors have no preconceived expectations of what they should find in an examination.

Operational definition

Hospital-Acquired Infection (HAI) – a localized or systemic condition that results from an
 adverse reaction in the presence of an infectious agent or its toxin, and occurring 48 hours or
 longer after hospital admission, which was not incubating at the time of admission ^{14,19,23,26,32 34}

152 Severe Anemia - haemoglobin <50 g/L (for patients older than 28 days) or haemoglobin <90 g/L
153 (for neonates)

Late-onset neonatal sepsis: Infection occurring after birth, but excluding infections known to
 have been transmitted across the placenta.

56 156 Study variables

Page 9 of 37

BMJ Open

The outcome variable of the study was the occurrence of hospital-acquired infections (HAIs). The presence of HAIs were confirmed when the patients met the criteria for signs and symptoms determined by the Center for Disease Control and Prevention³⁴, wherein, the independent variables included: socio-demographic characteristics (age of the child, sex, place of residence, and previous hospitalization), and clinical and other related variables (duration of hospitalization, insertion of a urinary catheter, presence of peripheral intravenous (IV) catheter, received anti-microbial, American Society of Anesthesiology (ASA) classification, intubation, surgery after admission, underline disease-refers to Severe acute malnutrition (SAM) presented at the time of admission, mechanical ventilator, and HIV status).

Data processing and analysis

Data were entered into Epi-data version 3.1 and exported to STATA version 14 statistical software for further analysis. Descriptive statistics were computed to present the frequency distribution of important variables. The cumulative incidence (incidence proportion) was calculated as the number of new HAIs cases per person in the population over a defined period of time; and it is the probability of developing HAIs over a stated study period (8 months). We estimated the incidence rate as the number of HAIs cases per unit of time, and the denominator represents the total amount of time "at-risk" without experiencing HAIs for all children whom were being followed for 8 months. The incidence rate of HAIs was reported per 1000 patient days. Multivariable logistic regression was used to identify factors with an increased risk of HAIs. Variables, that were assumed confounders based on their statistical significant result in the bivariate analysis, were included in the multivariable model. An adjusted risk ratio (ARR) with a 95% confidence interval (CI) was used to determine the strength of association. A p-value < 0.05was used to declare statistical significances. Multicollinearity diagnosis was performed between categorical variables by looking at values of variance inflation factors (VIF). The final model fitness was assessed by using the Hosmer-Lemeshow goodness of fit test.

Patient and public involvement

Patients and the public were not involved in the planning, designing, and interpreting these data analyses.

Results

187 Socio-demographic characteristics of the study participants

A total of 487 pediatrics patients were enrolled in this study. However, 39 pediatric patients showed signs of infections and/or symptoms of the infection within the first 48 hours, and were excluded from the study. The remaining 448 pediatric patients were followed up for the occurrence of HAIs until their hospital discharge, referred to other healthcare facilities, or death. Of the total patients included in the study, 201 (44.9%) were from the neonatal intensive care unit (NICU), and the rest were from the pediatrics ward. Two hundred forty-eight (55.4%) of the study participants were male with an overall male-to-female ratio of 1.24: 1. Also, the median age of the participants was 8 months (interguartile range (IOR): 2-26 months). In addition, the age distribution of the study participants by sex was presented in Figure 2. Moreover, three hundred and ninety (71.2%) of the study participants were from rural areas. The median hospital stay of the patients was 6 days (IQR: 3-9 days), and among them, 24 (5.4%) died. The overall incidence density rate of the admitted pediatrics mortality was 7.44 per 1000 pediatrics days of follow ups (Table 1).

³²₃₃ 201 Clinical characteristics of patients

In this study, 46 (10.3%) of the participants had histories of previous hospitalizations within the last 30 days. Fifty-four, (12.1%) of the children were diagnosed with severe acute malnutrition (SAM) at the time of their admission. Severe anemia was reported among 41 (9.2%) respondents. Overall, one hundred and seventy-one (38.2%) patients received antimicrobials at the time of the study (**Table 1**).

⁴³₄₄ 207 **Incidence and type of hospital-acquired infection**

During the study period, 448 pediatric patients were followed for a total of 3,227 patient days. A total of 57 patients experienced HAIs, and none of the study participants were identified with more than one episode of HAIs. The mean time of diagnosis of HAIs in Goba Referral Hospital is 7.20 (95% CI: 6.72, 7.66) patient days. The overall incidence rate of HAIs was 17.7 per 1000 pediatrics days of follow ups, while the cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. The mean length of stay for the infected pediatric patients was 11.5 days (95% CI: 9.5-13.4), while it was lower for the remaining patients, at 6.5 days.

Page 11 of 37

BMJ Open

Table 2 illustrates the proportion of HAIs among the pediatrics patients in Goba Referral Hospital. Hospital-acquired pneumonia was the commonest type of HAI which was observed among the pediatrics patients with a proportion of 56.1% (95%CI: 43.9-68.4), followed by lateonset neonatal sepsis 10.5% (95%CI: 3.5-19.3), and the least HAI observed were early onset of neonatal sepsis and surgical site infections, with an overall proportion of 1.8% each. In this study, the stratification of the types of HAIs by ward of admission revealed significant variability (p-value= 0.007) (**Figure 3**).

223 Risk factors of hospital-acquired infections

Table 3 showed the risk factors of HAIs among the pediatric patients in Goba Referral Hospital.
 Bivariate analysis of risk ratio has indicated that hospital duration (> 6 days), patients whom
 received antimicrobial medications, presence of drainage tubes, and children diagnosed for
 SAM, were predisposed to HAIs.

