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1 Model

We first consider a two-level system (TLS) in a complex electromagnetic (EM) environment.

According to the macroscopic quantum electrodynamics formalism,S1,S2 the Hamiltonian of

a TLS embedded in a dispersing and absorbing media could be written as

H = h̄ωeσ+σ− +

∫
dω

∫
d3rh̄ωf †(r, ω) · f(r, ω)

−
∫
dω(σ+ + σ−)µ ·

[
E(+)(re, ω) + E(−)(re, ω)

]
, (S1)

1



with the (positive-frequency) EM field E+(re, ω) at TLS position re given by

E(+)(re, ω) =

∫
d3r′i

ω2

c2

√
h̄

πε0

Imε(r′, ω)G(re, r
′, ω) · f(r′, ω), (S2)

where the G(re, r
′, ω) is the classical Green’s tensor, ε(r′, ω) is the relative electric permit-

tivity of EM environment, and f(r′, ω) is the annihilation operator of bosonic excitation with

frequency ω at position r′. Inspired by the form of the interaction Hamiltonian, we introduce

the emitter-centered modes,S2,S3

a(re, ω) = − 1

h̄gω
µ · E(+)(re, ω), (S3)

where the prefactor

gω =

√
µ0ω2

πh̄
µ · ImG(re, re, ω) · µ (S4)

is chosen to ensure the commutation relation [a(re, ω), a†(re, ω
′)] = δ(ω−ω′). In the following

the a(re, ω) is denoted by aω for simplicity. Inserting the Eq. (S3) to Eq. (S1) gives

H = h̄ωeσ+σ− +

∫
dω
[
h̄ωa†ωaω + h̄gω(σ+ + σ−)(a†ω + aω)

]
, (S5)

in which the Hamiltonian related to dark modes (in the sense of being decoupled from the

TLS) has been dropped.

Notice that gω is closely related to the Purcell enhancement P (ω) through P (ω) =

2πg2
ω/γ0, with γ0 being the decay rate of a TLS in free space. Therefore, by calculating

the radiative and non-radiative Purcell enhancement of a TLS in a complex EM environ-

ment, one can disentangle the EM modes into two groups, radiative and non-radiative modes,

denoted with operators ar,ω (with coupling strength gr,ω) and anr,ω (with coupling strength

gnr,ω), respectively.

For organic molecules, the electronic transition also couples to the molecular vibrations.

Introducing the dressing effect by these vibrational modes, and using rotating-wave approx-
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imation for the excition-EM mode coupling, one finally arrives [h̄ = 1]

H = ωeσ+σ− +

∫
dω
[
ωb†ωbω + λω

(
b†ω + bω

)
σ+σ−

]
+
∑
i=nr,r

∫
dω
[
ωa†i,ωai,ω + gi,ω

(
a†i,ωσ− + ai,ωσ+

)]
, (S6)

which is the Eq. (1) in the main text.

Given that the plasmonic environment consists of both radiative and non-radiative parts,

one may guess that the decay dynamics depend on the respective values of each components.

However, as shown in the following, the dynamics of the molecules are governed by the total

EM spectral density Jp(ω) only. To this end, starting from Eq. (S6), we first introduce two

sets of new plasmonic modes

aω = αnr,ωanr,ω + αr,ωar,ω, (S7)

dω = αr,ωanr,ω − αnr,ωar,ω, (S8)

where the coefficients αi,ω are defined by αi,ω = gi,ω/gω, with gω =
√
g2

nr,ω + g2
r,ω. Rewriting

Eq. (S6) with the new operators gives

H = ωeσ+σ− +

∫
dω
[
ωb†ωbω + λω

(
b†ω + bω

)
σ+σ−

]
+

∫
dω
[
ωa†ωaω + ωd†ωdω + gω

(
a†ωσ− + aωσ+

)]
. (S9)

