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S1 Methods

S1.1 Kernel k-means clustering

Before moving on to the kernel k-means, we first describe the original k-means clustering algorithm
(Steinhaus, 1956). Let x1, . . . ,xN indicate the observed dataset, with xn ∈ RP and znk be the
corresponding cluster labels, where∑k znk = 1 and znk = 1 if xn belongs to cluster k, zero otherwise.
We denote by Z the N × K matrix with ij-th element equal to zij . The goal of the k-means
algorithm is to minimise the sum of all squared distances between the data points xn and the
corresponding cluster centroid mk. The optimisation problem is

minimise
Z

∑
n

∑
k

znk‖xn −mk‖22 (1a)

subject to
∑

k

znk = 1, ∀n, (1b)

Nk =
∑

n

znk, ∀k, (1c)

mk = 1
Nk

∑
n

znkxn, ∀k. (1d)

Now we can show how the kernel trick works in the case of the k-means clustering algorithm
(Girolami, 2002). Redefining the objective function of Equation (1a) based on the distances between
observations and cluster centres in the feature spaceH, the optimisation problem becomes:

minimise
Z

∑
n

∑
k

znk‖φ(xn)− m̃k‖2H (2a)

subject to
∑

k

znk = 1, ∀n, (2b)

Nk =
∑

n

znk, ∀k, (2c)

m̃k = 1
Nk

∑
n

znkφ(xn), ∀k. (2d)

where we indicated by m̃k the cluster centroids in the feature space H. Using this kernel, each term
of the sum in Equation (2a) can be written as a function of δ(xi,xj). Therefore, there is no need to
evaluate the map φ at every point xi to compute the objective function of Equation (2a). Instead,
one just needs to know the values of the kernel evaluated at each pair of data points δ(xi,xj),
i, j = 1, . . . , N . This is what is commonly referred to as the kernel trick.

Defining L as the K ×K diagonal matrix with kth diagonal element equal to N−1
k and ∆ the

N ×N matrix with ijth entry equal to δ(xi,xj), the optimisation problem (2) can be rewritten as
a trace maximisation problem (Gönen and Margolin, 2014):

maximise
Z

tr(L
1
2Z ′∆ZL

1
2 ) (3a)

subject to Z1k = 1n, (3b)
znk ∈ {0, 1}, ∀n, k. (3c)

The integrality constraints make this problem difficult to solve. However, the corresponding linear
problem obtained by relaxing the integer constraints of Equation (3c) to 0 ≤ znk ≤ 1 for all n, k can
be solved by performing kernel PCA on the kernel matrix ∆ and setting the matrix H = ZL

1
2 to
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the K eigenvectors that correspond to K largest eigenvalues (Schölkopf et al., 1998). The clustering
solution can be found by first normalising all rows of H to be on the unit sphere and then performing
k-means clustering on the normalised matrix. Other possible approaches to derive a final clustering
from H are listed in Shawe-Taylor and Cristianini (2004).

S1.2 How to use KLIC with incomplete data

This section is dedicated to giving further details about how missing data can be handled by
using KLIC. The strategy explained in this section was used in the application of KLIC to the
multiplatform analysis of 12 cancer types in Section 4.2 of the main paper.

The optimisation problem that is solved to find the optimal clustering and weights in localised
multiple kernel k-means is:

maximise
H,Θ

tr(H ′∆ΘH)− tr(∆Θ) (4a)

subject to H ′H = 1k, (4b)
Θ′1M = 1, (4c)
∆Θ =

∑
m

(θmθ
′
m) ◦∆m, (4d)

where ◦ is the Hadamard product. As stated in Section 2.2.2 of the main paper, one can optimise the
objective function of Equation (4a) with a two-step procedure, that iteratively (1) solves a standard
kernel k-means problem with kernel δΘ, keeping the weight matrix Θ fixed and then (2) optimises
the objective function with respect to Θ. Again, the first step reduces to solving one optimisation
problem with a single kernel (Equations 3) and in the second step one just needs to solve a quadratic
programming (QP) problem. In particular, the QP problem in step (2) is:

minimise
Θ

M∑
m=1

θT
m

(
(In −HHT ) ◦∆m

)
θm (5a)

subject to Θ ∈ RN×M
+ , (5b)

Θ′1M = 1N . (5c)

Now, if some of the observations are missing in some of the datasets, we can define by
Im ⊂ {1, . . . , N} the set of the missing values in each dataset m = 1, . . . ,M and make sure
that the corresponding kernel ∆m is such that

∆m
ij = 0 ∀i ∈ Im, j 6= i,

∆m
ii = 1 ∀i ∈ Im.

