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Abstract:  

 

Background - In population-based research exome sequencing (ES), the path from variant 

discovery to return of results (rROR) is not well established. Variants discovered by research ES 

have the potential to improve population health. 

Methods - Population-based ES and agnostic ExWAS were performed 5,521 Amish individuals. 

Additional phenotyping and in vitro studies enabled reclassification of a KCNQ1 variant from 

VUS to pathogenic. Results were returned to participants in a community setting. 

Results - A missense variant was identified in KCNQ1 (c.671C>T, p.T224M), a gene associated 

with long QT syndrome (LQTS) type 1 (LQT1), which can cause syncope and sudden cardiac 

death (SCD). The p.T224M variant, present in 1/45 Amish individuals is rare in the general 

population (1/248,566 in gnomAD) and was highly associated with QTc on EKG (p = 5.53E-24, 

β=20.2 ms/allele). Because of the potential importance of this variant to the health of the 

population, additional phenotyping was performed in 88 p.T224M carriers and 54 non-carriers. 

There was stronger clinical evidence of LQTS in carriers (38.6% vs 5.5%, p = 0.0006), greater 

history of syncope (32% vs 17%, p = 0.020), and higher rate of SCD in 1st degree relatives < age 

30 (4.5% vs 0%, p = 0.026). Expression of p.T224M KCNQ1 in CHO cells showed near 

complete loss of protein function. Our clinical and functional data enabled reclassification of 

p.T224M from a variant of unknown significance (VUS) to pathogenic. Of the 88 carriers, 93% 

met criteria for beta-blocker treatment and 5/88 (5.7%) were on medications that may further 

prolong QTc. Carriers were provided a CLIA confirmed  report, genetic counseling and 

treatment recommendations. Follow up care was coordinated with local physicians.  

Conclusions - This work provides a framework by which research ES can be rapidly translated 

in a culturally appropriate manner to directly benefit research participants and enable population 

precision health. 

 
 
 
 
 
Key words: long QT syndrome; population genetics; genetics, human; return of results, founder 
variant, KCNQ1  
 
 



DOI: 10.1161/CIRCGEN.120.003133 

 

3 

This article is published in its accepted form; it has not been copyedited and has not appeared in an issue of the journal. 
Preparation for inclusion in an issue of Circulation: Genomic and Precision Medicine involves copyediting, typesetting, 
proofreading, and author review, which may lead to differences between this accepted version of the manuscript and the 
final, published version. 

Introduction 

When exome sequencing (ES) is performed in a clinical setting, information that should be 

returned to the patient is generally clear1,2. However, when ES is performed in research settings, 

as in population-based exome-wide association studies (ExWAS), the issue of return of results to 

study participants is far less settled. Research return of results (rROR) for actionable findings is 

not currently obligatory, although increasingly recommended and being performed3-5. Many 

ethical issues have been raised about rROR4,6, including the ethical obligations of investigators to 

return research results to study participants (whether or not this was anticipated in the Informed 

Consent), whether study participants should have the option to opt out of receiving actionable 

research findings, and implications to family members who may not be research participants5,7,8. 

Furthermore, there are nontrivial practical and logistical issues and most research grants do not 

anticipate or provide funding for rROR9-11.  

Despite these issues, rROR has the potential to positively impact the health of research 

participants, family members, and the population at large. These benefits may be magnified in 

founder populations in which pathogenic variants may occur at much higher frequency than in 

the general population due to genetic drift, the process whereby allele frequencies within a 

population change by chance over generations. In founder populations with high fecundity, 

genetic drift can lead to large changes in allele frequencies over a relatively short period of time.   

As part of a large ongoing research program in the Old Order Amish (Amish) population 

from Lancaster County, Pennsylvania, we performed population based ES of 5,521 individuals. 

