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Supporting Information Text11

1. Quantile-quantile plots of the pair interaction time distribution12

Our model predicts the pair interaction time distribution to be exponential. We have generated the quantile-quantile (QQ)13

plots of pair interaction times of honeybees and humans to verify the prediction. If the data followed the proposed probability14

density, a QQ plot would show a linear line. QQ plot was meant to be a preliminary test to examine the probability density15

of the pair interaction times, so only a few pairs from each dataset have been tested. The pair with the most number of16

interactions from each dataset has been chosen to be demonstrated here for clearer examination of the distribution.17

As shown in Fig. S1, although some pair interaction times appear to be exponential, there are data that deviate for long18

times. The deviation is always upward, which implies that it is not due to statistical fluctuations but is instead a systematic19

effect. The upward deviation indicates that the actual probability density decays more slowly than the proposed one. However,20

even the deviating data align well with the reference line for short times. The deviating region at long times also looks linear21

although it does not lie on the reference line. The linearity suggests that the deviating region is exponential as well, but with22

a slower decaying rate than the short time region. A weighted sum of two exponential distributions, sometimes known as a23

hyperexponential distribution, exhibits the same behavior. Its limiting behavior at small values of the argument is the faster24

decaying of the two summed exponentials whilst its limiting behavior at large values is the other one. Therefore, we deduce25

that the pair interaction time distribution is hyperexponential, and is well approximated by just two terms.26

2. Calculation of the interaction time distribution.27

As discussed in the main text, the probability density of the rates is p(ω) ∼ ωα. Integrating the pair interaction time distribution28

over the rates gives29

f(t) =
∫ ε

0
dωp(ω)f(ω, t) =

∫ ε

0
dωωα+1e−ωt = t−(2+α)γ(2 + α, εt) [S1]30

where γ(a, z) ≡
∫ z

0 t
a−1e−tdt is the incomplete gamma function. Since p(ω) ∼ ωα is for small ω limit, the integration is31

performed up to a finite value ε. γ(a, z) approaches a constant Γ(a) ≡
∫∞

0 ta−1e−tdt as z →∞ (a is fixed in our case), which32

means that equation S1 would become f(t) ∼ t−(2+α) for large εt. γ(a, z) starts to saturate to a constant value at z of order33

1. Therefore, the large εt condition translates into t > 1/ε. We assume ε to be small, but it is the largest value of ω in34

the population (equation S1). So the condition t > 1/ε is satisfied for most t, and we observe the heavy-tailed distribution35

f(t) ∼ t−(2+α).36

The pair interaction time distribution turns out to be better represented by a hyperexponential distribution than an37

exponential distribution. However, this modification does not affect the final result f(t) ∼ t−(2+α). Now the pair interaction38

time distribution is fpair(t) = gω1e
−ω1t + (1− g)ω2e

−ω2t where g is a weight on one of the two exponential terms. Since we39

now have two rates ω1 and ω2 with relation ω1 > ω2, the integration becomes40

f(t) =
∫ ε

0
dω1p(ω1)

∫ ω1

0
dω2p(ω2)

{
gω1e

−ω1t + (1− g)ω2e
−ω2t

}
. [S2]41

The first term is calculated as42 ∫ ε

0
dω1ω

α
1

g

α+ 1ω
α+2
1 e−ω1t = g

α+ 1 t
−(3+2α)γ(3 + 2α, εt) ∼ t−(3+2α). [S3]43

The last asymptotic relation is for large t. Here “large t” means t > 1/ε as stated in the previous paragraph. The first integral44

of the second term gives us (1− g)t−(2+α)γ(2 + α, ω1t). Then the second term is calculated as45