Here one can see that dω acts as a dark mode that is decoupled from the exciton. Moreover,

the original EM modes can be expressed in terms of the new mode operators as

anr,ω = αnr,ωaω + αr,ωdω, (S10)

ar,ω = αr,ωaω − αnr,ωdω. (S11)

Taking the non-radiative component as an example, the population in this branch can be
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calculated from

〈a†nr,ωanr,ω〉 = α2
nr,ω〈a†ωaω〉+ α2

r,ω〈d†ωdω〉

+αnr,ωαr,ω(〈a†ωdω〉+ 〈aωd†ω〉). (S12)

Since we assume an initial vacuum state for the EM modes and mode dω is decoupled from

the exciton, any expectation value related with dω vanishes. With this argument we arrive

to the following expression for both the radiative and non-radiative components,

〈a†i,ωai,ω〉 = α2
i,ω〈a†ωaω〉 =

Ji(ω)

Jp(ω)
〈a†ωaω〉, (S13)

with the spectral density Ji(ω) = g2
i,ω and Jp(ω) = g2

ω = Jnr(ω) + Jr(ω). Therefore, the

excited-state dynamics of the molecules depends only on the aω operators with coupling

strength gω, and hence the total EM spectral density Jp(ω).

2 Tensor network calculations

For convenience of tensor network calculations and the following discussion, we first rewrite

the system Hamiltonian into a discrete form

Hd = ωeσ+σ− +
K∑
k=1

[
ωv
kb
†
kbk + λk

(
b†k + bk

)
σ+σ−

]
+

L∑
l=1

[
ωp
l a
†
lal + gl

(
a†lσ− + alσ+

)]
, (S14)

where we have omitted the dω operators for simplicity. Here K and L denote numbers

of discrete vibrational and plasmonic modes used to describe two continua in the system’s

Hamiltonian. Note that after the discretization, bk and al are dimensionless operators, while

λk and gl have the same dimension as frequency. The spectra Sem(ω) = 〈a†ωaω〉 defined in the

main text can be obtained from Sem(ω) = 〈a†lal〉/∆ω, with ∆ω being the frequency interval
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for the discretization.

To enable the treatment of Eq. (S14) by the TN approach,S4 a crucial step is applying

a chain mapping transformation. It transforms the Hamiltonian into a form containing

one-dimensional chains with only nearest-neighbor interactions.S5,S6 By doing so the system

Hamiltonian can be written in an equivalent chain form

Hc = ωeσ+σ−

+
K′∑
k=1

ω̃v
k b̃
†
kb̃k + tv1(b̃†1 + b̃1)σ+σ− +

K′∑
k=2

tvk(b̃
†
k−1b̃k + H.c.)

+
L′∑
l=1

ω̃p
l ã
†
l ãl + tp1(ã†1σ− + ã1σ+) +

L′∑
l=2

tpl (ã
†
l−1ãl + H.c.), (S15)

where ω̃v
k and b̃k (ω̃p

l and ãl) are the frequency and annihilation operator respectively for

the k-th (l-th) site in the vibrational (plasmonic) chain. For k > 1 (l > 1), tvk (tpl ) describes

the hopping strength between (k − 1)-th and k-th ((l− 1)-th and l-th) sites. Therefore, the

exciton is now coupled to the vibrational and plasmonic chains. The former accounts for

the dressing of the exciton by the molecular vibrations, while the latter leads to the exciton

decay. Among many other chain parameters, ω̃v
1 , tv1 and tv2, denoted by ωRC, λRC and γd

respectively in the main text, are of vital importance for determining the timescales where

the TLS and SVM approximations work.

