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S1 Appendix

Section A

Calculation of PLACO (approximate) p-value. The analytical p-value (two-tailed) for

testing H0 : β1β2 = 0 (no pleiotropy) against Ha : β1β2 6= 0 using the product of Z-scores as our

PLACO test statistic is given by

pZ1Z2 = π00F(z1z2) + π01F
(
z1z2/

√
1 + τ 22

)
+ π02F

(
z1z2/

√
1 + τ 21

)
(Eq 2)

which involves the mixture probabilities π00, π01 and π02 for the sub-null hypotheses H00, H01

and H02 to hold respectively. Accurately estimating these mixture probabilities under different

scenarios is difficult. Instead, we used an asymptotic approximate form of this p-value1

p̂Z1Z2 = F
(
z1z2/

√
Var(Z1)

)
+ F

(
z1z2/

√
Var(Z2)

)
− F (z1z2) (Eq 3)

which involves only two of the five unknown parameters through the marginal variances Var(Z1) =

1 +π02τ
2
1 and Var(Z2) = 1 +π01τ

2
2 . These are the variances of the single-trait Z-scores (Wald test

statistics) Z1 and Z2 respectively under the composite null H0. We estimate Var(Z1) and Var(Z2)

using the millions of “null” genetic variants genome-wide. A priori it is not known which variants

are “null” (i.e., satisfy the composite null of no pleiotropy). So, we choose a significance threshold,

say 10−4, for the single-trait p-values using which we decide whether a variant is under sub-null

H01 or H02 or H00. This way, we collect all the variants satisfying any of the three sub-nulls

and calculate sample variance of the Z-scores from these variants. This estimation procedure is

done only once for a given study using the single-trait Z-scores and p-values (or GWAS summary

statistics) that are usually publicly available.

Now, the choice of this significance threshold to declare a variant “null” or “non-null” for

a given trait is arbitrary. We evaluated sensitivity of this threshold choice on the type I error

control and power of PLACO using the simulated data under Scenarios I and II (as described in the

main manuscript). In particular, we used thresholds of 10−2, 10−3, 10−4 and 5× 10−5, and found

PLACO’s type I error control (Fig A5) and power (Table A2; Scenario I only) qualitatively

similar across different choices of threshold.
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Note, this estimation procedure is similar to how trait correlation matrix is estimated for multi-

trait analysis using GWAS summary statistics2;3. Ideally, nearly independent variants across the

genome should be used for calculating these estimates; however, not filtering out dependent

variants in this genome-wide estimation process is not expected to have any critical impact on

the overall behavior of such methods2. This is also evident from our sensitivity analyses that

slightly varying estimates of parameters involved in the PLACO p-value calculation does not affect

PLACO’s type I error control. For instance, the above sensitivity analysis on choice of threshold

to define “null” variants - although different choices may lead to slightly different parameter

estimates, the overall behavior of PLACO appears to be robust (Fig A5). Another example

is how the different ways of estimating study correlations (Lin-Sullivan4 vs Pearson correlation

approach) may lead to slightly different correlation estimates, yet we found PLACO’s performance

to be qualitatively similar (figures not shown).

Estimation of PLACO analytical p-value. The analytical form for PLACO p-value in Eq

2 contains unknown parameters π00, π01, π02, τ1 and τ2. To estimate these parameters, one may

employ the approach taken by cross-phenotype summary-statistics based methods to estimate

the covariance matrix of multiple Z-scores3. For instance, the proportion of genetic variants with

marginal p-values > 10−4 for both traits can be used as an estimate of π00. An estimate of π01

is the proportion of genetic variants with p-values > 10−4 for the first trait and with p-values

< 10−4 for the second trait. π02 can be similarly estimated. For estimating τ1, observe that the

variance of Z1 under H02 is 1 + τ 21 . Therefore, the estimated variance of Z1 corresponding to

genetic variants with p-values < 10−4 for the first trait and with p-values > 10−4 for the second

trait can be used as an estimate of 1 + τ 21 in Eq 2. Similarly, the variance parameter τ2 can be

estimated. Note that this estimation procedure (denoted as ‘PLACO (estimated pvalue)’ in Fig

A1) is done only once for a given study using the single-trait Z-scores and p-values (‘summary

statistics’) that are usually publicly available from a GWAS. We found this p-value calculation

approach conservative for stringent significance levels (Fig A1), and hence use the approximate

p-value calculation (Eq 3) for PLACO everywhere in this manuscript. The PLACO software, too,

reports the approximate p-value.
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(a) 1:1 study sample size

