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1 Supplementary Tables

1.0.1 Analysis of changes in CNN parameters

Supplementary Table 1: Results evaluating performance of our model by changing network parame-
ters on the simulated data. The boldfaced attributes represent the parameter values for which the
model performs the best.

Performance Analysis
Parameter Values AUC

Stride Size
1 0.887
2 0.853
3 0.822
4 0.812
5 0.800

Window Size
3 0.834
4 0.851
5 0.886
6 0.857
7 0.842

No. of filters
16 0.842
32 0.877
64 0.852

No. of OTUs associated with risk of disease
8 0.792
16 0.837
32 0.872

We tried to compare the performance of our CNN model by changing the parameters associated
with the network such as, stride size, number of causal OTUs, number of filters and window size to
see if accuracy improves. Results are shown in the Supplementary Table 1. It was observed that
as we increased the stride size (the number by which the window slides) in the CNN network, the
model performance reduced, as the correlations between some of the adjacent OTUs were dropped
in each slide. We obtained the best performance when stride size was 1 (AUC=0.887). Increasing
the window size on the other hand, increased the AUC value as we observed mean AUC value
reaching a high of 0.886 on window size 5. But as we went on increasing the window size, we
noticed a drop in performance. Similarly, we chose the number of filters in the CNN model in
a standard manner as suggested in [4]. As already discussed, filters are equal to the number of
features in every layer of the network. We obtained and AUC of 0.877 with 32 filters, however,
when we increased the number of filters from 32 to 64 we observed that the performance dropped.
Finally by changing the number of OTUs associated with risk of disease in the model, we observed
the best AUC with 32 associated OTUs (AUC=0.872) and decreasing the number of associated
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OTUs reduced the prediction performance.
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Supplementary Table 2: Table detailing the clusters in the T2D study [1] based on the phyla
containing maximum number of OTUs. The right handside represents the genera in each cluster.
The numbering provided to each genus provides a unique identifier to each OTU which is further
used in Heatmaps as labels for the x and y axis, in Supplementary Figure 13, 14 and 15 to illustrate
the correlations between the OTUs.

OTUs in T2D study
Cluster Phylum Genus
Cluster 1 p Firmicutes 1. g Abiotrophia

2. g Acidaminococcaceae unclassified
3. g Acidaminococcus
4. g Alicyclobacillus
5. g Allobaculum
6. g Anaerococcus
7. g Anaerofustis
8. g Anaeroglobus
9. g Anaerostipes
10. g Anaerotruncus
11. g Bacillus
12. g Blautia
13. g Bulleidia
14. g Butyricicoccus
15. g Butyrivibrio
16. g Catenibacterium
17. g Cellulosilyticum
18. g Clostridiaceae noname
19. g Clostridiales Family XIII Incertae Sedis noname
20. g Clostridiales Family XIII Incertae Sedis unclassified
21. g Clostridiales noname
22. g Clostridium
23. g Coprobacillus
24. g Coprococcus
25. g Dialister
26. g Dorea
27. g Eggerthia
28. g Enterococcus
29. g Erysipelotrichaceae noname
30. g Eubacterium
31. g Faecalibacterium
32. g Finegoldia
33. g Flavonifractor
34. g Gemella
35. g Granulicatella
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36. g Holdemania
37. g Lachnoanaerobaculum
38. g Lachnospiraceae noname
39. g Lactobacillus
40. g Lactococcus
41. g Leuconostoc
42. g Marvinbryantia
43. g Megamonas
44. g Megasphaera
45. g Mitsuokella
46. g Oribacterium
47. g Oscillibacter
48. g Parvimonas
49. g Pediococcus
50. g Peptoniphilus
51. g Peptostreptococcaceae noname
52. g Peptostreptococcus
53. g Phascolarctobacterium
54. g Pseudoflavonifractor
55. g Pseudoramibacter
56. g Roseburia
57. g Ruminococcaceae noname
58. g Ruminococcus
59. g Selenomonas
60. g Shuttleworthia
61. g Solobacterium
62. g Staphylococcus
63. g Stomatobaculum
64. g Streptococcus
65. g Subdoligranulum
66. g Turicibacter
67. g Veillonella
68. g Weissella

