
Supplementary Material

In the Supplementary Material, we provide more detail on the two simulation studies and the
applied example presented in the paper.

Simulation study 1: interactions between risk factors

The two risk factors X1 and X2 were generated for i = 1, 2, . . . , 10 000 participants from the
following data-generating model:

X1i =

J1
∑

j=1

α1jG1ji +
Jc
∑

j=1

α1cjGcji + U1i + ǫ1i and

X2i =

J2
∑

j=1

α2jG2ji +
Jc
∑

j=1

α2cjGcji + U2i + ǫ2i ,

where G1 and G2 are the genetic variants associated with X1 and X2 respectively, and Gc

are the set of shared variants that are associated with both X1 and X2 (bold font represents
vectors). The genotypes (0, 1 or 2) were generated independently from binomial distributions
Bin(2,MAFj), where MAFj represents the minor allele frequency (MAF) of the jth genetic
variant, and was drawn from a uniform distribution Unif(0.1, 0.5). α1 and α1c

represent the
effects of the genetic variants G1 and Gc on X1, and α2 and α2c

represent the effects of the
genetic variants G2 and Gc on X2. The genetic associations were calculated so that G1 and
Gc, and G2 and Gc, explained σ2

1
= σ2

2
= 10% of the variance in X1 and X2 respectively. To

ensure that each genetic variant explained the same amount of variation in the risk factor, we
rearranged:

var(G1j) = σ2

1
= 2× α2

1jMAF1j(1−MAF1j) and

var(G2j) = σ2

2
= 2× α2

2jMAF2j(1−MAF2j) ,

to calculate the genetic associations:

α1j =

√

σ2

1
/(J1 + Jc)

2×MAF1j(1−MAF1j)
,

α1cj =

√

σ2

1
/(J1 + Jc)

2×MAFcj(1−MAFcj)
,

α2j =

√

σ2

2
/(J1 + Jc)

2×MAF2j(1−MAF2j)
,

α2cj =

√

σ2

2
/(J1 + Jc)

2×MAFcj(1−MAFcj)
.

U1 and U2 represent the set of confounding variables of the X1−Y and X2−Y associations.
To ensure the confounders explained 25% of the variation in the risk factors, U1 and U2 were
drawn independently from a normal distribution N (0, 0.25). To fix the variances of X1 and
X2 to one, the error terms ǫ1 and ǫ2 were generated independently from a normal distribution
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with mean zero, and variance:

σ2

ǫ1
= 1− σ2

1
− 0.25 and σ2

ǫ2
= 1− σ2

2
− 0.25 .

The outcome Y was generated from:

Yi = θ0 + θ1X1i + θ2X2i + θ12X12i + 0.5U1i + 0.5U2i + ǫY i ,

where θ1 and θ2 represent the main effects ofX1 and X2 on Y , and θ12 represents the interaction
effect of X1 and X2 on Y . X12 was generated by either: a) multiplying X1 and X2; or b)
multiplying the mean centred values of the risk factors (X1 − X̄1) and (X2 − X̄2), where
X̄1 and X̄2 are the mean values of X1 and X2. To ensure the risk factors and confounders
explained less than a third of the variance in the outcome, the error term ǫY was generated
from a standard normal distribution N (0, 1).

Two-stage least squares regression models were fitted to either: a) the directly generated
values of the risk factors (X1, X2, X12 = X1 ×X2); or b) the mean centred values of the risk
factors (X1 − X̄1, X2 − X̄2, X12 = (X1 − X̄1)× (X2 − X̄2)). When the risk factors were mean
centred, the model estimated the marginal effects θ1M and θ2M of X1 and X2 on Y , otherwise θ1
and θ2 were estimated. For example, when there were no shared variants Jc = 0, the marginal
effects were approximately:

θM1 = θ1 + 0.3θ12 + J2θ12

(

√

0.1/J2
2× 0.3× 0.7

× 0.3× 2

)

,

θM2 = θ2 + 0.25θ12 + J1θ12

(

√

0.1/J1
2× 0.3× 0.7

× 0.3× 2

)

. (A1)

The genetic variants were either treated as individual IVs or as a single instrument in
externally weighted gene scores GSX1

and GSX2
for X1 and X2. The external weights for the

gene scores were based on an independent set of 10 000 individuals, and were produced from
the same data generating model used for the main set of participants. The following four sets
of genetic variants were used as IVs in separate two-stage least squares regression models:

• Method 1 – full set of interactions: the J1, J2 and Jc genetic variants used to generate
X1 and X2, plus the unique interactions and quadratic terms of (G1+Gc)× (G2+Gc).