In the adjusted model, the risk of HAIs was 2.58 times more likely to be higher among children who stayed longer than or equal to 6 days (median day) than those who stayed less [adjusted RR: 2.58, 95%CI (1.72-4.38)]. Patients with SAM conditions had 2.83 times higher risks of developing HAIs compared to its counterparts [adjusted RR: 2.83, 95% CI (1.61-4.97)]. Sociodemographic and some clinically related confounders could not show any statistically significant associations (**Table 4**).

In this study, we estimated the attributable risk, which estimates the excess risk of disease in those exposed compared to those non-exposed. The excess occurrence of HAIs among children with underlying SAM diseases attributable to their SAM condition is 13 per 100 (**Table 4**).

Discussion

Hospital-acquired infections (HAIs) are current global challenges that increase morbidities, mortality, and massive economic cost ³⁵⁻³⁹. Yet, there remain limited data on the occurrences of HAIs in hospitalized pediatric patients in Sub-Saharan African, including Ethiopia. This study was designed to determine the incidence and risk factors of HAIs among pediatric patients in a teaching hospital, southeast Ethiopia. The overall incidence rate of HAIs was 17.75 per 1000 pediatrics days of follow up while the cumulative incidence was 12.7% (95% CI: 9.8-15.8) over eight months. Children who stayed longer than the median day (6 days) in the hospital, and children with underlying disease conditions (Severe acute malnutrition), had higher risks of developing HAIs.

In this study, the overall incidence rate of HAIs was 17.7 per 1000 pediatrics days of follow ups. This finding is lower than a related prospective study by Ali et al (2018) from Southwest Ethiopia, which reported an incidence of HAIs of 28.15 per 1000 patient days ³⁹. The difference might be associated with the nature of this study which involved only pediatrics patients including those in intensive care; wheras, the study by Ali et al included adult study participants. Also, variations in some studies could be attributed to differences in geographical locations and the study settings (as in the case of Ali et al where the study they included a specialized hospital). A previous before-and-after study conducted in a teaching hospital in Indonesia involved children whom were admitted to the pediatric intensive care unit and pediatrics ward, reported the incidence density rate of HAI 29.1 per 1000 patient days, which is similar to our findings.³⁶

One of our findings has also revealed that the overall cumulative incidence of HAIs was 12.7%: this is comparable to those reported from a study in the United States (11.9%)³⁷ which was conducted in the pediatric intensive care unit, and (13.3%) in Poland ³⁸. Also, the present 12.7% of HAIs noted in our study population fell in the ranges of 9.8-15.8%, and is reported elsewhere ^{14, 40, 41}, and the WHO pooled estimated for low-income countries 10.1% ¹⁸. Conversely, similar studies from Turkey reported a much higher prevalence of HAIs among children ranging between 22.2 and 68.4% ^{42,43}, and in a multicenter prospective study from Europe reported 18.5% ⁴⁴ among pediatric patients.

The present study also demonstrated that the occurrence of HAIs was higher among male participants (52.6%) than females. This result was also supported by other studies conducted elsewhere ^{40, 45-47}. In the same vein, one study carried out by Koch et al in Norway reported that males present higher overall HAI prevalence than females⁴⁸.

The commonest type of HAI observed in this study was hospital-acquired pneumonia (HAP), which contributed to a proportion of 56.1% of the total HAIs. It may not be a surprise to see such a high proportion of HAI in the NICU and pediatrics ward since most of the patients admitted in intensive care are incapacitated and critical. Moreover, compared to adults, infants and neonates are immunologically immature, and in many cases, vulnerable ^{49,50}. The finding was similar to the study done in Tikur Anbessa Hospital, Ethiopia ³³. It is also true for other settings-in Iran 43.7% ⁵¹, India 50% ⁵², Vietnam 41.9% ⁵³, Morocco 34.5% ⁵⁴, Saudi Arabia 46.7% ⁵⁵, 52.2% China ⁵⁶, and in a European multicenter prospective study 53% ⁴⁴. The high burden of HAP among hospitalized pediatrics patients has important implications in terms of hospital length of stay, healthcare cost, and mortality. The overall mortality attributed to HAP has been as high as 30 to 50% ⁵⁷. In this study, ventilator-associated pneumonia (VAP) developed in 9.21% [7/76] of children who underwent mechanical ventilation. Our estimate is in line with studies conducted on children reporting VAP, which occurred occurs in 3 to 10% of ventilated pediatric ICU patients.36,58,59,60

In this study, the risk of developing HAIs was three times higher among children who stayed longer than or equal to the median six days than their counterparts. Despite this positive association, this is not a proof that decreasing the length of stay neither increasing admission days increase/decrease the occurrence of HAIs. Possible revered causation may be one of the mechanisms why this prolonged length of stay is associated with HAIs. Moreover, there is evidence that HAIs cause a prolonged length of stay ⁶¹⁻⁶⁵. In our findings, the presence of underlying diseases, such as SAM, was recognized as the main risk factor for HAIs. This was consistent with the finding from another study in Ethiopia²⁴, that underlying illnesses increased the susceptibility of patients, and predisposed them to infections secondary to the reduction of the patient's immune response that exacerbated the illnesses thru which in many cases, had significant factors that contributed more to the acquisition of HAIs in neonates and pediatric patients 41, 66, 67.