ExWAS identified a highly drifted variant in KCNQ1 (hg38.g.chr11:2571391(C>T); c.671C>T; 

p.T224M; rs199472706), present in 1 in 45 Amish and significantly associated with increased 

EKG-derived QTc (QT corrected for heart rate) interval.  
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KCNQ1 encodes the potassium voltage-gated channel subfamily Q member 1. Pathogenic 

mutations in KCNQ1 cause Long QT Syndrome type 1 (LQT1, MIM #192500), an autosomal 

dominant disorder that increases the risk for syncope and sudden cardiac death (SCD)12-14. In 

individuals of European descent, the prevalence of LQTS is estimated to be approximately 

1:2500, with LQTS1 being the most common cause of this cardiac conduction disorder15. 

KCNQ1 is included in the ACMG SF v2.02  list of medically actionable genes. Known 

pathogenic (KP) and likely pathogenic (LP) variants are to be reported to patients, when 

identified through clinical exome or genome sequencing. Beta-blockers are an effective 

therapeutic intervention in individuals with LQT1 as they may reduce the risk of syncope and 

sudden death by 70-90%14.  

p.T224M KCNQ1 was reported previously in only 2 patients with LQTS16,17 and 

therefore was classified as a variant of unknown significance (VUS) in ClinVar at the start of our 

study. Since the c.671C>T (p.T224M) variant was highly enriched in the Amish and had a large 

effect on QTc interval, we performed further clinical phenotyping and in vitro functional studies 

of this variant in order to determine its pathogenicity and better assess its possible health risk to 

the Amish community. We further describe the model we developed for reclassification of this 

variant to ”Pathogenic” and culturally-appropriate return of results to individuals with the 

variant, including providing the option for disclosure of results, genetic counseling, 

recommendations for beta-blocker treatment, and cascade testing of first-degree family members.  

 

Methods 

The authors declare that all supporting data are available within the article and its online 

supplementary files. The study was approved by the Institutional Review Board of the University 
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of Maryland School of Medicine. Participants signed written, informed, consent. Because of the 

sensitive nature of the data collected for this study, requests to access the dataset from qualified 

researchers trained in human subject confidentiality protocols may be sent to The University of 

Maryland Program for Personalized and Genomic Medicine, Braxton Mitchell PhD at 

bmitchel@som.umaryland.edu. Additional infomation on methods can be found in 

“Supplemental Materials”. 

 

Results 

Identification of the c.671C>T (p.T224M) variant in KCNQ1  

Population agnostic exome sequencing and ExWAS were performed in 5,521 Amish participants 

from the Amish Complex Disease Research Program (Supplemental Table 1). One of the 

strongest associations found was for EKG QTc interval with a missense variant in KCNQ1 

(rs199472706; c.671C>T; p.T224M)(p = 5.53E-24) (Figure 1A). The p.T224M variant was 

associated with an average 20.2 ms higher QTc compared to the reference allele (Figure 1C). The 

p.T224M variant is highly drifted in the Amish, with a frequency of 0.011 (124 carriers among 

5,521 individuals); 1 in 45 Amish carry this variant in contrast to the general population in which 

there is only 1 carrier in 248,566 individuals overall and 1 carrier in 112,482 individuals of 

European descent from gnomAD (v2.1). As above, an additional p.T224M carrier was reported 

in the literature17 but not found in gnomAD. No p.T224M homozygotes were found, consistent 

with Hardy-Weinberg expectations (only 0.67 homozygotes would have been expected).  The 

p.T224M variant was not associated at genome-wide levels of significance with any other 

phenotypes present in our database, including cardiovascular risk markers (lipids, coronary 

calcification, blood pressure, BMI), general chemistry and hematology studies, and DXA bone 

mailto:bmitchel@som.umaryland.edu
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density measures. All p.T224M variant carriers were confirmed by Sanger sequencing in the 

University of Maryland CLIA/CAP-accredited Translational Genomics Laboratory. 

As indicated in Figure 1B, the KCNQ1 locus includes five additional variants showing 

evidence for association p < 5E-08, all of which are in moderate linkage disequilibrium (LD) (r2 

> 0.28) with rs199472706/p.T224M (r2: 0.41-0.61). Two of these 5 are predicted missense (1 in 

MUC2 and 1 in KRTAP5-4). Conditional analyses indicated that the association at this locus was 

likely due to a single variant since all of these associations were no longer statistically significant 

after accounting for p.T224M (all p > 0.36) (Supplemental Table 2A).  

