Plant Communications, Volume 1

Supplemental Information

Integrative Multi-omics Analyses of Barley Rootzones under Salinity

Stress Reveal Two Distinctive Salt Tolerance Mechanisms

William Wing Ho Ho, Camilla B. Hill, Monika S. Doblin, Megan C. Shelden, Allison van de
Meene, Thusitha Rupasinghe, Antony Bacic, and Ute Roessner



Supplemental Information

Resource Article: Integrative Multi-Omics Analyses of Barley Rootzones Under Salinity

Stress Reveal Two Distinctive Salt Tolerance Mechanisms



O aligned concordantly 0 times O aligned concordantly exactly 1 time ] aligned concordantly >1 times
o
S
- |||||||H“uu|||||||||||||||||||||||||||||||||||||||||||||I|||||||||||III|III
g
5
E o
o © 7
=
kS
O o
g 7
5
o
2 8-
o
sequencing library
B
TAIR | ]
OryzaSativaJ | ]
Swiss-prot | ]
O de novo assembly (Clipper)
KEGG # [ de novo assembly (Sahara)

0 25 50 75 100

Percentage of annotation (%)

Supplemental Figure 1. Overview for mapping and functional annotation of different barley genomes or assemblies.

(A) Mapping efficiency of the 192 RNA-seq libraries. Each stacked bar represents the rate of alignment for each technical
sequencing replicate per biological sample. Average of the overall alignment rate across the 192 sequencing libraries is 95.71
+1.60 %.

(B) Degree of functional annotation of the latest version of barley genome (cv. Morex), and of the de novo Assemblies (cv.
Clipper and landrace Sahara) against the four major databases of functional annotations. The four representative functional
annotation databases are TAIR (Arabidopsis thaliana: model dicot), RAP-DB (Oryza sativa cv. japonica: model monocot),
Swiss-Prot (manually curated protein databank across organisms), and KEGG (molecular pathway database across organ-
isms) are used in the comparisons. Average percentage of functional annotations for Morex V2, de novo assembly for Clipper
and Sahara are 74.05%, 37.39%, and 40.06%, respectively. Only matches with E-value <1.00E-4 against the databases are
considered as positively annotated.
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Supplemental Figure 2. Overview of the treatment-specific, genotype-specific, and rootzone-specific DEG and DAM of the two barley genotypes upon
salt stress.

(A) Percentage of DEG and non-DEG with respect to the two treatments, two genotypes, and three rootzones. According to the latest version of the
reference genome of barley (Mascher et al, 2017), cultivar Morex was predicted to have 85,493 of potential transcripts. However, only 11,631 transcripts
were shown to have a minimal counts-per-million-reads of 10 in at least four replicates of our datasets among the predicted pool of transcripts in
response to salt stress. Among the 11,631 detected transcripts, the GLM-based differential analyses revealed that the abundance of 3,801 transcripts
(32.7%) changed significantly (up- or down-regulated) after the salt treatment in Clipper. In Sahara, 4,789 transcripts (41.2%) were significantly different
in abundance in response to salt treatment relative to their controls, indicating the overall change in gene expression induced by salt was more
pronounced in Sahara than in Clipper. From the perspective of rootzones within both barley genotypes, 2,148 (18.5%), 4,759 (40.9%), and 3,948
(33.9%) transcripts within the 11,631 quantifiable pool altered significantly after the salt treatment in Z1, Z2, and Z3, respectively. This suggests that the
effect of salinity was more substantial in Z2, followed by Z3 and then Z1 at the transcript level in both genotypes. Further, among the 3,801
treatment-specific DEG in Clipper, 2,774 transcripts (73.0%) were shown to be highly specific to their genotype, compared to 4,144 (86.5%) transcripts
within the 4,789 treatment-specific DEG in Sahara. In contrast, among the treatment-specific DEG in Z1 (2,148), Z2 (4,759), and Z3 (3,948), only 1,225
(57.0%), 2,710 (56.9%), and 1,501 (38.0%) transcripts were found to be highly specific to their respective rootzones. This indicates the salt-induced
responses at transcript level in roots were more dependent on their genotypes than on their developmental zones.

(B) Percentage of DAM and non-DAM with respect to the two treatments, two genotypes, and three rootzones. In our experiment, 154 metabolites are
within the limit of quantification of GC-QqQ-MS or LC-QqQ-MS after salt treatment. The GLM-based differential analyses showed that the abundance
of 82 (53.3%) and 61 compounds (39.6%) varied significantly with salt treatment in both Clipper and Sahara relative to their controls, respectively.
Across the root-zones, the abundance of 66 (42.9%), 31 (20.1%), and 30 (19.5%) compounds among the 154 quantifiable pools of metabolites changed
significantly after the salt treatment in Z1, Z2, and Z3 of both genotypes, respectively. Furthermore, within the 82 treatment-specific DAM in Clipper, 55
compounds (67.1%) were shown to be highly specific to this genotype, compared to 42 compounds (68.9%) among the 61 treatment-specific DAM in
Sahara. In comparison, among the treatment-specific DAM in Z1 (66 compounds), Z2 (31 compounds), and Z3 (30 compounds), 62 (93.9%), 26
(83.8%), and 21 (70.0%) compounds were found to be highly specific to their respective rootzones. The differential analyses at the primary metabolite
and lipid levels suggest a higher degree of dependence of the salt-induced responses on root-zones than on genotype, compared to the transcriptional
level. This implies an intriguing dynamic, where gene expression differences due to salt treatment are dominated by genotype and the downstream
metabolic outcome is more influenced by rootzones.

Statistically significant differential gene expression or metabolite abundance is defined at a cutoff of FDR-adjusted p-value < 0.05. Up- or down-regula-
tion is defined by expression or abundance level relative to the corresponding uninduced control. Numbering at each segment of stacked bar of (A) and
(B) represents the corresponding number of transcripts detectable by RNAseq and of metabolites detectable by GC-QqQ-MS and LC-QqQ-MS, respec-
tively. DAM, differentially abundant metabolites; DEG, differentially expressed genes; Z1, zone 1 (meristematic zone); Z2, zone 2 (elongation zone); Z3,
zone 3 (maturation zone).
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Supplemental Figure 3. Levels of transcripts and metabolites involved in phenylpropanoid biosynthesis at Z1 of the two barley genotypes under salt stress.

(A) The abundance of transcripts and metabolites involved in the biosynthesis at Clipper Z1.
(B) The abundance of transcripts and metabolites involved in the biosynthesis at Sahara Z1.

Values, color code, and full names for products of transcripts are given in Figure 5.
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Supplemental Figure 4. Levels of transcripts and metabolites involved in phenylpropanoid biosynthesis at Z3 of the two barley genotypes under salt stress.

(A) The abundance of transcripts and metabolites involved in the biosynthesis at Clipper Z3.
(B) The abundance of transcripts and metabolites involved in the biosynthesis at Sahara Z3.

Values, color code, and full

names for products of transcripts are given in Figure 5.
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Supplemental Figure 5. Standardized abundance of transcripts involved in phenylpropanoid biosynthesis in Clipper and/or Sahara in response

to salt stress.

Standardized abundances of transcripts are calculated by generating the Z-score for TMM normalized CPM. Statistically significant differentiation
(with Benjamini-Hochberg adjusted p value < 0.05) of transcript-abundance upon salt treatment are indicated by red asterisks.

CO, Clipper treated with OmM NaCl; C100, Clipper treated with 100mM NaCl; eVAL, E-value (for the corresponding BLAST search); HvID, ID of
transcripts based on the deep-sequenced genome of Hordeum vulgare L. (cv. Morex) (Mascher et al., 2017.); KEGGid, identifiers of Kyoto
Encyclopedia of Genes and Genomes database; SO, Sahara treated with OmM NaCl; S100, Sahara treated with 100mM NaCl; TAIRid, identifier
of The Arabidopsis Information Resource; TMM.CPM, trimmed mean of M-values normalized count per millions reads; Z1, meristemic zone (zone
1); Z2, elongation zone (zone 2); Z3, maturation zone.