299 Limitations of the study

Several limitations on this prospective study needed to be considered. First, we did not assess the healthcare workers' infection prevention practices that would have been associated with the prevalence of HAIs. Second, the researchers did not examine the number of HAIs after the patients were discharged. Third, despite that we followed the patients until their discharge, the full burden of HAI could not be captured in this specific study, and is limited to in-hospital assessment only, leaving outpatients whom may have potentially developed HAIs after discharge. Fourth, we focused on a small number of risk factors for hospital-acquired infections and some important variables were not included. Fifth, the used analysis does not take any time-varying risk into account. Sixth, since there were limited information on the patients' medical record folders more social determinant variables were not collected. In addition, this study is not free from the effects of information bias as we are not utilized 'blinding'. Another limitation of the study is that we could not adjust the results for the effect of social determinant variables on HAIs because the information on these social determinant variables was not collected in our study. Finally, laboratory cultures to isolate organisms as a guide were not utilized in addition to the clinical criteria to confirm the results of HAIs because of financial constraints, laboratory facilities, and expertise. Given the lack of microbiology data, endogenous infections may be misclassified as HAIs. Since the study was conducted in a teaching referral hospital, the generalization of the study findings was limited to these facilities.

318 Conclusions

The present study revealed that the cumulative incidence of hospital-acquired infections (HAIs) was 13 per 100 admitted children. And the overall incidence rate of HAIs was 17.75 per 1000 pediatrics days. Length of stay in the hospital and patients with severe acute malnutrition (SAM) conditions were associated with increased risk of hospital-acquired infections. Further studies are strongly recommended to identify other important factors including isolating of bacterial, fungal, and viral agents responsible for HAIs in the region.

325 Acknowledgments

BMJ Open

First and foremost, we would like to thank all the participants of this study, data collectors, Goba Referral Hospital staff, and pediatrics ward coordinators. Also, we would like to extend our sincere gratitude to Madda Walabu University for the financial support.

Contributors

BS has made substantial contributions to conception and design, acquisitions of data, analysis, and interpretation of data. He has written the draft manuscript and provided final approval of the version to be published. FS, DA, ENG, GN, AK, DW, YT, DZ, and BJEQ has made substantial contribution's as well, to design, acquisition of data and analysis, interpretation of data, and revisions of the the article, critically for important intellectual content and provided final approval of the version to be published. All authors read and approved the final manuscript.

Funding

The data collection was supported by Madda Walabu University Research Community Engagement and Technology Transfer Directorate. The funders had no role in study the design, data collection, and analysis, decision to publish, or preparation of the manuscript. Grant Number: NA.

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Ethical clearance was obtained from the Ethical Review Committee of Madda Walabu University (Ref.No: RMW 14/66/64) and a formal letter from Madda Walabu University Research Community Engagement and Technology Transfer Vice President Office was submitted. Written consents from the parents/ legal guardians were obtained after explaining the objectives of the study. Identified pediatric patients having hospital-acquired infections were formally communicated to the physicians and nurses who were in charge of the patients for additional health care services. Throughout the data collection period, confidentiality and privacy of the patients were observed, and a unique identification code rather than their names were substituted.