SNPs at three additional loci were identified in our analysis as being significantly or 

suggestively associated with QTc (Figure 1A). Notably, all three loci have been associated with 

QT interval previously in the QT Interval-International GWAS Consortium (QT-IGC)18-20.  

Variable expressivity of p.T224M KCNQ1 on QTc 

To examine the impact of genetic variation at non-KCNQ1 loci on expressivity of QTc, we 

computed a polygenic risk score (PRS) for QTc interval in all study subjects using summary 

results from two prior GWAS18,20 and estimated the correlation of QTc interval with PRS. In 

both KCNQ1 carriers and non-carriers, increasing PRS correlates with increasing QTc interval. 

The 39 SNPs contributing to the PRS are shown in Supplemental Table 3. Further analysis 

revealed no difference in the magnitude of the slopes between the two curves (p = 0.36), and thus 

provided no evidence that the effects of KCNQ1 p.T224M differ between subjects at low and 

high polygenenic risk for increased QTc (Supplemental Figure 1). We also tested for interactions 

between four SNPs previously reported to modify the effects of KCNQ1 Thr244Met on QTc 21-23 

and found no evidence for effect modification (Supplemental Table 4). 

Clinical characteristics of p.T224M KCNQ1 carriers  
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p.T224M KCNQ1 was classified as a variant of unknown significance in ClinVar. Because of the 

strong association of this variant with QTc and that it is one of the ACMG59 actionable variants, 

we performed additional phenotyping of p.T224M carriers to further assess its pathogenicity and 

determine its importance to the health of the Amish community. We performed an EKG both 

supine and within 10 seconds of standing to improve the clinical diagnosis of LQTS24,25, a full 

medical history, and a 3 generation family history. Of the 124 carriers identified, 88 consented to 

follow-up (Figure 2). Details of the follow-up study protocol are included in the Materials and 

Methods section. Clinical characteristics are compared between p.T224M carriers and non-

carriers in Table 1 and Figure 3. Sex-specific data, stratified by carrier status are shown in 

Supplemental Table 5. There were slightly more women than men in both carrier and non-carrier 

groups (Table 1). Mean and maximal QTc values supine and standing are shown in Table 1; 

maximal values in Figure 3. Mean and maximal QTc increased with standing, as expected in all 

groups, and both mean and maximal QTc were significantly higher in p.T224M carriers than in 

non-carriers both lying and standing (p < 0.0001 for all comparisons) (Table 1). In non-carriers, 

QTc was higher in females than males, as expected (Figure 3). However, in p.T224M carriers, 

QTc (both maximal and mean) between men and women was not significantly different (Figure 

3, Supplemental Table 5). The maximal QTc was abnormal (>460 ms for women, >450 ms for 

men) in 83% of p.T224M carriers vs 18.5% of non-carriers [p < 0.0001; (OR = 19.9; 95% C.I.: 

8.41-47.15)] (Table 1). The mean QTc was abnormal in 7% of non-carriers and 54% of carriers 

(p<0.0001) (Table 1).  No individuals had LBBB or intraventricular conduction delay. Three 

individuals (one carrier, two non-carriers) had high normal to elevated QRS duration (122, 122, 

120 ms) in a RBBB pattern while supine. No carriers were deaf, nor were any of their children. 
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A self-reported personal history of syncope was higher in p.T224M carriers than non-

carriers (32% vs 17%, p = 0.020) (Table 1). In 13/28 (46%) of p.T224M carriers who had a 

history of syncope, syncope occurred more than once, including 2 individuals with 10 or more 

syncopal episodes. Most syncope in non-carriers was vasovagal in character; in carriers, most did 

not have vasovagal characteristics. In the two carriers with > 10 syncopal episodes, some of the 

episodes had vasovagal qualities. In 4 of the 18 female carriers with a history of syncope, 

syncope occurred within the first 24 hours postpartum. Most episodes of syncope in p.T224M 

carriers occurred in childhood or adolescence. The oldest age at first syncopal event was a male 

carrier at 60 years of age. This individual was on an antidepressant at the time of his syncopal 

episode that could have been a possible contributor but declined medical evaluation at the time 

of syncope to assess other causes.  