Cluster 2 p Proteobacteria 69. g Acinetobacter
70. g Actinobacillus
71. g Aeromonas
72. g Aggregatibacter
73. g Bartonella
74. g Bilophila
75. g Brevundimonas
76. g Buchnera
77. g Burkholderia
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78. g Burkholderiales noname
79. g Campylobacter
80. g Candidatus Zinderia
81. g Cardiobacteriaceae unclassified
82. g Caulobacter
83. g Chromobacterium
84. g Citrobacter
85. g Citromicrobium
86. g Comamonas
87. g Cronobacter
88. g Cupriavidus
89. g Desulfovibrio
90. g Enhydrobacter
91. g Enterobacter
92. g Enterobacteriaceae noname
93. g Erythrobacteraceae unclassified
94. g Escherichia
95. g Gallionellaceae unclassified
96. g Haemophilus
97. g Halomonas
98. g Helicobacter
99. g Kingella
100. g Klebsiella
101. g Lautropia
102. g Limnohabitans
103. g Mesorhizobium
104. g Morganella
105. g Neisseria
106. g Oxalobacter
107. g Pantoea
108. g Paracoccus
109. g Parasutterella
110. g Plesiomonas
111. g Polaromonas
112. g Proteus
113. g Providencia
114. g Pseudoalteromonadaceae unclassified
115. g Pseudoalteromonas
116. g Pseudomonas
117. g Pseudoxanthomonas
118. g Raoultella
119. g Rheinheimera
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120. g Rhodanobacter
121. g Rhodobiaceae unclassified
122. g Serratia
123. g Shewanella
124. g Shigella
125. g Shinella
126. g Sinobacteraceae unclassified
127. g Sphingobium
128. g Sphingopyxis
129. g Spiribacter
130. g Succinatimonas
131. g Sutterella
132. g Sutterellaceae unclassified
133. g Variovorax
134. g Vibrio
135. g Xanthomonas
136. g Yersinia

Cluster 3 p Actinobacteria 137. g Actinomyces
138. g Adlercreutzia
139. g Agromyces
140. g Alloscardovia
141. g Atopobium
142. g Bifidobacterium
143. g Brachybacterium
144. g Brevibacterium
145. g Collinsella
146. g Coriobacteriaceae noname
147. g Corynebacterium
148. g Cryptobacterium
149. g Dermatophilaceae unclassified
150. g Eggerthella
151. g Gardnerella
152. g Gordonibacter
153. g Kocuria
154. g Leifsonia
155. g Leucobacter
156. g Microlunatus
157. g Mobiluncus
158. g Nocardioides
159. g Olsenella
160. g Parascardovia
161. g Propionibacteriaceae unclassified
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162. g Propionibacterium
163. g Rothia
164. g Scardovia
165. g Slackia
166. g Tropheryma
167. g Varibaculum

Cluster 4 1. p Spirochaetes 168. g Brachyspira
2. p Synergistetes 169. g Fretibacterium
3. p Tenericutes 170. g Pyramidobacter
4.
p Verrucomicrobia

171. g Synergistes

5. p Bacteroidetes 172. g Mycoplasma
6. p Candidatus
Saccharibacteria

173. g Akkermansia

7. p Chlorobi 174. g Naumovozyma
8. p Deinococcus
Thermus

175. g Saccharomyces

9. p Acidobacteria 176. g Saccharomycetaceae unclassified
10. p Fusobacteria 177. g Alistipes

178. g Alloprevotella
179. g Bacteroidales noname
180. g Bacteroides
181. g Bacteroidetes noname
182. g Barnesiella
183. g Butyricimonas
184. g Cellulophaga
185. g Coprobacter
186. g Dysgonomonas
187. g Odoribacter
188. g Parabacteroides
189. g Paraprevotella
190. g Pedobacter
191. g Porphyromonas
192. g Prevotella
193. g Riemerella
194. g Sphingobacterium
195. g Zunongwangia
196. g Candidatus Saccharibacteria noname
197. g Candidatus Saccharibacteria noname unclassified
198. g Chlorobium
199. g Deinococcus
200. g Meiothermus
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201. g Methanocaldococcaceae unclassified
202. g Acidobacteriaceae unclassified
203. g Granulicella
204. g Cetobacterium
205. g Fusobacterium
206. g Leptotrichia
207. g Leptotrichiaceae unclassified
208. g Rhodopirellula
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Supplementary Table 3: Table detailing the clusters in the Cirrhosis study [2] based on the phyla
containing maximum number of OTUs. The right handside represents the genera in each cluster.
The numbering provided to each genus provides a unique identifier to each OTU which is further
used in Heatmaps as labels for the x and y axis, in Supplementary Figure 16, 17 and 18 to illustrate
the correlations between the OTUs.