The Hamiltonian in Eq. (S15) is formidable with a brute-force approach for a large

number of modes. By expressing the system’s wave function as a TN, i.e., a network of

interconnected tensors with fewer coefficients, the computation demand can be greatly re-

duced.S7 Therefore, TN methods provide an efficient way to simulate many-body dynamics

and allow for the computation of a quasi-exact solution to the time-dependent Schrödinger

equation for very complex systems. In this work we calculate the dynamics with the time-

dependent variational matrix product states (TDVMPS) technique.S8–S10

The main parameters for the TN calculations in this work are as follows. For the plas-
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monic part, the EM modes with frequency range from 0.6 eV to 6.0 eV have been considered,

while for the molecular vibrations, all the modes of the CPDT dye have been included, lying

within 0.1 to 500 meV. Both plasmonic and vibrational environment are discretized into

K = L = 6500 modes. Nevertheless, only 650 sites [K ′ = L′ = 650 in Eq. (S15)] are kept

in the TN calculations, which is already enough to produce convergent results in the time

range considered in the main text. One can include more chain sites, which is inevitably more

computationally expensive, to extend the time range that TN calculations work. Moreover,

while performing the TN calculations, a bond dimension D = 22 and a time step ∆t = 5

a.u. have been used. All these parameters have been checked to guarantee the convergence

of the results.

With regard to the organic molecule, electronic structure calculations within density

functional theory and its time-dependent version were performed to obtain the vibronic

coupling constants for the displaced harmonic oscillator model. The long-range corrected

CAM-B3LYP functionalS11 was used together with the 6-31G(d) basis set to properly de-

scribe the charge-transfer transition. For the most stable molecular conformer of the CPDT

dye,S12 ground and excited state harmonic frequencies were calculated and the Huang-Rhys

factors were obtained considering Duschinsky rotation effects.S13 All calculations were per-

formed with the Gaussian 16 package.S14 Note that the CPDT dye is closely related to the

commercial C218, Y123 and Dynamo Red dyes widely employed in dye sensitized solar cells.

3 Fermi’s golden rule

According to the Fermi’s golden rule (FGR), if a quantum emitter [transition frequency ω0]

is weakly coupled to a set of modes α [mode frequency ωα] with a coupling strength gα, then

the irreversible decay rate of the emitter can then be calculated from

γ0 = 2π
∑
α

g2
αδ(ω0 − ωα). (S16)
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In the following, we apply this rule to the excited-state dynamics of the organic molecules.S15

Assuming that, initially, the molecule is in its electronic excited state and all plasmonic

modes are in their vacuum state, one can work in the single-excitation subspace for the spon-

taneous emission process. Using the completeness of the vibrational basis, the Hamiltonian

in Eq. (S14) can be rewritten as

Hd =
∑
M

ωe,M |e, 0,M〉〈e, 0,M |

+
∑
l

∑
N

ωg,l,N |g, 1l, N〉〈g, 1l, N | (S17)

+
∑
l

∑
M,N

gl〈N |M〉(|e, 0,M〉〈g, 1l, N |+ H.c.),

withM (N) representing a set of quantum numbers {m1,m2, . . . ,mk, . . .} ({n1, n2, . . . , nk, . . .})

for the vibrational basis belonging to the electronic excited (ground) state. The basis |e, 0〉

(|g, 1l〉) denotes the electronic excited (ground) state, and vacuum state for all the cavity

modes (one-photon state for cavity mode l and vacuum state for the remaining). Moreover,

the corresponding energy for state |e, 0,M〉 and |g, 1l, N〉 is ωe,M = ωe − ∆re +
∑

kmkω
v
k

and ωg,l,N = ωp
l +

∑
k nkω

v
k , respectively. The reorganization energy can be calculated as

∆re =
∑

k λ
2
k/ω

v
k with the discrete parameters. The spontaneous emission process is man-

ifested through the coupling of the manifold of initial states {|e, 0,M〉} to the manifold of

final states {|g, 1l, N〉} with strength gl〈N |M〉. The factor 〈N |M〉 = Πk〈nk|mk〉, where

〈nk|mk〉, known as Franck-Condon factor, is the overlap integral between the vibrational

wave functions |nk〉 and |mk〉.