The resulting matrix ∆m is a weighted sum of co-clustering matrices with structure

∆m =


∆′m 0 0 0
0 1 0 0

0 0 . . . 0
0 0 0 1

 ,

where ∆′m is the m-th kernel matrix for the available data and the observations are ordered such
that the missing ones are at the bottom of the matrix for presentational purposes. Therefore, it is a
valid kernel matrix.
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Moreover, it is possible to cancel the influence the missing observations on the final solutions by
setting their weight to zero in optimisation problem (5):

minimise
Θ

M∑
m=1

θT
m

(
(In −HHT ) ◦∆m

)
θm (6a)

subject to Θ ∈ RN×M
+ , (6b)

Θ′1M = 1N , (6c)
θmi = 0 ∀i ∈ Im, m = 1, . . . ,M. (6d)

This corresponds to adding |I1|+ · · ·+ |IM | equality constraints, each one on a different variable,
or, equivalently, to removing a number |I1|+ · · ·+ |IM | of variables from the optimisation problem.
Therefore, (6) is a QP problem. The objective function (4) can then be minimised by iterating
between steps (1) and (2) as in the previous case, with the additional constraints (6d) in step (2).

S1.3 Algorithms

Algorithm 1: Consensus cluster (CC).
Input : Dataset X, number of clusters K.
Initialise : Consensus matrix ∆K = 0N×N .

Matrix of resampling counts Dij = 0N×N .
1 for h ∈ {1, . . . ,H} do
2 X(h) = resample from the rows and/or columns of X
3 c(h) = divide the items of X(h) into K clusters
4 C(h) = build the co-clustering matrix corresponding to c(h)

5 for i, j ∈ {1, . . . , n} do
6 ∆K

ij = ∆K
ij + C

(h)
ij

7 Dij = Dij + 1
(h)
ij

8 end
9 end

10 for i, j ∈ {1, . . . , n} do
11 ∆K

ij = ∆K
ij /min {Dij , 1}

12 end
Output : Consensus matrix ∆K .
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Algorithm 2: Cluster of clusters analysis (COCA)
Input :M datasets Xm

Number of clusters Km in each dataset
Global number of clusters K.

Initialise : MOC = 0K̄×N .
1 for m ∈ {1, . . . ,M} do
2 cm = cluster the items in dataset Xm into Km clusters
3 for n ∈ {1, . . . , N}, k ∈ {1, . . . ,Km} do
4 Set MOCn,mk

= 1 if cm
i = k

5 end
6 end
7 for h ∈ {1, . . . ,H} do
8 MOC(h) = resample from the rows and/or columns of MOC
9 c(h) = divide the items of X(h) into K clusters

10 C(h) = build the co-clustering matrix corresponding to c(h)

11 for i, j ∈ {1, . . . , n} do
12 ∆ij = ∆ij + C

(h)
ij

13 Dij = Dij + I(h)
ij

14 end
15 end
16 for i, j ∈ {1, . . . , n} do
17 ∆ij = ∆ij/min {Dij , 1}
18 end
19 Find final clustering cK using hierarchical clustering on ∆K .

Output : Cluster labels cK .

Algorithm 3: KLIC: Kernel Learning Integrative Clustering
Input :M datasets Xm

Maximum number of clusters K.
1 for m ∈ {1, . . . ,M} do
2 ∆m = compute kernel for Xm

3 end
4 for k ∈ {1, . . . ,K} do
5 [wk, ck] = apply multiple kernel k-means to ∆1, . . . ,∆M

6 sk = calculate average silhouette of ck

7 end
8 Choose k such that sk ≥ sj ,∀j 6= k.
9 return k, wk, ck.