OTUs in Cirrhosis study
Cluster Phylum Genus
Cluster 1 p Firmicutes 1. g Abiotrophia

2. g Acidaminococcaceae unclassified
3. g Acidaminococcus
4. g Aerococcus
5. g Anaerococcus
6. g Anaerofustis
7. g Anaeroglobus
8. g Anaerostipes
9. g Anaerotruncus
10. g Anoxybacillus
11. g Bacillus
12. g Blautia
13. g Bulleidia
14. g Butyricicoccus
15. g Butyrivibrio
16. g Catenibacterium
17. g Catonella
18. g Centipeda
19. g Clostridiaceae noname
20. g Clostridiales Family XIII Incertae Sedis noname
21. g Clostridiales Family XIII Incertae Sedis unclassified
22. g Clostridiales noname
23. g Clostridium
24. g Coprobacillus
25. g Coprococcus
26. g Dialister
27. g Dorea
28. g Eggerthia
29. g Enterococcus
30. g Erysipelotrichaceae noname
31. g Eubacterium
32. g Faecalibacterium
33. g Filifactor
34. g Finegoldia
35. g Flavonifractor
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36. g Gemella
37. g Granulicatella
38. g Holdemania
39. g Lachnoanaerobaculum
40. g Lachnospiraceae noname
41. g Lactobacillus
42. g Lactococcus
43. g Leuconostoc
44. g Megamonas
45. g Megasphaera
46. g Mitsuokella
47. g Oribacterium
48. g Oscillibacter
49. g Parvimonas
50. g Pediococcus
51. g Peptoniphilus
52. g Peptostreptococcaceae noname
53. g Peptostreptococcus
54. g Phascolarctobacterium
55. g Pseudoflavonifractor
56. g Roseburia
57. g Ruminococcaceae noname
58. g Ruminococcus
59. g Selenomonas
60. g Shuttleworthia
61. g Solobacterium
62. g Staphylococcus
63. g Stomatobaculum
64. g Streptococcus
65. g Subdoligranulum
66. g Turicibacter
67. g Veillonella
68. g Weissella

Cluster 2 p Proteobacteria 69. g Acinetobacter
70. g Actinobacillus
71. g Aeromonas
72. g Aggregatibacter
73. g Bartonella
74. g Bilophila
75. g Bordetella
76. g Burkholderia
77. g Burkholderiales noname

15



78. g Campylobacter
79. g Cardiobacteriaceae unclassified
80. g Cardiobacterium
81. g Chromobacterium
82. g Citrobacter
83. g Comamonas
84. g Cronobacter
85. g Desulfovibrio
86. g Eikenella
87. g Enterobacter
88. g Enterobacteriaceae noname
89. g Escherichia
90. g Gallionellaceae unclassified
91. g Haemophilus
92. g Halomonas
93. g Helicobacter
94. g Kingella
95. g Klebsiella
96. g Kosakonia
97. g Lautropia
98. g Morganella
99. g Neisseria
100. g Oxalobacter
101. g Pantoea
102. g Parasutterella
103. g Pectobacterium
104. g Plesiomonas
105. g Proteus
106. g Providencia
107. g Pseudomonas
108. g Pusillimonas
109. g Ralstonia
110. g Raoultella
111. g Rhodopseudomonas
112. g Rhodospirillum
113. g Serratia
114. g Shewanella
115. g Shigella
116. g Sinobacteraceae unclassified
117. g Succinatimonas
118. g Sutterella
119. g Sutterellaceae unclassified
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120. g Yersinia
Cluster 3 p Actinobacteria 121. g Actinomyces

