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1 Introduction

In this supplement we provide a detailed description of the data, further

develop the basic transmission model, provide details of the estimation pro-

cedures, present a number of tables and figures mentioned in the main text,

and give extended detailed results for the default model scenario as well as

a variant scenario in which the expected duration of the infectious period is

fixed at 1 week.

2 Data

Transmission models are fitted to three data sets. The first data set con-

tains weekly age-stratified hospitalisations with confirmed RSV for the years

2013-2017. Data have been requested from the Dutch Hospitalisation Data

organisation (DHD) using RSV specific ICD10 codes B97.4 (respiratory syn-

cytial virus), J12.1 (respiratory syncytial virus pneumonia), J20.5 (acute

bronchitis due to respiratory syncytial virus), and J21.0 (acute bronchiolitis

due to respiratory syncytial virus). Coverage of the hospitalisation data is

near complete in the Netherlands for the years 2013-2017 (97.3% in 2013,

98.8% in 2014, and > 99% from 2015 onwards). We exclude hospitalisation

data prior to 2013 because coverage had been uncertain and much lower in

2012 and earlier years. Starting from individual-level data, we have extracted

for each unique person per RSV season the first episode of RSV in the hos-

pital using the above codes, ensuring that time of reporting is closest to the

moment of infection while each infection is counted only once. To cover the

RSV epidemic we take a broad range for the RSV seasons, spanning 35 weeks,

starting from ISO week 40 in a given year, and extending into week 22 or

21 of the next year [1]. Including both primary and secondary diagnoses,

the total number of hospitalisations is 12,038, of which the majority is in in-

fants ([0, 1) year, 8,162 cases) and young children ([1, 5) years, 1,229 cases).

The total number of hospitalisations with a specific RSV code (’confirmed

RSV’) is 1,960 in the 2012-2013 season (excluding 12 weeks in 2012), 2,538 in

the 2013-2014 season, 2,432 in the 2014-2015 season, 2,466 in the 2015-2016
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season, and 2,642 in the 2016-2017 season.

Second, general practitioner (GP) consultations for acute respiratory infec-

tion (ARIs) have been obtained from the Nivel Primary Care Database. Here

the data are based on the weekly number of reported ARI as defined by Nivel.

For each of the age classes and weeks we have at our disposal the number

of cases and size of the catchment populations (covering approximately 7%

of the Dutch population). The total number of incident cases included is

877,752 from a catchment population containing 300,875,954 person-weeks.

A sizeable fraction of those cases (171,228) is in infants and young children

([0, 5) years), and may have high likelihood being caused by RSV infection.

Third, patient age-specific virological data are available from RIVM/Nivel

sentinel surveillance of influenza-like illness (ILI) and ARI [1]. These data

are obtained from a small subset of approximately 40 GP practices from

the Nivel Primary Care Database representing 0.8% of the population in the

Netherlands. Each participating GP has been asked to send in at least two

combined nose and throat swab specimens per week, of ILI (preferred) or ARI

if no ILI are encountered halfway through the week. Henceforth, we will refer

to these data as ARI specimens, even though the data are enriched with ILI.

Details are given in [1]. Briefly, all specimens have been tested for influenza

virus, RSV, rhinovirus and enterovirus using real-time reverse transcription

polymerase chain reaction (RT-PCR). The total number of specimens in the

five RSV seasons is 4,514, of which 378 are RSV positive. Almost half of the

positive samples (159) are from infants and young children ([0− 5) years).

In addition, age-specific contact rates have been obtained from analysis of a

contact survey carried out in the Netherlands in 2006-2007 [2], while demo-

graphic composition of the Netherlands in 2014 has been used for calculation

of incidence of hospitalisations. We consider the population aged up to 100

years. All data are available in our github repository.
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3 Transmission model

At the core of the analyses are age-structured SEIR type transmission models

describing transmission of RSV in the population. In the models, individ-

uals are classified as susceptible (S), latently infected (i.e. infected but not

yet immune)(E), infected and infectious (I), or removed (i.e. immune)(R).

Throughout, we consider seven age classes, viz. [0, 1) years (abbreviated as

0 yr), [1, 5) years (1-4 yr), [5, 10) years (5-9 yr), [10, 20) years (10-19 yr),

[20, 45) years (20-44 yr), [45, 65) years (45-64 yr), and [65, 100) years (65+

yr). These age groups correspond to a natural grouping of individuals by

similarity of contact patterns [2] while taking into account that only limited

case data are available for non-elderly adults.

For simplicity, we focus on a model without latently infected compartment

as inclusion of a latent period of 2-3 days does not noticeably affect the

results (not shown). Let x(t), y(t), and z(t) contain the age-specific relative

frequencies of S, I, and R in different age groups, so that z(t) = 1−x(t)−y(t).

Then the model is specified by ordinary differential equations given by (using

dot notation)

ẋ = −β diag(x) C y

ẏ = β diag(x) C y − 1
D

y ,
(1)

where β, D, and C are the transmission rate parameter, infectious period,

and contact matrix. As is common practice, the contact matrix will be hard-

wired into the model using Dutch person-to-person contact rates and the

demographic composition of the Netherlands in 2014 [2].

If time is measured in units of the infectious period and the contact matrix is

re-scaled such that its dominant eigenvalue equals 1 then the model equations

can be written as
ẋ = −R0 diag(x) C y

ẏ = R0 diag(x) C y − y ,

where R0 = βD is the basic reproduction number representing the expected

number of secondary infections per infection in the early stage of an epidemic

in an entirely susceptible population. Notice that the above implies that D

sets the time-scale, and that the total number of infections over the course
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of an epidemic (the final size) depends on R0 only.