Output : Best number of clusters k
Set of kernel weights w = [w1, . . . , wM ]
Cluster labels c = [c1, . . . , cN ]
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S2 Simulation study

S2.1 RBF kernel

The RBF kernel is defined as

δ(x,x′) = exp
{
−‖x− x′‖2

2σ2

}
, (7)

where x,x′ ∈ RP , ‖ · ‖ is the Euclidean distance and the parameter σ is the so-called characteristic
length scale. In order to find the best possible value of σ for each synthetic dataset, we generate
100 dataset for each value s (the parameter that indicates the separation between cluster means)
considered in our simulation setting, which are as follows:

• s = 1.5 in setting 1 (similar datasets);

• s = 0, 1, 2, 3 in setting 2 (datasets with different levels of noise);

• s = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 in the additional simulation settings presented below (Section
S2.2).

For each dataset, we build one kernel for each of the following values of σ: 0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1, 5, 10, 50. We then use kernel k-means to cluster the data and compute the ARI between
the clustering obtained in this way and the true cluster labels (Figure S2). We then choose the
value of σ maximising the average ARI for each value of s.

Figure S1. Kernels obtained for the same datasets as those used for Figure 1 (first row)
in the main paper, using RBF kernels.
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Figure S2. ARI between the clusters obtained with an kernel k-means on RBF kernels for
different values of the characteristic length scale parameter and separation between clusters.
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S2.2 Additional simulation settings

We present here some additional simulation settings that were omitted from the main paper for the
sake of brevity.

S2.2.1 Datasets with nested clusters

We investigate how the algorithm copes with the ambiguous situation of nested clusters. To this
end, we generate two datasets with the same value of the parameter s setting the distance between
cluster centres. The first one has six clusters, while the second one only has three clusters, each of
them containing two of the clusters of the other dataset (Figure S3).

Figure S3. Consensus matrices of the synthetic data. Blue indicates high similarity. The
colours of the bar to the right of each matrix indicate the cluster labels. Consensus matrices
of two datasets with nested clusters: the one on the left has six clusters, whereas the one
on the right has three clusters formed by merging two of the clusters of the dataset with
six clusters.

Since the algorithm works only with a fixed number of clusters, we try both with K = 3 and
K = 6. The ARI and the average weights assigned to each matrix are reported in Figure S5. For
K = 6, the weights assigned to each matrix are not as we expected: the matrix with three clusters is
weighted slightly more highly than the other one. To investigate this phenomenon, we introduce an
additional way to score how strong the signal is in each dataset. We use the cophenetic correlation
coefficient, a measure of how faithfully hierarchical clustering would preserve the pairwise distances
between the original data points (Brunet et al., 2004, Sokal and Rohlf, 1962). Given a dataset
X = [x1,x2, . . . ,xN ] and a similarity matrix ∆ ∈ RN×N , we define the dendrogrammatic distance
between xi and xj as the height of dendrogram at which these two points are first joined together by
hierarchical clustering and we denote it by ηij . The cophenetic correlation coefficient ρ is calculated
as

ρ = Σi<j(∆ij − ∆̄)(ηij − η̄)√∑
i<j(∆ij − ∆̄)Σi<j(ηij − η̄)

, (8)

where ∆̄ and η̄ are the average values of ∆ij and ηij respectively. The cophenetic correlation
coefficient of a consensus matrix can be interpreted as an indication of the level of its dispersion
or, equivalently, of the stability of the clustering used in CC. If the clusters are invariant under
subsampling of the data features/observations, then the consensus matrix has all entries equal to
either one or zero, and cophenetic correlation coefficient equal to one. On the other hand, if clusters
vary at each iteration of consensus clustering, the entries of the consensus matrix are scattered
between zero and one, and the corresponding cophenetic correlation coefficient is negative. The
consensus matrices shown in Figure 1 of the main paper, for instance, have increasing cophenetic
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correlation going from left (lower cluster separability) to right (higher cluster separability). We find
that in this case the consensus matrices with K = 3 have slightly higher cophenetic correlation
than the ones with K = 6 with the same level of cluster separability s. This explains why higher
weights are assigned to the former. This suggests that, in ambiguous cases, localised kernel k-means
assigns higher weights (on average) to the kernels with highest cophenetic correlation. Intuitively,
the sum of within-cluster distances in the feature space is zero when each pair of data points has
similarity one if both data points are in the same cluster, and zero otherwise. Minimising that sum
thus corresponds to finding the weights and cluster allocations that lead to a weighted kernel that is
as close as possible to a kernel with cophenetic correlation one.

