Supporting Information

CRISPR-generated Nrf2a loss- and gain-of-function mutants facilitate mechanistic analysis of chemical oxidative stress-mediated toxicity in zebrafish

Margaret G. Mills,† Richard Ramsden,† Eva Y. Ma,† Jone Corrales,‡ Lauren A. Kristofco,‡ W. Baylor Steele,‡ Gavin N Saari,‡ Fjodor Melnikov,§ Jakub Kostal,£ Terrance J. Kavanagh,† Julie B. Zimmerman,§¶ Adelina M. Voutchkova-Kostal,£ Bryan W. Brooks,‡ Philip Coish,§ Paul T. Anastas,§¢ Evan Gallagher†*

†Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle WA 98105, United States of America

‡Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco TX 76798, United States of America

§School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven CT 06511, United States of America

Department of Chemistry, The George Washington University, Science & Engineering Hall, Suite 4000, 800 22nd St NW, Washington DC 20052, United States of America

¶Department of Chemical and Environmental Engineering, Yale University, PO Box 208292, New Haven CT 06520, United States of America ¢School of Public Health, Yale University, PO Box 208034, New Haven CT 06520, United States of America

*Corresponding Author: evang3@uw.edu

Table of Contents

A. Figure S1: All chemicals used in the present study	p. S2
B. Figure S2: Independently-isolated nfe2l2a mutant lines encode null (LOF) or hyperbolic hyperbolic section of the section of	oer-
active (GOF) alleles.	p. S3
C. References.	p. S5

Figure S1.

Chemical	CAS	Structure		DMSO	40% LC ₅₀	20% LC ₅₀		Ge	ene	Ex	pre	SSI	on	
			50	conc.			hmox1a	gclc	gstp	prdx1	gpx1a	nqo1	sod1	sod2
Bisphenol A	80-05-7	H ₃ C CH ₃	12.8	0.003%	5.11									
R-(-)-Carvone	6485-40-1	CH3	58.2		23.3	11.6		*	*	*			*	*
Cumene hydroperoxide	80-15-9	но-Он	23.4	0.00009%	9.35	4.68		*	*	*	*	*		
Hydroquinone	123-31-9		0.24*		0.095									
Indene	95-13-6	H ₃ C	50.9	0.05%	20.4		*	*				*		*
<i>tert</i> -Butyl hydroperoxide	75-91-2	H ₃ C O OH	176		70.3	35.2		*	*	*	*	*	*	*
<i>tert</i> -Butyl hydroquinone	1948-33-0	но	0.35*	0.000002%	0.142				*	*		*		
						_		- Fo	ld Ch	ange	in E	xpres	sion	

Figure S1. All chemicals used in the present study. All concentrations are mg/L. LC₅₀ concentrations marked with * were determined for this work whereas all others were identified in ref 1. DMSO concentrations (in % v/v where indicated) are final concentrations in all exposures including the 0 mg/L control. Heat map represents expression changes from exposure to 40% LC₅₀ for each chemical from 5 hpf to 96 hpf with daily renewal. Asterisks in boxes indicate significantly different expression (p < 0.05) relative to untreated controls. Control (untreated) expression in all cases is set to 1.0. All data represent the mean \pm SEM (n = 5 biological replicates, 10 larvae per replicate).

0.4 0.6 0.8 1 2 4 6

Note. While researchers have used *t*BHQ as a strong activator of Nrf2a in zebrafish,²⁻⁵ we found that effects of *t*BHQ on the Nrf2a-responsive genes *gstp* and *prdx1* were only moderate at 96 hpf relative to other compounds tested. It is likely that the length of exposure used in this study accounted for this difference relative to previous work. For example, *t*BHQ strongly activates Nrf2a under brief 3-6 hr exposures especially at 2 dpf.^{5,6} In addition, an *in vivo* study using rat embryos indicated that NRF2 activation by *t*BHQ was greater after acute exposures than subacute exposures.⁷ Because our group was examining the effects of several compounds on Nrf2a-dependent gene expression, it was beyond the scope of the study to test the effects of the test agents at multiple time points.

Figure S2.

Α.

