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1 Study Design

Inclusion criteria for samples, which consisted of plasma and urine were: col-
lection ≤ 20 weeks of GA, and determination of GA by ultrasound ( < 37
weeks’ GA for PTBs and > 37 weeks’ GA for term births). Medically-indicated
preterm deliveries were excluded.

Our study population consisted of 81 pregnant women selected from the
following GAPPS- and AMANHI-supported birth cohorts: (1) the GAPPS
Preterm and Stillbirth Study in Matlab, Bangladesh (PreSSMat Study, icddr,b,
Matlab, Bangladesh), a prospective cohort study designed to assess biologi-
cal, environmental, and social determinants of adverse pregnancy outcomes;
(2) the GAPPS Preventing Preterm Birth Initiative in Zambia (ZAPPS Study,
UNC-CH/UTH, Lusaka, Zambia) [8], a prospective cohort study and biorepos-
itory designed to characterize the factors associated with PTB and outcomes
in Zambia; and (3) the Alliance for Maternal and Neonatal Health Improve-
ment (AMANHI) biorepository study in Bangladesh Sylhet, Pakistan Karachi
and Pemba Tanzania. All pregnant women provided written informed consent
for participation in the original study, and for future utilization of specimens.
For the current studies ethical exemptions were sought from the respective in-
country IRBs and regulated under necessary material transfer and data transfer
agreements.

At all AMANHI and GAPPS cohorts, trained phlebotomists collected blood
samples for centrifugation and aliquoting of serum, plasma, and buffy coat for
storage and future analyses. In addition, maternal urine was collected in paral-
lel. With a view to facilitate the future of omics study, special care was taken to
ensure sample storage at −80 ◦C in each biobank. Unique study identification 
numbers were assigned to all samples, which were linked to each participant.
Outcome assessment was done by birth surveillance through phone calls and
household visits [12].

Collection and processing of all sample types was performed following stan-
dard operating procedures at all study cohorts [7]. Blood collected in EDTA
tubes was cold centrifuged at 3, 000 rpm for 10 mins within 4 hrs. Plasma was

separated and stored at −80 ◦C until shipment. 1.0 mL of plasma for tran-
scriptome, 0.5 mL of plasma for proteome, and two aliquots of 2 mL each of
urine for metabolome analysis were shipped from each biorepository. Samples
were shipped on dry ice as a single batch and under continuous temperature
monitoring.
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2 Biological Modalities

2.1 Transcriptomics

cfRNA was extracted from 1mL of plasma using a Plasma/Serum Circulating
and Exosomal RNA Purification mini kit (Norgen, cat510000) following manu-
facturer’s instructions. The residue of DNA was digested using Baseline-ZERO
DNase (Lucigen, DB0715K) and then cleaned by RNA Clean and Concentrator-
5 kit (Zymo, R1013). RNA was eluted to 12 µL in the elution buffer.

Eight mL of the eluted RNA was used for sequencing library preparation us-
ing SMARTer Stranded Total RNAseq kit v2 -Pico Input Mammalian (Clontech,
cat634413) according to the manufacturer’s instructions. Short read sequencing
was performed using the Illumina NovaSeq S2 2-Lanes (2 × 75 bp) platform
to the depth of more than 10 million reads per sample. The sequencing reads
were mapped to human reference genome (hg38) using STAR aligner [11]. Du-
plicates were removed by PICARD [14] and then gene counts were quantified
using unique reads with htseq-count [3]. Prior results demonstrated a strong
correlation between this assay and RT-qPCR measurements [19].

2.2 Metabolomics

Global metabolic profiling of urine samples was performed using a broad spec-
trum liquid chromatography coupled with mass spectrometry platform (LC-
MS). Urine aliquots were prepared and analyzed as previously described [9].
Briefly, urine samples were thawed on ice and centrifuged at 17, 000rcf for 10
minutes. The supernatants were diluted by a factor of four with 75% ace-
tonitrile and 100% water including 13 internal standards (IS) for HILIC- and
RPLC-MS experiments, respectively. Samples for HILIC-MS experiments were

further centrifuged at 21, 000g for 10 min at 4 ◦C to precipitate proteins.
Metabolic extracts were analyzed four times using HILIC and RPLC sepa-