354 Data sharing statement

355 Data will be available upon request from the corresponding authors.

tor oper text. New Markey

4 5 6

7 8

9

57 58

59

60

357 **References**

- 358 1. Prevention of hospital-acquired infections: a practical guide. Geneva: World Health
 359 Organization; 2002.
- 10
 10
 11
 12
 13
 14
 15
 16
 2. Emerson CB, Eyzaguirre LM, Albrecht JS, Comer AC, Harris AD, and Furuno JP. Healthcare-Associated Infection and Hospital Readmission. Infection control and hospital epidemiology: the official journal of the Society of Hospital Epidemiologists of America. 2012;33(6):539-44
- 364 3. Bates DW, Larizgoitia I, Prasopa-Plaizier N, Jha AK. Global priorities for patient safety
 365 research. BMJ 2009; 338: b1775.
- 366
 ²⁰ 21
 ²⁰ 366
 ²¹ 367
 ²² 367
 ²³ WHO. WHO Guidelines on Hand Hygiene in Health Care: a Summary. World Health Organization (WHO). 2009. Geneva, Switzerland,
- 368 5. Geffers C, Gastmeier P. Nosocomial infections and multidrug-resistant organisms in
 369 Germany: epidemiological data from KISS (the Hospital Infection Surveillance System).
 370 Dtsch Ärztebl Int. 2011; 108(6):87–93.
- 371 6. Lul R. Prevention and Control of Hospital-Related Infections in Low and Middle Income
 372 Countries. The Open Infectious Diseases Journal. 2010; 4:125-131
- 373 7. Allegranzi B, Storr J, Dziekan G, Leotsakos A, Donaldson L & Pittet D. The First Global
 374 Patient Safety Challenge "Clean Care is Safer Care": from launch to current progress and
 375 achievements. Journal of Hospital Infection. 2007; 65(s2):115–123.
- Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Memish ZA, Al-Mousa HH, Balkhy H,
 Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Memish ZA, Al-Mousa HH, Balkhy H,
 Hu B, Alvarez-Moreno C, Medeiros EA, Apisarnthanarak A. International Nosocomial
 Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012.
 Device-associated module. American journal of infection control. 2014 Sep 1;42(9):942-56.
- 380
 44
 45
 46
 47
 381
 9. Sheng WH, Wang JT, Lin MS, Chang SC. Risk factors affecting in-hospital mortality in patients with nosocomial infections. J Formos Med Assoc. 2007;106(2):110-8.
- 48 382 10. Pittet D, Donaldson L. Clean Care is Safer Care: a worldwide priority. Lancet 2005; 366:
 50 383 1246-7
- 384 11. Uwaezuoke S, Obu H. Nosocomial infections in neonatal intensive care facilities:
 385 cost-effective control strategies in resource-limited countries. Nigeria Journal of
 386 Pediatrics. 2013; 40(2): 125-132.
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 3 387 12. Allegranzi B, Pittet D. Preventing infections acquired during healthcare delivery. Lancet
 5 388 2008; 372: 1719-20
 6 13. Independent Hospital Pricing Authority (ALD). Activity Based Funding Admitted Patient Care
- 389 13. Independent Hospital Pricing Authority (AU). Activity Based Funding Admitted Patient Care
 390 2015-16, acute admitted episodes, excluding same day.
- 391 14. European Centre for Disease Prevention and Control (ECDC). Point prevalence survey of
 392 healthcare associated infections and antimicrobial use in European acute care hospitals.
 393 Stockholm: ECDC. 2013.
- 15. Allegranzi B, Bagheri S, Combescure C, Graafmans W, Attar H, Donaldson L et al. Burden
 395 of Endemic Health Care-Associated Infection in developing countries: Systematic review and
 396 meta-analysis. Lancet. 2011; 377: 288-241.
- 397 16. Shelley S, Walter H, Robyn K, Christine B, Bonnie B, et al. Prevalence of
 398 HealthcareAssociated Infections in Acute Care Hospitals in Jacksonville, Florida. Infection
 399 control and hospital epidemiology.2012; 33(3):283–91
- 400
 401
 401
 401
 402
 403
 404
 405
 405
 406
 407
 401
 408
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 402
 402
 403
 404
 405
 405
 405
 406
 407
 407
 408
 408
 409
 409
 409
 401
 401
 402
 402
 403
 404
 405
 405
 405
 406
 407
 407
 408
 408
 409
 409
 409
 409
 409
 401
 401
 402
 402
 402
 403
 404
 405
 405
 406
 407
 408
 408
 409
 409
 409
 409
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 402
 402
 402
 402
 403
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
 404
- 403 18. World health organization (WHO). Infection prevention and control in health care: time for
 404 collaborative action. Regional Committee for the Eastern Mediterranean. EM/RC57/6. WHO.
 405 2010.
- 406
 406
 407
 407
 408
 409
 409
 409
 400
 400
 400
 401
 401
 402
 403
 404
 405
 405
 406
 406
 407
 407
 408
 408
 409
 409
 409
 400
 400
 400
 401
 401
 401
 402
 403
 404
 405
 405
 407
 407
 408
 408
 409
 409
 409
 400
 400
 400
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 401
 402
 401
 402
 403
 404
 405
 405
 406
 407
 407
 408
 408
 408
 409
 409
 409
 409
 409
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
- 408
 408
 408
 409
 409
 409
 409
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
- 45
 411 21. Rothe C, Schlaich C, Thompson S. Healthcare-associated infections in sub-Saharan Africa. J
 47
 412 Hosp Infect. 2013;85(4):257–67
- 413 22. Zaidi AK, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA. Hospital-acquired
 414 neonatal infections in developing countries. Lancet 2005; 365: 1175–88
- 415 23. Yallew WW, Kumie A, Yehuala FM. Risk factors for hospital-acquired infections in teaching hospitals of Amhara regional state, Ethiopia: A matched-case control study. PloS one. 2017 Jul 18;12(7):e0181145.

57 58

44

Page 19 of 37

1

BMJ Open

2		
3 4	418	24. Mulu W, Kibru G, Beyene G, Damtie M. Postoperative nosocomial infections and
5	419	antimicrobial resistance pattern of bacteria isolates among patients admitted at Felege Hiwot
7	420	Referral Hospital, Bahirdar, Ethiopia. Ethiopian journal of health sciences. 2012;22(1):7-18.
8 9	421	25. Gedebou M, Habte-Gabr E, Kronvall G, Yoseph S. Hospital-acquired infections among
10 11	422	obstetric and gynaecological patients at Tikur Anbessa hospital, Addis Ababa. J Hosp Infect.
12	423	1988;11(1):50–9.
13 14	424	26. Endalafer N, Gebre-Selassie S, Kotiso B. Nosocomial bacterial infections in a tertiary
15 16	425	hospital in Ethiopia. J Infect Prev. 2011;12(1):38–43.
17	426	27. Feleke T, Eshetie S, Dagnew M, Endris M, Abebe W, Tiruneh M, Moges F. Multidrug-
18 19	427	resistant bacterial isolates from patients suspected of nosocomial infections at the University
20 21	428	of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC research notes.
22	429	2018 Dec;11(1):602.
23 24	430	28. Amenu D, Belachew T, Araya F. Surgical site infection rate and risk factors among obstetric
25 26	431	cases of Jimma University Specialized Hospital, Southwest Ethiopia. Ethiopian journal of
27 28	432	health sciences. 2011;21(2):91-100.
29	433	29. Melaku S, Gebre-Selassie S, Damtie M, Alamrew K. Hospital acquired infections among
30 31	434	surgical, gynaecology and obstetrics patients in Felege-Hiwot referral hospital, Bahir Dar,
32 33	435	northwest Ethiopia. Ethiopian medical journal. 2012 Apr;50(2):135-44
34 35	436	30. Messele G, Woldemedhin Y, Demissie M, Mamo K, Geyid A. Common causes of
36	437	nosocomial infections and their susceptibility patterns in two hospitals in Addis Ababa.
37 38	438	Ethiop J Health Biomed Sci 2009; 2: 3-8.
39 40	439	31. Melaku S, Kibret M, Abera B, Gebre-Sellassie S. Antibiogram of nosocomial urinary tract
41	440	infections in Felege Hiwot referral hospital, Ethiopia. African health sciences.
42 43	441	2012;12(2):134-9.
44 45	442	32. Walelegn W, Abera K, Feleke M (2016). Point prevalence of hospital-acquired infections in
46 47	443	two teaching hospitals of Amhara region in Ethiopia. Drug, Healthcare and Patient Safety.
48	444	2016; 8:71-76.
49 50	445	33. Mikyas D, Sileshi L. The Prevalence of Nosocomial Infections and Associated Risk Factors
51 52	446	in Pediatric Patients in Tikur Anbessa Hospital. Ethiopian Journal of Pediatrics and Child
53	447	Health. 2008; 5(5):4-16.
54 55		
56 57		
58 50		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