WT w210 w211 w212 dw213 dw214	GTCTGTTTTCTCTGCAGGACATGGATCTGATCGATATCCTGTGGCGGCAGGATGTGG <u>ATC</u> GTCTGTTTTCTCTGCAGGACATGGATCTGATCGATATCCTGTGGCGGCAGGATGTGGATC GTCTGTTTTCTCTGCAGGACATGGATCTGATCGATATCCTGTGGCGGCAGGATGTGGATC GTCTGTTTTCTCTGCAGGACATGGATCTGATCGATATCCTGTGGCGGCAGGATGTGGATC GTCTGTTTTCTCTGCAGGACATGGATCTGATCGATATCCTGTGGCGGCAGGATGTGGATC	60 60 60 13 60
WT w210 w211 w212 dw213 dw214	TGGGCCGCGGGCCGTGAGGTGTTCGACTTCAGCTACCGGCAGAAGGAGGTGGAGCTGCGCA TGGGC TCGTGAGGTGTTCGACTTCAGCTACCGGCAGAAGGAGGTGGAGCTGCGCA TGGGCGCGGGCCGTGAGGTGTTCGACTTCAGCTACCGGCAGAAGGAGGTGGAGCTGCGCA TGGGCGCG TGGGCGCG TGGGCGCGGGC TGGGCGCGGC TGGGCGCGGGC TGGGCGCGGC	120 115 120 67 13 71
WT w210 w211 w212 dw213 dw214	GGCGGAGGGAGCAGGAGGAGCAGGAGCTGCAGGAGCGTCTGCAGGAGCAGGAGAAGACAC GGCGGAGGGAGCAGGAGGAGCAGGAGCTGCAGGAGCGTCTGCAGGAGCAGGAGAAGACAC GGCGGAGGGAGCAGGAGGAGCAGGAGCTGCAGGAGCGTCTGCAGGAGCAGGAGAAGACAC GCGTCTGCAGGAGCAGGAGCAGAAGACAC	180 175 180 67 39 71
WT w210 w211 w212 dw213 dw214	TGCTGGCTCAGCTGCAGCTCGACGAGGAGACCGGAGAGTTCCTG <u>CCGCGCAGCACACCGC</u> TGCTGGCTCAGCTGCAGCTCGACGAGGAGACCGGAGAGTTCCTGCCGCGCAGCACACCGC TGCTGGCTCAGCTGCAGCTCGACGAGGAGACCGG TCG GCACACCGC TGCTGGCTCAGCTGCAGCTCGACGAGGAGACCGGAGAGTTCCTGCCGCGCAGCACACCGC ACACCGC	240 235 226 67 99 78
WT w210 w211 w212 dw213 dw214	TCACACA TCACACACCTGAAGCAGACGGAGGAGGAGCGGGAGAAATCACACAGGTACACATGC TCACACACACCTGAAGCAGACGGAGGAGGAGGAGGAGAAATCACACAGGTACACATGC TCACACACACCTGAAGCAGACGGAGGAGGAGCGGGAGAAATCACACAGGTACACATGC TCACACACACCTGAAGCAGACGGAGGAGGAGCGGGAGAAATCACACAGGTACACATGC TCACACACACCTGAAGCAGACGGAGGAGGAGCGGGAGAAATCACACAGGTACACATGC TCACACACACCTGAAGCAGACGGAGGAGGAGCGGGAGAAATCACACAGGTACACATGC	300 295 286 127 159 138

В.

15	DMDLIDILWRQDV <u>DLG</u> AGREVFDFSYRQ <u>K</u> EVELRRRREQEEQELQERLQEQE <u>K</u> TLLAQLQ	75
15	DMDLIDILWRQDV <u>DLG</u> S*	32
15	DMDLIDILWRQDV <u>DLG</u> AGREVFDFSYRQ <u>K</u> EVELRRRREQEEQELQERLQEQE <u>K</u> TLLAQLQ	
15	DMDLIDILWRQDV <u>DLG</u> A HTHT *	36
15	EQE <u>K</u> TLLAQLQ	26
15	DMDLIDILWRQDV <u>DLG</u> AG	33
	15 15 15 15 15 15	15 DMDLIDILWRQDVDLGAGREVFDFSYRQKEVELRRRREQEEQELQERLQEQEKTLLAQLQ 15 DMDLIDILWRQDVDLGAGREVFDFSYRQKEVELRRRREQEEQELQERLQEQEKTLLAQLQ 15 DMDLIDILWRQDVDLGAGREVFDFSYRQKEVELRRRREQEEQELQERLQEQEKTLLAQLQ 15 DMDLIDILWRQDVDLGAGREVFDFSYRQKEVELRRREQEEQELQERLQEQEKTLLAQLQ 15 DMDLIDILWRQDVDLGAGREVFDFSYRQKEVELRRRREQEEQELQERLQEQEKTLLAQLQ 15 DMDLIDILWRQDVDLGAGREVFDFSYRQKEVELRRREQEEQELQERLQEQEKTLLAQLQ 15 DMDLIDILWRQDVDLGAGG