ration in both positive and negative ionization modes. Data were acquired on
a Thermo Q Exactive HF mass spectrometer that was equipped with a HESI-
II probe and operated in full MS scan mode. MS/MS data were acquired at
different fragmentation energies (NCE 25, 35 and 50) on pool samples (QC) con-
sisting of an equimolar mixture of all samples in the study. HILIC experiments

were performed using a ZIC-HILIC column 2.1 x 100mm, 3.5µm, 200Å (Merck 
Millipore) and mobile phase solvents consisting of 10mM ammonium acetate
in 50/50 acetonitrile/water (A) and 10mM ammonium acetate in 95/5 acetoni-
trile/water (B). RPLC experiments were performed using a Hypersil GOLD

column 2.1 × 150mm, 1.9µm, 175Å (Thermo Scientific) and mobile phase sol-
vents consisting of 0.06% acetic acid in water (A) and 0.06% acetic acid in
methanol (B).

Data quality was ensured by (1) sample randomization for metabolite extrac-
tion and data acquisition, (2) multiple injections of a pool sample to equilibrate
the LC-MS system prior to run the sequence (12 and 6 injections for HILIC and
RPLC methods, respectively), (3) spike-in labeled IS during sample preparation
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to control for extraction efficiency and evaluate LC-MS performance, (4) check-
ing mass accuracy, retention time and peak shape of IS in every samples and
(5) injection of a pool sample every 10 injections to control for signal deviation
with time.

Data from each mode were independently analyzed using Progenesis QI soft-
ware (v2.3) (Nonlinear Dynamics). Metabolic features from blanks and that did
not show sufficient linearity upon dilution in QC samples (r < 0.6) were dis-
carded. Only metabolic features present in > 2/3 of the samples were kept
for further analysis. Inter- and intra-batch variation was corrected using the
LOESS (locally estimated scatterplot smoothing Local Regression) normaliza-
tion method on pool samples injected repetitively along the batches (span =
0.75). Missing values were imputed by drawing from a random distribution of
low values in the corresponding sample. Data from each mode were merged to
obtain a dataset containing 6,630 putative metabolites. Dilution effect was cor-
rected by using the probabilistic quotient normalization (PQN) [10]. Metabolic
features were annotated by matching the experimental accurate mass (±5 ppm)
to a local database containing 60, 000+ metabolites. This database was cre-
ated by compiling metabolites from various public databases including HMDB,
FoodB and DrugBank [25].

2.3 Proteomics

The proteomic analysis was performed by O-link Proteomics (Watertown, MA)
with a highly multiplex proteomic platform using proximity extension technol-
ogy [6]. For this study, eleven panels were used, each measuring 92 different
proteins simultaneously in 1µL of plasma. Each protein was detected by a
matched pair of antibodies that were coupled to unique and partially comple-
mentary oligonucleotides. When in close proximity, a new and protein-specific
DNA reporter sequence was formed by hybridization and extension, which was
then amplified and quantified by real-time PCR [20].

Relative amounts of protein were quantified as normalized protein expression
(NPX). NPX was derived by subtracting the Ct value of the extension control re-
action from the raw Ct-value (threshold cycle) to adjust for technical variations
(dCT), then subtracting differences in Ct-values between plates (inter-plate con-
trol) from the dCt-value (ddCt-value) to adjust for inter-assay variability, and
then subtracting the ddCt-value from a correction factor to adjust for back-
ground noise and invert the scale. An increase of 1 NPX corresponded to a
doubling of the relative protein concentration (log 2 scale).

Quality control (QC) was performed at the assay and sample level [1]. At
the assay level (internal controls) each sample was spiked with two non-human
antigens (incubation control), an antibody coupled with a unique pair of DNA
tags (extension control), and a double-stranded DNA amplicon (detection con-
trol) to monitor the three major procedural steps (immunoreaction, extension,
and amplification/detection). At the sample level three controls were added
to each plate. A synthetic sample containing 92 antibodies with one pair of
unique DNA tags in fixed proximity was added in triplicate to monitor and
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compensate for inter-run and inter-plate variations (inter-plate control). A neg-
ative control was added in triplicate to monitor for background noise. Finally,
a pooled plasma sample was added in duplicate to monitor for intra- and inter-
assay variability and determine coefficient of variations. A plate passes QC if
the standard deviation of internal controls was less than 0.2 NPX. Individual
samples pass QC if values of internal controls deviated by less than 0.3 NPX
from the plate median. In this study, the plate passed QC as did 97.7% of
the samples. Of all assayed proteins 88.8% were detected in more than 75% of
samples. The median intra-assay coefficient of variation was 7%. Prior studies
have demonstrated strong associations between this assay and ELISA analysis
(e.g., [5, 24, 16, 15].)