34. CDC/NHSN. CDC/NHSN surveillance definition of health care–associated infection and
criteria for specific types of infections in the acute care setting. Am Journal Infect Control.
2008; 36:309-32.

1 2 3

4 5

6

7

59

- 451 35. Joram N, de Saint Blanquat L, Stamm D, Launay E, Gras-Le Guen C. Healthcare-associated
 452 infection prevention in pediatric intensive care units: a review. European journal of clinical
 453 microbiology & infectious diseases. 2012 Oct 1;31(10):2481-90.
- 454
 454
 454
 36. Murni IK, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: an effectiveness study.
 456
 Arch Dis Child. 2015;100:454–459.
- 457 37. Grohskopf LA, Sinkowitz-Cochran RL, Garrett DO, Sohn AH, Levine GL, Siegel JD, Stover
 458 BH, Jarvis WR, Networka PP. A national point-prevalence survey of pediatric intensive care
 459 unit-acquired infections in the United States. The Journal of pediatrics. 2002 Apr
 460 1;140(4):432-8.
- 461 38. Deptuła A, Trejnowska E, Ozorowski T, Hryniewicz W. Risk factors for healthcare462 associated infection in light of two years of experience with the ECDC point prevalence
 463 survey of healthcare-associated infection and antimicrobial use in Poland. Journal of Hospital
 464 Infection. 2015 Aug 1;90(4):310-5.
- 32
 33 39. Ali S, Birhane M, Bekele S, Kibru G, Teshager L, Yilma Y, Ahmed Y, Fentahun N, Assefa
 466 H, Gashaw M, Gudina EK. Healthcare associated infection and its risk factors among
 467 patients admitted to a tertiary hospital in Ethiopia: longitudinal study. Antimicrobial
 468 Resistance & Infection Control. 2018 Dec;7(1):2.
- 469
 469
 40. Askarian M, Yadollahi M, Assadian O. Point prevalence and risk factors of hospital acquired
 470
 470
 471
 471
 471
 472
 471
 473
 471
 474
 474
 475
 475
 475
 475
 475
 476
 476
 477
 477
 478
 478
 479
 479
 479
 470
 470
 470
 470
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
- 44
 472 41. Olivier C, Kunneke H, O'Connell N, Von Delft E, Wates M, Dramowski A. Healthcare473 associated infections in paediatric and neonatal wards: A point prevalence survey at four
 48
 474 South African hospitals. South African Medical Journal. 2018;108(5):418-22.
- 475 42. Teke TA, Tanır G, Bayhan Gİ, Öz FN, Metin Ö, Özkan Ş. Clinical and microbiological features of resistant gram-negative bloodstream infections in children. Journal of infection and public health. 2017 Mar 1;10(2):211-8.
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
_ 3 ⊿	478	43. Atici S, Soysal A, Kadayifci EK, Karaaslan A, Akkoç G, Yakut N, Demir SÖ, Girgin Fİ,
5	479	Çulha G, Altınkanat G, Öztürk N. Healthcare-associated infections in a newly opened
6 7	480	pediatric intensive care unit in Turkey: Results of four-year surveillance. The Journal of
8 9	481	Infection in Developing Countries. 2016 Mar 31;10(03):254-9.
10 11	482	44. Raymond J, Aujard Y, European Study Group. Nosocomial infections in pediatric patients a
12	483	European, multicenter prospective study. Infection Control & Hospital Epidemiology. 2000
13 14	484	Apr;21(4):260-3.
15 16	485	45. Offner PJ, Moore EE, Biffl WL. Male gender is a risk factor for major infections after
17	486	surgery. Archives of Surgery. 1999 Sep 1;134(9):935-40.
19	487	46. Wałaszek M, Kosiarska A, Gniadek A, Kołpa M, Wolak Z, Dobroś W, Siadek J. The risk
20 21	488	factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl Epidemiol.
22 23	489	2016;70(1):15-20.
24	490	47. Ahmed M, Alam SN, Khan O, Manzar S. Postoperative wound infection: a surgeon's
25 26	491	dilemma. Pak J Surg. 2007 Jan;23(1):41-7.
27 28	492	48. Koch AM, Nilsen RM, Eriksen HM, Cox RJ, Harthug S. Mortality related to hospital-
29 30	493	associated infections in a tertiary hospital; repeated cross-sectional studies between 2004-
31	494	2011; 2015.
32 33	495	49. Brady MT. Health care-associated infections in the neonatal intensive care unit. American
34 35	496	journal of infection control. 2005 Jun 1;33(5):268-75.
36 37	497	50. Saiman L. Risk factors for hospital-acquired infections in the neonatal intensive care unit. In
38	498	Seminars in perinatology. 2002 Oct 1; 26(5):315-321.
39 40	499	51. Behzadnia S, Davoudi A, Rezai MS, Ahangarkani F. Nosocomial infections in pediatric
41 42	500	population and antibiotic resistance of the causative organisms in north of iran. Iranian Red
43	501	Crescent Medical Journal. 2014 Feb;16(2).
44	502	52. Singh S, Chaturvedi R, Garg SM, Datta R, Kumar A. Incidence of healthcare associated
46 47	503	infection in the surgical ICU of a tertiary care hospital. Medical journal armed forces India.
48 49	504	2013 Apr 1;69(2):124-9.
50	505	53. Thu TA, Hung NV, Quang NN, Archibald LK, Harun-Or-Rashid M, Sakamoto J. A point-
51	506	prevalence study on healthcare-associated infections in Vietnam: public health implications.
53 54	507	Infection Control & Hospital Epidemiology. 2011 Oct;32(10):1039-41.
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