• Method 2 – reduced set of interactions: the J1, J2 and Jc genetic variants used to generate
X1 and X2, plus the interactions from the product G1 ×G2.

• Method 3 – continuous gene scores: the two weighted gene scores GSX1
and GSX2

, and
their product GSX1

×GSX2
.

• Method 4 – dichotomized gene scores: the two dichotomized gene scores, and their
product.

Method 1 represents the oracle model as it includes all of the variables used in the data
generating model, whereas Methods 2 to 4 are misspecified and their performance should be
compared to Method 1. In Method 2, we have included a subset of the cross-terms between
the genetic variants to create a more realistic scenario where the full set of relevant IVs are
not included in the analysis. Method 3 considers the impact of including all of the genetic
variants into two separate weighted gene scores, and finally, Method 4 considers the impact of
dichotomizing the weighted gene scores.
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Data were generated 10 000 times with θ0 = 0.2, θ1 = 0.3, θ2 = 0.2, and θ12 = 0.1, 0.3 and
0.5. Each risk factor was associated with (J1 + Jc) = (J2 + Jc) = 10 genetic variants, and
the number of shared variants Jc was initially set to 0 to consider the scenario where none of
the genetic variants were associated with risk factors (Table 1). The data were re-generated
for σ2

1
= σ2

2
= 5% and 1%, for Jc = 0 (Supplementary Table A1) and Jc = 5 (Supplementary

Table A2), and the analyses were re-performed on the directly generated values of the risk
factors. Estimates of the F-statistic and conditional F-statistic for X1, X2 and X12 were
recorded. The analyses were re-performed on the mean centred risk factors (Supplementary
Table A3), and the number of shared variants was set to Jc = 1, 3, 5, 8 and 10 (Table 2). The
following measurements were recorded for the estimates of θ1, θ2 and θ12: median estimate;
standard deviation of estimates; median standard error of estimates; empirical power at the
5% significance level; and empirical coverage of the 95% confidence interval. The conditional
F-statistic (also known as the Sanderson–Windmeijer F-statistic [1]) represents the strength of
the IVs for the risk factors in a joint model, and is the relevant measure of instrument strength
for a multivariable Mendelian randomization analysis [2].
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F-stat CF-stat Median SD Median SE Power Coverage
Variants explain 10% of the variance in risk factors:

Methods 1 & 2 a – full set of interactions
θ1 = 0.3 10.3 (0.6) 2.1 (0.3) 0.3043 0.0918 0.0910 91.0 95.0
θ2 = 0.2 10.3 (0.6) 2.1 (0.3) 0.2034 0.0947 0.0945 57.9 95.5
θ12 = 0.3 8.1 (0.6) 1.9 (0.2) 0.3080 0.0722 0.0718 98.8 95.2
Method 3 – continuous gene scores
θ1 = 0.3 364.2 (23.4) 104.5 (25.6) 0.2998 0.1359 0.1332 61.9 95.6
θ2 = 0.2 364.5 (23.2) 103.9 (25.3) 0.2019 0.1405 0.1387 31.5 95.8
θ12 = 0.3 273.7 (22.4) 97.8 (22.8) 0.3000 0.1106 0.1091 77.5 95.8
Method 4 - dichotomized gene scores
θ1 = 0.3 224.2 (17.7) 41.9 (13.4) 0.3039 0.2145 0.2074 32.1 95.8
θ2 = 0.2 224.4 (17.7) 41.7 (13.3) 0.2047 0.2236 0.2164 15.2 96.2
θ12 = 0.3 168.2 (16.3) 40.0 (12.4) 0.2972 0.1777 0.1722 41.8 96.0