(a) True number of clusters for CC, K = 3 for global clustering.

(b) True number of clusters for CC, K = 6 for global clustering.

Figure S4. Results of applying KLIC to datasets that have nested clusters. Left: ARI of
KLIC applied to the datasets with three and six clusters separately (columns “3” and “6”
respectively) and to those two datasets combined (column “3+6”). Centre: the weights
assigned to each dataset. Right: cophenetic correlation coefficients of the consensus matrices
built with K = 3 (for the dataset with three clusters) and K = 6 (for the dataset with
six clusters). Higher weights are given to the kernels with higher cophenetic correlation,
irrespectively of their number of clusters.
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We also report the results obtained setting either K = 3 or K = 6 at each step of KLIC, i.e.
consensus clustering of each dataset and MKL.

(a) K = 3 at each step.

(b) K = 6 at each step.

Figure S5. Results of applying KLIC to datasets that have nested clusters. Left: ARI of
KLIC applied to the datasets with three and six clusters separately (columns “3” and “6”
respectively) and to those two datasets combined (column “3+6”). Centre: the weights
assigned to each dataset. Right: cophenetic correlation coefficients of the consensus matrices
built with K = 3 (top) and K = 6 (bottom). Higher weights are given to the kernels with
higher cophenetic correlation, irrespectively of their number of clusters.

S2.2.2 Comparison between KLIC, COCA, and other methods

For simulation setting 1 (four datasets with the same level of cluster separability) only the results
obtained with s = 1.5 are reported in the main paper. For completeness, we show here the
corresponding figures for a range of other values of s in Figure S6.

S10



(a) s = 0. (b) s = 0.5. (c) s = 1.

(d) s = 1.5. (e) s = 2. (f) s = 2.5.

(g) s = 3. (h) s = 3.5. (i) s = 4.

Figure S6. Comparison between KLIC, COCA, and other clustering algorithms. ARI
obtained using four datasets having the same clustering structure and cluster separability
(as in Figure 2).
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S2.2.3 Sensitivity analysis

The results presented in the main paper were obtained with the parameter nstart of the kmeans
function (which determines the number of random initialisations of the algorithm) set to one both
for KLIC and COCA. Figure S7 shows the ARI obtained for the same simulation settings as in
Figure 4 in the main paper, with the nstart parameter set to 20. The figure shows that COCA
is quite sensitive to the choice of this parameter, while KLIC is not. This explains the difference
observed in Figure 4 of the main paper between the ARI of COCA obtained when using k-means
and sparse k-means, since those two methods have different default values of nstart.

Figure S7. Comparison between KLIC, COCA, and other clustering algorithms. The
labels ‘RBF opt.’ and ‘RBF fixed’ refer to the MKL method using an RBF kernel with
either σ optimised or fixed at 1. Top: ARI obtained with each clustering algorithm using
four datasets having the same clustering structure and cluster separability (as in Figure 2
in the main paper). Bottom: ARI obtained with COCA and KLIC for each of the subsets
of heterogeneous datasets considered in Figure 3 in the main paper. The high ARI obtained
with KLIC in all settings shows the advantage of using this method, especially when some
of the datasets are noisy.
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S3 Multiplatform analysis of 12 cancer types
In Section S3.1 we explain the steps we took to try to replicate the data preprocessing and cluster
analysis of Hoadley et al. (2014). In Section S3.2 we give more details on the input and output of
KLIC for this particular application.

S3.1 Replicating the analysis of Hoadley et al. (2014)

For each type of data we followed as closely as possible the procedures presented in the supplementary
material of Hoadley et al. (2014). We present here the steps that we followed. The malignancies
and corresponding acronyms considered in this study are: glioblastoma multiforme (GBM), serous
ovarian carcinoma (OV), colon (COAD) and rectal (READ) adenocarcinomas, lung squamous
cell carcinoma (LUSC), breast cancer (BRCA), acute myelogenous leukemia (AML), endometrial
cancer (UCEC), renal cell carcinoma (KIRC), and bladder urothelial adenocarcinoma (BLCA). The
agreement between the clustering analysis presented here and the clustering presented in the original
Hoadley et al. paper ranged from excellent (for the protein and mRNA datasets) to quite poor (for
the miRNA dataset).