According to the FGR, if the molecule is initially in the state |e, 0,M〉, then the decay

rate from this state to the manifold of final states {|g, 1l, N〉} reads

γM = 2π
∑
l

∑
N

g2
l 〈M |N〉2δ(ωe,M − ωg,l,N). (S18)
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The above equation can be written as

γM = 2π

∫
dωDM(ω)Jp(ω) (S19)

after introducing a lineshape function DM(ω) with

DM(ω) =
∑
N

〈M |N〉2δ (ωe,M − ωg,l,N + ωp
l − ω) (S20)

for a specific initial state |e, 0,M〉. The corresponding near-field emission spectra introduced

in the main text can then be calculated as

SM(ω) =
2π

γM
(1− e−γM t)DM(ω)Jp(ω), (S21)

where integrating over ω yields the population in the ground state. However, the initial state

of the molecule is usually a mixture of states in the manifold {|e, 0,M〉}, with the probability

of state |e, 0,M〉 being fe,M which fulfils
∑

M fe,M = 1. In this situation, two limiting cases

are usually considered:

(i) The decay processes starting from each of the states in {|e, 0,M〉} are independent,

which leads to a multi-exponential decay dynamics with 〈σ+σ−〉 =
∑

M fe,Me
−γM t. In this

case, the near-field emission spectrum S
(i)
em(ω) can be obtained from

S(i)
em(ω) =

∑
M

fe,MSM(ω); (S22)

(ii) Fast phonon redistribution takes place, by thermalization for example, with a typical

timescale much faster than 1/γM . This leads to a fixed probability distribution among

states {|e, 0,M〉} during the whole decay process. In this case, the decay of the excited-state
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population is given by a single exponential as 〈σ+σ−〉 = e−γt, with the decay rate being

γ =
∑
M

fe,MγM . (S23)

The above expression can also be rewritten as

γ = 2π

∫
dωDem(ω)Jp(ω), (S24)

with the averaged lineshape function Dem(ω) given by

Dem(ω) =
∑
M

fe,MDM(ω). (S25)

In this case, the near-field emission spectrum reads

S(ii)
em (ω) =

2π

γ
(1− e−γt)Dem(ω)Jp(ω). (S26)

Strictly speaking, as we don’t include any phonon redistribution mechanism in our Hamil-

tonian Eq. (S14), the decay should follow the multi-exponential dynamics discussed in case

(i). However, as we will show below, there is no significant difference between both cases for

the studied system.

To calculate the decay rate in Eqs. (S19) and (S24) and hence the lineshape function,

detailed knowledge of the vibrational eigenstates and eigenenergies for both the excited and

ground state potential energy surfaces is required. Here we focus on the case that the

molecular vibrations can be approximately described by displaced harmonic oscillators as

in Eq. (S14). With respect to the initial state, we consider a Franck-Condon excitation,

the vertical transition from the vibrational ground state of the electronic ground state by
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Figure S1: The excited-state dynamics 〈σ+σ−〉 calculated from multi-exponential [case (i),
dot scatters] and single-exponential dynamics [case (ii), solid curves] with one (red), five
(blue), and nine (green) vibrational modes taken into account for the exciton frequencies
discussed in the main text. The parameters for vibrational modes are obtained from an
inverse chain mapping method by keeping only the first few chain sites. The FGR results
considering all the vibrational modes in the main text are also shown (dashed curves).
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ultrashort laser pulses. This leads to an initial distribution

fe,M =
∏
k

1

mk!

(
λk
ωv
k

)2mk

exp

[
−
(
λk
ωv
k

)2
]
. (S27)

Now we compare the two limiting cases mentioned above. Figure S1 shows the comparison

between the multi-exponential and single-exponential dynamics for an initial Franck-Condon

excitation. To ease the numerical computation, only a few vibrational modes have been

included. The two cases show slight differences if we consider one vibrational mode only.

