
S2 Appendix

Statistical methods
The statistical methods we have applied in the main text are explained and detailed in
this section. The statistical analysis consists of three steps: (i) the MLE estimation of
the model parameters, for all models; (ii) the best model selection by means of the
AIC and (iii) the absolute fit tests for the best model.

Likelihood functions and MLE
The expression of the likelihood function,

L(θ|ℓi=1..S) =

S∏
i=1

p (ℓi, θ), (1)

can lead to computational underflows when the sample size is large1, so the usual
procedure is to maximize its logarithm instead (which leads to the same result since
this function is monotonic). For i.i.d. variables, the log-likelihood function has the
simple expression,

lnL(θ|ℓi=1..S) =

S∑
i=1

ln p (ℓi, θ), (2)

where S is the sample size and p(ℓi, θ) is the PDF of the given model —that depends
on the model parameters θ— evaluated at the data point ℓi.

The first three models have i.i.d. variables, so the computation of their
log-likelihood functions is straightforward once the PDFs of each model are defined
(see main text for details). However, the log-likelihood function of the CCRW model
cannot be expressed as a sum of the logarithms of the PDFs evaluated at each data
point. From eq. (1), the expression in the case of the CCRW can be written as,

L(δ, λI , λE , γII , γEE |ℓi=1..S) = δMP (ℓ1)
S∏

i=2

ΓP (ℓi)1, (3)

where,

δM =
(
δ 1− δ

)
, (4)

P (ℓ) =

(
pI(ℓ) 0
0 pE(ℓ)

)
, (5)

Γ =

(
γII 1− γII

1− γEE γEE

)
, (6)

1 =

(
1
1

)
, (7)

1Large product of terms below one gives values close to zero.
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and the expressions for pI(ℓ) and pE(ℓ) are given in eqs. (10) and (11) of the main text
(note that they depend on λI and λE , respectively). Since the variables are not
independent in this case, the log-likelihood function cannot be directly obtained with
expression (2). In addition, function (3) cannot be directly computed due to underflow
errors. To avoid this, we apply the techniques explained in chapter 3 of [1] (specifically,
the algorithm for the computation of the log-likelihood function given in appendix
A.1.3 of [1]).

Once the log-likelihood functions are computed, the maximization (minimization of
the negative log-likelihood function) with respect to the model parameters is
performed using the Python function scipy.optimize.minimize. The MLE parameters
obtained for each model are given in the main text. The MLE of the minimum step
length can be directly considered to be the observed one [2] (in our case it is ℓ = 1
since agents move one position per interaction round).

Goodness-of-fit tests
In this work, we have performed two types of goodness-of-fit (GOF) tests; one for the
models with i.i.d. variables (BW, CRW and PL) and a different one to account for the
temporal autocorrelation of the CCRW model. For the BW, CRW and PL models, we
apply a likelihood ratio test to compare the likelihood of the observed frequencies to
the likelihood of the theoretical distribution that corresponds to the given model.
More specifically, we compute the log-ratio [3],

R =

S∑
i=1

[ln fobs(ℓi)− ln fth(ℓi)], (8)

where S is the sample size and fobs, fth are the observed and theoretical frequencies of
the ith step length, respectively. Note that the theoretical frequency is just the
probability (see main text for the expressions of each model’s PDF) of the ith step
length times the sample size S.

Normally, likelihood ratios like R above are used to compare two competing
theoretical models, in which case a large absolute value of R indicates that one model
is clearly better than the other. In order to assess how much better it is, one asks how
likely it is that a given absolute value of R could have arisen purely from chance
fluctuations, if in fact both models were equally good. This is quantified by the
p-value (App. C, eq. (C.6) of ref. [3]). When one compares two theoretical models,
finds a large |R| and its corresponding p-value is small, this indicates that the value R
is unlikely to be a chance fluctuation, and that one can therefore exclude one model
with high confidence.

In our case, however, a good fit between the theoretical model and the observed
frequencies manifests as small |R| and correspondingly large p. Small p-values, on the
other hand, indicate that it is unlikely that the data were generated by the proposed
model. One can therefore interpret 1− p as the probability with which we can rule out
the proposed theoretical model. The p-values obtained in our analysis are given in
Fig. 1.

In the case of the CCRW model, one cannot directly perform a GOF test on the
raw data points due to the autocorrelation present in the HMM model.

We circumvent this problem using pseudo-residuals, as described in [1]. Given a
continuous random variable X and a function F (X) defined by the cumulative
distribution function (CDF),

F (X = x) := Pr(X ≤ x), (9)
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Fig 1. Histograms of the p-values obtained for the BW, CRW and PL models in the
dF = 21 and dF = 4 cases. In our goodness-of-fit test, p-values close to zero rule out
the proposed theoretical model, while values close to 1 represent compatibility with
the model.

the pseudo-residual u is obtained by sampling a value x of X, then taking the
corresponding value of the function F . If X is sampled from some probability
distribution Pexp and we take Fexp to be the CDF of that same distribution,

Fexp(X = x) =

∫ x

Pexp(X = x′)dx′, (10)

then one can show that the resulting probability distribution over the pseudo-residuals
is in fact uniform U(0, 1) [1]. If, on the other hand, we take Ftheo to be the CDF
derived from some proposed theoretical distribution Ptheo, then the pseudo-residuals
will in general not be uniformly distributed. By testing whether the pseudo-residuals
with respect to a given theoretical model are uniformly distributed, one can therefore
test whether the model is a good fit for the data.