KEGGid: C00079
metabolite: Phenylalanine
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KEGG: C01197
metabolite: Caffeic acid
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KEGG: C00406
metabolite: Feruloyl CoA

2
<
s 15
g
€ 1
g
g
£ 05
8
8 o
B
£ 05
B2
g
&
LR
-2
SNSSRNRRURNRAN
N\ N\ N\ Nl NI N\ N\ N\ NI Nl \N\
e A A
388888333388
0 oo w u n

e
=
°
o

=

KEGG: C05610
metabolite: Sinapaldehyde
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KEGG: C00082
metabolite: Tyrosine
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KEGG: C00482
metabolite: Sinapic acid
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KEGG: C00411
metabolite: Sinapoyl CoA
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KEGG: C00590

metabolite: Coniferyl alcohol (G)
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KEGG: C00423
metabolite: Cinnamic acid
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KEGG: C00223
metabolite: p-Coumaroyl CoA
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KEGG: C05608
metabolite: p-Coumaraldehyde
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KEGG: C02325
metabolite: Sinapoyl alcohol (S)

15

05

-0.5

Standardized log concentration
. =) = N
E |

-15

co_z1
co_z2
c0_z3
€100_21
c100_22
C100_23
S0_21
s0_22
5023
$100_21
$100_22
$100_23

Clipper

KEGG: C05838
metabolite: p-coumaric acid
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KEGG: C00323
metabolite: Caffeoyl CoA
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KEGG: C02666
metabolite: Coniferyl aldehyde
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KEGG: C01617
metabolite: Dihydroquercetin
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Supplemental Figure 6. Standardized abundance of metabolites involved in phenylpropanoid biosynthesis in Clipper and/or Sahara in

response to salt stress.

Standardized abundances of metabolites are calculated by generating the Z-score for the median-normalized concentration. Statistically signifi-
cant differentiation (with Benjamini-Hochberg adjusted p value < 0.05) of metabolite-abundance upon salt treatment are indicated by red
asterisks. CO, Clipper treated with OmM NaCl; C100, Clipper treated with 100mM NaCl; eVAL, E-value (for the corresponding BLAST search);
KEGGid, identifiers of Kyoto Encyclopedia of Genes and Genomes database; S0, Sahara treated with OmM NaCl; S100, Sahara treated with
100mM NacCl; Z1, meristemic zone (zone 1); Z2, elongation zone (zone 2); Z3, maturation zone.
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Supplemental Figure 7. Salinity-induced abundance and localization shift of lignin between different rootzones of the two barley
genotypes upon salt stress.

Transverse sections from different rootzones of the two genotypes grown under OmM NaCl (Clipper: A,E,I,M; Sahara: C,G,K,0O)
or 100mM NaCl (Clipper: B,F,J,N; Sahara: D,H,L,P) observed using confocal microscopy with the fluorescent lignin stain Basic
Fuschin (magenta) and the general cell wall stain Calcofluor White (blue). M,N,O,P are the magnified views (upper panel: Calcoflu-
or White stain only; middle panel: Basic Fuschin fluorescent stain only; lower panel: overlay of the two images) to the cell walls of
endodermal cells at Z2 of Clipper (-salt), Clipper (+salt), Sahara (-salt), and Sahara (+salt), respectively.

Basic Fuschin interacts with lignin but also acidic components of the cytoplasm. Lignin presence was expected when the blue and
magenta signals overlapped, but not in the cytoplasm of cells. Wall lignin was most obvious in Z3 (A-D). While tiny amount of lignin
(white arrows) is detected in xylem vessels of Clipper with no salt treatment (A), a remarkable amount of lignin is deposited around
the proto- and meta-xylem (px and mx respectively) and in the walls of the endodermal (en) and cortical (co) cells after salt
treatment (B). For Sahara, very little lignin was observed in Z3 of the non-salt treated roots (C); however, intense deposits of lignin
were observed in the meta- and proto-xylemic cell walls, accompanied by a small amount of lignins laid at walls of endodermis and
pericycle after salt treatment (D). In Z2, most of the outer stelic layers including endodermal, periclinal, and xylemic regions of
Clipper Z2 show a much higher intensity of magenta (F) than Sahara Z2 after the salt treatment (H). Compared to the magnified
view to the endodermal cells of Sahara Z2 (P), the view at Clipper Z2 also shows a more intense magenta fluorescence at cell
walls (indicated by the blue fluorescence) rather than in cytoplasm (N), suggesting the increased lignin deposition occurred at cell
walls of Clipper Z2, but not of Sahara Z2. Scale bars =50 yum (A, C,E,G,L,K, M, 0,Q,S,U,W)or20 um (B,D, F, H, J,L, N,
P,R, TV, X).
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Supplemental Figure 8. Salinity-induced abundance and localization shift of suberin between different rootzones of the two
barley genotypes upon salt stress.

Transverse sections from different rootzones of the two genotypes grown under OmM NaCl (Clipper: A-F; Sahara: M-R) or 100mM
NaCl (Clipper: G-L; Sahara: S-X) using confocal microscopy with Fluorol Yellow, a fluorescent suberin-specific stain, observed
under FITC/GFP filter (Clipper: A-C,G-l; Sahara: M-0,S-U), or Z3 root sections (Clipper. D-F,P-R; Sahara: J-L,V-X) without
staining with Fluorol Yellow observed under brightfield DIC (D,J,P,V), UV filter (E,K,Q,W), or FITC/GFP filter (F,L,R,X). Fluorol
Yellow is a suberin-specific stain. The Aniline Blue (D,J,P,V) is a counterstain, which show the cytoplasmic details and structure in
roots under brightfield DIC. The UV filter (E,K,Q,W) shows autofluorescence from lignin and other wall components such as vascu-
lature. The negative control (F,L,R,X) underwent the same treatment except staining with Fluorol Yellow. Only a minimal autofluo-
rescence can be observed under the FITC/GFP filter. Scale bars = 50um. co, cortex; DIC, differential interference contrast; en,
endodermis; epi, epidermis; FITC, fluorescein isothiocyanate; GFP, green fluorescent protein; st, stele; UV, ultraviolet.
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Supplemental Figure 9. Salinity-induced abundance and localization shift of callose between different rootzones of the two
barley genotypes upon salt stress.

Transverse sections from different rootzones of the two genotypes grown under OmM NaCl (Clipper: A-C; Sahara: G-I) or
100mM NaCl (Clipper: D-F; Sahara: J-L) observed using confocal microscopy for the callose (anti-(1,3)-beta-glucan) antibodies
(orange) and autofluorescence (blue). From each genotype, rootzone, and treatment, higher magnification images of cells at the
central stele (stele), endodermis (endo; endodermal layer is denoted by ‘e’), cortical cells (cortex) or epidermis (epi) are shown
below each transverse section. Plasmodesmata are present in some cells (arrows). In Z1, callose is deposited in a punctate
pattern and plasmodesmata are not obvious. Scale bars = 100 um (for whole sections); 10 um (for magnified cell images).
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Supplemental Figure 10. Clustering dendrograms of global gene-coexpression in each barley genotype with dissimilarity based on topological overlap.

(A) Global gene-coexpression clustering of Hordeum vulgare L. cv. Clipper. Sixteen different module-colors are assigned for each coexpression cluster,
which include: turquoise, blue, tan, green, grey, black, brown, yellow, magenta, red, purple, cyan, midnight-blue, salmon, pink, and greenyellow.

(B) Global gene-coexpression clustering of the landrace Sahara. Twenty-seven different module-colors are assigned for each coexpression cluster,
which include: turquoise, blue, white, yellow, green, orange-red, sienna, grey, yellow-green, tan, brown, salmon, dark-magenta, red, plum, black, pink,
saddlebrown, violet, pale-turquoise, dark-olivegreen, skyblue, magenta, dark skyblue, purple, greenyellow, and steel-blue.

