

Supplementary Information for

Atomic-scale Evidence for Highly Selective Electrocatalytic N-N Coupling on Metallic MoS₂

Daoping He, Hideshi Ooka, Yujeong Kim, Yamei Li, Fangming Jin, Sun Hee Kim, Ryuhei Nakamura

Fangming Jin; Sun Hee Kim; Ryuhei Nakamura Email: fmjin@sjtu.edu.cn; shkim7@kbsi.re.kr; ryuhei.nakamura@riken.jp

This PDF file includes:

Figures S1 to S14 Table S1 SI References

Fig. S1. XPS S 2*p* spectra of 1T-MoS₂ and 2H-MoS₂ and the deconvolution. The binding energies of the S 2*p* peaks are also shifted to smaller values for 1T-MoS₂. The sulfur peak was also separated into two doublets. The doublet with lower binding energy reflects the terminal S₂²⁻ and unsaturated S²⁻, while the higher binding energy doublet is associated with apical S²⁻ and bridging S₂²⁻ (1-3). By integrating the intensities of characteristic S 2*p*_{1/2} and S 2*p*_{3/2} peaks, the percentage of apical S²⁻ and bridging S₂²⁻ with respect to terminal S₂²⁻ and unsaturated S²⁻ for 1T-MoS₂ was found to be 12.1%, confirming the existence of more sulfur-terminated edges in 1T-MoS₂. Detailed analysis of elemental compositions reveals that the atomic ratio of Mo:S is 1:1.9 for 1T-MoS₂ and 1:2.0 for 2H-MoS₂, respectively.

Sample	BE (Mo ^{IV}) ^{a)}	Higher BE (S) ^{b)}	Lower BE (S) ^{c)}	Atomic ratio of Mo/S	Ratio of 1T phase	P ^{d)}
2H-MoS ₂	229.5 (3 <i>d</i> 5/2), 232.7 (3 <i>d</i> 3/2)	-	162.37 (2 <i>p</i> _{3/2}), 163.57 (2 <i>p</i> _{1/2})	1:2.0	0%	0
1T-MoS ₂	228.5 (3 <i>d</i> _{5/2}), 231.7 (3 <i>d</i> _{3/2})	162.89 (2 <i>p</i> _{3/2}), 164.09 (2 <i>p</i> _{1/2})	161.39 (2 <i>p</i> _{3/2}), 162.59 (2 <i>p</i> _{1/2})	1:1.9	55%	12.1%

Table S1. Summary of the structural parameters of 1T-MoS₂ and 2H-MoS₂.

^{a)} BE: Binding Energy (eV); ^{b)} Higher BE (S): bridging $S_2^{2^-}$ + apical S^{2^-} ; ^{c)} Lower BE (S): terminal $S_2^{2^-}$ + unsaturated S^{2^-} ; ^{d)} P: percentage of higher binding energy S.

Fig. S2. Raman spectra of 1T-MoS₂ and 2H-MoS₂. The in-plane Mo–S phonon mode (E_{2g}) and outof-plane S phonon mode (A_{1g}) are located at 379 and 405 cm⁻¹, respectively, confirming that 2H is the dominant phase for the commercial 2H-MoS₂ sample (4,5). In contrast, the 1T-MoS₂ sample shows additional peaks at 150 (J_1), 239 (J_2), and 337 cm⁻¹ (J_3), respectively. The presence of these peaks is attributed to the superlattice structure in the Brillouin zone folding (6-8). Furthermore, the presence of the E_{1g} peak at 282 cm⁻¹ confirms the dominant octahedral coordination of Mo in the 1T phase, together with the strong suppression of the E_{2g} and A_{1g} peaks (9). Experimental conditions: 532-nm laser; coadditions, 20 spectra; integration time, 10 s.

Fig. S3. UV-vis absorption spectra of $1T-MoS_2$ and $2H-MoS_2$. The UV-vis spectra of $1T-MoS_2$ and $2H-MoS_2$ powder were collected in diffuse transmission mode. Two typical absorption peaks located at 593 and 655 nm were observed for $2H-MoS_2$. These peaks are assigned to the energy splitting from the valence band spin-orbital coupling, due to its semiconductive property (10). In contrast, the absorption spectrum of $1T-MoS_2$ has no salient absorption bands but a monotonic change that is indicative of its metallic property (11).