In order to accommodate discrete variables, one introduces so-called
mid-pseudo-residuals,

um = (u+ u−)/2, (11)
where u is obtained by sampling a value x of X and taking the corresponding
F (X = x), as above, while u− = F (X = x−) is the value of F at the greatest possible
realization that is strictly less than the sampled x.

Our data consists of a time-series of step lengths ℓt, each of which gives rise to one
mid-pseudo-residual um

t . Therefore, the first step length is denoted ℓ1 and the last one
ℓS , since S is the sample size. In order to be consistent with the notation used in the
main text for step lengths, we use in the following the upper case L to denote the
random variable and the lower case ℓ to denote one realization of it.

Crucially, the probability distribution over step lengths at each time-step is
different, since it is correlated with the lengths of preceding steps:

u−
t = Pr(Lt < ℓt|L(−t) = ℓ(−t)), (12)
ut = Pr(Lt ≤ ℓt|L(−t) = ℓ(−t)), (13)

where the expression for the conditional probability ( [1], (Chapter 5)) is in our case,

Pr(Lt ≤ ℓ|L(−t) = ℓ(−t)) =
δMP (ℓ1)B2...Bt−1ΓQ(ℓ)Bt+1...BT 1
δMP (ℓ1)B2...Bt−1ΓBt+1...BT 1 , (14)
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where δM , P (ℓ), Γ and 1 are defined in eqs. (4), (5), (6) and (7) respectively and,

Bt = ΓP (ℓt), (15)

Q(ℓ) =

(
qI(ℓ) 0
0 qE(ℓ)

)
, (16)

where pI(ℓ) and pE(ℓ) are the PDFs defined in the main text and qI(ℓ) and qE(ℓ) are
their corresponding CDFs, respectively. Note that, in this expression, the parameters
of the model are fixed (MLE parameters). Again in this case, a rescaling is needed in
order to avoid underflows in the computation (see algorithm in App. A.2.9 of ref. [1]).

In summary, we first compute the mid-pseudo-residual for each data point and
then we perform a GOF test on them. Since the probability distribution of the
mid-pseudo-residuals approaches that of a continuous variable, one can apply a
Kolmogorov-Smirnov (KS) test to check for uniformity. The KS statistic computes the
distance (DKS) between the CDF of the empirical data (in this case, the values um

t )
and the CDF of the reference distribution (in this case, U(0, 1)). Therefore, a value
DKS = 0 means that the data is distributed exactly as the reference distribution. The
maximum KS distance is DKS = 1. One obtains one value of DKS for each individual
trajectory (we perform the analysis on 600 trajectories for each type of swarm
dynamics). The average value of the KS distance that we have obtained is
DKS = 0.189± 0.046 for the trajectories of agents trained with dF = 21 and
DKS = 0.134± 0.016 for the ones of agents trained with dF = 4. All the values of
DKS are displayed in a histogram form in Fig. 2.

Fig 2. Histograms of the DKS distances obtained in the GOF test of the CCRW
model, for (left) dF = 21 and (right) dF = 4.

4/6



Additional tables and figures
Examples of the results of the statistical analysis for one trajectory are given in
Tables 1, 2, and 3. The trajectories considered correspond to the ones displayed in
Fig. 20 (b) of the main text, and Figs. 3 and 4 of this section, respectively. In addition,
figures 3 and 4 provide the survival distributions of the trajectories that have the best
goodness-of-fit parameter for the CCRW and the PL models, respectively.

Table 1. Results of the statistical analysis of the trajectory from Fig. 20 (b). This
individual was chosen for achieving the closest fit to the BW and CRW models of all
agents trained with dF = 4.

Model k AIC ∆i wi p-value
BW 2 130534.03 0 0.87 0.0018

CRW 4 130538.03 4 0.12 0.96
PL 2 144670.67 14136.64 0 < 0.01

CCRW 6 130542.03 8 0.01 DKS = 0.18

Table 2. Results of the statistical analysis of the trajectory from Fig. 3. This
individual was chosen for achieving the closest fit to the CCRW model of all agents
trained with dF = 21.

Model k AIC ∆i wi p-value
BW 2 87207.06 2104.71 0 < 0.01

CRW 4 85676.13 573.78 0 < 0.01
PL 2 94815.86 9713.51 0 < 0.01

CCRW 6 85102.35 0 1 DKS = 0.094

Table 3. Results of the statistical analysis of the trajectory from Fig. 4. This
individual was chosen for achieving the closest fit to the PL model of all agents trained
with dF = 21.

Model k AIC ∆i wi p-value
BW 2 85615.24 28236.12 0 < 0.01

CRW 4 58473.79 1094.67 0 < 0.01
PL 2 57379.12 0 1 < 0.01

CCRW 6 58471.36 1092.24 0 DKS = 0.29
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Fig 3. Survival probability (cumulative percentage of step lengths larger than the
corresponding value in the horizontal axis) as a function of the step length. Trajectory
of one agent trained with dF = 21, which has an Akaike value of 1 for the CCRW
model. This individual was chosen for achieving the closest fit to the CCRW model of
all agents trained with dF = 21. The survival distributions of the four candidate
models are also plotted. The distributions for each model are obtained considering the
MLE parameters.
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Fig 4. Survival probability (cumulative percentage of step lengths larger than the
corresponding value in the horizontal axis) as a function of the step length. Trajectory
of one agent trained with dF = 21, which has an Akaike value of 1 for the PL model.
This individual was chosen for achieving the closest fit to the PL model of all agents
trained with dF = 21. The survival distributions of the four candidate models are also
plotted. The distributions for each model are obtained considering the MLE
parameters.
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