Red asterisks beneath each assigned module-color indicate modules unique to Clipper or to Sahara. Grey-colored modules representing genes with
unclustered expression pattern are not labelled for clarity.
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Supplemental Figure 11. Additional modules of weighted coexpression correlation networks showing abundance profiles of transcripts and
metabolites unique to either Clipper or Sahara.

(A) The abundance profile unique to Clipper or significantly contrast from Sahara.
(B-E) The abundance profiles unique to Sahara or significantly contrast from Clipper.

These modules are considered as additional or minor due to their non-apparent difference of profiles between Clipper and Sahara. Annotat-
ed lists of members for each module with signficant match (E-value < 1.00E-4) against TAIR10 genome release (version: Jun 2016) ranked
in descending order according to kME of members can be found in Supplemental Data Set 9 online. For abbreviations and symbols, see

Figure 6.




Supplemental Note 1

To derive the genotype-specific DEG for each root zone, we first clustered the twelve
transcriptomes into four groups based on genotype (Clipper, C; Sahara, S) and treatment

(untreated, U; treated, T).

Genotype Treatment Group
Clipper salt-treated CT
Clipper untreated CU
Sahara salt-treated ST
Sahara untreated SuU

Second, DEG upon salt treatment in a genotype were determined by fitting basic GLM to test
for the “contrasts” (a term for describing GLM-based comparisons as defined by (Chen et al.)
and was denoted as " <> " in this work) between the treated and untreated pairs: CT <> CU
and ST <> SU. For each “contrast”, we designated genes that were significantly different
(adjusted p value <0.05) in Clipper as sector A and in Sahara as sector B (Figure 2C). Third,
to find DEG due to salt treatment between Clipper and Sahara, we fitted interaction GLM
considering the interactions between genotypes and treatments to form “contrasts’: (CT < >
CU) <> (ST <> SU) and (ST < > SU) < > (CT < > CU). Genes expressed significantly
differently (adjusted p value <0.05) between the genotypes were defined within sector C
(Figure 2C). Fourth, we intersected the three sectors. Subsector A - (C U B) corresponded to
DEG unique to Clipper, subsector A N B N C corresponded to DEG significantly different in
expression between the two genotypes, and subsector (A N C) - B corresponded to DEG unique
to Clipper and significantly differed between the two genotypes at the same time, which three
subsectors together constituted the Clipper-specific DEG in a root zone. Accordingly,
subsectors B- (A U C), AN BN C,and (B N C) - A represented the Sahara-specific DEG for

each root zone (Figure 2C).



To derive the root zone-specific DEG for each genotype, similar to the derivation of the
genotype-specific DEG, we clustered the twelve transcriptomes into six groups, namely salt-
treated Z1 (group Z1T), untreated Z1 (group Z1U), salt-treated Z2 (group Z2T), untreated Z2
(group Z2U), salt-treated Z3 (group Z3T), and untreated Z3 (group Z3U).

Root-zone Treatment Group
Z1 salt-treated ZIT
Z1 untreated Z1U
Z2 salt-treated Z2T
72 untreated 72U
73 salt-treated Z3T
73 untreated 73U

Second, to find DEG upon salt treatment for each root zone, we fitted basic GLM to form
“contrasts” between the treated and untreated pairs, including Z1T <> Z1U (for Z1), Z2T <>
72U (for Z2) and Z3T < > Z3U (for Z3). Genes expressed significantly different (adjusted p
value <0.05) in Z1, Z2, and Z3 were designated as sector D, E, and F, respectively (Figure 2D
to 2F). Third, to find DEG responded differently to salt among the three root zones, we used
interaction GLM considering the interactions between root zones and treatments to form
“contrasts”: (Z2T <> Z2U) <> (Z1T <> Z1U), and (Z3T <> Z3U) <> (Z1T <> Z1U) (for
Z1 meristematic zone); (Z1T <> Z1U) <> (Z2T <> Z2U), and (Z3T <> Z3U) <> (Z2T <>
72U) (for Z2 elongation zone); (Z1T <> Z1U) <> (Z3T <> Z3U), and (Z2T <> Z2U) <>
(Z3T < > Z3U) (for Z3 maturation zone). For each "contrast", we selected genes that were
significantly different (adjusted p value <0.05) as sector G, H, I, J, K, and L, respectively
(Figure 2D to 2F). Fourth, we intersected the five sectors in each root zone. Subsectors D - (E
UFUGUH),(DNG)-(EUFUH),and (D N H) - (E U F U G) correspond to DEG unique
to Z1; subsectors DNENFNGNH,(DNENGNH)-F,(DNFNGN H) -E corresponds
to DEG with expression at Z1 significantly different from the other two root zones; subsector
(DN GNH)-EUF corresponds to DEG unique to Z1 and as well as significantly differential
from Z2 and Z3 at the same time, which five subsectors together constituted the Z1-specific

DEG for each genotype (Figure 2D). Accordingly, subsectors E-(DUFUIUJ),(DNI)-(E



UFUD,(EN)H-DUFUI;DNENFNINJL,ONENIN)H-FEENFNINIJ)-D;
and (E N 1N J)- (D UF) indicated the Z2-specific DEG in for each genotype (Figure 2E).
Subsectors F-(DUEUKUL), FNK)-(DUEUL), FNL)-(DUEUK);,DNENFN
KNLMONFNKNL)-E,(ENFNKNL)-D;and (FNKNL)- (DU E) represented the

Z3-specific DEG for each genotype (Figure 2F; for the detailed DEG lists, see Supplementary
Data Set 3 online).
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Supplemental Note 2

Outcomes of Global Co-expression Correlation Network Analysis

Among the selected clusters, module A, J, K, L grouped members with stronger increase in
abundance at Z2 of Clipper than Sahara upon salt stress. In which, Module A harboured 48
DEG and GO analysis revealed the most relevant biological processes to be multidimensional
cell growth (Fig. 7A). In line with the growth-sustaining phenotype of Clipper under high salt
conditions, a homolog of CELLULASE 1 (CEL1) (HORVUOHr1G020000.1), which is a key
player involved in cell elongation with endo-1,4-beta-glucanase activity, was found to be the
modular member with the highest kKME and known function (Shani et al., 1997)
(Supplementary Data Set 8 and 9: sheet 'midnight-blue'). Module J comprises 138 DEG and
glycine as the only DAM in this cluster. Enrichment analysis revealed a significant
overrepresentation of biological processes involved in amino acid metabolism, response to
stimulus, and cell wall organization (Fig. 7J). Among the GO category of response to stimulus,
a barley homolog of glutamine receptor 2.7 (GLR2.7) (HORVU7Hr1G031530.1), which is
known to be a member of the ligand-gated ion channel subunit family mediating cellular
calcium ion homeostasis in response to abiotic stress of Arabidopsis thaliana, was pinpointed
in this module (Kim et al., 2001). Also, a homolog of the EXPANSIN B2 (EXPB2)
(HORVUI1Hr1G054240.2) was found at the top of the kME list for this cluster. Although the
induced abundance of this EXPB2 homolog in Clipper Z2 could not surpass its level in Sahara
72 after salt, this could be in line with the fact that the regulatory roles of the huge family of
EXPANSIN and EXPANSIN-like proteins are not limited to cell elongation only (Lee et al.,
2001). As recently indicated by a study on an EXPB homolog in wheat, the EXPB2 in this
cluster could rather play a common role in the two genotypes for regulating the activity of root
cell wall-bound peroxidase under the oxidative pressure induced by salt (Han et al., 2015)
(Supplementary Data Set 8 and 9: sheet 'black'). Module K represented 80 DEG upon high
salinity stress. Amino acid transport, protein ubiquitination, and toxin catabolism were
determined as the most relevant biological processes to this module (Fig. 7K). Coherent with
the proposed involvement of its modular members in transport of amino acids, a barley
transcript (HORVUSHr1G093090.2) with sequence identical to its homolog in Arabidopsis
thaliana or in Oryza sativa (E-value < 1.00E-250), which encoded for a type of cationic amino