Fig A1: Scenario I: Comparison of the PLACO approach using the asymptotic approximate p-value
vs using the estimated p-value. QQ plots for null data are plotted on 2 case-control traits from
2 independent studies with fixed genetic effects. Observed(− log10p-values) are plotted on the y-axis
and Expected(− log10p-values) on the x-axis. Each study has 1, 000 unrelated cases and 1, 000 unrelated
controls. Performance of the tests of pleiotropic effect of a genetic variant on the 2 traits is based on
9.99 million variants. The gray shaded region represents a conservative 95% confidence interval for the
expected distribution of p-values.
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Section B

Correlation between case-control studies with shared controls. For two outcomes from

two case-control studies, the correlation between the Z-scores is

ρ ≈
(
n12,co

√
n1,can2,ca

n1,con2,co

+ n12,ca

√
n1,con2,co

n1,can2,ca

)
/
√
n1n2

(ignoring the variation due to ŝe(β̂k)’s) under the global null of no association, where nk,ca and nk,co

are respectively the number of cases and the number of controls in the study for k-th outcome,

and n12,co (n12,ca) is the number of shared controls (cases) between the two studies4. In reality,

the cases in two case-control studies are always independent and the control group in each study

is at least as large as the case group. Based on this, let us assume (1) 100% control overlap

and no shared case (n12,ca = 0); (2) the case:control ratio in both studies is the same (say, 1:rc,

where rc≥1 – a reasonable assumption because the number of controls is almost always larger

than the number of cases); (3) the total sample size of study 1 is rs times that of study 2, where

rs≥1. From assumption (1), the correlation boils down to ρ ≈
(
n12,co

√
n1,can2,ca

n1,con2,co

)
/
√
n1n2. From

assumptions (1) and (2), we get n12,co = n1,co = n2,co and nj,co = rcnj,ca for study j = 1, 2. From

assumptions (2) and (3), we have n1 = rsn2, n1,ca = rsn2,ca, and n1,co = rsn2,co. Finally, under

these 3 assumptions, we have ρ ≈ 1√
rs(1+rc)

, the maximum of which is attained when rs and rc

take the lowest possible value. Thus, the correlation ρ reaches a maximum of 0.5 when there are

equal numbers of cases and controls in each study, both studies have the same sample size and

all the controls (and no case) are shared.

Table A1: Possible values of correlation ρ between Z-scores of two outcomes from two case-control
studies with complete control overlap, with one study being rs(≥ 1) times as large as the
other study, and with rc(≥ 1) controls for each case in both studies.

1:rc

rs:1 1:1 1.5:1 2:1 3:1 5:1 10:1

1:1 0.5 0.41 0.35 0.29 0.22 0.16
1:4 0.2 0.16 0.14 0.11 0.09 0.06
1:9 0.1 0.08 0.07 0.06 0.04 0.03
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Section C

Generative model for simulation experiments. For each individual, we first generate the

genotype of a variant by simulating a latent normal model with mean 0 and variance 1. We

dichotomize the latent normal variable into a haplotype based on whether it is smaller than the

MAF of the variant or not. Similarly we generate another independent haplotype, which is then

combined with the previous haplotype to obtain a genotype for the indivdual. Next, for a given

disease trait in Scenario I or II, we assume the simulated variant is causal and use a main effects

logistic model for the probability that an individual has the disease to generate the disease status.

We repeat this process until we have the required number of cases and controls for both traits.

We emphasize that this generative model for our simulated data have been widely used before5–7,

and is distinct from the hierarchical model assumed by PLACO. For Scenario III, the generative

model is the same as before except that a bivariate normal model with means 0, variances 1, and

pairwise correlation ρtrait is used to simulate the quantitative traits.

Type I error performance under more general simulation settings. Here we evaluate

sensitivity (if any) of type I error control of PLACO for simulation settings not considered in

the original composite null simulations presented in the main manuscript under Scenarios I (in-

dependent case-control studies), II (case-control studies with overlapping controls) and/or III

(correlated quantitative traits). Unless otherwise mentioned, other simulation settings are the

same as described in the main manuscript.

Weaker genetic effect of the associated trait under the null. One reviewer pointed out that the

type I error rates may not be well-controlled when odds ratio (OR) for the associated trait

is very close to 1. In our original null simulation settings, we assume 99% of the 10 million

variants to be under the global null H00 : OR1 = 1,OR2 = 1; 0.5% variants under the sub-null

H01 : OR1 = 1,OR2 = 1.15 and 0.4% variants under the sub-null H02 : OR1 = 1.15,OR2 = 1.