Fig. S4. GC calibration of N_2O . (A) Gas chromatography and (B) calibration curves of N_2O .

Fig. S5. Electroreduction of NO_2^- to NH_4^+ on MoS_2 . Faradaic efficiency of NH_4^+ production via NO_2^- reduction (0.1 M) by 1T-MoS₂ and 2H-MoS₂ as a function of pH at 0.1 V vs RHE for 4 h.

Fig. S6. Temperature-dependent EPR spectra of 1T-MoS₂. Temperature-dependent EPR spectra of 1T-MoS₂ in 20 mM dithionite solution at pH 5. Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans.

Fig. S7. EPR spectra of $1T-MoS_2$ in the absence of dithionite. The EPR spectra of $1T-MoS_2$ immersed in pure buffer solution. The buffer solution was prepared using either 0.2 M citric acid for pH 4, 5, and 5.5, or 0.2 M phosphate for pH 6 and 7, respectively. Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans.

Fig. S8. EPR calibration of MoCl₅. (A) EPR spectra and (B) calibration curve of MoCl₅. The experiments were performed using $Mo^{V}Cl_{5}$ dissolved in acetonitrile. The calibration curve was obtained by double integrating the Mo^{V} EPR signal at different concentration of Mo^{V} and the concentration of the catalyst was determined by the interpolation of the calibration curve. Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans; temperature, 30 K.

Fig. S9. EPR spectra of 1T-MoS₂ at pH 5.5. (A) X-band CW-EPR and (B) Q-band derivative ESEdetected EPR spectra of 1T-MoS₂ generated after reduction by 20 mM dithionite at pH 5.5. (black: experimental spectra, red: simulated spectra). To obtain detailed structural information of the pHdependent Mo^V species, X-band (9.6 GHz) and Q-band (34 GHz) CW-EPR experiments were carried out. At pH 5.5, the X-band and the Q-band EPR data display a rhombic signal with g = [1.966, 1.940, 1.910], suggesting that the local geometry of the Mo^V is significantly anisotropic. Clear low-intensity satellite peaks (indicated as solid triangles in the inset of A) were observed due to hyperfine coupling of ⁹⁵Mo (*I* = 5/2) (12-15). We determine the hyperfine coupling constants of the ⁹⁵Mo to be A (⁹⁵Mo) = [130, < 50, 175] by simulating these satellite peaks. The spectrum is less sensitive to the A₂ (⁹⁵Mo) value, and does not change significantly until the A₂ (⁹⁵Mo) is increased to more than 50 MHz. Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans.

Fig. S10. EPR spectra of 1T-MoS₂ at pH 6 and 7. X-band CW-EPR and Q-band derivative ESEdetected EPR spectra of 1T-MoS₂ generated after reduction by 20 mM dithionite at pH 6 (A, B) and 7 (C, D). (black: experimental spectra, red: simulated spectra). The X-band and the Q-band EPR spectrum of Mo^{V} species only exhibit an isotropic signal (g = 1.928). Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans.

Fig. S11. EPR spectra of 2H-MoS₂. The EPR spectra of 2H-MoS₂ immersed in 20 mM dithionite solution. No changes in the EPR spectrum (350 ~ 370 mT) were observed by changing the pH. Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans.

Fig. S12. ENDOR spectra of 1T-MoS₂ at pH 5.5. (A) The 2D field-dependent ¹H Davies ENDOR and (B) ²H Mims ENDOR spectra of 1T-MoS₂ generated after reduction by 20 mM dithionite at pH 5.5 (black lines). The simulated spectra are shown in red. The simulations parameters are as follows: panel A: A = [-3.4, 4.5, 2.5] MHz, Euler Angle = [α , β , γ] = [90, 115, 20]°; panel B: A = [-0.5, 0.7, 0.4] MHz, Euler Angle = [α , β , γ] = [90, 115, 20]°. Experimental conditions: microwave frequency, 34 GHz; T = 30 K; Davies ENDOR π /2 width, 32 ns, T = 400 ns, RF pulse width, 20 µs; Mims ENDOR π /2 width, 32 ns, T = 200 ns, RF pulse width, 40 µs.