acid- / polyamine-transporters known as AMINO ACID TRANSPORTER 1 (AAT1), was



ranked fifth on the kME list of module K (Frommer et al., 1995). Polyamine is a known group
of compounds involved in the regulation of redox homeostasis during salt stress in plants (Saha
et al., 2015; Shu et al., 2015). Besides, GLUTATHIONE S-TRANSFERASE TAU18 (GST
U18), a member of the glutathione S-transferase family belonging to the GO category of toxin
catabolism, was identified in this cluster and shown to have higher transcript abundance at Z2
when comparing Clipper to Sahara. Evidence to demonstrate the importance of GSTs for
minimising the damages induced by oxidative stress in planta were previously described in
(Cummins et al., 1999; Kampranis et al., 2000; Roxas et al., 1997) (Supplementary Data Set 8
and 9: sheet 'purple'). Module L grouped 156 DEG with biological processes significantly
enriched in cell wall loosening, auxin homeostasis and lignin biosynthesis (Fig. 7L). This
cluster harboured the exact matches (E-value < 1.00E-250) of CELLULOSE SYNTHASE 1
(CESA1) and CELLULOSE SYNTHASE 3 (CESA3) in barley (HORVUG6Hr1G013670.30,
HORVUOHr1G002350.1), with CESA1 being identified as the member with the highest kKME
of this module. Together with CESA6, CESA1 and CESA3 were known to form a hexameric
plasma membrane complex mediating cellulose biosynthesis in primary cell wall (Desprez et
al., 2007). Also, three transcripts (HORVU4Hr1G072660.1, HORVU4Hr1G072580.1,
HORVUSHr1G119680.2) encoded for homologs of EXPANSIN All (EXPAIl1), one
transcript (HORVU6Hr1G063180.1) for EXPANSIN B4 (EXPB4), and one transcript
(HORVUI1Hr1G051640.1) for EXPANSIN A7 (EXPA7) were co-regulated in this cluster.
Abundance of all five EXPANSIN were induced by salt and reached levels higher in Z2 of
Clipper than Sahara, except EXPA7. Notably, besides a barley homolog of a key enzyme
involved in brassinosteroid biosynthesis known as DEETIOLATED2 (DET2)
(HORVU3Hr1G085400.1) was co-regulated in this cluster (Fujioka et al., 1997), three
transcripts (HORVUSHr1G035980.1, HORVU6Hr1G075650.1, HORVU4Hr1G019380.1)
encoded for homologs of the TEOSINTE-BRANCHED 1/CYCLOIDEA/PCF1 (TCP)
transcription factor family, namely TCP8, TCP15, and TCP23, which have their family
recently been proven to involve in regulation of salicylic acid (SA) biosynthesis in response to
range of plant abiotic stress responses, could also be pinpointed in this module (Lei et al., 2017,

Wang et al., 2015) (Supplementary Data Set 8 and 9: sheet 'red").

In response to the salt treatment, Module N was the only cluster built up from members
showing mostly drastic changes in abundance at Z3 of both genotypes, with a majority of the
changes higher in Clipper than in Sahara. This module consisted of putrescine as the only DAM

in the cluster and 107 DEG that were significantly enriched in biological processes such as cell



wall loosening, lipid storage and catabolism (Fig. 7N). Apart from a homolog of
XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 13 (XTHI13)
(HORVU2Hr1G101150.1) known to involve in cell wall organization and biogenesis was
grouped in this module (Thompson and Fry, 2001), we found two barley transcripts
(HORVU3Hr1G058700.1, HORVUS5Hr1G056030.1) co-regulated in this cluster with
sequence well-matched to their dicot homologs, DAD1-LIKE SEEDING ESTABLISHMENT-
RELATED LIPASE (DSEL) (E-value = 3.00E-125) and OLEOSIN 1 (OLEI) (E-value =
1.00E-16), respectively. Intriguingly, DSEL was shown to possess acylglycerol lipase activity
and inhibits the breakdown of storage oils in seedlings, while OLE1 was known to have oilbody
biogenic properties and involve in seed oil body formation for lipid accumulation in response
to freezing stress in A. thaliana (Shimada et al., 2008; Kim et al., 2011). Transcript abundance
of both DSEL and OLE1 increased more strongly when compared Z3 of Clipper to Sahara after
the salt treatment. In comparison, five transcripts (HORVU3Hr1G105160.1,
HORVU3Hr1G073120.1, HORVU3Hr1G105180.1, HORVU7Hr1G119360.1,  and
HORVU2Hr1G093690.1) with sequences homologous to three paralogs of EXPANSIN in A.
thaliana (namely EXPA2, EXPA13, EXPB2) were identified in this cluster and their abundance
were boosted at Z3 of both genotypes upon salt. Except EXPAI3, the abundance of these
EXPANSIN were higher in Z3 of Sahara than Clipper and are likely to play a role in the

oxidative stress tolerance as in Sahara Z2 (Supplementary Data Set 8 and 9: sheet 'magenta’).

The subnetwork, including modules B, G, O, and I, was the co-expression cluster with
members showing substantial decline in abundance at Z3 of both genotypes. Module B
represented 177 DEG significantly overrepresented in nitrile biosynthesis, glycosinolate
catabolism, and defence response (Fig. 7B). While abundance of the two barley homologs of
FLAVIN-DEPENDENT  MONOOXYGENASE | (FMOI) (HORVUS5Hr1G086710,
HORVU5Hr1G086770) that was known to be a crucial component involved in the plant-type
hypersensitive response were decreased to comparable levels in the two genotypes after the
salt treatment (Mishina and Zeier, 2006), transcript level of four mannose-binding lectin (MBL)
superfamily proteins (HORVUSHr1G009040.2, HORVUS5Hr1G009040.6,
HORVUS5Hr1G009040.5, HORVUSHr1G009100.1) were consistently lower in Z3 of Sahara
relative to Clipper upon salt stress. One of the well-characterized members of the MBL protein
family is MYROSINASE-BINDING PROTEIN 1 (MBP1) and its presence was proven to be
essential for the formation of myrosinase isoenzymes, which were found to play a key role in

glucosinolate hydrolysis upon wounding in Brassica napus (Eriksson et al., 2002; Angelino et