A family history of SCD in 1st degree relatives under age 30 years was higher in 

p.T224M carriers than in non-carriers [4/88 (4.5%) vs 0/137 (0%), p = 0.026], but was similar in 

relatives 30 years of age and over [15/88 (17%) vs 26/137 (20%), p = 0.58] (Table 1).  The 1st 

degree relatives of p.T224M carriers with SCD under age 30 included 2 crib deaths, a 6 year old 

boy walking to school, and a 13 year old boy swimming (Figure 4). There were also 3 stillbirths 

in the families that included carriers of p.T224M. Stilbirths have recently been reported to be 

increased in LQT carriers26. Combining 1st and 2nd degree relatives of p.T224M carriers, 8% had 

a family history of sudden death under age 30 years, including 2 additional crib deaths in 2nd 

degree relatives (Figure 4). Through pedigree review, we confirmed that each of these crib deaths 

was a distinct individual.  Although genotyping for p.T224M was not available in the children 

who suffered sudden death or crib death, four of these children had a parent with the p.T224M 

variant and the other parents were not genotyped. In p.T224M carriers, we found no association 
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between the absolute value of the QTc and history of syncope, number of syncopal episodes or 

family history of SCD at any age. The p.T224M variant itself was associated with these 

outcomes. 

The Schwartz score can be used to make a clinical diagnosis of LQTS, in the absence of a 

pathogenic genetic variant with criteria including QTc, T wave changes, history of syncope with 

or without activity, and family history of SCD < 30 years old.  A Schwartz score of >3.5 is 

associated with a high probability of LQTS, 1.5 - 3.0 a moderate probability, and <1 a low 

probability. The Schwartz score was higher in p.T224M carriers than non-carriers (2.5+1.1 vs 

0.70+1.0, p < 0.0001). In the absence of a pathogenic variant, a QTc of >500 ms is also 

considered to be evidence of LQTS. Using the parameters QTc >500 ms and/or Schwartz score 

of >3.5 as clinical evidence of LQTS, 34/88 (38.6%) of p.T224M carriers vs 3/54 (5.5%) of non-

carriers, had clinical evidence of LQTS (p = 0.0006) (Table 1).   

In vitro functional studies of KCNQ1 p.T224M  

KCNQ1 encodes Kv7.1, a voltage gated potassium channel that is present at the cell surface of 

cardiac cells.  Kv7.1 associates with a function-modifying subunit encoded by KCNE1 to 

generate the slowly activating potassium current IKs that plays a key role in cardiac 

repolarization.  As shown in Figure 5, in vitro expression of the p.T224M channel with KCNE1 

in Chinese hamster ovary (CHO) cells caused loss of IKs function compared to wild-type 

channels27. The mutant T224M channel significantly reduced total activating and deactivating 

currents, with a marked positive shift in the voltage dependence of activation, by ~26 mV (p < 

0.01). 

Reclassification of KCNQ1 p.T224M from a variant of unknown significance to pathogenic 
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The p.T224M variant was considered a VUS at initial discovery in our cohort based on ClinVar 

classification and prior literature. Using the guidelines issued by the ACMG and Association for 

Molecular Pathology (AMP) to re-classify p.T224M28 (Supplemental Tables 6 and 7), we 

determined that there was sufficient evidence to classify the variant as “Pathogenic”. This 

upgraded classification was submitted to ClinVar to help inform future diagnoses of carriers of 

this variant elsewhere. Variants in KCNQ1 exon 4 listed in gnomAD and ClinVar are shown in 

Supplemental Tables 8 and 9, which show the variation within the transmembrane region of the 

protein in exon 4, specifically within the S3-S4 linker region.  Variants within the region are 

classified by the sources as pathogenic, likely pathogenic, uncertain significance or not provided; 

no variation is classified by the sources as likely benign or benign. 