2.4 Quality Control

Additional control was performed by visualization of all subjects using unsu-
pervised analysis, supplemented by objective and quantitative analysis using a
supervised algorithm as described in eFigure 1. While cohort-specific signatures
and signatures associated with storage time were observed, overall data quality
was consistent across all modalities.

©2020 Jehan F et al. JAMA Network Open
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A. PCA Overview

B. Site-specific LDA Overview

C. Prediction of Originating 
Cohort 

D. Prediction of Time 
Since Sampling

Karachi
Sylhet
Lusaka
Matlab
Pemba

(A) To investigate cohort-specific data signatures, principal component analysis
(PCA) was used to create a two-dimensional representation of the entire cohort
for each biolog-ical modality as well as all modalities combined. This analysis
demonstrated that the largest source of variation in the data was not driven by
fundamen-tal differences between the cohorts, underscoring the decreased
likelihood that there was bias induced by different sampling or processing
protocols. Super-vised linear discriminant analysis (LDA) confirmed the
existence of more subtle cohort-specific signatures that were not significant
enough to be visualized in an unsupervised PCA. (C) The presence of cohort-
specific signatures was con-firmed using random forest analysis (subject to cross-
validation for prediction of the sampling site of previously unseen patients
exclusively based on each bi-ological modality. Overall, this confirmed the
presence of consistent yet limited cohort-specific variations in the datasets. (D)
The impact of sample storage time was quantified with random forest analysis
subjected to cross-validation in which the number of days between sample
collection and laboratory anal-yses was used as a continuous prediction target.
The random forest results on previously unseen patients were statistically
significant only in the case of the urine metabolomics dataset, indicating the
potential for sample degradation over time. However, this did not confound the
design of this study as gestational age (GA) at delivery did not correlate with
storage time (p > 0.41, r = −0.092).

eFigure 1. Data Quality Assessment. 
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To further highlight the interplay between plasma proteins and urine
metabolites, we developed a random forest model to estimate PGF levels of each
patient using only the urine metabolomics dataset. (A) A multivariate model
produced a strong correlation of plasma PGF in blinded samples; (B) The top
feature of the model was strongly correlated with PGF in an independent
univariate analysis. Taken together, this analysis highlighted the potential for
biological profiling for estimation of gestational age during pregnancy (a signifi-
cant challenge in LMIC settings) as well as the utility of urine-based metabolite
biomarkers as low-cost surrogates for models developed using multiomics anal-
ysis.

eFigure 2. Urine Metabolites as a Surrogate for PGF in Plasma 
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3 Computational Analysis

3.1 Multivariate Predictive Modeling

Previous bioinformatics work detailing multiomics data integration fall within
two major categories: multi-staged, in which measurements of the same biolog-
ical factors (e.g., genes) are available for alignment of the feature space [22];
and meta-dimensional, in which direct connections between the measured fea-
tures are not available a priori [21], [13]. Given the diversity of the biological
modalities that must be integrated in this study and the lack of preexisting
biological connections between all measured factors, a meta-dimensional ap-
proach was designed in which each modality is first analyzed independently,
and then combined with a higher level integration layer to increase predictive
power. Multivariate predictive modeling was performed using a random forest
algorithm as implemented in [18] using default parametrization. A compari-
son against other machine learning algorithms using a similar cross-validation
strategy is presented in eFigure 3A. To ensure the generalizability of the models,
a Leave-One-Out Cross-Validation (LOOCV) strategy was used to test the
predictions on previously unseen patients. In this setting, a model was trained on
all available patients except for one. The model was then tested on the blinded
subjects. This process was repeated for all subjects until a blinded prediction was
calculated for all patients. Final results were reported using these blinded
predictions. Cross-validation folds were synchronized be-tween the models built
on individual omics datasets and the integrated model to leave out the same data
points at all levels of the analysis. Importantly, this guaranteed that not only the
aggregate model, but also its input features (i.e. the final predictions from each
dataset) were blinded to the same subject during cross-validation.