al., 2015). Notably, transcripts encoding for a barley homolog of C-REPEAT BINDING
FACTOR 3 (CBF3) (HORVUS5Hr1G080300.1) was also found to be co-regulated in this
cluster with its expression substantially suppressed in Clipper Z2 and Z3, but mostly unaffected
in Sahara. CBF3 was proven to be a negative regulator of gibberellin signalling pathway
through promotion of DELLA accumulation and GIBBERELLIN 2-OXIDASE 7 (GA20X7)
expression (Zhou et al., 2017) (Supplementary Data Set 8 and 9: sheet 'white'). Module G
comprised of 125 DEG and GO analysis revealed the most relevant biological processes to this
cluster were lipid catabolism, phenylpropanoid biosynthesis, and cell wall modification (Fig.
7G). Among the category of lipid catabolic process, two transcripts in this cluster
(HORVU3Hr1G068280.1, HORVUIHr1G055840.1) were shown to be members of
alpha/beta-hydrolases superfamily, of which HORVU1Hr1G055840.1 shared a high degree of
sequence similarity with DAD1-LIKE LIPASE 1 (DALL1) in 4.thaliana (E-value: 1.00E-112).
DALL1 was shown to be capable of hydrolyzing triacylglycerols, phosphatidylcholines as well
as glycolipids, and shown to act redundantly in jasmonate biosynthesis after wounding or in
response to salt (Ellinger and Kubigsteltig, 2010; Rudus et al., 2014). Higher abundance of
DALLI induced or remained at Z1 and Z3 of Sahara than Clipper could indicate a higher
accumulation of jasmonate in Sahara in response to osmotic damages caused by salt
(Supplementary Data Set 8 and 9: sheet 'violet'). Module O was a co-expression cluster
harboured 49 DEG, of which their abundance in Clipper Z3 were remained higher when
compared to Sahara even after the suppression by salt stress. Based on the enrichment analysis,
nicotianamine biosynthesis and phloem transport are the most significantly overrepresented
biological processes (Fig. 70). Intriguingly, four barley transcripts (HORVU4Hr1G089750.2,
HORVUG6Hr1G090040.4, HORVUOHr1G017720.1, HORVUG6Hr1G090180.1) encode
NICOTIANAMINE SYNTHASE 3 (NAS3) and three other transcripts
(HORVU4Hr1G089870.1, HORVU6Hr1G032290.1, HORVU4Hr1G087390.1) were the
homologs of NICOTTANAMINE SYNTHASE 4 (NAS4) in barley (Supplementary Data Set
8 and 9: sheet 'salmon'). Previous findings showed that NAS genes in Triticum aestivum L.
encode for enzymes that convert S-adenosyl-L-methionine to nicotianamine, which is a non-
protein amino acid involved in fundamental aspects of metal homeostasis and was shown to
confer higher salt tolerance to bread wheat (Bonneau et al., 2016). Module I harboured 44
DEG and tryptophan as the only DAM in this cluster. The most relevant biological process to
this cluster is tryptophan metabolism, fatty acid metabolism, abscisic acid (ABA) signalling,
and salt overly sensitive (SOS) pathway (Fig. 7I). While the abundance of barley transcripts
(HORVU7Hr1G083490.7, HORVU2Hr1G117610.1) encoded for ACYL-CoA OXIDASE 3



(ACX3) and SOS3-INTERACTING PROTEIN 4 (SIP4) homologs in barley were suppressed
to comparable levels between the genotypes upon salt treatment, two members of the
GLYCOSYL HYDROLASE (GH) family 32 were shown to have their transcripts
(HORVU7Hr1G001070.6, HORVU7Hr1G001070.19) maintained at higher levels in general
for all root-zones when compared Clipper to Sahara. GH (aka. glycoside hydrolases or
glycosidases) assist in the hydrolysis of glycosidic bonds in complex sugars or glucosides (such
as indole-3-acetic acid-glucoside, salicylic glucoside, pyridoxine glucoside, flavone glucoside),
which high concentration have shown to be strongly correlated to different abiotic stress
responses in rice (Chern et al., 2005; Markham et al., 1998; Morino et al., 2005; Suzuki et al.,
1986b; Suzuki et al., 1986a). Furthermore, transcripts encoded for a barley homolog
(HORVUG6Hr1G088460.1) of ASCORBATE PEROXIDASE 1 (APX1), which is a central
component known for scavenging reactive oxygen species (ROS) in plant cells (Davletova et
al., 2005), were also found to be co-regulated in this cluster. Intriguingly, transcript abundance
of APXI was strongly induced Clipper Z2, but mostly suppressed in all root zones of Sahara
(Supplementary Data Set 8 and 9: sheet 'sky-blue').

The subnetwork consisting of modules C, D, E, and F comprises members with in general
stronger salinity-induced abundance for all root-zones in Sahara than in Clipper. Module C
harboured 66 DEG and agmatine, which is a precursor of putrescine used for the production of
1,3-diaminopropane appeared only upon salt stress (Erdei et al., 1990), as the only DAM in
this cluster. GO analysis suggested the biological processes most relevant to this cluster are
toxin catabolism, raffinose biosynthesis, and glycine betaine biosynthesis (Fig. 7C). Barley
homologs of two components (HORVU1Hr1G078350.1, HORVU2Hr1G070680.1) involved
in the biosynthesis of glycine betaine via choline, namely PHOSPHOETHANOLAMINE
METHYLTRANSFERASEl (PEAMT) and ALDEHYDE DEHYDROGENASE 10AS8
(ADH10AS8), were found to be co-regulated in this cluster (McNeil et al., 2001; Missihoun et
al., 2015). Glycine betaine is a type of known protectants in vitro or in vivo for mitigating the
deleterious effect of salt stress in different plant species (Hasanuzzaman et al., 2014; Tian et
al., 2017; Yildirim et al., 2015). Besides, two additional transcripts (HORVUI1Hr1G060810.1,
HORVU4Hr1G071300.12) encoding the barley homologs of GIBBERELLIN INSENSITIVE
DWARFIC (GID1C) and ABERRANT GROWTH AND DEATH 2 (AGD2) were also
identified in this co-expression cluster. GID1C and AGD2 were shown to be involved in the
activation of gibberellin signalling by lifting the DELLA repressor activity (Ariizumi et al.,

2008), and the induction of spontaneous cell death or suppression of callose deposition in plant



species (Rate and Greenberg, 2001), respectively (Supplementary Data Set 8 and 9: sheet
'orange-red'). Module D comprised of 39 DEG and significantly enriched in hemicellulose
metabolism, sulphur metabolism, and transition metal ion homeostasis (Fig. 7D). Five
transcripts (HORVU3Hr1G016850.1, HORVUSHr1G048030.1, HORVUSHr1G114540.1,
HORVU4Hr1G089670.1, HORVU3Hr1G091400.1) encoded for barley homologs of
XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 20 (XTH20), ESKIMO 1
(ESK1), PECTIN ACETYESTERASE 7 (PAE7), MUCILAGE-RELATED10 (MUCI10), and
PLANT GLYCOGENIN-LIKE STARCH INITIATION PROTEIN 1 (PGSIP1), which were
known to involve in organisation of different hemicelluloses in A.thaliana such as xyloglucan
crosslink-formation, xylan backbone acetylation, pectin acetylation, glucomannan
galactosylation, and galacturonic acid substitution of xylan, respectively (Zhong et al., 2018;
Voiniciuc et al., 2015; Philippe et al., 2017; Urbanowicz et al., 2014; Miedes et al., 2013).
While the abundance of PGSIPI were was similar for both Z2 and Z3 between the two
genotypes, transcripts of XTH20, ESK1, and PAE7 homologs reached higher abundance levels
after the salt treatment in Z2 of Clipper, and in Z1, Z3 of Sahara. In contrast, abundance of
MUCII0 in all three root-zones were higher when compared Sahara to Clipper (Supplementary
Data Set 8 and 9: sheet 'sienna'). Module E harboured 105 DEG ,and based on GO analysis
indicated the most relevant biological processes in this cluster were systemic acquired
resistance, regulation of endopeptidase, and response to ROS (Fig. 7E). Under the category of
the acquired resistance, sequences of two transcripts (HORVU2Hr1G102050.1,
HORVU2Hr1G102100.1) were found to be homologous to the DEFECTIVE IN INDUCED
RESISTANCE 1 (DIR1) (E-value = 5.00E-13; 7.00E-27) and one transcript
(HORVU4Hr1G087860.1) was well-matched with its AZELAIC ACID INDUCED 1 (AZI1)
homolog in dicots (E-value = 4.00E-25). Intriguingly, both of these defence proteins were
known to possess lipid binding and transfer abilities and overexpression of AZI1 was proven
to increase salt tolerance of A. thaliana (Yu et al., 2013; Guelette et al., 2012). In addition, two
transcripts (HORVU3Hr1G113120.1, HORVUS5SHr1G018720.1) encoding for homologs of
PATHOGENESIS-RELATED 4 (PR-4) (E-value = 2.00E-74) and RELATED TO AP2 11
(RAP2.11) (E-value = 7.00E-21) were co-regulated with members of this cluster. While
transcript level of PR-4 was known to increase in response to ethylene and salt (Catinot et al.,
2015; Kim et al., 2014), RAP2.11 expression was suggested to be positively feedback regulated
by ethylene and ROS (Kim et al., 2012), which are commonly found in plant cells upon salinity
stress (Supplementary Data Set 8 and 9: sheet 'plum'). Module F grouped 38 DEG and GO