508 54. Razine R, Azzouzi A, Barkat A, Khoudri I, Hassouni F, Chefchaouni AC, Abouqal R.
509 Prevalence of hospital-acquired infections in the university medical center of Rabat,
510 Morocco. International archives of medicine. 2012 Dec;5(1):26.

1 2 3

4 5

6

7

59

- 511 55. Balkhy HH, Cunningham G, Chew FK, Francis C, Al Nakhli DJ, Almuneef MA, Memish
 512 ZA. Hospital-and community-acquired infections: a point prevalence and risk factors survey
 513 in a tertiary care center in Saudi Arabia. International journal of infectious diseases. 2006 Jul
 514 1;10(4):326-33.
- 515 56. Le NK, Wertheim HF, Vu PD, Khu DT, Le HT, Hoang BT, Vo VT, Lam YM, Vu DT,
 516 Nguyen TH, Thai TQ. High prevalence of hospital-acquired infections caused by gram 517 negative carbapenem resistant strains in Vietnamese pediatric ICUs: A multi-centre point
 518 prevalence survey. Medicine. 2016 Jul;95(27).
- 519 57. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the
 520 management of adults with hospital-acquired, ventilator-associated, and healthcare 521 associated pneumonia. American journal of respiratory and critical care medicine. 2005 Feb
 522 15;171(4):388.
- 523 58. Almuneef M, Memish ZA, Balkhy HH, Alalem H, Abutaleb A. Ventilator-associated
 524 pneumonia in a pediatric intensive care unit in Saudi Arabia: a 30-month prospective
 525 surveillance. Infection Control & Hospital Epidemiology. 2004;25(9):753-8.
- 526 59. Elward AM, Warren DK, Fraser VJ. Ventilator-associated pneumonia in pediatric intensive
 527 care unit patients: risk factors and outcomes. Pediatrics. 2002;109(5):758-64.
- 528 60. Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and pediatric
 529 intensive care unit patients. Clinical microbiology reviews. 2007;20(3):409-25.
- 530 61. Sarvikivi E, Kärki T, Lyytikäinen O, Finnish NICU Prevalence Study Group. Repeated
 531 prevalence surveys of healthcare-associated infections in Finnish neonatal intensive care
 532 units. Journal of Hospital Infection. 2010 Oct 1;76(2):156-60.
- 533 62. Sangrasi AK, Leghari AA, Memon A, Talpur AK, Qureshi GA, Memon JM. Surgical site
 534 infection rate and associated risk factors in elective general surgery at a public sector medical
 535 university in Pakistan. International wound journal. 2008 Mar;5(1):74-8.
- 51
 52
 536
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 537
 538
 537
 537
 537
 537
 537
 538
 537
 537
 537
 537
 538
 537
 537
 538
 537
 538
 538
 537
 538
 538
 538
 538
 538
 538
 538
 538
 538
 538
 539
 538
 538
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 64. Arefian H, Hagel S, Fischer D, Scherag A, Brunkhorst FM, Maschmann J, Hartmann M.
 Estimating extra length of stay due to healthcare-associated infections before and after
 implementation of a hospital-wide infection control program. PloS one. 2019
 17;14(5):e0217159.
- 542 65. Zhou Q, Fan L, Lai X, Tan L, Zhang X. Estimating extra length of stay and risk factors of mortality attributable to healthcare-associated infection at a Chinese university hospital: a
 543 multi-state model. BMC Infectious Diseases. 2019 Dec 1;19(1):975.
- 545
 545
 546
 546
 547
 547
 548
 548
 548
 548
 549
 549
 540
 541
 541
 542
 543
 544
 544
 545
 545
 546
 546
 547
 547
 548
 548
 548
 549
 549
 540
 541
 541
 542
 542
 543
 544
 544
 544
 544
 545
 546
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 547
 548
 548
 547
 548
 548
 547
 548
 548
 548
 548
 548
 549
 549
 549
 549
 549
 540
 540
 541
 541
 542
 542
 543
 544
 544
 544
 544
 544
 544
 544
 544

67. Dramowski A, Whitelaw A, Cotton MF. Burden, spectrum, and impact of healthcare-associated infection at a south African children's hospital. Journal of Hospital Infection. 2016 Dec 1;94(4):364-72.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

553 Table 1: Demographic and clinical characteristics of patients who participated in the study

554 in Goba Referral Hospital, southeast Ethiopia 2019 (n=448)