122. g Actinopolyspora
123. g Adlercreutzia
124. g Alloscardovia
125. g Atopobium
126. g Bifidobacterium
127. g Brevibacterium
128. g Collinsella
129. g Coriobacteriaceae noname
130. g Corynebacterium
131. g Cryptobacterium
132. g Eggerthella
133. g Gardnerella
134. g Gordonibacter
135. g Kocuria
136. g Olsenella
137. g Parascardovia
138. g Propionibacteriaceae unclassified
139. g Propionibacterium
140. g Pseudonocardia
141. g Rothia
142. g Saccharomonospora
143. g Saccharopolyspora
144. g Scardovia
145. g Slackia

Cluster 4 1. p Spirochaetes 146. g Brachyspira
2. p Synergistetes 147. g Fretibacterium
3. p Tenericutes 148. g Pyramidobacter
4.
p Verrucomicrobia

149. g Synergistes

5. p Bacteroidetes 150. g Akkermansia
6. p Candidatus
Saccharibacteria

151. g Naumovozyma

7. p Chlorobi 152. g Saccharomyces
8. p Deinococcus
Thermus

153. g Saccharomycetaceae unclassified

9. p Acidobacteria 154. g Alistipes
10. p Fusobacteria 155. g Alloprevotella

156. g Bacteroidales noname
157. g Bacteroides
158. g Bacteroidetes noname
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159. g Barnesiella
160. g Butyricimonas
161. g Cellulophaga
162. g Coprobacter
163. g Dysgonomonas
164. g Odoribacter
165. g Parabacteroides
166. g Paraprevotella
167. g Pedobacter
168. g Porphyromonas
169. g Prevotella
170. g Riemerella
171. g Sphingobacterium
172. g Zunongwangia
173. g Candidatus Saccharibacteria noname
174. g Candidatus Saccharibacteria noname unclassified
175. g Chlorobium
176. g Deinococcus
177. g Meiothermus
178. g Methanocaldococcaceae unclassified
179. g Acidobacteriaceae unclassified
180. g Granulicella
181. g Cetobacterium
182. g Fusobacterium
183. g Leptotrichia
184. g Leptotrichiaceae unclassified
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Supplementary Table 4: Association of age and sex to outcome of disease status in the T2D and
Cirrhosis studies.

T2D Cirrhosis
Variables Cases Controls p-value Cases Controls p-value

Age Mean (standard deviation) 54.5
(13.7)

41.6
(12.7)

<0.001 49.9
(11.3)

42.5 (9.3) <0.001

Male (Frequency (%)) 106
(62.4%)

84
(48.3%)

80
(67.8%)

72
(63.2%)

Female (Frequency (%)) 64
(37.6%)

90
(51.7%)

0.009
38
(32.2%)

42
(36.8%)

0.457
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1.0.2 Analysing effect of interaction terms

We have considered 3 interaction terms while simulating our OTU data to approximate the possible
OTU interactions that may be present in the the real studies. These interaction terms introduce
non-linearity in the OTU data and disease outcome. To analyse whether, taxoNN is efficiently
capturing this non-linearity, we compared the performance of taxoNN with other machine learning
methods with and without the 3 interaction terms during the simulations (Supplementary Table 5).
We observed that if we removed the interaction terms, the AUC obtained through taxoNNcorr on
the test set was observed to be 0.891 whereas, taxoNNdis gave an AUC value of 0.884. However, it
was interesting to note that, eliminating the non-linearity in the data improved the performance of
other methods as well. RF gave an AUC value of 0.865, SVM’s AUC was 0.844, Ridge regression’s
AUC was 0.841, Lasso regression gave an AUC of 0.838, GBC gave an AUC value of 0.827, NB’s
AUC value improved to 0.815 and CNN shuffle and CNN basic gave AUC values of 0.844 and
0.812 respectively. On the other hand, the results of the performance of each method with interaction
terms is shown in Figure 4. We observed that there was a significant improvement in AUC values
of taxoNNcorr and other machine learning methods, ranging from difference in AUC from 0.037
to 0.13 when we introduced non-linearity in the simulation study.