Fig. S13. Stability of 1T-MoS₂. The Mo 3*d* XPS spectra of 1T-MoS₂ along with the spectral deconvolution after NO₂⁻ reduction (0.1 M) at pH 5 for 4 h at 0.1 V vs RHE.

Fig. S14. Raman spectra and electrocatalytic performance of amorphous MoS_x . (A) Raman spectra of amorphous MoS_x . (B) The electrocatalytic performance of amorphous MoS_x toward NO_2^- reduction at pH 5 and 0.1 V vs RHE for 4 h. The amorphous MoS_x was synthesized by electrochemical deposition at room temperature (15). As shown in (A), the spectrum of hydrothermally synthesized 1T-MoS₂ showed clear Raman bands assigned to the 1T phase, and no bands assignable to the amorphous MoS_x was resolved under the detection limit of Raman spectroscopy. Furthermore, the electrocatalytic performance in (B) demonstrated that amorphous MoS_x selectively produces NO (FE: ~ 80%) and has negligible activity towards N₂O production (FE: ~ 4%), thus ruling out amorphous MoS_x as the possible catalytic site for selective N–N coupling.

SI References

- Huang, L.B. *et al.* Self-Limited on-Site Conversion of MoO₃ Nanodots into Vertically Aligned Ultrasmall Monolayer MoS₂ for Efficient Hydrogen Evolution. *Adv. Energy Mater.* 8, 1800734 (2018).
- 2. Ting, L.R.L. *et al.* Catalytic Activities of Sulfur Atoms in Amorphous Molybdenum Sulfide for the Electrochemical Hydrogen Evolution Reaction. *ACS Catal.* **6**, 861-867 (2016).
- Deng, Y.L. *et al.* Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoS_x) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H⁺ Reduction. *ACS Catal.* 6, 7790-7798 (2016).
- 4. Ding, W. *et al.* Highly Ambient-Stable 1T-MoS₂ and 1T-WS₂ by Hydrothermal Synthesis under High Magnetic Fields. *ACS Nano* **13**, 1694-1702 (2019).
- 5. Yu, Y. *et al.* High phase-purity 1T'-MoS₂- and 1T'-MoSe₂-layered crystals. *Nat. Chem.* **10**, 638-643 (2018).
- 6. Liu, Q. *et al.* Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS₂: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. *Small* **11**, 5556-5564 (2015).
- 7. Calandra, M. Chemically exfoliated single-layer MoS₂: Stability, lattice dynamics, and catalytic adsorption from first principles. *Phys. Rev. B* **88**, 245428 (2013).
- 8. Jiménez Sandoval, S., Yang, D., Frindt, R.F. & Irwin, J.C. Raman study and lattice dynamics of single molecular layers of MoS₂. *Phys. Rev. B* 44, 3955-3962 (1991).
- 9. Cheng, P., Sun, K. & Hu, Y.H. Memristive Behavior and Ideal Memristor of 1T Phase MoS₂ Nanosheets. *Nano Lett.* **16**, 572-576 (2016).
- 10. Purcell-Milton, F. *et al.* Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS₂ Nanostructures. *ACS Nano* **12**, 954-964 (2018).
- 11. Geng, X. *et al.* Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. *Nat. Commun.* **7**, 10672 (2016).
- Busetto, L., Vaccari, A. & Martini, G. Electron-Spin Resonance of Paramagnetic Species as a Tool for Studying the Thermal-Decomposition of Molybdenum Trisulfide. *J. Phys. Chem.* 85, 1927-1930 (1981).
- 13. Konings, A.J.A. *et al.* ESR studies on hydrodesulfurization catalysts: Supported and unsupported sulfided molybdenum and tungsten catalysts. *J. Catal.* **54**, 1-12 (1978).
- 14. Basu, P. Use of EPR Spectroscopy in Elucidating Electronic Structures of Paramagnetic Transition Metal Complexes. *J. Chem. Educ.* **78**, 666-669 (2001).
- 15. Tran, P.D. *et al.* Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. *Nat. Mater.* **15**, 640-646 (2016).