Protein expression We used hierarchical clustering with Ward’s agglomeration method and
Pearson’s correlation as the distance. Our clusters match exactly those of Hoadley et al. (i.e. the
ARI is equal to one, see Figure S8).

Figure S8. Protein expression clusters. High values are indicated in blue and low values
in orange. C: Clusters found in this analysis. H: Clusters found in the original analysis of
Hoadley et al. Adjusted Rand index between C and H: 1.
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mRNA expression For mRNA expression, we proceeded as indicated by Hoadley et al. (2014).
We chose the genes present in 70% of samples and then selected the 6,000 most variable genes. Then
we used the ConsensusClusterPlus R package with settings maxK=20, innerLinkage ="average"
finalLinkage="average", distance="pearson", corUse="pairwise.complete.obs". The ARI
is 0.917 (see Figure S9).

Figure S9. mRNA expression clusters. High values are indicated in blue and low values
in orange. The dataset contains 600 genes but here we show only 100 of them. C: Clusters
found in this analysis. H: Clusters found in the original analysis of Hoadley et al. Adjusted
Rand index between C and H: 0.917.
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DNA methylation We used hierarchical clustering with Jaccard’s distance and Ward’s agglom-
eration method. Hoadley et al. (2014) chose to divide the data into 19 clusters, so we did the same.
Comparing our clusters to those of Hoadley et al. (2014), we obtained an ARI of 0.680 (see Figure
S10).

Figure S10. DNA methylation clusters. Blue cells correspond to methylated loci. Missing
values are indicated in grey colour. Only 100 CpG loci are shown here, but the full dataset
contains 2,043. C: Clusters found in this analysis. H: Clusters found in the original analysis
of Hoadley et al. Adjusted Rand index between C and H: 0.680.
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DNA copy number The clusters for the somatic copy number dataset were found using hierar-
chical clustering with Euclidean distance and Ward’s method. The number of clusters was set to
eight in the original manuscript based on the cophenetic distances and therefore we did the same
here. The adjusted Rand index (ARI) comparing the clustering found in the present analysis with
the clustering found in the original analysis of Hoadley et al. is 0.333 (see Figure S11).

Figure S11. Somatic copy number clusters. High values are indicated in blue and low
values in orange. C: Clusters found in this analysis. H: Clusters found in the original
analysis of Hoadley et al. Adjusted Rand index between C and H: 0.333.
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microRNA expression In the original manuscript the clusters of the microRNA-seq data were
determined using a software program called Cluster 3 (De Hoon et al., 2004). The same software
was used to scale the data. Since it is was not possible to retrieve the clusters presented in the
paper using this software, we used R to scale the data as was done by Cluster 3, namely applying a
logarithmic transformation to the data and then median-centring. We found the final clusters using
agglomerative hierarchical clustering in R (agnes command. We selected the number of clusters
that maximises the silhouette, which is eight. The ARI is 0.255 (see Figure S12).

(a) Clusters. High values are indicated in blue,
low values in orange.

(b) Silhouette.

Figure S12. microRNA expression. C: Clusters found in this analysis. H: Clusters found
in the original analysis of Hoadley et al. Adjusted Rand index between C and H: 0.255.
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S3.2 Output of KLIC

The kernels corresponding to each dataset are shown in Figure S13, for each of them we also report
the cophenetic correlation coefficient. Figure S14a shows the weights associated to each observation
in each dataset. Figure S14b shows the average silhouette for all the number of clusters considered:
the optimal values are between six and ten. Finally, Figure S14c shows the correspondences between
the clusters obtained using KLIC and the tumour tissues. Most clusters correspond quite well with
one or two tissue types (e.g. cluster 10 contains almost exclusively samples of renal cell carcinoma
and cluster 6 contains colon and rectal adenocarcinomas), but not all.

(a) DNA copy number.
Cophenetic correlation

coefficient: 0.736.

(b) DNA methylation.
Cophenetic correlation

coefficient: 0.859.

(c) mRNA expression.
Cophenetic correlation

coefficient: 0.974.

(d) miRNA expression.
Cophenetic correlation

coefficient: 0.923.

(e) Protein expression.
Cophenetic correlation

coefficient: 0.888.