For the prediction of PTB, to account for cohort-specific signatures, we
implemented an additional variable-filtering step to reduce the overall search
space. Specifically, for a data matrix XO of J features from O omics platforms

corresponding to cohort I, we train a RF model ΞI = RFTrain(XO
−iJI

) where

XO
−iJI

= {i′ 6= i∧Xi′JI
∈ XIJI

} denotes the removal of patient i from the analy-
sis for cross-validation and JI is the set of features that are selected by statistical
testing between term and preterm cases on X−iJI

. After training, the blinded
prediction pOIi = RFPredict(ΞI ,X

O
IiJI

) can be calculated for each omics dataset

and combined into the final prediction vector ŷI =
∑3

k=1 ω
ok
I pokI /

∑3
k=1 ω

ok
I

where ωok
I is the classification performance of omics dataset k, on cohort I,

which was calculated using an internal nested cross-validation layer. A com-
parison against other integration strategies (simple merging of all datasets and
stacked generalization) using a similar cross-validation strategy is presented in
eFigure 3B.

To calculate a lower bound for the analysis pipeline (to confirm that the
strong results are not due to a coding problem that results in information leakage
in the cross-validation scheme), a negative example using random data was used.
The poor performance of the model on random data (eFigure 4)
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confirms that that the strong performance in the real dataset is not due to model
overfitting.

eFigure 3. Empirical Algorithm Comparison
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(A) Comparison of supervised learning algorithms for prediction of PTB. All
algorithms were evaluated using the same cross-validation strategy described
in the meth-ods section. (B) Comparison of multiomics data integration
strategies using Random Forest including Merging (where all features are
simply merged into a single feature matrix for supervised analysis), Stack
generalization (where each dataset is analyzed separately followed by a higher
level model combining the results), and the cohort-adjusted pipeline
implemented in this article.
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To validate the computational pipeline, data from all patients were randomly
assigned to either a case or a control group. The three biological modalities were
used to predict these random labels. The pipeline used in Figure 2 was not able to
predict the randomly created labels subject to cross-validation. This indicates
that the strong performance of the algorithm was not due to model overfitting.

3.2 Mixed-Effect Modeling

To account for cohort-specific variations, we employed a linear mixed effect
model with cohort encoded as a random effect. Particularly Yis = β0 + S0s + β1Xi 
+ eis, where eis ∼ N (0, σ2) and Yis is a binary vector indicating PTB for patient i
in cohort s, with a fixed-term intercept β0, fixed-term slope β1, fixed-term
predictor variable Xi, random-effect intercept S0s for cohort s, and observation-
level error eis for patient i in cohort s with variance σ2.

3.3 Multiomics Visualization

The features from the three omics data were visualized using a dimension re-
duction strategy designed to balance the size and modularity of each dataset.
The top 10 PCs of each omics dataset were used as a 30-dimensional latent
space. The correlation matrix between each measurement and this latent space
was visualized using the tSNE dimension reduction algorithm [18]. This ensures
equal contributions to the visualization layout by all datasets.

eFigure 4. A Lower Bound for the Analysis Pipeline using a Negative Example 
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4 Clinical Covariates

Field workers were trained to collect detailed phenotypic and demographic data
from the women and their families through scheduled household visits dur-
ing pregnancy and post-partum. Clinical covariates were manually harmonized
across all five cohorts. Of all variables collected, only the weight of the baby and
gestational age at delivery were significantly correlated with the final outcome
of the model predicting PTB (Supplemental Table S1 and Supplemental Figure
S5). This confirmed that the model was not confounded by the other measured
clinical covariates.
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TERM PRETERM ALL
n 42(51.9%) 39(48.1%) 81(100%)

GA (wks) 39.8± 0.8 31.6± 2.8 35.9± 4.6
(39.0–41.4) (24.0–36.6) (24.0–41.4)

GA @ Sampling (wks) 13.7± 3.4 13.6± 3.1 13.6± 3.2
(8.0–19.3) (8.0–18.6) (8.0–19.3)

Parity 1.8± 1.5 1.6± 1.9 1.7± 1.7
(0–5) (0–8) (0–8)

Maternal age (yr) 25.0± 4.7 24.5± 6.0 24.8± 5.3
(17–39) (16–39) (16–39)

Maternal weight (kg) 52.9± 9.8 52.6± 10.9 52.7± 10.3
(41.0–82.0) (29.9–76.6) (29.9–82.0)