Here, we instead consider a smaller associated OR of 1.05 for Scenario I, and still observe well-

controlled type I error (Fig A2).

Higher proportion of null SNPs not under the global null, and varying MAF. To evaluate sensi-

tivity of PLACO when higher proportions of null (i.e., non-pleiotropic) variants with weak effect
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(a) 1:1 study sample size (b) 4:1 study sample size

Fig A2: Scenario I: Comparison of the PLACO approach for different fixed values of the as-
sociated trait effect under the null for traits from 2 independent case-control studies.
Observed(− log10p-values) are plotted on the y-axis and Expected(− log10p-values) on the x-axis. Either
each study has 1, 000 unrelated cases and 1, 000 unrelated controls, or Study 1 is 4 times that of Study 2,
where Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls. Type I error performance is based
on 9.99 million null variants with genetic effects that are either {β1 = 0 = β2} or {β1 = 0, β2 = log(OR)}
or {β1 = log(OR), β2 = 0}, where OR is either 1.15 (as in the original simulation settings) or weaker
at 1.05. The gray shaded region represents a conservative 95% confidence interval for the expected
distribution of p-values.

sizes for one trait are observed, we consider a more general situation where a distribution is

assumed for one of the genetic effects.

For Scenario I, we use a normal distribution with mean 0 and standard deviation 0.1 for the

genetic effect of the first trait (the choice of this distribution is motivated by the distribution

of effect sizes of common variants across many complex human traits8). The genetic effect of

the second trait is fixed at 0 (or odds ratio = 1). In other words, out of the 10 million genetic

variants, we assume 99.9% variants to be under either the global null H00 (i.e., none of the traits

is associated) or the sub-null H02 (i.e., only first trait is associated). Note, the way we have

simulated here, the probability of a variant to be under the global null H00 : OR1 = 1,OR2 = 1

is very small, and thus the majority of the null variants is expected to be under the sub-null

H02 : OR1 6= 1,OR2 = 1. For the 0.1% non-null variants, we assume the same distribution for the

first genetic effect and fix the genetic effect for the second trait at an arbitrary non-null value.

To additionally study how PLACO and other methods perform across different values of MAF,

we not only consider MAF 5% but also consider MAF of 10%, 20%, and 40%. We observe that

regardless of the MAF or the skewness in sample sizes of traits or the proportion of variants under

6



Ray, D. and Chatterjee, N. A powerful method for pleiotropic analysis under composite null hypothesis identifies
novel shared loci between type 2 diabetes and prostate cancer. PLoS Genet.; DOI: 10.1371/journal.pgen.1009218

Fig A3: Scenario I: QQ plots for the pleiotropic analysis of null data on traits from 2 independent
case-control studies with distribution assumed for genetic effect of 1 trait. Observed(− log10p-
values) are plotted on the y-axis and Expected(− log10p-values) on the x-axis. Either each study has
1, 000 unrelated cases and 1, 000 unrelated controls, or Study 1 has 4 times sample size as Study 2, where
Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls. Type I error performance of tests of
pleiotropic effect of a genetic variant on the 2 traits is based on 9.99 million null variants with genetic
effects that are {β1 ∼ N(0, 0.12), β2 = 0}. Thus, majority of the null variants are under the sub-null H02

unlike the original simulation settings where a large fixed proportion of null variants are under the global
null H00. The gray shaded region represents a conservative 95% confidence interval for the expected
distribution of p-values.

the global null, PLACO seems to have good type I error control (Fig A3).

We further evaluated this effect of not having a fixed major proportion of null variants under

global null for Scenario II. This time we only focused on MAF 5% and the setting with equal

sample sizes for both traits, and again observed well-controlled type I error for PLACO across

varying levels of control overlap once the overlap is accounted for (Fig A4).

Sensitivity analysis: choice of threshold to define “null” variants for calculating PLACO p-value.

As described in Section A, calculating approximate p-value of PLACO requires estimating Var(Z1)

and Var(Z2) based on the millions of “null” variants genome-wide. Here we explore if the choice

of ‘arbitrary’ significance threshold (default choice in the PLACO software is 10−4) used to declare a

variant “null” or “non-null” for a given trait affects the type I error control and power of PLACO.