Variants explain 5% of the variance in risk factors:
Methods 1 & 2 a – full set of interactions
θ1 = 0.3 5.4 (0.4) 1.5 (0.2) 0.3174 0.0931 0.0920 92.4 94.5
θ2 = 0.2 5.4 (0.4) 1.4 (0.2) 0.2166 0.0957 0.0959 62.0 94.8
θ12 = 0.3 3.9 (0.4) 1.2 (0.2) 0.3087 0.0889 0.0888 92.8 95.0
Method 3 – continuous gene scores
θ1 = 0.3 170.2 (15.5) 25.4 (11.7) 0.2988 0.2298 0.2121 29.9 96.9
θ2 = 0.2 170.1 (15.7) 25.2 (11.5) 0.1985 0.2421 0.2237 13.8 96.9
θ12 = 0.3 109.4 (13.3) 23.8 (10.4) 0.3020 0.2458 0.2276 26.7 96.9
Method 4 - dichotomized gene scores
θ1 = 0.3 107.3 (12.2) 10.7 (6.7) 0.2970 3.928 0.3367 12.6 98.9
θ2 = 0.2 106.9 (12.0) 10.6 (6.6) 0.1948 3.804 0.3551 5.4 98.7
θ12 = 0.3 68.8 (10.2) 10.2 (6.1) 0.3033 4.065 0.3654 10.8 98.8

Variants explain 1% of the variance in risk factors:
Methods 1 & 2 a – full set of interactions
θ1 = 0.3 1.8 (0.2) 1.4 (0.2) 0.3681 0.0910 0.0901 97.7 88.4
θ2 = 0.2 1.8 (0.2) 1.4 (0.2) 0.2670 0.0930 0.0930 81.4 88.6
θ12 = 0.3 1.4 (0.2) 1.0 (0.1) 0.3029 0.0971 0.0972 86.4 95.4
Method 3 – continuous gene scores
θ1 = 0.3 29.5 (6.4) 1.9 (2.9) 0.2854 29.26 0.8411 2.8 99.9
θ2 = 0.2 29.4 (6.4) 1.9 (2.8) 0.1883 31.58 0.9203 1.0 99.9
θ12 = 0.3 12.3 (4.1) 1.6 (2.1) 0.3185 52.32 1.537 0.7 100.0
Method 4 - dichotomized gene scores
θ1 = 0.3 19.1 (5.1) 1.6 (2.8) 0.2992 123.8 1.063 1.9 99.9
θ2 = 0.2 19.0 (5.0) 1.5 (2.4) 0.1930 217.5 1.163 0.6 100.0
θ12 = 0.3 8.1 (3.3) 1.2 (1.7) 0.3121 347.4 1.933 0.3 100.0

Supplementary Table A1: Simulation study results for interactions between risk factors varying
the amount of variance in the risk factors explained by the genetic variants, with no shared
variants and an interaction effect θ12 = 0.3: mean F-statistic (F-stat), mean conditional F-
statistic (CF-stat), median estimate, standard deviation (SD) of estimates, median standard
error (SE), empirical power (%) to reject null at 5% significance, and empirical coverage (%)
of 95% confidence interval.

aAs there are no shared variants, methods 1 and 2 are equivalent.
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F-stat CF-stat Median SD Median SE Power Coverage
Variants explain 10% of the variance in risk factors:

Method 1 – full set of interactions
θ1 = 0.3 11.6 (0.7) 2.5 (0.4) 0.2981 0.0933 0.0927 89.1 95.0
θ2 = 0.2 11.6 (0.7) 2.5 (0.4) 0.1988 0.0955 0.0960 55.0 95.5
θ12 = 0.3 13.4 (0.9) 2.2 (0.3) 0.3074 0.0707 0.0706 99.0 95.0
Method 2 – reduced set of interactions
θ1 = 0.3 28.8 (1.8) 2.6 (0.4) 0.2970 0.1664 0.1649 44.2 95.8
θ2 = 0.2 28.8 (1.8) 2.6 (0.4) 0.1966 0.1719 0.1715 21.0 95.9
θ12 = 0.3 32.6 (2.1) 2.3 (0.3) 0.3056 0.1337 0.1333 63.4 95.8
Method 3 – continuous gene scores
θ1 = 0.3 366.4 (23.2) 131.8 (30.9) 0.2993 0.1272 0.1244 67.0 95.4
θ2 = 0.2 366.3 (23.4) 131.0 (30.7) 0.1992 0.1314 0.1293 35.1 95.4
θ12 = 0.3 426.6 (29.1) 120.9 (26.9) 0.3008 0.1000 0.0978 84.8 95.4
Method 4 - dichotomized gene scores
θ1 = 0.3 233.5 (18.1) 35.8 (12.4) 0.2984 0.2399 0.2302 25.9 96.4
θ2 = 0.2 233.5 (18.2) 35.6 (12.3) 0.2005 0.2482 0.2396 13.0 96.4
θ12 = 0.3 284.1 (21.6) 33.8 (11.2) 0.3006 0.1950 0.1877 36.8 96.4

Variants explain 5% of the variance in risk factors:
Method 1 – full set of interactions
θ1 = 0.3 6.0 (0.5) 1.6 (0.2) 0.3052 0.0980 0.0983 87.7 95.2
θ2 = 0.2 6.0 (0.5) 1.5 (0.2) 0.2078 0.1018 0.1022 53.3 95.2
θ12 = 0.3 6.1 (0.5) 1.3 (0.2) 0.3097 0.0925 0.0919 91.3 95.3
Method 2 – reduced set of interactions
θ1 = 0.3 14.2 (1.2) 1.6 (0.3) 0.2982 0.1600 0.1588 48.4 96.3
θ2 = 0.2 14.2 (1.2) 1.6 (0.3) 0.1994 0.1665 0.1664 22.7 96.1
θ12 = 0.3 13.9 (1.3) 1.4 (0.2) 0.3087 0.1621 0.1615 49.0 96.1
Method 3 – continuous gene scores
θ1 = 0.3 171.8 (15.6) 32.9 (14.1) 0.3014 0.2078 0.1951 35.7 96.4
θ2 = 0.2 172.1 (15.4) 32.6 (13.9) 0.2041 0.2169 0.2043 16.9 96.5
θ12 = 0.3 171.7 (17.6) 30.0 (12.0) 0.2981 0.2147 0.2010 32.6 96.5
Method 4 - dichotomized gene scores
θ1 = 0.3 111.9 (12.5) 9.5 (6.4) 0.2933 0.8024 0.3732 10.2 99.1
θ2 = 0.2 112.2 (12.3) 9.4 (6.3) 0.1981 0.8127 0.3926 4.6 98.9
θ12 = 0.3 117.6 (13.5) 8.9 (5.7) 0.3066 0.8619 0.3967 9.6 99.1

Variants explain 1% of the variance in risk factors:
Method 1 – full set of interactions
θ1 = 0.3 2.0 (0.2) 1.4 (0.2) 0.3504 0.0975 0.0971 94.4 92.0
θ2 = 0.2 2.0 (0.2) 1.3 (0.2) 0.2478 0.1003 0.1002 69.6 92.2
θ12 = 0.3 1.6 (0.2) 1.0 (0.1) 0.3037 0.1051 0.1043 82.0 95.3
Method 2 – reduced set of interactions
θ1 = 0.3 3.5 (0.6) 1.4 (0.2) 0.3225 0.1398 0.1395 63.8 95.6
θ2 = 0.2 3.5 (0.5) 1.4 (0.2) 0.2243 0.1459 0.1457 34.3 95.7
θ12 = 0.3 2.6 (0.5) 1.1 (0.1) 0.3036 0.1771 0.1758 41.8 96.1
Method 3 – continuous gene scores
θ1 = 0.3 31.0 (6.6) 2.5 (3.7) 0.2912 47.33 0.7448 3.6 99.9
θ2 = 0.2 30.9 (6.5) 2.3 (3.4) 0.1939 41.15 0.8014 1.1 99.9
θ12 = 0.3 19.9 (5.4) 1.9 (2.4) 0.3030 72.69 1.315 0.6 99.9
Method 4 - dichotomized gene scores
θ1 = 0.3 20.9 (5.3) 1.6 (2.9) 0.2967 65.97 1.108 1.5 99.9
θ2 = 0.2 20.8 (5.2) 1.5 (2.5) 0.1959 54.84 1.208 0.4 100.0
θ12 = 0.3 14.1 (4.4) 1.2 (1.6) 0.3096 105.7 1.991 0.2 100.0