(1− g)t−(2+α)
∫ ε

0
dω1ω

α
1 γ(2 + α, ω1t) ∼ t−(2+α) [S4]46

for large t because γ(2 + α, ω1t) is essentially a constant for that limit. Therefore, the interaction time distribution for the47

whole population becomes48

f(t) ∼ At−(3+2α) +Bt−(2+α) ∼ t−(2+α) [S5]49

where A and B are constants. As shown in equation S5, the scaling of f(t) does not change even after the modification of the50

pair interaction time distribution.51

Although we observe only two energy barriers, hence a hyperexponential pair interaction time distribution, the theory in52

principle could allow the pair interaction time distribution to be an arbitrary sum of exponential distributions
∑

i
giωie

−ωit.53

The same calculation as above gives f(t) ∼ t−(2+α) in this case as well.54
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Fig. S1. Quantile-quantile plots of the most frequently-interacting pair from each honeybee and human dataset. If the data followed the proposed distribution, the data points
would lie on the dashed reference line.
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Fig. S2. Histogram of R2 of fitting of the pair interaction time distribution to hyperexponential distribution for all honeybee and human datasets. For all figures, error bars
indicate the standard error.
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3. Fitting of the pair interaction time distribution to the hyperexponential distribution.55

We have fitted the empirical cumulative distribution function (ECDF) of the pair interaction times to the cumulative distribution56

function (CDF) of a hyperexponential distribution Fpair(t) = 1− ge−ω1t − (1− g)e−ω2t. Fig. S2 shows the histogram of R2
57

values of the fitting. It is not a single value but a distribution of values because fitting has been done to each pair and R2 has58

been collected from each pair.59

As shown in Fig. S2, most values of R2 are close to 1, which means that the pair interaction time distributions are well60

represented by a hyperexponential distribution.61

Fig. S3 shows the histogram of weight g on the first exponential term in the hyperexponential distribution. Again it shows62

not a single value but a distribution of values because the fitting has been done for each pair.63

The peak near 1 in Fig. S3a-f shows that one of the two exponential terms has a much higher weight than the other in64

these datasets. On the other hand, other datasets show more uniform distributions, signifying that both exponential terms,65

or both energy barriers, have non-negligible effect on many pairs. The broad distributions in Fig. S3i-q suggest that the66

multi-dimensionality of the potential landscape of social interaction is more prominent in humans than in honeybees. Yet, as67

shown in Fig. S3g and h, honeybee colonies with partial JHA treatment exhibit similar distributions of weights as humans.68

Despite the robust heavy tail in the interaction time distribution, Fig. S3 shows that the presence of honeybees with JHA69

treatment does influence the social interaction of honeybees. The precise way that it affects the honeybee social interactions70

needs further study and is beyond the scope of this work.71

4. Exponential barrier height distribution.72

Our model predicts that the barrier height distribution is the extreme value distribution for maxima. However, since the73

heavy tail at large time is dominated by high energy barriers, we take the large barrier height limit and obtain the exponential74

distribution p(E) ∼ e−(α+1)E where E is the energy barrier height in units of an effective energy scale that depends on details75

of social interactions that are outside the level of description of the present theory and α is some parameter. Using Kramers’76

rate formula ω = ω0e
−E where ω0 is some constant, we express the mean pair interaction time distribution as p(τ) ∼ τ−(2+α).77

It has the same scaling as the interaction time distribution f(t) ∼ t−(2+α). So by comparing the exponent of f(t) and p(τ), we78

verify the exponential energy barrier height distribution.79

Fig. S4 shows the scaling of the probability densities of interaction time f(t), mean pair interaction time from fitting p(τij)80

and mean pair interaction time from averaging p(τi) for all honeybee and human datasets. Here the index i labels a pair,81

and the index j labels an energy barrier. τij is the mean escape time for each energy barrier and is obtained from fitting of82

the pair interaction time distribution. With this index notation, CDF of a hyperexponential distribution to which we have83

fitted ECDF of the pair interaction time distribution is written as Fi(t) = 1− gi1e−ωi1t − gi2e−ωi2t where gij is the weight84

with gi2 = 1− gi1 and ωij is the rate of each exponential term. These gi1, ωi1 and ωi2 are fitting parameters. We obtain two85

mean pair interaction times τi1 and τi2 for each pair i by taking the reciprocal of ωi1 and ωi2 respectively. On the other hand,86