overrepresentation analysis suggested the metabolism of folic acid, tetrahydrofolate, and



pteridine were significantly upregulated in this cluster (Fig. 7F). Within this module, two
transcripts (HORVUS5SHr1G074900.1, HORVUSHr1G074900.2) highly homologous to
SARCOSINE OXIDASE (SOX) were also found to be induced to a much higher level of
abundance in all root-zones of Sahara than in Clipper after salt. But unlike its homologs in
Corynebacterium that catalyse the oxidation of sarcosine (Chlumsky et al., 1995), a non-
protein amino acid known as pipecolate was determined as the endogenous substrate of SOX
in plants (Goyer et al., 2004). Pipecolic acid was proven to be an endogenous mediator that
orchestrates defence amplification, positive regulation of salicylic acid biosynthesis, and
establishment of systemic acquired resistance In A. thaliana (Navarova et al., 2012). Oxidation
of pipecolic acid mediated by the higher abundance of SOX in Sahara after salt could therefore
imply a stronger suppression of such orchestration upon the local salinity impact

(Supplementary Data Set 8 and 9: sheet 'saddle-brown').

In response to salinity stress, Module H was the only co-expression cluster with members
highly up-regulated at Z1 and, for most cases, magnitudes of changes were higher in Sahara
than Clipper. This cluster comprised 29 DEG and GO analysis revealed the most relevant
biological processes were sterol biosynthesis and cell division (Fig. 7H). Among them, we
found a transcript (HORVU2Hr1G011720.3) highly homologous to sequence of
CYTOCHROME P450 51A2 (CYP51A2) in A. thaliana (E-value: 3.00E-172) with higher
abundance only in Sahara Z1 in response to salinity stress. CYP51A2 is an upstream enzyme
involved in the biosynthesis of brassinosteroids and modulation of membrane steroid contents,
of which the membrane integrity maintained was proven to correlate to the restriction of ROS-
and ethylene-mediated premature cell death (Kim et al., 2005; Kim et al., 2010). Further, three
transcripts (HORVU2Hr1G073480.1, HORVU2Hr1G041950.1, HORVU6Hr1G071120.2)
were homologs of CELL DIVISION CONTROL 2 (CDC2), CYCLIN P4;1 (CYCP4;1), and
INDOLE-3-BUTYRIC ACID RESPONSE 5 (IBR5) and mostly up-regulated in Z1 of both
genotypes upon salt, but with CDC2 and CYCP4;1 reaching higher abundance levels in Clipper,
and IBRS higher in Sahara, respectively. While IBRS was proven to negatively regulate MAP
kinase activity that control expression of cyclins in cell cycle (Johnson et al., 2015; Lee et al.,
2009), CYCP4;1 and CDC2 are positive modulators of cell cycle progression and control of
cell division (Torres Acosta et al., 2004; Zhao et al., 2012). On the whole, this suggests cell
differentiation and division were highly constrained by salt in Z1 of Sahara, not in Clipper

(Supplementary Data Set 8 and 9: sheet 'pale turquoise').



Lastly, Module M built up from members with abundance being predominantly induced at
Clipper Z2, but substantially repressed at Z3 of both genotypes by salt. This module consists
of 94 DEG that are significantly enriched in biological processes such as lipid localization, cell
wall loosening, and receptor recycling (Fig. 7M). In this cluster, an exact match of UDP-D-
GLUCURONATE 4-EPIMERASE 1 (GAE) known to be involved in pectin biosynthesis was
also found at the top of the kME-ranked list (HORVU6Hr1G084390.1) (Gu and Bar-Peled,
2004), implying a potential role for maintaining barley root cell wall integrity played by
members of this modules. Further, similar to the lipid-transporting AZI1 and DIR1 found in
module E, sequences of six transcripts (HORVU7Hr1G109140.1, HORVUOHr1G031750.1,
HORVUOHr1G025270.1, HORVUOHr1G025250.2, HORVU2Hr1G097190.1,
HORVU2Hr1G029480.1) were found to be highly homologous to members of the lipid transfer
protein-related hybrid proline-rich protein (LTP-HyPRP) family, which is mostly bifunctional
by exhibiting lipid-transporting and proteolytic activities (Pitzschke et al., 2014; Zhang and
Schldppi, 2007). One of the most well-studied members of LTP-HyPRP is EARLY
ARABIDOPSIS ALUMINIUM INDUCED 1 (EARLII), which was shown to protect plant
cells from freeze-induced damages and could improve root elongation under salt stress upon
overexpressing EARLII in A. thaliana (Xu et al., 2011; Zhang and Schlippi, 2007). Notably, a
barley homolog (HORVU3Hr1G007280.2) encoded for another key enzyme involved in
brassinosteroid biosynthesis known as STEROL 1 (STE1) was also found to be co-regulated
in this cluster (Gachotte et al., 1995) (Supplementary Data Set 8 and 9: sheet 'pink’).

Distinctive Phases of Salinity Responses Observed in Clipper and Sahara

As defined by (Julkowska and Testerink, 2015), responses of plant cells during the exposure
to salinity stress can be categorized into four main phases, namely early signalling (ES) phase,
quiescent (Q) phase, recovery (R) phase, and recovery extent (RE) phase. Responses induced
at the ES phase, such as the salt overly sensitive (SOS) pathway (Shi, 2002) and aquaporin
internalization (Prak et al., 2008), can be triggered and completed within seconds or mostly
hours upon exposure to salt stress (Julkowska and Testerink, 2015). In this study, root zones of
the two barley genotypes were presumably in stage of Q, R, or RE phase after three days of
growth on media enriched with salt. Notably, in line with the striking growth differences
observed amongst plant organs and between main and lateral roots in response to salt

(Julkowska et al., 2014), our global co-expression correlation study reveals that salinity



impacts the two barley genotypes remarkably differently in terms of the phase of responses
reached by their individual root zones. Implications from the molecular and hormonal clues of

the study are summarized in Supplemental Table 2 (STable2) and discussed below.

Upon exposure to salt stress, inhibition of cell cycle progression restricted the cell division and
differentiation processes in Sahara Z1 (STable2: Z1, Sahara). As substantial repression of the
reactive oxygen species (ROS)-scavenging mechanisms in combination with the ethylene-
mediated ROS accumulation were detected in this root zone, cells in Sahara Z1 were likely
retained at Q phase and not RE phase in response to the salt treatment. Notably, the ROS-
related activities in the apoplast mediate cell wall stiffening through crosslinking of
glycoproteins and phenolic compounds, which are known to be the milestone events detected
only at the Q phase upon salt stress (Tenhaken, 2014). By contrast, divisions of cells in Clipper
Z1 were maintained and the corresponding biological processes for supporting rapid cell
expansion, such as cellulose biosynthesis and cell wall loosening, were observed in Clipper Z2
(STable2: Z1, Clipper; Z2, Clipper). Although the positive modulation of cell divisions could
indicate Clipper Z1 was in the stage subsequent to the Q phase (i.e. either R or RE phase), the
significant upsurge of biosynthetic enzymes involved in brassinosteroid biosynthesis and
initiation of the ROS-scavenging mechanism suggest Clipper Z2 was in R phase, and yet to be
in RE phase. There are insufficient hormonal clues to help define the phase of responses for
Clipper Z3 (STable2: Z3, Clipper). For Sahara Z2 and Z3, salt stress induced the expression of
C-REPEAT BINDING FACTOR 3 (CBF3) (STable2: Z2, Sahara; Z3, Sahara). In the presence
of CBF, GIBBERELLIN 2-OXIDASE 7 (GA20X7) specifically deactivates the bioactive C-
20 gibberellins (GA) (Zhou et al., 2017). Assuming the amount of bioactive GA was minimal
under the action of GA20X7 in barley, GA signalling and thus its growth-promoting function
was restricted in response to salinity stress, implying Sahara Z2 and Z3 was retained at Q phase

after the three days of salt treatment.