Return of results, clinical characterization and treatment recommendations for KCNQ1 

p.T224M carriers 

Based upon our reclassification of the p.T224M variant in KCNQ1 as pathogenic and the high 

prevalence of the variant in the Amish, we developed a plan to offer return of results to p.T224M 

carriers. The plan was reviewed with the University of Maryland Amish Research Clinic 

Advisory Committee, which includes Amish community leaders, and was approved by the 

University of Maryland Institutional Review Board. The plan is described in greater detail in the 

Materials and Methods section.  

As shown in Figure 2, 83% (103/124) of p.T224M carriers who received a letter to 

inquire about their interest in obtaining additional information responded. Of these, 86% 

(88/103) expressed interest in obtaining additional information and 15/103 did not. Of those who 

declined, none provided a specific reason for declining participation. Home visit 1, which 

included repeat EKG (supine and standing), medical and family histories, and a blood draw for 



DOI: 10.1161/CIRCGEN.120.003133 

 

11 

This article is published in its accepted form; it has not been copyedited and has not appeared in an issue of the journal. 
Preparation for inclusion in an issue of Circulation: Genomic and Precision Medicine involves copyediting, typesetting, 
proofreading, and author review, which may lead to differences between this accepted version of the manuscript and the 
final, published version. 

CLIA confirmation of genotype was completed on all 88 participants who were enrolled in the 

study. Home visit 2, in which genetic results were disclosed and clinical recommendations were 

provided, was completed in 83 (5 participants did not call to schedule the second visit but 

received result letters by mail; see below).  During home visit 2, many participants indicated 

their appreciation for the follow up and information and expressed interest in cascade testing in 

their children. No participant asked to be withdrawn from the study.   

Within one week of home visit 2, a “final letter” and “doctor letter” were mailed to 

p.T224M carriers. These letters reviewed in detail what was discussed at the visit, including 

genetic counseling and treatment recommendations. The “doctor letter” recommended using 

nadolol for all except women of child bearing age, in whom propranolol was recommended since 

nadolol is contraindicated in breastfeeding29. Of 88 carriers, 80 (93%) qualified for beta-blocker 

treatment (Figure 2). Twenty-two (25%) of carriers were on prescription medications, including 

5 (5.7%) who were on medications known to prolong QTc according to crediblemeds.com. In the 

“doctor letter” for these individuals, the recommendation was made to change to a medication 

not known to prolong QTc if possible, and a list of medications known to prolong QTc was 

included with recommendations to avoid these medications when possible.  

 

Discussion 

We describe the path from discovery of a variant in KCNQ1 in population research ES to its 

classification as pathogenic, clinical confirmation, and culturally sensitive return of results to 

Amish participants, including genetic counseling and treatment recommendations coordinated 

with local primary care providers, and opportunity for cascade testing of family members. The 

c.671C>T (p.T224M) variant in KCNQ1 was previously reported in only two individuals with 
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LQTS16,17 and considered to be a VUS. The variant is highly enriched in the Amish (carrier 

frequency 1/45), likely through a founder effect and genetic drift. Our phenotyping showed that 

p.T224M carriers had a 20.2 ms higher QTc, a higher rate of syncope, a higher number of SCD 

in 1st degree family members under age 30 years, and a higher Schwartz score than non-carriers. 

These data, in addition to in silico predictions (Supplemental Table 6), location of the variant in 

an important functional domain with minimal benign variation23, extremely low frequency in 

gnomAD, and in vitro functional studies showing variant significantly reduced activating and 

deactivating current densities and caused a markedly positive shift of voltage dependence of the 

channel activation by ~26 mV compared to wild-type KCNQ1, enabled us to reclassify the 

c.671C>T (p.T224M)  variant as “Pathogenic” according to ACMG guidelines. To our 

knowledge, our work is the first electrophysiologic evidence showing that p.T224M causes a loss 

of the KCNQ1 channel function.  