τi is average of all interaction times for a pair. So τi = 1
ni1+ni2

(∑ni1
k=1 ti1k +

∑ni2
k=1 ti2k

)
where tijk is the interaction time,87

the index k labels each interaction event, and nij is the number of interactions associated with each energy barrier j. In this88

notation, the mean pair interaction time from fitting is τij = 1
nij

∑nij

k=1 tijk. So the relation between τij and τi is written as89

τi =
∑

j
gijτij where the weight is gij ≡ nij/

∑
j
nij .90

In Fig. S4, data points that extend to very large values (such as of order of 1014 seconds) were omitted because they are91

an artifact from fitting. These outliers correspond to one or two pairs out of all analyzed pairs in the colony. The artifact92

arises because the pair interaction time distribution for some pairs is better described by an exponential distribution than a93

hyperexponential distribution. In such a case, ωi2 takes a very small value close to 0 because 1− gi1e−ωi1t − (1− gi1)e−ωi2t →94

gi1(1 − e−ωi1t) for ωi2 → 0. Then taking the value of gi1 close to 1 gives us 1 − e−ωi1t which is CDF of an exponential95

distribution. ωi2 → 0 corresponds to τi2 → ∞, which explains the large τij ’s in some datasets. The pair interaction time96

distributions that yield such large τij indeed have gij values close to 1 and are fitted well to exponential distributions.97

For all datasets, p(τij) exhibits the same scaling as f(t), verifying the exponential distribution of energy barriers. On the98

other hand, as shown in Fig. S4l and n, p(τi) doesn’t show the same scaling for some datasets, and this feature is discussed in99

the next section.100

5. The mean pair interaction time distribution and the stable law.101

In this section, we discuss the difference between the two kinds of mean pair interaction time distributions p(τij) and p(τi) to102

emphasize that p(τij) is the right distribution to use. τij represents the mean time needed to jump over an energy barrier103

j, while τi is the average of the whole pair interaction times. So the quantity associated with the energy barrier E through104

ω = ω0e
−E is τij . It would be more accurate to write the Kramers rate formula as ωij = ω0e

−Eij according to this notation. τi105

is the normalized linear sum of τij ’s.106

It is very tempting to use τi instead of τij because simply averaging the pair interaction times is much easier than fitting107

the pair interaction time distributions. Fig. S4 shows whether it matters which mean pair interaction time we use; while p(τi)108

has the same scaling as p(τij) and thus as the population interaction time distribution f(t) for most datasets, it is not the case109

for Household (Fig. S4l) and Primaryschool (Fig. S4n). The deviation of p(τi) is clearer in Primaryschool (Fig. S4n) because110

of better statistics associated with the larger dataset. These two particular datasets differ from the rest by having f(t) that111
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Fig. S3. Histogram of weight g in hyperexponential fitting of the pair interaction time distribution for all honeybee and human datasets. g can only be between 0.5 and 1. For all
figures, error bars indicate the standard error.
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Fig. S4. Comparison of scaling between the interaction time distribution and the mean pair interaction time distributions for all honeybee and human datasets. The probability
densities of mean pair interaction times obtained by different methods are separately plotted. From a to q, the number of mean pair interaction times from averaging used to
generate the plot is 200723, 143571, 129653, 174317, 212685, 472914, 88441, 76810, 1710, 2220, 1139, 891, 2196, 8316, 9889, 754, 4273, which is the same as the number
of detected pairs. The number of mean pair interaction times from fitting used is 197, 99, 328, 443, 561, 1806, 46, 20, 37, 82, 59, 58, 39, 143, 98, 15, 171, which is the same as
the number of pairs used for fitting. For all figures, error bars indicate the standard error. Some error bars are not visible because they are smaller than the marker size. Lower
error bars for bins of count 1 could not be drawn on a logarithmic scale.
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decays faster than t−3; the exponent of f(t) of Household is -3.4 and that of Primaryschool is -3.6. The other datasets have112

f(t) with exponents from -2 to -3, with specific values are provided in the main text.113