Maternal Height (cm) 154.7± 5.6 153.2± 8.3 154.0± 7.0
(141.4–170.0) (137.0–173.0) (137.0–173.0)

Smoker 0/35(0.0%) 0/30(0.0%) 0/65(0.0%)
Prev Stillbirth 6/42(14.3%) 2/39(5.1%) 8/81(9.9%)
History of PTB 27/42(64.3%) 24/39(61.5%) 51/81(63.0%)

History of Eclampsia 0/42(0.0%) 0/33(0.0%) 0/75(0.0%)
History of Pre-Eclampsia 1/42(2.4%) 2/39(5.1%) 3/81(3.7%)
Gestational Hypertension 1/42(2.4%) 5/33(15.2%) 6/75(8.0%)

(1.0–4.0) (1.0–11.3) (1.0–11.3)
Males 19/42(45.2%) 18/38(47.4%) 37/80(46.3%)

Females 23/42(54.8%) 20/38(52.6%) 43/80(53.7%)
Maternal Disease

Thyroid 0/28(0.0%) 1/23(4.3%) 1/51(2.0%)
Cancer 0/37(0.0%) 0/29(0.0%) 0/66(0.0%)

Epilepsy 0/28(0.0%) 0/24(0.0%) 0/52(0.0%)
Mental Illness 0/28(0.0%) 0/23(0.0%) 0/51(0.0%)

Malaria 1/28(3.6%) 0/23(0.0%) 1/51(2.0%)
Hepatitis B 1/28(3.6%) 0/23(0.0%) 1/51(2.0%)
Hepatitis C 1/28(3.6%) 0/23(0.0%) 1/51(2.0%)

Urinary Tract Infection 0/26(0.0%) 1/20(5.0%) 1/46(2.2%)
Renal 0/28(0.0%) 0/22(0.0%) 0/50(0.0%)

Chronic Hypertension 1/38(2.6%) 1/29(3.4%) 2/67(3.0%)
Cardiac 0/37(0.0%) 1/30(3.3%) 1/67(1.5%)
Diabetes 0/37(0.0%) 0/29(0.0%) 0/66(0.0%)

HIV 0/28(0.0%) 0/23(0.0%) 0/51(0.0%)
Tuberculosis 0/37(0.0%) 1/29(3.4%) 1/66(1.5%)

Other 2/28(7.1%) 1/24(4.2%) 3/52(5.8%)

eTable. Table of clinical covariates harmonized across all cohorts.
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5 Ex Vivo Whole-blood Immuno-assay

The presence of inflammatory mediators among the features most correlated
with PTB is consistent with previous studies suggesting that dysfunctional im-
mune adaptations during pregnancy is central to the pathogenesis of PTB. How-
ever, the predictive model also highlighted a set of proteomic features with no
known inflammatory properties, that were highly correlated with features from
the inflammatory module. These proteins included, protein-arginine deiminase
type II (PADI2), a peptidylarginine deiminase responsible for protein citrul-
lination and implicated in parturition and sensing infections [17, 4]; transfer-
rin receptor (TfR) which is implicated in iron transport; angiopoietin-like 4
(ANGPTL4) which regulates glucose homeostasis and lipid metabolism (48);
and RARRES2, an adipokine increased in metabolic syndrome and gestational
diabetes [23, 26]. To determine whether observed correlations between these
proteins and the inflammatory module reflected biologically-relevant inflamma-
tory properties, we examined the capacity of each of these factors to stimulate
human peripheral blood leukocytes using an ex-vivo mass cytometry assay.

Mass cytometry, an advanced flow cytometry technique, is capable of mea-
suring up to 50 markers in hundreds of thousands of single cells, resulting in
detailed functional profiling of all major immune cell types. Using this assay,
the activity of major intracellular signaling responses previously implicated in
maternal immune adaptations during pregnancy (including pSTAT1, pSTAT3,
pSTAT5, pSTAT6, pP38, pMK2, pERK, prpS6, pNFkB, and total IkB) were
assessed at baseline and after a 15 minutes stimulation in all major innate and
adaptive immune cell-types. Whole blood was collected from healthy, non-

pregnant volunteers and stimulated for 15 minutes at 37◦C with lipopolysac-
charide (1 ug/mL, InvivoGen) and interferon alpha (100 ng/mL, PBL Assay
Science),Transferrin Receptor (1 ug/mL, R&D Systems), ANGPTL4 (1 ug/mL,
R&D Systems), PADI2 (5 ug/mL, Abnova), RARRES2 (1 ug/mL, R&D Sys-
tems), CCL3(1 ug/mL, Invitrogen), G-CSF (100 ng/mL, R&D Systems), and
IL-6 (100 ng/mL, R&D Systems) or left unstimulated.