Strengthening the conclusion drawn from the integrated pathway analysis, our global
correlation study indicates that the Z2 of Clipper proceeded to R phase for restoration of its
growth rate, while all root zones of Sahara remained at a prolonged Q phase in response to the

extreme salinity conditions.

Furthermore, in addition to diverting the resources for maintenance of root growth, a range of

known downstream salt tolerance mechanisms, such as polyamine transport and toxin



catabolism (Frommer et al., 1995; Roxas et al., 1997), were also activated in Z2 of Clipper in
order to cope with the salinity stress (STable2: Z2, Clipper). Notably, the majority of the
tolerance mechanisms triggered were different between Z2 and Z3 of Clipper, where biological
processes including seed oil body formation, glucosinolate hydrolysis, and nicotianamine
biosynthesis (Bonneau et al., 2016; Eriksson et al., 2002; Shimada et al., 2008) were either
induced or maintained in Z3 of Clipper, but not in Z2 (STable2: Z3, Clipper). Only hydrolysis
of glucosides (Markham et al., 1998) has widespread up-regulation in all root zones of Clipper
(STable2: AZ, Clipper), suggesting the salt tolerance strategies adopted by this genotype are
mostly root zone-dependent; a mechanism that can only be explicitly revealed by the spatial

multi-omics approach described here.

In contrast, with only two salt-induced biological processes, membrane steroid modulation and
inhibition of cell cycle progression, with members up-regulated or maintained at high
abundance in Sahara Z1 (STable2: Z1, Sahara), seven out of seventeen processes in Sahara
were shared among two root zones (STable2: asterisks). Members involved in the eight
processes remained such as biosynthesis of glycine betaine, modulation of GA signalling, and
LTP-mediated tolerance response in all root zones of Sahara were found to be induced or
maintained at higher abundance than in Clipper (STable2: AZ, Sahara). This finding suggests
the tolerance mechanisms triggered in Sahara were mostly root zone-independent. Such
independence is also consistent with our viewpoint that all root zones of Sahara are in the same

phase of the salinity response.
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Supplemental Note 3

Functional Annotation of the New Barley Reference Genome

To further enrich the functional annotations of the mapping base for RNA-seq, the latest version
of the new barley reference genome sequences (cv. Morex v2) and the genome structural
annotation files were obtained from IPK Barley server of the International Barley Sequencing
Consortium (IBSC) (Mascher et al., 2017). The total population of coding sequences of the
genome was extracted by the gffread utility of Cuftlinks (Trapnell et al., 2012) and refined
using the degapseq script of EMBOSS 6.6.0.0 (Rice et al., 2000). The latest version of Basic
Local Alignment Search Tool (BLAST) was obtained from the FTP server of the National
Center for Biotechnology Information (NCBI) (Altschul et al., 1990), and a local BLAST
pipeline was constructed in eight NeCTAR Research Cloud instances in Ubuntu 16.04 LTS
(Xenial) environment (Li et al., 2018). The total population of translated coding sequences of
the barley genome were BLASTx searched against three protein sequence databases, i.e.
TAIR10 (Lamesch et al., 2012), UniProtKB/Swiss-Prot (The UniProt Consortium, 2017),
RAP-DB (Sakai et al., 2013), and two ontology databases i.e. Gene Ontology (GO) (Ashburner
et al., 2000) and KEGG Ontology (KO) (Kanehisa and Goto, 2000). The latest version of
InterProScan-5 and Panther models 10.0 were obtained from the FTP server of the European
Bioinformatics Institute (EMBL-EBI) and the getorf script of EMBOSS was applied to make
InterProScan-5 to be compatible to nucleotide inputs. Scanning of InterPro protein domains
databases was performed according to the user manual (Jones et al., 2014). Only the top hits
of each coding sequence with the lowest e-values were listed in the functional annotation list

and considered for biological interpretation.

Read Processing, and Mapping

Paired-end libraries of raw reads from the RNA-seq were verified and converted using FASTQ
Groomer (Blankenberg et al., 2010) and sequence quality was validated using FastQC
(Andrews). Based on the outcomes of the read quality assessment, threshold was defined (q=20;
minimum read length: 24; Illumina TruSeq Adaptor primers removed; singletons discarded)
and Trimmomatic was applied to trim reads for quality (Bolger et al., 2014). Mapping or paired-
read alignment was performed via HISAT2 (Kim et al., 2015) and the sorted BAM files were



subjected to HTSeq code (Anders et al., 2015) for generation of the counting matrix using the

genome structural annotation available from IBSC (Mascher et al., 2017).

DEG Determination and Enrichment Analysis of Gene Ontologies

To prepare for DEG determination, we filtered the lowly expressed genes from the matrix were
filtered based on a minimum CPM threshold of 11.5 present in at least four samples, which
corresponds to an average read count of 10-15 across the 192 libraries, to minimise the multiple
testing burden when estimating false discovery rates (Robinson et al., 2010). TMM
normalization was applied to the transformed CPM matrix to eliminate composition biases
between libraries (Robinson and Oshlack, 2010). Multidimensional scaling of the TMM-
normalized matrix explicitly revealed one biological replicate of Clipper control at Z3 as an
outlier and was therefore excluded from all subsequent analyses. Variation of library sizes,
sample-specific quality weighting, and mean-variance dependence of the data matrix were
addressed by the voom transformation workflow available in limma package (v.3.7) (Ritchie
et al., 2015). Detailed procedures for estimating group mean and gene-wise variances, as well
as fitting of basic and interaction GLM to test for differential expression were detailed in
(Smyth et al., 2002). Notably, as discussed by (Zhang and Cao, 2009), assumptions required
for fold-change filtering and #-statistic adopted in DEG determination were contradictory,

therefore only the 7-statistic-based adjusted p value was applied as a cutoff in this study.

For enrichment analysis of GO, BINGO was applied to determine the overrepresented GO
terms in each DEG list focusing only on the GO Biological Processes category (Maere et al.,
2005). Unless otherwise specified, the analyses were performed using the hypergeometric test
with the whole barley annotation as a reference set and Benjamini-Hochberg FDR correction
with ¢ value cutoff at 0.05. Each enrichment list was summarized by REVIGO with small (0.5)
allowed similarity (Supek et al., 2011) and enrichment networks resulted were visualized in

Cytoscape (v.3.4.0) (Shannon, 2003).

DAM Determination and Metabolite Set Enrichment Analysis

Data matrices corresponding to each type of primary metabolomes and phenylpropanoids were

standardized by sample weights to achieve unit-conformity across different extraction and

detection workflows. To reduce systemic bias during sample collection and impact of the large



feature (metabolite) values, log-transformed matrices were normalized by median across
samples and mean-centred, respectively (van den Berg et al., 2006). Each normalized matrix
was individually evaluated for unwanted variances by means of relative log adjustment - within
group (RLAwg), principal component analysis (PCA), and hierarchical-clustering (HCR) (Xia
and Wishart, 2011), which unambiguously indicated one out of four of the biological replicates
in the primary metabolome detection as an outlier which was therefore excluded from all
subsequent analyses. Potential batch effects attributed to sample degradation and/or
instrumentation platform differences were evaluated and adjusted using the RUV-R method
(Livera et al., 2015). For determination of DAM, a limma-based linear modelling algorithm
fitted with moderate statistics (simple Bayesian model) developed by (Livera and Bowne, 2014)
was adopted to construct the basic and interaction GLM contrasts required for determination
of DAM. MBROLE (v.2.0) with use of the full database as reference set, but selected only the
functional roles that are non-ambiguous and can be found in the Plantae, were utilized to detect

the enrichment of metabolite sets of each list of DAM (Lopez-Ibanez et al., 2016).