Supplementary Table A2: Simulation study results for interactions between risk factors varying
the amount of variance in the risk factors explained by the genetic variants, with 5 shared
variants and an interaction effect θ12 = 0.3: mean F-statistic (F-stat), mean conditional F-
statistic (CF-stat), median estimate, standard deviation (SD) of estimates, median standard
error (SE), empirical power (%) to reject null at 5% significance, and coverage (%) of 95%
confidence interval.
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Median SD Median SE Power (%) Coverage (%)
Methods 1 & 2 a – full set of interactions

θ1 = 0.3 0.4311 0.0327 0.0320 100.0 -
θ2 = 0.2 0.3370 0.0328 0.0320 100.0 -
θ12 = 0.1 0.1101 0.0721 0.0718 33.7 94.6
θ1 = 0.3 0.6679 0.0408 0.0320 100.0 -
θ2 = 0.2 0.5823 0.0413 0.0320 100.0 -
θ12 = 0.3 0.3080 0.0722 0.0718 98.8 95.2
θ1 = 0.3 0.9044 0.0527 0.0320 100.0 -
θ2 = 0.2 0.8290 0.0528 0.0320 100.0 -
θ12 = 0.5 0.5073 0.0715 0.0718 100.0 95.2

Method 3 – continuous gene scores
θ1 = 0.3 0.4178 0.0348 0.0343 100.0 -
θ2 = 0.2 0.3234 0.0349 0.0343 100.0 -
θ12 = 0.1 0.1010 0.1113 0.1091 15.4 95.5
θ1 = 0.3 0.6539 0.0424 0.0343 100.0 -
θ2 = 0.2 0.5691 0.0431 0.0343 100.0 -
θ12 = 0.3 0.3000 0.1106 0.1091 77.5 95.8
θ1 = 0.3 0.8906 0.0539 0.0343 100.0 -
θ2 = 0.2 0.8165 0.0543 0.0343 100.0 -
θ12 = 0.5 0.4995 0.1107 0.1092 98.7 95.6

Method 4 – dichotomized gene scores
θ1 = 0.3 0.4173 0.0438 0.0435 100.0 -
θ2 = 0.2 0.3236 0.0438 0.0434 100.0 -
θ12 = 0.1 0.1022 0.1786 0.1720 8.0 95.9
θ1 = 0.3 0.6538 0.0496 0.0435 100.0 -
θ2 = 0.2 0.5687 0.0506 0.0435 100.0 -
θ12 = 0.3 0.2972 0.1777 0.1722 41.8 96.0
θ1 = 0.3 0.8913 0.0597 0.0435 100.0 -
θ2 = 0.2 0.8165 0.0603 0.0435 100.0 -
θ12 = 0.5 0.5002 0.1776 0.1718 80.7 96.1

Supplementary Table A3: Simulation study results for interactions between risk factors with
no shared variants after centering the risk factors: median estimate, standard deviation (SD)
of estimates, median standard error (SE), empirical power (%) to reject null at 5% significance,
and empirical coverage (%) of 95% confidence interval. Note that centering changes the
estimands for the main effect terms, not only the estimates – hence coverage is only displayed
for the interaction term.

aAs there are no shared variants, methods 1 and 2 are equivalent.
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Simulation study 2: interactions between interventions

Using the same notation defined in the first simulation study, the risk factor X was generated
for i = 1, 2, . . . , 10 000 participants from the following data generating model:

Xi = 0.3 +

JA
∑

j=1

αAjGAji +

JB
∑

j=1

αBjGBji + αAB

JA×JB
∑

j=1

GABji + Ui + ǫXi .