Supplementary Table 5: AUC values tabulated for various machine learning methods on test set
of simulation studies. The results are reported on considering model performance without (w/o)
interactions and with interactions. Note that the last row shows the consistent improvement in the
performance of the proposed model taxoNNcorr for both scenarios.

Method AUC w/o interaction AUC with interaction
Random Forest 0.865 0.846
Gaussian Bayes Classifier 0.827 0.792
Support Vector Machines 0.844 0.825
Lasso Regression 0.838 0.799
Ridge Regression 0.841 0.823
Naive Bayes 0.815 0.790
CNN basic 0.844 0.753
CNN shuffle 0.812 0.822
taxoNNdis 0.884 0.874
taxoNNcorr 0.891 0.883
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Supplementary Table 6: Mean AUC values tabulated for various machine learning methods on
training set of T2D and Cirrhosis studies. The results are reported on considering 10 times 10-fold
cross-validation on both studies. Note that the last row shows the consistent improvement in the
performance of the proposed model taxoNNcorr for both studies.

Method AUC for T2D AUC for Cirrhosis
Random Forest 0.740 0.892
Gaussian Bayes Classifier 0.684 0.874
Support Vector Machines 0.721 0.881
Lasso Regression 0.687 0.862
Ridge Regression 0.699 0.877
Naive Bayes 0.682 0.870
CNN basic 0.667 0.832
CNN shuffle 0.736 0.895
taxoNNdis 0.741 0.919
taxoNNcorr 0.753 0.921
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1.0.3 Validation on external cohort

We used the Type 2 Diabetes study evaluated by Karlsson et al. in their 2013 Nature Paper [5],
which comprises of metformin confounding information along with OTU data (We call it T2D II).

Supplementary Table 7: Association of age and metformin to outcome of disease status in the T2D
II study

T2D II study (53 cases and 43 controls)
Variables Cases Controls p-value

Age Mean (standard deviation) 70.4
(0.78)

70.3
(0.69)

0.286

Number of individuals with metformin intake (In %)) 20
(37.7%)

0 (0%) <0.001

Male (Frequency (%)) 0 (0%) 0 (0%)
Female (Frequency (%)) 53 (100%) 43 (100%)

This study had 53 cases and 43 controls, all of which were females. In the cases, 20 individuals
had taken metformin medication, while none of the controls had taken metformin. A table describing
the T2D II cohort in terms of age, metformin medication intake and number of samples is shown in
the presented in the supplementary file, Supplementary Table 7.

We carried additional experiments on this dataset:

• 1st Experiment: To externally validate our results as an independent cohort, we divided the
new T2D study (T2D II) into 4 major clusters based on the phyla containing majority OTUs,
in a similar fashion, as we had done for T2D study in our manuscript. We applied taxoNN
trained on T2D dataset [1] mentioned originally in our manuscript, to T2D II. We obtained
robust results on comparing taxoNN to other methods on this new validation set, shown in
the first column of Supplementary Table 8.

• 2nd Experiment: To understand the effect of metformin in the T2D II study we stratified
the OTUs based on the phylum level into 4 clusters. After putting the OTU data into 4
clusters for all subjects, we provided metformin information in a column along with the
relative abundance of OTUs in each of the clusters and trained the model. This was done in
a similar manner as we had included age and sex as covariates along with OTU data in the
original manuscript for T2D dataset. The AUC value obtained using metformin as covariate
in the taxoNNcorr model provided consistently better performance, in comparison to other
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conventional machine learning models as shown in the second column of Supplementary
Table 8.

Supplementary Table 8: AUC values tabulated for various machine learning methods on T2D II
study. The results are reported considering model performance using only OTU data and with
metformin information as a covariate alongwith OTU data. Note that the last row (values in bold)
shows the consistent improvement in the performance of the proposed model taxoNNcorr for both
cases.