Variables	Category	n (%)
Patient age,		
Median (IQR): 8 months (2-26		
months)		
Sex	Male	248 (55.4)
	Female	200 (44.6)
Ward	Neonatal Intensive Care Unit (NICU)	201 (44.9)
	Pediatrics	247 (55.1)
Resident	Urban	129 (28.8)
	Rural	319 (71.2)
Previous Hospitalization ^a	Yes	46 (10.3)
	No	402 (89.7)
Mechanical Ventilation	Yes	76 (17.0)
	No	372 (83.0)
Presence of peripheral	Yes	430 (96.0)
intravenous (IV) catheter ^b	No	18 (4.0)
Presence of Urinary Catheters	Yes	9 (2.0)
	No	439 (98.0)
Drainage Tube Inserted ^c	Yes	53 (11.8)
	No	395 (88.2)
Underlying Severe acute	Yes	54 (12.1)
malnutrition (SAM) Diseases ^d	No	394 (87.9)
Surgery After Admission	Yes	47 (10.5)
	No	401 (89.5)
Patient Received	Yes	171 (38.2)
Antimicrobials ^e	No	221 (49.3)
	Unknown	56 (12.5)
Severe Anemia	Yes	41 (9.2)
	No	375 (83.7)
	Unknown	32 (7.1)
Hospital Duration (median day)	≤ 6	237 (52.9)
	> 6	211 (47.1)
HIV status	Positive	2 (0.4)
	Negative	393 (87.7)
	Not tested	53 (11.8)
American Society of	Normally health patient	72 (16.1)
Anesthesiology (ASA)	Patient with mild systemic diseases	235 (52.5)
Classification	Severe systemic disease that is not	100 (22.3)
	incapacitating	
	Incapacitating systemic diseases that is a	36 (8.0)
	constant threat to life	

2	
2	
3	
4	
E	
5	
6	
7	
Q	
0	
9	
10	
11	
11	
12	
13	
1/	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
22	
25	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
27	
52	
33	
34	
25	
55	
36	
37	
20	
20	
39	
40	
/1	
41	
42	
43	
ΔЛ	
45	
46	
17	
47	
48	
49	
50	
50	
51	
52	
52	
54	
55	
56	
50	
57	
58	
50	
59	
60	

		Unknown	5 (1.1)
	Gestational age (n=191)	< 37 weeks	83 (43.5)
		\geq 37 weeks	108 (56.5)
	Birth weight (n=191) ^f	< 2500gm	46 (24.1)
		\geq 2500 gm	145 (75.9)
555	^a History of the previous hospit	alization for either the same as the	e current reason of admission of
556	other ailments within the last 30 days		
557	^b Peripheral intravenous (IV) ca	theter: A peripheral intravenous (IV) catheter is inserted into

small peripheral veins to provide access to administer IV fluids and medications.

^CDrainage tube: insertion of a chest tube, endotracheal, and nasogastric (NG) intubation.

^d Severe acute malnutrition (SAM) diagnosed at the time of hospital admission.

^e The use of antimicrobials before admission either through intravenous (IV), intramuscular (IM)

or oral (PO) administration.

han 2500 5 ^fAny neonate weighting less than 2500 gm at birth irrespective of gestational age was considered

low birth weight (LBW).

566 Table 2: Proportion of hospital-acquired infections among pediatric patients in Goba

567 Referral Hospital, Ethiopia (n=57)

Hospital-acquired infections	Number	Proportion	95% CI
Pneumonia/ Lower Respiratory Tract Infections/ ^a	32	56.1	43.9-68.4
Late-Onset Neonatal Sepsis	6	10.5	3.5-19.3
Intravenous Line (IV) Site Infections	5	8.8	1.8-15.8
Urinary Tract Infections	4	7.0	1.8-14.0
Systemic Infections	4	7.0	1.8-14.0
Skin/Soft Tissue Infections	2	3.5	0.0-8.8
Measles	2	3.5	0.0-8.8
Early Onset Neonatal Sepsis	1	1.8	0.0-5.3
Surgical Site Infections	1	1.8	0.0-7.0

^a including ventilator-associated pneumonia (VAP) (n=7) & VAP developed in 9.21% [7/76] of children undergoing mechanical ventilation; CI: Confidence Interval

Variables	Category	Presence of HAIs		Crude RR
	8 0	Yes (57)	No (391)	
Sex	Male	30	218	0.88(0.55-1.45)
-	Female	27	173	1
Age (months)	1-12	33	252	0.78(0.48-1.28)
	>12	24	139	1
Residence	Urban	12	117	0.65(0.36-1.20)
	Rural	45	274	1
Hospital Duration	≤ 6	17	220	1
(median day)	> 6	40	171	2.64(1.54-4.51
Admission Unit	NICU	27	174	1.10(0.68-1.79
	Pediatrics	30	217	1
Patient Received	Yes	17	154	1
Antimicrobials	No	27	194	1.22(0.69-2.17
	Unknown	13	43	2.33(1.21-4.50
Previous	Yes	7	39	1.22(0.58-2.53
Hospitalization	No	50	352	1
Mechanical Ventilation	Yes	12	64	1.30(0.68-2.71
	No	45	327	1
Presence of Urinary	Yes	2	7	1.77(0.50-6.17
Catheters	No	55	384	1
Drainage Tube Inserted	Yes	14	39	2.42(1.42-4.12
	No	43	352	1
Severe acute	Yes	13	41	2.15(1.24-3.73
malnutrition (SAM)	No	44	350	1
Surgery After	Yes	4	43	0.64(0.24-1.69
Admission	No	53	348	1

