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Fig. S1. XPS S 2p spectra of 1T-MoS2 and 2H-MoS2 and the deconvolution. The binding energies 
of the S 2p peaks are also shifted to smaller values for 1T-MoS2. The sulfur peak was also 
separated into two doublets. The doublet with lower binding energy reflects the terminal S2

2− and 
unsaturated S2−, while the higher binding energy doublet is associated with apical S2− and bridging 
S2

2− (1-3). By integrating the intensities of characteristic S 2p1/2 and S 2p3/2 peaks, the percentage 
of apical S2− and bridging S2

2− with respect to terminal S2
2− and unsaturated S2− for 1T-MoS2 was 

found to be 12.1%, confirming the existence of more sulfur-terminated edges in 1T-MoS2. Detailed 
analysis of elemental compositions reveals that the atomic ratio of Mo:S is 1:1.9 for 1T-MoS2 and 
1:2.0 for 2H-MoS2, respectively.  
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Table S1. Summary of the structural parameters of 1T-MoS2 and 2H-MoS2. 

Sample BE (MoIV)a) Higher BE (S)b) Lower BE (S)c) 
Atomic ratio of 

Mo/S 
Ratio of 

1T phase 
Pd) 

2H-MoS2 
229.5 (3d5/2), 
232.7 (3d3/2) 

− 
162.37 (2p3/2), 
163.57 (2p1/2) 

1:2.0 0% 0 

1T-MoS2 
228.5 (3d5/2), 
231.7 (3d3/2) 

162.89 (2p3/2), 
164.09 (2p1/2) 

161.39 (2p3/2), 
162.59 (2p1/2) 

1:1.9 55% 12.1% 

a) BE: Binding Energy (eV); b) Higher BE (S): bridging S2
2− + apical S2−; c) Lower BE (S): terminal S2

2− + 
unsaturated S2−; d) P: percentage of higher binding energy S. 
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Fig. S2. Raman spectra of 1T-MoS2 and 2H-MoS2. The in-plane Mo−S phonon mode (E2g) and out-
of-plane S phonon mode (A1g) are located at 379 and 405 cm−1, respectively, confirming that 2H is 
the dominant phase for the commercial 2H-MoS2 sample (4,5).  In contrast, the 1T-MoS2 sample 
shows additional peaks at 150 (J1), 239 (J2), and 337 cm−1 (J3), respectively. The presence of these 
peaks is attributed to the superlattice structure in the Brillouin zone folding (6-8). Furthermore, the 
presence of the E1g peak at 282 cm−1 confirms the dominant octahedral coordination of Mo in the 
1T phase, together with the strong suppression of the E2g and A1g peaks (9). Experimental 
conditions: 532-nm laser; coadditions, 20 spectra; integration time, 10 s. 
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Fig. S3. UV-vis absorption spectra of 1T-MoS2 and 2H-MoS2. The UV-vis spectra of 1T-MoS2 and 
2H-MoS2 powder were collected in diffuse transmission mode. Two typical absorption peaks 
located at 593 and 655 nm were observed for 2H-MoS2. These peaks are assigned to the energy 
splitting from the valence band spin-orbital coupling, due to its semiconductive property (10). In 
contrast, the absorption spectrum of 1T-MoS2 has no salient absorption bands but a monotonic 
change that is indicative of its metallic property (11). 
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Fig. S4. GC calibration of N2O. (A) Gas chromatography and (B) calibration curves of N2O. 
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Fig. S5. Electroreduction of NO2
− to NH4