Method AUC on T2D II study
OTU data OTU data with metformin covariate

Random Forest 0.702 0.696
Gaussian Bayes Classifier 0.611 0.602
Support Vector Machines 0.641 0.655
Lasso Regression 0.667 0.658
Ridge Regression 0.689 0.688
Naive Bayes 0.662 0.667
CNN basic 0.602 0.598
CNN shuffle 0.658 0.649
taxoNNdis 0.693 0.701
taxoNNcorr 0.709 0.711

These two experiments show that our method is stable and gives good performance on an
external validation set, as well as, is robust when metformin is chosen as a covariate.
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1.0.4 Stratification based on class level in the taxonomy tree

Choosing phylum level for our clustering was a strategic choice because we wanted to have adequate
number of OTUs per cluster. This was done to ensure proper training of our model after stratification,
and at the same time be able to find an association between the OTUs to arrange them for giving
them as an input to the CNN.

As we divided the clusters based on phyla with majority OTUs, we were able to determine 4
main clusters, each containing adequate number of OTUs for training our network. But when we
went a level down in the taxonomy tree, to class level we noticed that there were fewer OTUs in
each class.

Supplementary Table 9: AUC values tabulated for various machine learning methods upon class
based stratification for T2D and Cirrhosis studies.

Method AUC T2D AUC Cirrhosis
Random Forest 0.703 0.893
Gaussian Bayes Classifier 0.642 0.816
Support Vector Machines 0.701 0.877
Lasso Regression 0.665 0.823
Ridge Regression 0.700 0.842
Naive Bayes 0.682 0.802
taxoNNdis 0.700 0.887
taxoNNcorr 0.706 0.892

For example, in Cirrhosis dataset, we had 3 major phyla, namely, p Actinobacteria with 38
OTUs, p Firmicutes with 91 OTUs and p Proteobacteria with 91 OTUs. Going down the taxonomy
tree we had 40 different classes in class level and 60 different orders in order level. In such a case,
in stratification based on classes, we could identify 5 major classes which had number of OTUs
that were more than 20. Class c Actinobacteria contained 38 OTUs, c Bacilli contained 27 OTUs,
c Betaproteobacteria contained 25 OTUs, c Clostridia contained 44 OTUs, c Gammaproteobacteria
contained 44 OTUs and the rest of the classes were clubbed in another cluster. The performance of
each method on this approach for both studies is given in Table 9. We observed a drop in our model
performance by stratifying in terms of classes, which we attribute to the fact that there were not
enough OTUs in each cluster for the algorithm to learn well.

24



2 Supplementary Figures
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Supplementary Figure 3: Boxplot illustrating relative abundance percentage of OTUs in each
phylum of the T2D study. The upper whisker extends from the hinge to the largest value no further
than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first
and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 *
IQR of the hinge. Data beyond the end of the whiskers are called ”outlying” points and are plotted
individually.
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Supplementary Figure 4: Relative abundance percentage of OTUs at genus level in the Firmicutes
phylum of the T2D study
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Supplementary Figure 5: Relative abundance percentage of OTUs at genus level in the Proteobacteria
phylum of the T2D study
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Supplementary Figure 6: Relative abundance percentage of OTUs at genus level in the Actinobacte-
ria phylum of the T2D study
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Supplementary Figure 7: Boxplot illustrating relative abundance percentage of OTUs in each
phylum of the Cirrhosis study. The upper whisker extends from the hinge to the largest value no
further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between
the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most
1.5 * IQR of the hinge. Data beyond the end of the whiskers are called ”outlying” points and are
plotted individually.
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Supplementary Figure 8: Relative abundance percentage of OTUs at genus level in the Firmicutes
phylum of the Cirrhosis study
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Supplementary Figure 9: Relative abundance percentage of OTUs at genus level in the Proteobacteria
phylum of the Cirrhosis study
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Supplementary Figure 10: Relative abundance percentage of OTUs at genus level in the Actinobac-
teria phylum of the Cirrhosis study
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2.0.1 Robustness in imbalance of case and controls