 

Of critical clinical importance to the Amish population is to understand the absolute risk for SCD 

in p.T224M carriers. Unfortunately, we were unable to quantitatively estimate the risk of SCD in 

the Amish based on our data. The degree of lengthening of QTc in carriers was not associated 

with syncope or family history of SCD, so we presume all carriers of the p.T224M variant to be 

at increased risk, including the 46% of p.T224M carriers with a normal mean QTc. SCD in 1st 

degree family members of p.T224M carriers was more common than in non-carriers only among 

young relatives (<30 years). In addition, in carriers most syncopal episodes occurred during 

childhood and adolescence. These data suggest that the highest risk of syncope and SCD of this 

variant may be in childhood.  However, we have insufficient data to conclude that SCD risk 

attributable to p.T224M decreases or is modified with age. The similar rates of SCD in first 
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degree relatives of carriers vs. non-carriers age >30 years may reflect SCD risk increasing with 

age in the general population due to other etiologies, such as ischemic heart disease.   

 

An unresolved issue in the field is what determines the variabile expressivity that is commonly 

seen LQT1. Our analyses indicated that polygenic background influences QTc interval in carriers 

as it does in non-carriers, although we found no evidence for a larger effect of p.T224M on QT 

interval in those with a stronger polygenic background.  Nor did we observe any statistical 

evidence of modifying effects of common variants in other genes previously reported to modifty 

the effects of other pathogenic KCNQ1 variants on QT interval.  However, as in other studies, 

power to detect modifier effects in our study was limited.   

 

Numerous medications are known to prolong QTc. In our cohort, 5 of 88 p.T224M carriers 

(5.7%) were on a medication known to prolong QT. This was brought to the attention of these 

individuals and their physicians, with recommendations for the physicians to change to a safer 

medication, if possible.  Furthermore, all p.T224M carriers, even those with normal QTc, who 

could have only been identified through genetic testing, would be well-advised to avoid drugs 

that prolong QT interval. This is an example of the benefit of genomic information on 

medication safety in individuals carrying at risk genotypes, “precision medicine”30. 

 

In addition, we found that 7% of non-carriers had a higher mean QTc (and 19.6%  had a higher 

maximal QTc) than normal. However, only three non-carriers with greater than normal QTc had 

strong clinical evidence for LQTS (Schwartz score >3.5 or QTc >500 ms). For these three 

individuals, recommendations were made to consult with a cardiologist for further evaluation. 
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Overlap of QTc interval between normal individuals and those with LQTS has been well 

described31. Since the goal of this study was to compare carriers of the KCNQ1 p.T224M variant 

to non-carriers, a normal QTc was not required for inclusion in the non-carrier group. In non-

carriers of p.T224M with a longer than normal QTc, none was on a medication known to prolong 

QTc, nor were there any obvious other causes to explain the longer than normal QTc in these 

individuals.   

 

Our additional phenotyping revealed some other interesting findings, including that supine QTc 

was no different in p.T224M variant carrier women and men, whereas in non-carriers, the 

expected higher QTc in women was observed.  The number of men and women with a history of 

syncope in our study was similar. Others have reported that women with a pathogenic KCNQ1 

variant have a higher QTc than men23,32.  

 

Founder pathogenic variants in KCNQ1 causing LQT1 have been described in other populations, 

including the Bitxsan First Nations population in Canada (c.613G>A, p.V205M), present in 

1:12523 with a QTc effect size of 31 ms per allele.  Founder pathogenic KCNQ1 variants have 

also been reported in the Finnish (c.1766G>A, p.G589D) present in 1:250 with an effect size of 

50 ms33 and in the Swedish (c.1552C>T, p.A518X and c.332A>G , p.T111C), with effect sizes 

50 and 30 ms, respectively34. The founder variant in Afrikaners (c.641C>T, p.A341V) is 

associated with a SCD death rate of 14% before age 20 years35. In the Saudi Arabian founder 

mutation (c.387-5T>A) there was a high incidence of homozygotes likely due to endogamy36. 