For type I error evaluation, we simulate null data under Scenarios I and II as described in the
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Fig A4: Scenario II: QQ plots for the pleiotropic analysis of null data on traits from 2 case-control
studies with different proportions of overlapping controls and with distribution assumed for
genetic effect of 1 trait. Observed(− log10p-values) are plotted on the y-axis and Expected(− log10p-
values) on the x-axis. Equal study sample size, and equal case-control size assumed in each study. Each
study has 1, 000 unrelated cases and 1, 000 unrelated controls, of which either 20%, 40%, 80% or 100%
of the controls are shared between the two studies. Type I error performance of tests of pleiotropic effect
of a genetic variant on the 2 traits is based on 9.99 million null variants with genetic effects that are
{β1 ∼ N(0, 0.12), β2 = 0}. Thus, majority of the null variants are under the sub-null H02 unlike the
original simulation settings where a large fixed proportion of null variants are under the global null H00.
The gray shaded region represents a conservative 95% confidence interval for the expected distribution
of p-values.

main manuscript. In particular, out of the 9.99 million independent null variants, we assume 9.90

million variants are under the global null (OR1 = 1,OR2 = 1), 50 thousand variants influence

risk of Trait 2 only (OR1 = 1,OR2 = 1.15) and 40 thousand variants influence risk of Trait 1 only

(OR1 = 1.15,OR2 = 1). Additionally, we consider a separate simulation setting where, for all 9.99

million null variants, we assume a normal distribution with mean 0 and standard deviation 0.1

for log(OR1) and fix OR2 = 1. This setting covers a scenario where most null (non-pleiotropic)

variants are not under the global null since higher proportions of associated variants with weak

effect sizes are often observed for many complex traits. For power evaluation, we simulate 10

thousand independent pleiotropic variants with different choices of OR1 and OR2 under Scenario

I only. Evaluating power for Scenario II is redundant since power depends on the total number

of independent subjects, which we explore in Scenario I.

When applying PLACO on these simulated data, we calculate Var(Z1) and Var(Z2) only once

on the entire combination of 10 million independent variants. Assuming we do not know which

variants are “null”, we separately use thresholds of 10−2, 10−3, 10−4 or 5×10−5 to classify variants

as “null” or “non-null”. We found PLACO’s type I error control (Fig A5) and power (Table
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Fig A5: Scenarios I & II: Comparison of PLACO type I error control across different choices of
threshold used to define “null” variants for estimating parameters needed in PLACO’s p-
value calculation. Observed(− log10p-values) are plotted on the y-axis and Expected(− log10p-values)
on the x-axis. Either each study has 1, 000 unrelated cases and 1, 000 unrelated controls, or Study 1 has 4
times sample size as Study 2, where Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls. For
Scenario II, we focus on the extreme case with 100% control overlap. The gray shaded region represents
a conservative 95% confidence interval for the expected distribution of p-values.

A2; Scenario I only) qualitatively similar across different choices of this threshold.

Table A2: Scenario I: Sensitivity of PLACO’s power across different choices of threshold used to
define “null” variants for estimating parameters needed in PLACO’s p-value calculation.
Power (reported here in %) at genome-wide significance level (5× 10−8) is based on 10,000 simulated
pleiotropic variants with effect sizes OR1 and OR2 on the two case-control traits respectively. Either
each study has 1, 000 unrelated cases and 1, 000 unrelated controls, or Study 1 has 4 times sample size
as Study 2, where Study 2 has 1, 000 unrelated cases and 1, 000 unrelated controls.

Effect size Study Threshold
size 10−2 10−3 10−4 5× 10−5

OR1 = 1.5,OR2 = 1.5 1:1 7.3 7.1 7.1 7.1
4:1 60.8 60.6 60.0 60.0

OR1 = 1.7,OR2 = 1.7 1:1 48.2 47.8 47.4 47.2
4:1 97.3 97.2 97.1 97.1

OR1 = 1.5,OR2 = 1
1.5

1:1 4.8 4.8 4.8 4.8
4:1 46.6 46.0 45.7 45.7

OR1 = 1.7,OR2 = 1
1.7

1:1 28.9 28.4 28.1 28.1
4:1 89.9 89.6 89.3 89.2
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Section D

More on gene-set enrichment analysis. FUMA also performed enrichment analyses in other

annotated gene sets described in Molecular Signatures Database (MSigDB v7.0)9 and in curated

biological pathways from WikiPathways10. We found significant enrichment in 3 gene sets rep-

resenting expression signatures of genetic and chemical perturbations (Fig A6); in 2 gene sets

representing potential targets of regulation by transcription factors (Fig A7); and in 1 gene set

representing cell states and perturbations within the immune system (Fig A8). Delving deeper

into these gene sets and pathways may provide knowledge about T2D-PrCa etiology and may

shed light on the observed T2D-PrCa inverse association11; however delving deeper is beyond the

scope of this article.

