OMTN, Volume 23

Supplemental Information

SOX2-Upregulated microRNA-30e Promotes

the Progression of Esophageal Cancer

via Regulation of the USP4/SMAD4/CK2 Axis

Yang Yang, Xin Fan, Yukai Ren, Kai Wu, Xiangyu Tian, Fengbiao Wen, Donglei Liu, Yuxia Fan, and Song Zhao

Supplementary Figure legends

Fig. S1. SOX2 promotes proliferation, migration, and invasion, as well as EMT of TE-1 cells *via* miR-30e upregulation *in vitro*. A, Expression of SOX2 and miR-30e in TE-1 cells transfected with sh-SOX2-1 or sh-SOX2-2 measured by RT-qPCR. B, Expression of SOX2 and miR-30e in TE-1 cells transfected with sh-SOX2 or in combination with miR-30e mimic measured by RT-qPCR. C, Proliferation of TE-1 cells detected by EdU assay (× 200). D, Migration of TE-1 cells detected by scratch test. E, Invasion of TE-1 cells detected by Transwell assay (× 200). F, Western blot analysis of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin) in TE-1 cells. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, **** indicates p < 0.001. Comparisons among multiple groups were performed using one-way ANOVA. Data are shown as mean ± standard deviation of three technical replicates.

Fig. S2. miR-30e promotes cell proliferation, migration, invasion, and EMT in TE-1 cells by targeting USP4 *in vitro*. A, Expression of USP4 and miR-30e determined by RT-qPCR in TE-1 cells transfected with miR-30e inhibitor or in combination with sh-USP4. B, Proliferation of TE-1 cells detected by EdU assay (× 200). C, Migration of TE-1 cells detected by scratch test. D, Invasion of TE-1 cells detected by Transwell assay (× 200). E, Western blot analysis of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin) in TE-1 cells. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. Comparisons among multiple groups were performed using one-way ANOVA. Data are shown as mean ± standard deviation of three technical replicates.

Fig. S3. SMAD4 decreased CK2 expression to suppress proliferation, migration, invasion, and EMT of TE-1 cells *in vitro*. A, mRNA expression of SMAD4 and CK2 in TE-1 cells treated with oe-SMAD4 detected by RT-qPCR. B, Western blot analysis of SMAD4 and CK2 proteins in TE-1 cells treated with oe-SMAD4. C, Enrichment of SMAD4 in CK2 promoter region determined by ChIP assay in oe-SMAD4-treated TE-1 cells. TE-1 cells were transfected with oe-NC, oe-SMAD4, and oe-SMAD4 + oe-CK2. D, Expression of SMAD4 and CK2 in TE-1 cells measured by RT-qPCR.

E, Proliferation of TE-1 cells detected by EdU assay (×200). F, Migration of TE-1 cells detected by scratch test. G, Invasion of TE-1 cells detected by Transwell assay (×200). H, Western blot analysis of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin) in TE-1 cells. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, **** indicates p < 0.001. Comparisons among multiple groups were performed using one-way ANOVA. Data are shown as mean ± standard deviation of three technical replicates.

Fig. S1. SOX2 promotes proliferation, migration, and invasion, as well as EMT of TE-1 cells *via* miR-30e upregulation *in vitro*. A, Expression of SOX2 and miR-30e in TE-1 cells transfected with sh-SOX2-1 or sh-SOX2-2 measured by RT-qPCR. B, Expression of SOX2 and miR-30e in TE-1 cells transfected with sh-SOX2 or in combination with miR-30e mimic measured by RT-qPCR. C, Proliferation of TE-1 cells detected by EdU assay (× 200). D, Migration of TE-1 cells detected by scratch test. E, Invasion of TE-1 cells detected by Transwell assay (× 200). F, Western blot analysis of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin) in TE-1 cells. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, **** indicates p < 0.001. Comparisons among multiple groups were performed using one-way ANOVA. Data are shown as mean ± standard deviation of three technical replicates.

Fig. S2. miR-30e promotes cell proliferation, migration, invasion, and EMT in TE-1 cells by targeting USP4 *in vitro*. A, Expression of USP4 and miR-30e determined by RT-qPCR in TE-1 cells transfected with miR-30e inhibitor or in combination with sh-USP4. B, Proliferation of TE-1 cells detected by EdU assay (\times 200). C, Migration of TE-1 cells detected by scratch test. D, Invasion of TE-1 cells detected by Transwell assay (\times 200). E, Western blot analysis of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin) in TE-1 cells. * indicates *p* < 0.05, ** indicates *p* < 0.01, *** indicates *p* < 0.001. Comparisons among multiple groups were performed using one-way ANOVA. Data are shown as mean ± standard deviation of three technical replicates.

Fig. S3. SMAD4 decreased CK2 expression to suppress proliferation, migration, invasion, and EMT of TE-1 cells *in vitro*. A, mRNA expression of SMAD4 and CK2 in TE-1 cells treated with oe-SMAD4 detected by RT-qPCR. B, Western blot analysis of SMAD4 and CK2 proteins in TE-1 cells treated with oe-SMAD4. C, Enrichment of SMAD4 in CK2 promoter region determined by ChIP assay in oe-SMAD4-treated TE-1 cells. TE-1 cells were transfected with oe-NC, oe-SMAD4, and oe-SMAD4 + oe-CK2. D, Expression of SMAD4 and CK2 in TE-1 cells measured by RT-qPCR. E, Proliferation of TE-1 cells detected by EdU assay (×200). F, Migration of TE-1 cells detected by scratch test. G, Invasion of TE-1 cells detected by Transwell assay (×200). H, Western blot analysis of EMT-related proteins (E-cadherin, N-cadherin, and Vimentin) in TE-1 cells. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, **** indicates p < 0.001. Comparisons among multiple groups were performed using one-way ANOVA. Data are shown as mean ± standard deviation of three technical replicates.