The p.T224M variant in the Amish has a higher prevalence (1/45) than these other founder 

variants, with a smaller effect size on QTc (20.2 ms/allele) and possibly lower morbidity. To date, 
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we have not found any p.T224M homozygotes but speculate that some of the stillbirths reported 

to us could have been homozygotes. In all examples of pathogenic founder variants in KCNQ1, 

the impact on survival or reproduction is likely minimal; otherwise, with time the variants would 

become progressively less prevalent. Recently, a multiexon duplication in RYR2 has been 

reported in two large Amish families with a high risk of sudden death37. In our database of 

Pennsylvania Amish, we found 8 heterozygotes for this duplication and no homozygotes.  

 

Currently, we have little information on how many KCNQ1 p.T224M carriers elected to be 

treated with a beta-blocker or how many family members will seek genetic testing. We know that 

currently, among the 88 participants, only two family members have undergone KCNQ1 genetic 

testing. Since the Amish do not own cars, we suspect that inconvenience and cost of 

transportation to a physician’s office or laboratory to obtain testing and the cost of testing may be 

major barriers to cascade testing in this population. We speculate that if this testing were offered 

at low cost or free of charge and without the need to travel, cascade testing for the p.T224M 

variant in the Amish might be more commonly done. A study is currently underway to attempt to 

answer these questions and to offer free in-home testing to offspring of probands with the 

p.T224M variant. Moreover, given its high prevalence in the Amish, adding this pathogenic 

variant to newborn screening in states with a significant Amish population  

may be indicated and a more effective approach to identifying at risk individuals at the 

population level. 

 

Limitations of this study include the absence of KCNQ1 genotyping and autopsy reports on 

family members who had SCD to confirm that they were carriers of the p.T224M variant. 



DOI: 10.1161/CIRCGEN.120.003133 

 

16 

This article is published in its accepted form; it has not been copyedited and has not appeared in an issue of the journal. 
Preparation for inclusion in an issue of Circulation: Genomic and Precision Medicine involves copyediting, typesetting, 
proofreading, and author review, which may lead to differences between this accepted version of the manuscript and the 
final, published version. 

Secondly, we may have had fewer p.T224M carriers with a normal mean QTc if we had included 

stress testing in addition to the immediate standing EKG. In addition, we included 83 non-

carriers who were not in the primary study population, to increase our power to assess for 

difference in family history of SD between carriers and non-carriers. Strengths of the study 

include that all carriers were seen by one physician, that family history in carriers were obtained 

by a medical geneticist, and that all EKGs were read by an electrophysiologist.  

 

Through ExWAS, we describe the identification of a highly drifted missense variant, p.T224M, 

in KCNQ1 in the Amish that is highly associated with QTc. Additional phenotyping and 

functional characterization led to reclassification of the c.671C>T (p.T224M) variant in KCNQ1 

as pathogenic for LQT1. We implemented a culturally appropriate program for return of results 

including recommendations for cascade testing and treatment, coordinated with local health care 

providers. Furthermore, we have adopted a protocol for KCNQ1 genotyping and return of results 

for all ongoing studies at the Amish Research Clinic. This work provides an example of clinical 

implementation of an actionable genetic research result that has important health implications not 

only for research participants but also for community health in a founder population in which 

this pathogenic variant is common. We suggest this approach can be adapted for use in other 

genetic studies, particularly those whose protocol and consent did not anticipate return of 

medically actionable secondary findings.  

 

Disclaimer: This scientific journal article was prepared or accomplished by Linda Jeng in her 

personal capacity. The opinions expressed in this article are the author's own and do not reflect 

the view of the US Food and Drug Administration, the Department of Health and Human 

Services, or the United States government 
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Table 1. Characteristics of KCNQ1 p.T224M carriers compared to non-carriers.  