Functional enrichment analysis. We tested enrichment of functional consequences of 43 loci

using FUMA (we excluded the MHC locus from all analyses because of strong SNP associations in

this long-range and complex LD block that complicates fine-mapping efforts12). Fisher’s exact

tests of enrichment for 11 annotations show significant enrichment of SNPs in flanking regions

such as 3-prime (pFisher = 2.4 × 10−23) and 5-prime UTRs (pFisher = 7.2 × 10−5) (Table A3).

We found 46 (3.6%) significant SNPs spread across 19 loci have CADD scores13 > 12.37 (the

suggested threshold for deleteriousness, as reported in the FUMA documentation). RegulomeDB

categorical scores14 predict 35 SNPs across 9 loci to affect binding and linked to expression of

a gene target, while 33 SNPs across 18 loci are likely to affect binding only. Majority of the

significant SNPs has highly significant cis-regulatory effects (p < 5× 10−8) on gene expression in

whole blood from eQTLGen Consortium.

Colocalization analysis. Bayesian colocalization tests of ±200 Kb region around the lead

SNPs of the 43 loci reveal 26 lead SNPs as having the highest posterior probability of being

associated with both PrCa and T2D. Interestingly, the pleiotropic loci near known shared genes

THADA and JAZF1, near candidate shared genes PPARG and CDKN2A, and near previously

implicated GWAS catalog genes BCL2L11 and AC005355.2 do not have convincing evidence of

being driven by a single causal variant for both diseases. Pleiotropic signals at these loci are likely

driven by two distinct causal SNPs for the two diseases in strong LD with each other.
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Table A3: Enrichment statistics for different functional consequences (annotations from ANNO-
VAR) of SNPs in LD with the lead SNPs from all 43 loci detected by PLACO. 1000G
Phase 3 European population is used as reference panel.

Annotation Count Prop. Count Prop. Enrichment pFisher
(ref.) (ref.) (here) (here)

UTR3 233824 0.00932 211 0.020 2.150 2.4× 10−23

UTR5 71546 0.00285 54 0.005 1.798 7.2× 10−5

downstream 284177 0.01133 132 0.013 1.107 2.5× 10−1

exonic 254736 0.01016 131 0.012 1.225 2.2× 10−2

intergenic 11684523 0.46586 2252 0.214 0.459 0
intronic 9137749 0.36432 6308 0.599 1.645 0
ncRNA exonic 259951 0.01036 106 0.010 0.972 8.1× 10−1

ncRNA intronic 2884355 0.11500 1211 0.115 1.000 9.9× 10−1

ncRNA splicing 1313 0.00005 0 0.000 0.000 1
splicing 2830 0.00011 0 0.000 0.000 6.4× 10−1

upstream 266686 0.01063 121 0.011 1.081 3.9× 10−1

Annotation: Functional consequence of SNPs
Count (ref.): Number of SNPs with the corresponding annotation in the reference panel
Prop. (ref.): Proportion of SNPs with the corresponding annotation in the reference panel
Count (here): Number of SNPs with the corresponding annotation in the candidate set of SNPs from current
GWAS
Prop. (here): Proportion of SNPs with the corresponding annotation in the candidate set of SNPs from current
GWAS
Enrichment: Ratio of prop. (here) to prop. (ref.); value > 1 indicates annotation is enriched, otherwise depleted
pFisher : p-value from Fisher’s exact test (2-sided test)
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Fig A6: Mapped genes (as done by FUMA) for the 43 pleiotropic loci detected by PLACO were tested for enrichment in MsigDB C2 gene sets
representing expression signatures of genetic and chemical perturbations.

Fig A7: Mapped genes (as done by FUMA) for the 43 pleiotropic loci detected by PLACO were tested for enrichment in MsigDB C3 gene sets
that share upstream cis-regulatory motifs which can function as potential transcription factor binding sites.

Fig A8: Mapped genes (as done by FUMA) for the 43 pleiotropic loci detected by PLACO were tested for enrichment in MsigDB C3 gene sets
representing cell states and perturbations within the immune system.
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