By increasing the number of vibrational modes, the calculations tend to converge and the

differences between those two cases disappear. Moreover, due to the broadband structure

and strong Purcell enhancement effect of the plasmonic pseudomode, it is easier to converge

calculations for excitons coupled to this mode, meaning that the decay rates are not sensitive

to the lineshape function. In contrast, the relatively narrower structure of the lower-order

modes necessitate a more accurate description of the lineshape function, and hence the

inclusion of more vibrational modes.
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Figure S2: (a) Decay rates and (b) lineshape function calculated with the assumption of
T = 300 K (black) and with pseudo temperatures (blue). (c) Pseudo temperatures Tk (blue)
used to simulate the Franck-Condon distribution with a thermal distribution. The black
horizontal line shows the temperature used for the FGR results in the main text.

Although the brute-force calculation of the lineshape function based on Eq. (S20) and

(S25) works quite well for a few number of vibrational modes, they are prohibitive for hun-

dreds of modes, which is the typical number of vibrational modes for organic molecules.

Fortunately, if fast thermalization takes place for the molecular vibrations due to its inter-

action with a thermal reservoir at temperature T , an analytical expression for the lineshape
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function can be derived asS15

Dem(ω) =
1

2π

∫
dte−i[ω−(ωe−∆re)]t−G(0)+G(t). (S28)

The time-dependent function in the exponent reads

G(t) =
∑
k

(
λk
ωv
k

)2

{[1 + n(ωv
k)] e−iω

v
kt + n(ωv

k)eiω
v
kt}, (S29)

with n(ωv
k) = [exp(h̄ωv

k/kBT )− 1]−1 being the Bose–Einstein distribution function assuming

a thermalized initial distribution

fe,M =
∏
k

exp

(
−mkh̄ω

v
k

kBT

)[
1− exp(− h̄ω

v
k

kBT
)

]
, (S30)

in contrast to the Franck-Condon distribution. Interestingly, it is possible to introduce a

pseudo temperature Tk for each vibrational mode k to simulate the Franck-Condon distri-

bution with a thermal distribution, as long as the factor λk/ωv
k is small, say, less than 0.3.

This pseudo temperature is found to be

kBTk = − h̄ωv
k

ln{1− exp[− (λk/ωv
k)2]}

, (S31)

which is obtained by forcing the thermal distribution to have the same vibrational ground

state population as the Franck-Condon distribution.

In the main text, the lineshape function and the FGR results are based on Eqs. (S28)-

(S30) with the assumption of fast thermalization at T = 300 K. To justify this choice, we

compare the decay rates as well as the lineshape function calculated at T = 300 K and

pseudo temperature Tk in Fig. S2. Excellent agreement for the decay rates can be found.

As for the lineshape function, except for the sharp vibronic structures shown in the pseudo

temperature case, the main peak positions are also in good agreement.
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4 Time-dependent spectra

In Fig. 3 of the main text, we show the emission spectra evaluated at t = 150 fs, which

could be considered as the final plasmon population after the spontaneous emission process.

In this section, we show the spectra evaluated at t = 5 fs and t = 75 fs as a supplement.

They show the time-dependence of the spectra obtained by different models. We point out

that as the FGR approach assumes an immediate thermal redistribution, the corresponding

spectra do not show any time-dependence, except for their overall intensity.

As shown in Fig. S3, the TLS spectra deviate only slightly from the TN ones at t = 5 fs,

as the wavepacket just leaves the Frank-Condon region in this timescale. On the contrary,

the SVM approximation still works in this regime, yielding spectra in good agreement with

the TN results.

At longer times (t = 75 fs), the TLS and SVM models fail to reproduce the exact decay

dynamics. As a result, they do not capture either the main feature of TN spectra, as

indicated in Fig. S4. For ωe = 3.0 eV and 3.5 eV, the most of the population has already

been transferred to the plasmonic dimer due to strong Purcell enhancement taking place.

Therefore, the spectra calculated at 75 fs have already converged to the final spectra (t = 150

fs) in the main text.
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