 
 

KCNQ1 
variant 

Carriers 
Non-carriers p-value 

p-value 
age/sex 

adjusted 

N 88 54   

% Female 56 53   

Age, years + SD 46.4 + 17.0 53.4 + 15.9 0.0023 - 

Mean QTc  
     Normal supine*, n/total (%)  
     Supine + SD, ms 
     Standing + SD, ms 

 
40/88 (46) 
460 + 29 
483 + 40 

 
50/54 (92.6) 

422 + 23 
435 + 26 

 
 

<0.0001 
<0.0001 

 
 

<0.0001 
<0.0001 

Max QTc  
     Normal supine*, n/total (%) 
     Supine + SD, ms 
     Standing + SD, ms 

 
17/88 (17) 
480 + 32 
502 + 43 

 
44/54 (81.5) 

435 + 26 
453 + 33 

 
 

<0.0001 
<0.0001 

 
 

<0.0001 
<0.0001 

Schwartz score > 3.5 and/or 
     QTc >500 ms, n (%) 

 
34 (38.6) 

 
3 (5.5) 

 
0.0006 

 
- 

History of syncope†, n (%) 29 (32) 26 (17) 0.032 0.020 

FH of sudden death in 1st degree relatives‡ 
                 All, n (%) 
                 Under age 30 ears, n (%)           

 
15 (17) 
4 (4.5) 

 
26 (20) 

0 (0) 

 
0.58 
0.026 

 
- 
 

 
* Normal for males < 450 milliseconds (ms) and for females <460 ms; SD = standard deviation. 
† N for non-carriers for this phenotype was 137, including the 54 non-carriers with QTc measured by 
cardiologist plus 83 additional non-carriers from our database who had the question about syncope and 
family history (FH) of unexplained sudden death but did not have QTc measured by cardiologist. 
‡ Means and standard deviations obtained by t-tests and chi-square tests. 
 

https://en.wikipedia.org/wiki/Double_dagger_(typography)
https://en.wikipedia.org/wiki/Double_dagger_(typography)
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Figure Legends: 

 

Figure 1. Exome wide analysis of QTc in 5,521 Amish subjects. Panel A. Manhattan plot, Q-Q 

plot (insert).  The red dotted line represents the threshold for genomewide significance (p < 5E-

08) and the blue dotted line represents a threshold of p <1E-06. Panel B. LocusZoom plot of 

KCNQ1 region on  chromosome 11 showing all variants with p-value < 5E-08, for our study 

population.  Peak association at p.T224M (rs199472706): Age and sex adjusted β=20.2 msec; 

p=5.53E-24. The red dotted line represents the threshold for genomewide significance (p < 5E-8) 

and the LD values are computed from the Amish. Recombination rate data are obtained from 

HapMap and may not necessarily pertain to the Amish. Panel C. Boxplot comparing unadjusted 

mean QTc between KCNQ1 p.T224M carriers (CT) vs non-carriers (CC). 

 

Figure 2. Recontact, clinical follow-up and return of results for p.T224M KCNQ1 carriers. Of 

the124 carriers offered return of results, 88 (71% of those who received initial letter, 86% of 

those who responded) were enrolled. All 88 participants received their results with 

individualized clinical recommendations.  

 

Figure 3. Higher maximal QTc in KCNQ1 p.T224M variant carriers (black bars) vs non-carriers 

(white bars). Group, QTc max + SD and N are shown below bars. C = p.T224M carrier; NC = 

non-carrier of p.T224M. TOTAL = men and women. The normal QTc for men is <450 ms; for 

women <460 ms. P-values for comparisons: * <0.0001, ** 0.34, *** 0.0005. 
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Figure 4.  Family history of unexplained sudden deaths in children, crib deaths and stillborns in 

the families of carriers of the KCNQ1 p.T224M variant. None of the children who died were 

genotyped for this variant and none was known to be deaf.  

 

Figure 5. KCNQ1 T224M loss of IKs function. Panels A and B show IKs recorded in Chinese 

hamster ovary (CHO) cells in which wild-type (WT) KCNQ1 or T224M were co-expressed with 

KCNE1 (the IKs accessory subunit). Panels C and D summarize activating and deactivating IKs in 

the two groups of cells. The mutant T224M channel had significantly reduced total activating 

and deactivating currents, with a marked positive shift in the voltage dependence of activation, 

by ~26 mV (p < 0.01). Current densities were expressed in pA/pF after normalization of current 

amplitude to cell capacitance. The voltage clamp protocol is shown in the inset.  
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