To provide a comprehensive analysis, we also examined how robust taxoNN was in the scenario
of imbalance of controls and cases in the input data. As can be seen in Supplementary Figure
11(a) with 200 cases and 200 controls, both the variations of the proposed model taxoNNcorr

and taxoNNdis perform well with a mean AUC of 0.877 and 0.858 respectively. In the case of
1:2 ratio (Supplementary Figure 11(b)) and 1:3 ratio (Supplementary Figure 11(c)) of cases and
controls, taxoNNcorr, seemed to perform better than other machine learning models with AUC
equal to 0.857 and 0.827 respectively. However, as we increased the number of controls to 800
(Supplementary Figure 11(d)), we saw that the performance of other methods became comparable
to our technique with the difference in AUC values between taxoNNcorr and RF method reducing
to 0.007.
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Supplementary Figure 11: Analysing performance of model in the scenario of case and control
imbalance in the simulated data. a) Case and control data is properly balanced with 200 cases and
controls each. b) Case and control ratio increasing to 1:2 c) 200 cases to 600 controls d) 1:4 ratio
between case and control samples
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Supplementary Figure 12: An example plot to illustrate Euclidean distance based ordering in the
OTUs in a cluster. (a) relative abundance of 21 OTUs for 3 subjects represented as blue dots. (b)
red dot represents the medoid of the cluster. (c) black dashed lines represent the Euclidean distance
of three OTUs from the medoid. As di is the smallest followed by dj and dk, therefore, OTU with
distance di will be ordered first in the cluster as compared to OTU with distance dj , followed by
OTU with distance dk. For the ease of understanding, this illustration is an example for only 3
subjects. However, in reality, there are multiple individuals (sample size = I) in a study leading to
this 3-D plot being extended into an I-Dimensional space.
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Supplementary Figure 13: Heatmaps for the Spearman rank of the OTUs in the cluster, Phylum
Firmicutes, (a) before ordering and (b) after the ordering based on correlation of the OTUs in the
T2D study
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Supplementary Figure 14: Heatmaps for the Spearman rank of the OTUs in the cluster, Phylum
Proteobacteria, (a) before ordering and (b) after the ordering based on correlation of the OTUs in
the T2D study
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Supplementary Figure 15: Heatmaps for the Spearman rank of the OTUs in the cluster, Phylum
Actinobacteria, (a) before ordering and (b) after the ordering based on correlation of the OTUs in
the T2D study
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Supplementary Figure 16: Heatmaps for the Spearman rank of the OTUs in the cluster, Phylum
Firmicutes, (a) before ordering and (b) after the ordering based on correlation correlation of the
OTUs in the Cirrhosis study
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Supplementary Figure 17: Heatmaps for the Spearman rank of the OTUs in the cluster, Phylum
Proteobacteria, (a) before ordering and (b) after the ordering based on correlation correlation of the
OTUs in the Cirrhosis study
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Supplementary Figure 18: Heatmaps for the Spearman rank of the OTUs in the cluster, Phylum
Actinobacteria, (a) before ordering and (b) after the ordering based on correlation correlation of the
OTUs in the Cirrhosis study

44



Supplementary Figure 19: Functional working of the layers of taxoNN on 4 clusters of an example
dataset containing ‘p’, ‘q’, ‘r’ and ‘s’ OTUs in the respective clusters (where p+q+r+s = N). Each
block corresponds to a layer acting on the cluster. Input signifies the dimension of the input to the
layer. The input at each step is represented as (k,l) where, ‘k’ is the number of rows in the input
and ‘l’ represents the number of columns. As the initial input was a vector therefore, l in this case
was ‘1’. Output signifies the dimension of the result after certain operations in that particular layer.
Further, as the number of filters increases from 32 in the first Conv layer to 64 in the second Conv
layer, the number of columns in the nodes vary from 32 to 64. Finally, in the concatenation step we
obtain a single column concatenation vector by stacking flattened vectors from all clusters together.

45



3 References

[1] Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature
490, 55–60 (2012).

[2] Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64
(2014).

[3] Turpin, W. et al. Association of host genome with intestinal microbial composition in a large
healthy cohort. Nature Genetics 48, 1413–1417 (2016).

[4] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 1097–1105 (2012).

[5] Karlsson, F. H. et al. Gut metagenome in european women with normal, impaired and diabetic
glucose control. Nature 498, 99–103 (2013).

46


	Supplementary Tables
	Analysis of changes in CNN parameters
	Analysing effect of interaction terms
	Validation on external cohort
	Stratification based on class level in the taxonomy tree


	Supplementary Figures
	Robustness in imbalance of case and controls

	References