+ on MoS2. Faradaic efficiency of NH4
+ production via NO2

− 
reduction (0.1 M) by 1T-MoS2 and 2H-MoS2 as a function of pH at 0.1 V vs RHE for 4 h. 
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Fig. S6. Temperature-dependent EPR spectra of 1T-MoS2. Temperature-dependent EPR spectra 
of 1T-MoS2 in 20 mM dithionite solution at pH 5. Experimental conditions: microwave frequency, 
9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 
mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 96 s; four scans. 
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Fig. S7. EPR spectra of 1T-MoS2 in the absence of dithionite. The EPR spectra of 1T-MoS2 
immersed in pure buffer solution. The buffer solution was prepared using either 0.2 M citric acid for 
pH 4, 5, and 5.5, or 0.2 M phosphate for pH 6 and 7, respectively. Experimental conditions: 
microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; 
modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 
96 s; four scans. 
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Fig. S8. EPR calibration of MoCl5. (A) EPR spectra and (B) calibration curve of MoCl5. The 
experiments were performed using MoVCl5 dissolved in acetonitrile. The calibration curve was 
obtained by double integrating the MoV EPR signal at different concentration of MoV and the 
concentration of the catalyst was determined by the interpolation of the calibration curve. 
Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation 
frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 
48.00 ms; sweep time, 96 s; four scans; temperature, 30 K. 
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Fig. S9. EPR spectra of 1T-MoS2 at pH 5.5. (A) X-band CW-EPR and (B) Q-band derivative ESE-
detected EPR spectra of 1T-MoS2 generated after reduction by 20 mM dithionite at pH 5.5. (black: 
experimental spectra, red: simulated spectra). To obtain detailed structural information of the pH-
dependent MoV species, X-band (9.6 GHz) and Q-band (34 GHz) CW-EPR experiments were 
carried out. At pH 5.5, the X-band and the Q-band EPR data display a rhombic signal with g = 
[1.966, 1.940, 1.910], suggesting that the local geometry of the MoV is significantly anisotropic. 
Clear low-intensity satellite peaks (indicated as solid triangles in the inset of A) were observed due 
to hyperfine coupling of 95Mo (I = 5/2) (12-15). We determine the hyperfine coupling constants of 
the 95Mo to be A (95Mo) = [130, < 50, 175] by simulating these satellite peaks. The spectrum is less 
sensitive to the A2 (95Mo) value, and does not change significantly until the A2 (95Mo) is increased 
to more than 50 MHz. Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 
1 mW; modulation frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; 
conversion time, 48.00 ms; sweep time, 96 s; four scans. 
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Fig. S10. EPR spectra of 1T-MoS2 at pH 6 and 7. X-band CW-EPR and Q-band derivative ESE-
detected EPR spectra of 1T-MoS2 generated after reduction by 20 mM dithionite at pH 6 (A, B) and 
7 (C, D). (black: experimental spectra, red: simulated spectra). The X-band and the Q-band EPR 
spectrum of MoV species only exhibit an isotropic signal (g = 1.928). Experimental conditions: 
microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation frequency, 100 kHz; 
modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 48.00 ms; sweep time, 
96 s; four scans. 
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Fig. S11. EPR spectra of 2H-MoS2. The EPR spectra of 2H-MoS2 immersed in 20 mM dithionite 
solution. No changes in the EPR spectrum (350 ~ 370 mT) were observed by changing the pH. 
Experimental conditions: microwave frequency, 9.64 GHz; microwave power, 1 mW; modulation 
frequency, 100 kHz; modulation amplitude, 1.0 mT; time constant, 40.96 ms; conversion time, 
48.00 ms; sweep time, 96 s; four scans. 
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Fig. S12. ENDOR spectra of 1T-MoS2 at pH 5.5. (A) The 2D field-dependent 1H Davies ENDOR 
and (B) 2H Mims ENDOR spectra of 1T-MoS2 generated after reduction by 20 mM dithionite at pH 
5.5 (black lines). The simulated spectra are shown in red. The simulations parameters are as 
follows: panel A: A = [−3.4, 4.5, 2.5] MHz, Euler Angle = [α, β, γ] = [90, 115, 20]°; panel B: A = [−0.5, 
0.7, 0.4] MHz, Euler Angle = [α, β, γ] = [90, 115, 20]°. Experimental conditions: microwave 
frequency, 34 GHz; T = 30 K; Davies ENDOR π/2 width, 32 ns, τ = 400 ns, RF pulse width, 20 μs; 
Mims ENDOR π/2 width, 32 ns, τ = 200 ns, RF pulse width, 40 μs. 
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Fig. S13. Stability of 1T-MoS2. The Mo 3d XPS spectra of 1T-MoS2 along with the spectral 
deconvolution after NO2

− reduction (0.1 M) at pH 5 for 4 h at 0.1 V vs RHE. 

  

236 234 232 230 228 226 224

In
te

n
s
it
y
 /

 a
.u

.

Binding Energy / eV

 Raw data

 Fitting

 1T

 2H

 S 2s

Mo 3d3/2

Mo 3d5/2



 

 

16 

 

 
 

 

Fig. S14. Raman spectra and electrocatalytic performance of amorphous MoSx. (A) Raman spectra 
of amorphous MoSx. (B) The electrocatalytic performance of amorphous MoSx toward NO2

− 
reduction at pH 5 and 0.1 V vs RHE for 4 h. The amorphous MoSx was synthesized by 
electrochemical deposition at room temperature (15). As shown in (A), the spectrum of 
hydrothermally synthesized 1T-MoS2 showed clear Raman bands assigned to the 1T phase, and 
no bands assignable to the amorphous MoSx was resolved under the detection limit of Raman 
spectroscopy. Furthermore, the electrocatalytic performance in (B) demonstrated that amorphous 
MoSx selectively produces NO (FE: ~ 80%) and has negligible activity towards N2O production (FE: 
~ 4%), thus ruling out amorphous MoSx as the possible catalytic site for selective N−N coupling. 
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