2	
3	
4	
5	
ر د	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	

59

60

1

Table 4: Multivariable logistic regression analysis on factors associated with hospital acquired infections among patients in Goba Referral Hospital, southeast Ethiopia 2019
 (n=448)*[†]

Variables	Category	Patient with HAIs (n=57)	Adjusted RR	Attributable Risk (AR) ^a
Hospital Duration	≤ 6	17	1	
	> 6	40	2.58(1.52-4.38)**	0.12
Patient Received	Yes	17	1	
Antimicrobials	No	27	1.25(0.71-2.19)	
	Unknown	13	1.93(0.84-4.42)	
Drainage Tube Inserted	Yes	14	1.77(0.88-3.54)	
	No	43	1	
Severe acute	Yes	13	2.83(1.61-4.97)**	0.13
malnutrition (SAM)	No	44	1	

*Hosmer and Lemeshow Test (p=0.166); RR: Risk Ratio; ** p-value < 0.05 (adjusted)

581 [†] Adjusted for age, sex, admission unit, mechanical ventilation, and presence of a urinary catheter

⁵⁸² ^aAttributable risk is the difference between the risk HAIs in the exposed group and the

583 unexposed group.

1 2		
3 4	585	Figure Legends
5 6 7	586	Figure 1: A flow chart of sampling procedure.
8 9 10	587	Figure 2: Bar graph showing the age distribution of study participants by sex.
10 11 12 13 14 15 16 17 18 9 20 21 22 32 42 52 62 72 82 9 30 132 33 43 53 67 83 9 40 41 42 34 45 46 47 48 9 50 51 52 54 55 67 58 90	588	Figure 3: Bar graph showing the type of HAIs by type of admission ward.

ιg the t,

590 Additional Files

to peet terien ont

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1.	Patient ID/CODE		
2.	Ward Bed number	MRN	
3.	Age		
4.	Sex		
5.	Residence A. Urban B. F	Rural	
5.	Reason for admission/Dx at the time of	f	
	admission		
7.	Complete admission diagnoses		
8.	Date of admisstion		
Э.	Patient health condition at the time of a	admission	
		6	
	(
10	. Is there any other localized infection?	Yes No	
11.	. If yes, type of treatment given	Q	
12	. Previous hospitalization Yes	No	
13	. If yes for question 14:		
	a. Place (including ward)		
	b. Time (month/year)		
	c. Duration		
14	. Previous antibiotic use for the current i	illness A. Yes B. No	
15	. If yes for question 15, specify		
16	. If yes for question 15, for how many da	ays?days	
17	. Being on mechanical ventilator? A. Y	Yes B. No	
18	. Presence of intravenous line? A. Yes_	8 B. No	
19	. Presence of urinary catheters? A. Yes	esB. No	

BMJ Open

If yes, for how long							
22. Indication for drainage							
23. Presence of invasive medical	devices? A. Ye	es	_ B. No				
24. If yes for questions 20,21,22,	26 (more than	one answer is	s possible)				
A. Endotracheal tube? A	Yes	B. No					
B. NGT A		B. No					
C. Chest tube	A. Yes	B. No					
25. Peripheral intravenous line (I	V) catheter A.	Yes	B. No				
26. Insertion of a urinary catheter	A. Yes	B. No)				
27. Intubation A. Yes	B. No	. <u></u>					
28. Underlying diseases? A. Yes_	F	3. No					
29. If yes, underlying diseases (m	ore than one a	nswer is poss	sible)				
i. Diabetes mellitus	vi. Cardiac disc	orders					
ii. Chronic renal failure v	ii. Severe malı	nutrition (SA	M)				
iii. Hypertension	/iii. TB						
iv. Chronic liver disease	ix. Cancer						
v. HIV/AIDS	x. Others (spec	cify)					
30. Surgery since admission A. Y	es	_ B. No					
31. Surgical procedure done? A.	Yes	B. No					
If yes for question 36,							
A. Type of surgery	A. Electi	ve	B. Emergency				
B. Type of the proceed	lure						
C. Date	Time_						
D. Duration of the sur	rgery	ho	ours				
E. Type of surgical w	ound A. Clear	B. Clean co	ontaminated C. Conta				
Dirty							
32. Antibiotic prophylaxis given?	? A. Yes	B.	No				
If yes for Q36, specify/name	of antibiotic						
If yes for Q36, how many do	ses?						
33. Duration of stay hospital stay	in days						
35.	Immune deficiency A. Yes B. No	C. Unknown/not tested					
-----------	--	----------------------------	-------	--	--	--	--
36.	Nutritional status WAZ score (Weight-for-ag	e Z score) A. >-3 B3 to 4	C.<-4				
37.	McCabe score						
	A. Non-Fatal diseases						
	B. Ultimately fatal diseases						
	C. Rapidly fatal diseases						
	D. Unknown						
38.	American Society of Anesthesiology (ASA) classification						
	a. Normally health patient						
	b. Patient with mild systemic diseases						
	c. Patient with severe systemic disease that is not incapacitating						
	d. Patient with incapacitating systemic diseases that is a constant threat to life						
20	e. Unknown						
39. 40	HIV status A. Reactive B. Non-reactive C. Unknown						
40.	Presence of HAIs based on CDC definition:						
		2					
41.	Type of HAIs:						
	Name of data collectors :	Signature					
	Name of supervisor	Signature					

 BMJ Open

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	6
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	NA
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	NA

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	NA
Results		•	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	9
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	NA
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	NA
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study—Report numbers of outcome events or summary measures	9-10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	9
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	11-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other information	•	·	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	13

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. **Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.