We assume that the two gene regions are distinct, and the genetic variants GA and GB are
not in linkage disequilibrium. The genotypes were generated independently from binomial
distributions Bin(2,MAFj), where MAFj represents the MAF for the jth genetic variant.
MAFj was drawn from a uniform distribution U(MAFL,MAFU), where the value of MAFL

and MAFU were either taken as 0.4 and 0.5 (common variants), or 0.1 and 0.2 (uncommon
variants). We assumed that the interaction effect αAB was constant across the JA×JB product
terms for simplicity.

The approximate proportion of variance explained in X by GA (σ2

A) and GB (σ2

B) varied
between scenarios. As before, the genetic associationsαA andαB were calculated by rearranging
the formula for the variance of the genetic variants to ensure the amount of variance explained
by each variant was the same:

αAj =

√

σ2

A/JA
2×MAFAj(1−MAFAj)

and

αBj =

√

σ2

B/JB
2×MAFBj(1−MAFBj)

.

The confounders U were drawn from N (0, 0.25), and the error term ǫX was generated from
N (0, 0.65). The outcome Y was generated from:

Yi = θ0 + θ1Xi + Ui + ǫY i ,

where θ1 represents the causal effect of X on Y , and the error term ǫY was generated from a
standard normal distribution N (0, 1). The data was generated 10 000 times under the following
scenarios:

• Scenario 1: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.4, 0.5), σ
2

A = 3% and σ2

B = 3%

• Scenario 2: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.4, 0.5), σ
2

A = 5% and σ2

B = 5%

• Scenario 3: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.4, 0.5), σ
2

A = 3% and σ2

B = 7%

• Scenario 4: MAFA ∼ U(0.1, 0.2), MAFB ∼ U(0.1, 0.2), σ
2

A = 5% and σ2

B = 5%

• Scenario 5: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.1, 0.2), σ
2

A = 5% and σ2

B = 5%

• Scenario 6: MAFA ∼ U(0.4, 0.5), MAFB ∼ U(0.1, 0.2), σ
2

A = 3% and σ2

B = 7%

with JA = JB = 3, θ0 = 0.2, θ1 = 0.1, and αAB = 0.1, 0.3 and 0.5. The above scenarios were
selected to consider the impact of varying the MAF and the amount of variance in the risk
factor explained by the genetic variants had on the performance of the method.

For each scenario, optimal weighted gene scores GSA and GSB were generated for each
gene region, where the external weights were produced from an independent set of 10 000
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individuals from the same data-generating model used for the main set of participants. The
two gene scores were dichotomized at their median values to create two binary variables. The
outcome was then regressed against: a) the two continuous gene scores and their product; and
b) the dichotomized gene scores and their product. The following measurements were recorded
for the estimate of the interaction effect between the gene scores on the outcome: median
estimate; standard deviation of estimates; median standard error; and empirical power at the
5% significance level.
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Applied example: the effects of BMI and alcohol on systolic blood

pressure

UK Biobank is a prospective, population-based cohort consisting of approximately 500,000
participants aged between 40 and 69 years at baseline living in the UK. Extensive baseline
characteristics were collected at recruitment, including lifestyle factors, sociodemographic information,
and physical attributes. For the analysis, we considered 367,643 unrelated participants of
European descent who passed data quality control measures and had genetic data [3].

Body mass index (BMI, kg/m2) and systolic blood pressure (SBP, mmHg) were measured
at baseline when participants attended the assessment centre. Information on baseline alcohol
consumption was obtained from a touchscreen questionnaire which included questions on
alcohol drinking status, frequency of alcohol consumption, and beverage type. The responses to
the amount of alcohol drank and beverage type were used to create a continuous variable that
represented alcohol consumption in units per day. To adjust for blood pressure medication,
15 mmHg was added to SBP for individuals who reported to be on blood pressure lowering
medication [4]. Individuals were dropped from the analysis if they had missing data on BMI,
SBP, alcohol consumption, or relevant genetic variants. The final sample size was 291,781.