Now we explain why the value of the exponent of f(t) is relevant to whether or not p(τi) has the same scaling as p(τij)114

by using the so-called stable law (S1), sometimes referred to as the generalized central limit theorem. A probability density115

is said to be stable if a linear combination of independent and identically distributed (i.i.d.) random variables drawn from116

this probability density is also a random variable from the same probability density up to location and scale parameters. The117

normal distribution is a well-known example of a stable distribution. The stable law states that the probability density of118

normalized sums of i.i.d. random variables converges to a stable distribution (S1), and specifies the conditions that determine119

the appropriate stable distribution. In our case, the random variables are simply the pair interaction times.120

We are interested in a set of random variables, drawn from an empirical probability distribution that we will call the parent121

or source distribution. We wish to know what will be the probability distribution for a linear combination of these variables. If122

the parent distribution is stable, then the stable law will imply that the linear combination is also distributed according to the123

same distribution. If not then it will be distributed according to a different distribution.124

The distribution of the linear combination of random variables depends on the asymptotic behavior of the parent distribution.125

If the parent distribution f(x) has the asymptotic behavior f(x) ∼ x−(α+1) with α ≥ 2 for large x, the distribution of the126

sums converges to a normal distribution. This result is the central limit theorem. On the other hand, if 0 < α < 2, the parent127

distribution itself is stable, so the limit distribution of the sums converges to the parent distribution x−(α+1).128

In our case, the parent distribution is p(τij), and the distribution of the normalized sums is p(τi). The datasets with the129

same scaling of p(τij), p(τi) and f(t) all have f(t) with exponents from -2 to -3. According to the theory in the main text, f(t)130

and p(τij) always have the same exponents, which is verified by all the datasets in Fig. S4; thus p(τij) has exponents in the131

range from -2 to -3. It can be re-written as p(τij) ∼ τ
−(α+1)
ij with 1 < α < 2. Indeed, we see that α is in the range where132

p(τij) is stable, and so we expect the same scaling between p(τi) and p(τij), assuming that the variables are indeed i.i.d. In133

conclusion, f(t) has the same scaling as p(τij) due to our theory, while p(τij) and p(τi) have the same scaling because p(τij) is134

the parent distribution of p(τi). Thus all three variables have the same scaling when α+ 1 is in the range from -2 to -3.135

On the other hand, Household (Fig. S4l) and Primaryschool (Fig. S4n) have f(t), and thus p(τij), with exponents -3.4136

and -3.6 respectively. These exponents correspond to α + 1. For these datasets, α > 2, showing that p(τij) is not a stable137

distribution. Therefore, the stable law predicts that p(τi) does not have the same scaling as p(τij) and f(t). The deviation of138

p(τi) from the other two distributions in Fig. S4l and n is consistent with this prediction.139

Although the stable law predicts that the probability density of the normalized sum of i.i.d. random variables that are140

not stable converges to a Gaussian, p(τi) is not Gaussian as shown in Fig. S4l and n. It is not Gaussian because the number141

of summed τij is only two, as there are two energy barriers for each pair. The convergence to a Gaussian only occurs if the142

number of summands is large (e.g. more than 10). In addition, even if the number of summands were large, burstiness of143

temporal social networks of honeybees and humans suggests that τij could be not i.i.d. Then p(τi) would be expected to exhibit144

an exponential tail rather than a Gaussian tail, because the distribution of the normalized sum of correlated random variables145

converges to the Fisher-Tippett-Gumbel distribution, which has an exponential tail (S2).146

In summary, f(t) and p(τij) always have the same scaling, as predicted by our theory. However, as demonstrated in Fig.147