Figure S13. Kernel matrices.
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(a) Weights.

(b) Average silhouette. (c) Matrix of coincidences.

Figure S14. Output of KLIC. (a) Weights. Low weights are indicated in white and higher
weights in green. Grey cells correspond to missing values, which have zero weight. (b)
Average silhouette. The maximum is obtained for seven clusters. All numbers of clusters
comprised between six and ten have similar values. (c) Matrix showing the correspondences
between the clusters obtained by using KLIC and the tumour tissues.
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S4 Transcriptional module discovery
This section is structured as follows. First, we give further details regarding the application of
KLIC and COCA to transcriptional module discovery using Bayesian Hierarchical Clustering as the
clustering algorithm for the ChIP data. Then, we consider other algorithms that could have been
applied to this dataset and compare the new results with those reported in the main paper. Finally,
we give more details about the choice of the number of clusters for PAM.

S4.1 Clustering algorithms for the ChIP data

The ChIP dataset is quite sparse. The data were discretised so that only transcription factors
that are believed with high confidence to be able to bind to a gene’s promoter region are marked
as “ones”; all the others are “zeros”. For this reason, in addition to BHC, we considered two
clustering algorithms that are able to take into account this feature of the data. However, we show
in Sections S4.1.2 and S4.1.3 that these methods often cluster genes with few transcription factors
(i.e. observations for which most variables are zero) together, while the other genes end up in
separate small clusters that are less stable under subsampling of the data. This leads to consensus
matrices that have high cophenetic correlation coefficients but carry little information. We show
that combining the corresponding kernels to that of the expression data does not always give more
meaningful clustering solutions than those obtained on each data type separately. This highlights
the importance of the kernel matrices as an intermediate diagnostic tool for KLIC, which can help
choosing the right clustering algorithms.

S4.1.1 Bayesian Hierarchical Clustering

Bayesian Hierarchical Clustering (BHC; Heller and Ghahramani, 2005) is a method for agglomerative
hierarchical clustering. The idea is that, similarly to classical agglomerative clustering algorithms,
at the start each data point is considered as a different cluster; then, at each step, two clusters are
merged. The main difference between classical hierarchical clustering and BHC is that in BHC
merging is done based on Bayesian hypothesis testing, where the alternative hypotheses are “all
data in clusters ci and cj were generated from the same probabilistic model” and “the data in ci

and cj has two or more clusters in it”. The pair of clusters that is selected for merging is the one
with highest probability of the merged hypothesis.

Figure S15b shows the clusters found on all the data (on the left) as well as the consensus matrix
obtained by applying BHC to 200 random subsamples of 95% of the data. This shows that, while
the clustering algorithm works well on the full dataset, different clustering structures are found in
the data subsamples, giving a fuzzy similarity matrix. This is due to the fact that most clusters
are very small, and are hard to identify when only a subset of the data is available. The output of
COCA obtained with this clustering algorithm is shown in Figure S16, the output KLIC is shown
in the main paper. Higher weights are assigned on average to the expression data, with an average
of 0.58.

S4.1.2 PAM with Gower’s distance

Another clustering algorithm that could have been applied to this dataset is PAM with Gower’s
distance (Gower, 1971). In this case, all variables are binary and therefore Gower’s distance is
equivalent to Jaccard’s distance. For two multivariate binary observations xi and xj , this is defined
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(a) Expression data, PAM.
Cophenetic correlation coefficient: 0.971.

(b) ChIP data, BHC.
Cophenetic correlation coefficient: 0.103.

(c) ChIP data, PAM.
Cophenetic correlation coefficient: 0.996.

(d) ChIP data, GBNP.
Cophenetic correlation coefficient: 0.931.

Figure S15. Consensus matrices.
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as one minus the Jaccard index:

J = M11
M01 +M01 +M11

, (9)

where M11 is the number of variables where xi and xj both have value of 1, M01 is the number of
variables where xi is 0 and xj is 1 and viceversa for M01. This distance is particularly suited for
this dataset because here the ones correspond to transcription factors that are believed with high
confidence to be able to bind to the promoter region of the corresponding gene, whereas zeros are
transcription factors for which we are not able to reject the hypothesis that they do not bind to
that promoter region. Thus, in a sense, ones carry more information than zeros.