To investigate functional responses to stimulation, cytokine production (IFNγ,
IL-1β, IL-2, IL-6, IL-4, IL-17A, TNFα) and proliferation (Ki67) was assessed in
circulating immune cells. Whole blood was collected from healthy, non-pregnant

volunteers and stimulated for 4h at 37◦C with lipopolysaccharide (1 ug/mL, 
InvivoGen) and interferon alpha (100 ng/mL, PBL Assay Science), or Transfer-
rin Receptor (1 ug/mL, RD Systems), ANGPTL4 (2.5 ug/mL, RD Systems),
PADI2 (2.5 ug/mL, Abnova), RARRES2 (1 ug/mL, RD Systems), CCL3 (1
ug/mL, Invitrogen), G-CSF (100 ng/mL, RD Systems), and IL-6 (100 ng/mL,
RD Systems) or left unstimulated, in the presence of Golgi stop and plug (mo-
nensin and brefeldin, 1x, BD).

Samples were processed using a standardized protocol for fixation (Smart
Tube Inc), barcoding, and staining with antibodies for mass cytometry by time
of flight analysis (CyTOF), as described previously [2].

©2020 Jehan F et al. JAMA Network Open



0 1 2

IL6 -> STAT3

24,000 cells pooled from all samples were visualized using the tSNE algorithm to
provide an overview of the expression profiles of all markers (left). Major cell
types are annotated in the right panel. Signaling response of pSTAT3 to
stimulation by IL6 is used as an example to demonstrate the celltype-specificity
of the signaling response.

eFigure 6. Comprehensive Visualization of Single-cell-level Intracellular Signaling 
in Response to Selected Plasma Proteins
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(A) Lipopolysaccharide (LPS) and interferon alpha (IFN-a) together activate
MAP Kinase, MyD88, and JAK-STAT signaling pathways (positive control),
as shown by phosphorylation of canonical signaling proteins in classical mono-
cytes (cMC, CD14+CD16-) after 15min of incubation. (B) CCL3 stimulation
induces a response in MAP Kinase, MyD88, and JAK-STAT signaling path-
ways. Stimulation with (C) IL-6 and (D) G-CSF induces phosphorylation of
STAT3. (E) PADI2 activates key elements of the MyD88 pathway. Stimulation
with (F) TfR, (G) RARRES2, and (H) ANGPTL4 did not result in enhanced
intracellular signaling activities. Results are representative of three independent
experiments each with similar result. Bars represent Mean ± Standard Error.

eFigure 7. Top Proteomics Features Activate Intracel-lular Signaling pathways in 
Peripheral Blood Classical Monocytes
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(A) Lipopolysac-charide (LPS) and interferon alpha (IFN-a) together stimulate
pro-inflammatory cytokine production (positive control), as shown by the
frequency of classical monocytes (cMC, CD14+CD16-) positive for IL-1β, IL-6,
and TNFα after 4h of incubation. (B) CCL3 stimulation induces a similar, albeit
lower cytokine response, while cMC are less responsive to stimulation with (C)
IL-6 and (D) G-CSF. (E) PADI2 and (H) ANGPTL4 activate production of pro-
inflammatory cytokines IL-1β, IL-6, and TNFα. Stimulation with (F) TfR, and
(G) RAR-RES2, does result in relatively lower cytokine production in cMC.
Results are representative of three independent experiments each with similar
result. Bars
representsta Mean ± Standard Error.

eFigure 8. Top Proteomics Features Activate Cytokine Production in Peripheral 
Blood Classical Monocytes 
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6 Data Repositories and Source Code

The measured features from all three omics datasets, the algorithms and source
codes for reproduction of the results, as well as an interactive website capable
of visualizing the entire dataset, the feature evaluation scores for PTB and GA
at sampling, and pathway enrichment analysis is available at:
https://nalab.stanford.edu/multiomicsmulticohortpreterm/

©2020 Jehan F et al. JAMA Network Open
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