S4l and n, p(τi) may or may not have the same scaling as f(t) depending on the exponent that characterizes the asymptotic148

behavior of f(t), in accord with the stable law. This observation shows that we cannot ignore the fact that there are two energy149

barriers per pair, and we indeed need to obtain the mean pair interaction times by fitting the pair interaction time distribution150

to the hyperexponential function.151

Note that the stable law does not hold between f(t) and p(τij) although they have the same exponent. τij is a normalized152

sum of pair interaction times associated with one energy barrier whose probability density is exponential. So the parent153

distribution for τij is not f(t). Furthermore, each τij has its own parent distribution labeled by indices i and j, which is an154

exponential distribution with different parameter values. The stable law concerns the normalized sum of random variables from155

the same probability density. Therefore, one cannot predict the form of p(τij) from f(t).156

Conversely, our theory is only able to predict the form of f(t) from p(τij) precisely because f(t) is not the parent distribution157

for τij and so the stable law does not hold between them. As a result, the scaling of p(τij) is purely determined by p(Eij).158

6. Lorenz plots.159

Heterogeneity or variability in the population is represented by the barrier height distribution in our model. However, the160

model does not dictate whether the barrier height is determined by a specific pair or a particular individual, which poses the161

question about the individuality in social interaction. To explore the effect of individuality in a way that is independent of our162

theory, we have calculated the Gini coefficients (S3) for the total number of interactions and the total number of partners in163

addition to the total interaction time shown in the main text. We have chosen the Gini coefficient to quantify the different164

degree of dominance in social interactions by each individual because we are analyzing interaction times, which are shared165

between a pair, and thus it is nontrivial to decouple individual contribution.166

Fig. S5 shows the Lorenz plots (S4) for the total number of interactions and the total number of partners of honeybees167

and humans. The larger deviation from the reference line in Fig. S5b and d than in Fig. S5a and c respectively indicates that168

individual differences are larger in human communities than honeybee communities. However, Fig. S5a and c still show a169

deviation from the straight line, signifying that honeybee individuals are different. This result still does not tell us how much170

individuality contributes to social interaction. Given that the energy barrier is a pairwise property, we can only tell that the171
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a b

c d

Fig. S5. Lorenz plots for total number of interactions and total number of partners for honeybees and humans. a, Gini coefficients for total number of interactions of honeybees
are following. 1164_2013: 0.2125, 1140_2013: 0.1823, 1138_2013: 0.2526, 1174_2013: 0.2462, 1170_2013: 0.2362, 1166_F2F_2013: 0.1949, 789_JHA_2016: 0.1609,
757_JHA_2016: 0.1667. b, Gini coefficients for total number of interactions of humans are following. Highschool_2011: 0.3509, Highschool_2012: 0.4361, Hospital: 0.5293,
Household: 0.4992, Hypertext: 0.4089, Primaryschool: 0.2595, SFHH: 0.4410, Workplace_2013: 0.4011, Workplace_2015: 0.3426. c, Gini coefficients for total number of
partners of honeybees are following. 1164_2013: 0.1758, 1140_2013: 0.1619, 1138_2013: 0.2222, 1174_2013: 0.2081, 1170_2013: 0.1897, 1166_F2F_2016: 0.0916,
789_JHA_2016: 0.1284, 757_JHA_2016: 0.1301. d, Gini coefficients for total number of partners of humans are following. Highschool_2011: 0.2612, Highschool_2012:
0.2538, Hospital: 0.2828, Household: 0.2498, Hypertext: 0.2643, Primaryschool: 0.2215, SFHH: 0.3474, Workplace_2013: 0.2537, Workplace_2015: 0.2243.
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pairwise heterogeneity is essential for the heavy tail to appear in the interaction time distribution, as demonstrated in this172

report, but whether the pairwise heterogeneity is purely a property of a pair independent of individuals forming the pair is still173

open for further study.174
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