The consensus matrix obtained by subsampling 200 times 95% of the data is shown in Figure
S15c, the output of COCA and KLIC in Figures S16 and S17 respectively. Details on how the
number of clusters was chosen are given in Section S4.2. As usual, the number of clusters for KLIC
and COCA was chosen in order to maximise the silhouette. KLIC selected K = 3 and COCA
K = 10. GOTO scores for the clustering found with PAM algorithm and Gower’s distance, as well
as those given by KLIC and COCA for three and ten clusters are reported in Table S1. Higher
weights are assigned to the ChIP data, with an average of 0.78.

S4.1.3 Greedy Bayesian non-parametric clustering algorithm

The last clustering algorithm that we considered is a greedy approximation to the Gibbs sampling
algorithm for Dirichlet process mixture models of Neal (2000). In the greedy version of the algorithm
used here at each iteration cluster allocations are made in a deterministic fashion, assigning each
observation to the cluster with highest probability, instead of sampling the cluster labels according
to their conditional probabilities.

Figure S15d shows the consensus matrix, Figures S16 and S17 show the output of COCA and
KLIC respectively. (Note that, for brevity, we refer to this method as “GBNP”, which stands for
Greedy Bayesian NonParametric algorithm.) Higher weights are assigned to the ChIP data points,
with an average of 0.59.
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(a) BHC

(b) PAM with Gower’s distance.

(c) GBNP.

Figure S16. Transcriptional module discovery. Output of COCA.
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Figure S17. Transcriptional module discovery. Output of KLIC. PAM with Gower’s
distance (above) and GBNP (below). S24



Clusters Dataset(s) Algorithm GOTO BP GOTO MF GOTO CC
4 Expression PAM correlation 6.1194 0.9075 8.4139
8 ChIP PAM Gower’s 6.0872 0.8959 8.3261
5 ChIP BHC 6.0020 0.9192 8.2886
12 ChIP GBNP 6.0192 0.9176 8.3664
4 ChIP+Expression COCA (PAM + BHC) 6.1194 0.9075 8.4139
4 ChIP+Expression KLIC (PAM + BHC) 6.1221 0.9074 8.4103
10 ChIP+Expression COCA (PAM + BHC) 6.2767 0.9347 8.5137
10 ChIP+Expression KLIC (PAM + BHC) 6.3240 0.9473 8.5310
3 ChIP+Expression COCA (PAM + PAM) 5.9609 0.8991 8.2780
3 ChIP+Expression KLIC (PAM + PAM) 5.9188 0.8915 8.1766
10 ChIP+Expression COCA (PAM + PAM) 6.3429 0.9211 8.5126
10 ChIP+Expression KLIC (PAM + PAM) 6.3724 0.9094 8.4868
5 ChIP+Expression COCA (PAM + GBNP) 6.1298 0.9078 8.4218
5 ChIP+Expression KLIC (PAM + GBNP) 5.9629 0.9108 8.3246
10 ChIP+Expression COCA (PAM + GBNP) 6.1605 0.9118 8.4796
10 ChIP+Expression KLIC (PAM + GBNP) 6.2277 0.9262 8.4814

Table S1. Gene Ontology Term Overlap scores for different sets of data, clustering
algorithms and numbers of clusters. “BP” stands for “biological process” ontology, “MF”
for “molecular function”, and “CC” for “cellular component”.
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S4.2 Choice of the number of clusters

In order to choose the number of clusters when using PAM, we considered multiple metrics: the
average silhouette (Rousseeuw, 1987), the gap statistic (Tibshirani et al., 2001), and the original
and modified versions of Dunn’s index (Dunn, 1974, Halkidi et al., 2001). We considered all number
of clusters from two to 20. These are shown in Figures S18 and S19. For the expression data, we
chose four clusters since three of the chosen metrics have a peak at K = 4. For the ChIP data,
there is no consensus among the metrics, so we selected K = 8 based on the gap metric.

(a) Average silhouette. (b) Widest gap.

(c) Dunn’s index. (d) Dunn’s modified index.

Figure S18. Expression data. Metrics used to choose the number of clusters.
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(a) Average silhouette. (b) Widest gap.

(c) Dunn’s index. (d) Dunn’s modified index.

Figure S19. ChIP data. Metrics used to choose the number of clusters.
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