WT	LDE <u>ETGE</u> FLPRSTPLTHTPEADGGGAGEITQ	106
w210		32
w211	LDE <u>ETG</u> RHTAHTHT*	89
w212		36
dw213	LDE <u>ETGE</u> FLPRSTPLTHTPEADGGGAGEITQ	57
dw214	TPLTHTPEADGGGAGEITQ	52

Figure S2. Independently-isolated *nfe2l2a* mutant lines encode null (LOF) or hyperactive (GOF) alleles. (a) Genomic sequences of Intron 1 (grey letters) and Exon 2 (black letters) for wild type and five mutant alleles show deletions (dashes) and insertions (bold text) near CRISPR guide sites (underlined in wild type, with PAM sites double underlined). (b) Protein sequences predicted from Exon 2 cDNA show that three out-of-frame deletions result in putative LOF alleles with altered amino acids (bold) and novel stop codons (*), while the two in-frame deletions result in putative GOF alleles by removing of some or all of the DLG and ETGE motifs bound by Keap1 (underlined) and lysine residues that are targets of ubiquitination (double underline).

References.

(1) Corrales, J., Kristofco, L. A., Steele, W. B., Saari, G. N., Kostal, J., Williams, E. S., Mills, M., Gallagher, E. P., Kavanagh, T. J., Simcox, N., Shen, L. Q., Melnikov, F., Zimmerman, J. B., Voutchkova-Kostal, A. M., Anastas, P. T., and Brooks, B. W. (2017) Toward the design of less hazardous chemicals: exploring comparative oxidative stress in two common animal models. *Chem. Res. Toxicol. 30*, 983-994.

(2) Li, L., Kobayashi, M., Kaneko, H., Nakajima-Takagi, Y., Nakayama, Y., and Yamamoto, M. (2008) Molecular evolution of Keap1. *Journal of Biological Chemistry 283*, 3248-55.

(3) Kobayashi M., Itoh K., Suzuki T., Osanai H., Nishikawa K., Katoh Y., Takeagi, Y., and Yamamoto, M. (2002) Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. *Genes to Cells 7*, 807-20.

(4) Hahn, M. E., Timme-Laragy, A. R., Karchner, S. I., and Stegeman, J. J. (2015) Nrf and Nrf2-related proteins in development and developmental toxicity: insights from studies in zebrafish (*Danio rerio*). *Free Radical Biology and Medicine 88*, 275–89.

(5) Hahn, M. E., McArthur, A. G., Karchner, S. I., Franks, D. G., Jenny, M. J., Timme-Laragy, A. R., Steadman, J. J., Woodin, B. R., Cipriano, M. J., and Linney, E. (2014) The transcriptional response to oxidative stress during vertebrate development: effects of *tert*-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin. *PLoS ONE 9*, e113158.

(6) Timme-Laragy, A. R., Karchner, S. I., Franks, D. G., Jenny, M. J., Harbeitner, R. C., Goldstone, J. V., McArthur, A. G., and Hahn, M. E. (2012) Nrf2b, novel zebrafish paralog of oxidant-responsive transcription factor NF-E2-related factor 2 (NRF2). *Journal of Biological Chemistry 287*, 4609–27.

(7) Sant, K. E., Hansen, J. M., and, Harris C. Tert-butyl-hydroquinone (*t*BHQ) augments intracellular glutathione concentrations and induces antioxidant gene expression in organogenesis-stage rat conceptuses growing in whole embryo culture (WEC). Presented at American Society for Nutrition Meeting at the Experimental Biology Conference, San Diego, 2012.