Integrated Pathway Analysis

To integrate the omics datasets at the pathway level, coding sequences of DEGs identified from
the differential analyses of the twelve transcriptomes upon salt treatment were translated and
BLASTx searched against the Arabidopsis genome release (TAIR10, version: Jun 2016) and
KEGG pathway repository (version: May 2017). Only matches with E-value < 1.00E** (or
smallest possible E-value in the case of multiple hits for the same gene) against either or both
databases were retained and corresponding K numbers in the KEGG repository were fetched
for the subsequent integration step. For primary metabolites, the C numbers of DAMs detected
in each LC/GC-MS-based quantification were determined by comparison of their chemical
structures, formulae, molecular weights, and/or [IUPAC nomenclatures between the reference
standards used and the KEGG compound repository (May 2017). KEGG mapping of the K and
C numbers acquired was performed against the pathway repository of Arabidopsis thaliana,
which is the most comprehensive and representative pathway collection among all plant species
within the KEGG database, following the procedures as stated previously (Aoki and Kanehisa,
2005). Generic outputs from the KEGG mapper (including: ath01100 Metabolic pathways,
ath01110 Biosynthesis of secondary metabolites) were defined as outputs from the KEGG
mapper common to any kind of inputs and were therefore excluded from the ranking process.

Only pathways statistically enriched in terms of GO categories (as determined by BiNGO) and



of metabolite sets (as determined by MBROLE?2) were ranked in descending order according

to the number of significant DEG and DAM matches.

Correlation Network

Abundance matrices of the total population of DEG and DAM from each barley genotype were
concatenated as individual inputs for the Weighted Correlation Network Analysis (WGCNA).
Processing of the matrices and network comparisons were performed as described (Langfelder
and Horvath, 2008). In brief, matrices were evaluated for missing value using the
goodSamplesGenes function and any outliers were determined by hierarchical clustering.
Scale-free topology and mean connectivity of each network were plotted against the soft
thresholding power to derive the optimal adjacency or dissimilarity. Two coexpression
correlation networks (also known as hierarchical clustering of transcript and metabolite
abundance) specific to Clipper and Sahara were built based on dissimilarity-based topological
overlap matrix (TOM). Modules of each network were defined by dynamicTreeCut and
modules unique to each network were determined the matchModules function. Comparability
of the two matrices was confirmed by verifying the correlation of ranked expression and ranked
connectivity between the two datasets. Module preservation between the independent
coexpression-correlation networks of Clipper (as ‘reference’ set) and Sahara (as ‘test’ set) were
calculated by the ‘modulePreservation’ function of the WGCNA package v1.61, which
outputted the ‘Zsummary.pres’ value for each module based on preservation-statistics and
module quality-statistics (including quality, preservation, accuracy, reference separability, and
test separability). Z>10 (including modules brown, turquoise, yellow, blue, greenyellow, and
green), 5<Z<10 (including black, purple, red, cyan, pink), and Z<5 (including magenta, tan,
salmon) indicate high preservation, moderate preservation, and low preservation or modules
with significant contrast, respectively. Modules with Z-score <10, excluding module ‘tan’,
which was determined as noise, are defined as weakly preserved modules or modules with
significant contrast between the two barley genotypes. Parallel plots for showing either positive
or negative correlation of different abundance clusters (within 99" percentile) were generated
using the ggplot package of R software. The most representative trend or centroid of each
module represented by purple solid lines was determined by k-mean clustering (distance
method: Pearson) with optimal number of clusters calculated using the within-group sum of

square method (Madsen and Browning, 2009). Module memberships (kME) of genes and



metabolites harboured among module or cluster unique to either network or significantly

different to the other network were calculated by signedKME function of the WGCNA package.
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Supplemental Table 1. Quantitative Assessment of Module Preservation Between the Genotype-

specific Correlation Networks.

Module Size of Modules Zsummary.pres
brown 381 26.0347534
turquoise 400 21.5008584
yellow 330 21.2736166
blue 400 18.3925979
grey 400 14.6007575
greenyellow 176 11.6411528
green 243 10.4537462
black 173 9.0217124
gold 100 8.6063239
purple 126 8.2068145
red 222 6.7381024
cyan 59 5.9966218
pink 136 5.6553828
magenta 184 2.9000761
tan 33 1.0179650
salmon 106 0.8221007

The grey module contains uncharacterized genes and the gold module contains random genes as
determined in a permutation test with 30 permutations. Zsummary.pres represents the Z-score
summary statistics of module preservation. In general, the higher the value of “Zsummary.pres”, the
more preserved the module is between the datasets (Z<5 suggests low preservation, 5<Z<10
indicates moderate preservation, and Z>10 indicates high preservation). Grey and gold modules

contains uncharacterized and random genes respectively.



Supplemental Table 2. Summary of the global coexpression correlation analyses of the two barley genotypes under salinity.

Clipper Sahara
Biological Process Module RMM Biological Process Module RMM
- positive modulation of cell H CYCP4;1, CDC2 | - ROS-scavenging mechanism | APX1
division (suppression) *
- lipase-mediate JA biosynthesis * G DALL1
21 - xyloglucan crosslink-formation * D XTH20
- xylan backbone acetylation * D ESK1
- pectin acetylation * D PAE7
- membrane steroid modulation H CYP51A2
- inhibition of cell cycle progression  H IBR5
- cell elongation A CEL1 - cell wall-bound peroxidase * J EXPB2
- calcium ion homeostasis J GLR2.7 - suppression of GA biosynthesis B CBF3
- polyamine transport K AAT1 and signalling *
- toxin catabolism K GSTU18
- cellulose biosynthesis L CESA1, CESA3
- cell wall loosening L EXPA11, B4, A7
- brassinosteroid biosynthesis L DET2
Z2 M STE1
- regulation of SA biosynthesis L TCPS, 15, 23
- ROS-scavenging mechanism | APX1
- crosslinking of xyloglucan D XTH20
- xylan backbone acetylation D ESK1
- pectin acetylation D PAE7
- pectin biosynthesis M GAE
- lipid transport and proteolysis M LTP-HyPRP
- cell wall organization N XTH13 - cell wall-bound peroxidase * N EXPA2, A13, B2
- seed oil body formation N DSEL, OLE1 - suppression of GA biosynthesis B CBF3
- glucosinolate hydrolysis B MBP1 and signalling *
- nicotianamine biosynthesis O NAS3, NAS4 - lipase-mediated JA biosynthesis * G DALL1
z3 - ROS-scavenging mechanism | APX1
(suppression) *
- xyloglucan crosslink-formation * D XTH20
- xylan backbone acetylation * D ESK1
- pectin acetylation * D PAE7
- hydrolysis of glucosides | GH - biosynthesis of glycine betaine C PEAMT,
ADH10A8
- modulation of GA signalling C GID1C
- suppression of callose deposition C AGD2
- glucomannan galactosylation D MUCI10
AZ - LTP-mediated defense/ salt E DIR1, AZI1
tolerance response
- salinity-/ ethylene-responsive E PR-4
- ethylene-/ ROS-responsive E RAP2.11
- suppression of defense F SOX
amplification

Only biological processes with modular members being induced or remained at higher abundance after the salt treatment in different root
zones of the two barley genotypes are listed. Asterisks indicate biological processes that shared between two root zones. AZ, all zones
(including zone 1, 2, and 3); GA, gibberellin; JA, jasmonic acid; LTP, lipid transfer protein; RMM, representative modular member(s); ROS,

reactive oxygen species; SA, salicylic acid; Z1, zone 1 (meristematic); Z2, zone 2 (elongation); Z3, zone 3 (maturation).
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