We used the 77 genome-wide significant variants from a meta-analysis by the Genetic
Investigation of ANthropometric Traits (GIANT) consortium in participants of European
ancestry to act as IVs for BMI [5]. For alcohol, we identified 10 genetic variants in the ADH1B
gene region that have been shown to be associated with alcohol consumption [6]. The genetic
variants used as IVs for BMI and alcohol consumption were cross-referenced to check for any
overlap. BMI was regressed separately against each of the 10 alcohol variants, and alcohol
consumption was regressed against each of the 77 BMI variants. All models were adjusted for
gender, age, and the first ten genomic principal components.

Internally-weighted gene scores were created for BMI based on the 77 genetic variants
(GSBMI), and for alcohol consumption based on the 10 genetic variants (GSAC), and these
gene scores were dichotomized at their median values to create two binary variables. A separate
binary variable was generated using the rs1229984 variant only, where participants were either
considered to have: a) a low alcohol consumption if they were homozygous or heterozygous for
the alcohol-decreasing allele; or b) a high alcohol consumption if they were homozygous for the
alcohol-increasing allele (as in the paper by Carter et al. [7]). Using these binary variables,
the following groups of participants were created:

• Low BMI, low alcohol consumption: GSBMI ≤ med(GSBMI) and GSAC ≤ med(GSAC)
or was homozygous or heterozygous for the alcohol decreasing allele for the rs1229984
variant,

• High BMI, low alcohol consumption: GSBMI > med(GSBMI) and GSAC ≤ med(GSAC)
or was homozygous or heterozygous for the alcohol decreasing allele for the rs1229984
variant,

• Low BMI, high alcohol consumption: GSBMI ≤ med(GSBMI) and GSAC > med(GSAC)
or was homozygous for the alcohol increasing allele for the rs1229984 variant, and

• High BMI, high alcohol consumption: GSBMI ≤ med(GSBMI) and GSAC > med(GSAC)
or was homozygous for the alcohol increasing allele for the rs1229984 variant.

The above criteria created four groups of participants based on the dichotomized gene scores
for BMI and alcohol consumption, and another four groups based on the dichotomized gene
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score for BMI and the rs1229984 variant. The numbers of participants, and the mean and
standard deviation of BMI, alcohol consumption, and SBP were recorded for each group.

Two-stage least squares regression models of SBP were fitted to BMI, alcohol consumption,
and the product of BMI and alcohol consumption. The following sets of IVs were considered:

• Method 1: the 77 variants for BMI and 10 variants for alcohol consumption, plus 770
cross-terms between the two sets of variants.

• Method 2: the continuous gene scores GSBMI and GSAC , plus their product GSBMI ×

GSAC .

• Method 3: the dichotomized gene scores of GSBMI and GSAC , plus their product.

The models were refitted excluding all of the variants for alcohol consumption apart from the
lead rs1229984 variant. All models were adjusted for gender, age, and the first ten genomic
principal components. For each model, the estimate and standard error of the interaction term
was recorded with its p-value. In total, six two-stage least squares regression models were fitted
to the dataset, and all of the models were adjusted for age, gender and the first 10 genomic
principal components. The F-statistic and the Sanderson–Windmeijer conditional F-statistic
were estimated for each set of IVs with respect to BMI, alcohol consumption, and the product
of BMI and alcohol consumption (Supplementary Table A4).
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Method 1 Method 2 Method 3
F-stat CF-stat F-stat CF-stat F-stat CF-stat

10 variants for alcohol:
BMI 6.8 1.3 1662.8 21.1 1054.1 7.0
Alcohol consumption 2.4 1.1 268.0 20.9 55.6 6.9
Product term 2.4 1.1 298.6 21.0 73.2 6.9

rs1229984 for alcohol:
BMI 32.8 1.3 1654.9 17.2 1066.8 13.5
Alcohol consumption 7.7 1.2 245.1 17.1 241.6 13.4
Product term 7.9 1.2 267.7 17.1 266.5 13.4

Supplementary Table A4: F-statistics (F-stat) and conditional F-statistics (CF-stat) for
applied example.
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