Now we show that the above model has a broader use, and can incorporate

mild and asymptomatic infections. Consider the situation in in which a

proportion m of infections is mild or even asymptomatic (Im) and have a

reduction in infectiousness r. In this case, the model equations are given by

ẋ = −R0 diag(x) C (y + r ym)

ẏ = R0 (1−m) diag(x) C (y + r ym)− y

ẏm = R0 m diag(x) C (y + r ym)− ym ,

(2)

where ym contains the relative frequencies of mildly infected individuals. If

r = 0, mild infections are not infectious. We can write the basic model in

terms of x∗ = (1−m)x and y, and interpret x∗ as the fraction of susceptible

individuals that are available for symptomatic infection. Alternatively, if

0 < r ≤ 1, we re-parameterize by x∗ = (1 −m + rm)x and y∗ = y + rym,

and again use the basic model without asymptomatic infection.

If mild infections have a reduced probability of reporting pm < p, then the

rate of reporting is

− (p(1−m) + pmm) ẋ .

Now if furthermore the reporting probability is proportional to infectiousness

(pm = r p, 0 ≤ r ≤ 1), then the reporting rate is

− (p(1−m) + p r m) ẋ = −p (1−m+ r m) ẋ = −p ẋ∗ .

Hence, the basic model describes a scenario with variable severity, infec-

tiousness, and reporting if x∗ is interpreted as susceptibility weighted by the

probability of mild infection and relative infectiousness/reporting probability

of mild infection. Notice that this argument extends to arbitrary number of

groups, and that q is the health-care seeking probability in a reference class.

Often, 1−x(0) = 1−x0 is interpreted as the fraction that is immune at the

onset of the epidemic. Next to the basic reproduction number, the infectious

period, and reporting probabilities this will be a central quantity that we aim

to estimate. Now, if we let x∗ = diag(x0)
−1x and y∗ = diag(x0)

−1y, then

the model Eq (1) can be written as

ẋ∗ = −R0 diag(x∗) C diag(x0) y∗

ẏ∗ = R0 diag(x∗) C diag(x0) y∗ − y∗ ,
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and x0 can be interpreted as the fraction that is not fully immune, or as a

reduction in infectiousness (diag(x0) y∗).

Altogether, the above shows that under certain assumptions and with proper

interpretation of the variables, the seemingly simple model Eq (1) has broad

applicability, including situations with mild infection, variable infectiousness,

and variable probability of reporting for infections with different severity [3].

The above reasoning also implies that the additional parameters of the more

complex model (p and r) are not identifiable in the absence of information on

the fraction of infections that are mild or asymptomatic. In the application

to RSV we will further add age-specific differences in reporting.

Immunity propagation and demographic tran-

sitions

Next, we include demographic transitions and immunity propagation into the

model [4, 5, 6, 7]. To this end, we separate the epidemic occurring in winter

from demographic turnover and immunity losses occurring throughout the

year. Starting from initial conditions in a given year describing the fraction

of the population that is immune in different age classes, the epidemic is

modelled by the ODEs given in Eq (1). At the end of the epidemic, suscepti-

bility in the population will have decreased and immunity will have increased.

Subsequently, losses of immunity and demographic transitions between sea-

sons are modelled with a discrete mapping, yielding the susceptibility (initial

conditions) for the next epidemic. To allow for year-to-year variations in sus-

ceptibility at the start of the epidemic (e.g., owing to variation in the rate

of viral evolution), the actual age-specific susceptibility x0 is modelled as

x0 ∼ Beta (x̃0ρ, (1− x̃0)ρ), where x̃0 is the calculated susceptibility, and ρ

the age-specific rate parameters. To prevent over-complicating the analyses,

we further assume a stable uniform population distribution, so that in an

age class of width w years a fraction 1/w is moved from that class to the

next between epidemic seasons. With regard to immunity propagation, we

assume that in each age class a a fraction fa of persons with immunity retain

7



their immunity, and the remainder become susceptible at the start of the

next RSV season. Hence, the mean duration of immunity in age class a (in

the absence of demographic transitions) is given by 1
1−fa

.

Preliminary analyses showed that main parameters, viz. reproduction num-

ber, infectious period and reporting rates are strongly correlated (Supple-

mentary Information). Therefore, we include as a sensitivity analysis an

additional scenario in which the infectious period is not estimated but where

the mean duration is fixed at 1 week. We compare the results of the two sce-

narios using the WBIC information criterion [8]), and compare the parameter

estimates and outcomes in terms of biological plausibility.

4 Observation model

Next we specify how observations come about. In the transmission model,

each incident infection in age group a has an age-specific probability pGP
a to

be reported as an ARI case at the GP, and an (independent) age-specific

probability phospa to be reported as a confirmed RSV case in the hospital.

Not all ARIs at the GP are caused by RSV, however, and we add a function

bARI
a (t) for all other causes of ARI at the GP. These other sources include

influenza, rhinovirus, enterovirus, and others, and can be highly variable

between years, within a a year, and between age groups. To accommodate

this variability we fit a flexible cubic spline to each epidemic season and

age group. To keep the computational burden within reasonable bounds

we assume that each spline is characterized by three knots (and hence 5 B-

splines), yielding 5 (seasons) * 7 (age groups) * 5 (B-splines) = 175 spline

weights to be estimated. We further assume that spline weights have gamma

prior distributions with means given by the mean incidence of ARI in a given

RSV epidemic and age group (giving a distinct empirical Bayesian flavor to

the analyses), and with a single rate parameter θ that is estimated. In this

manner, the analysis conservatively attributes ARI to RSV. Hence, the prior

distribution for i-th weight in epidemic season y and age group a, by,a,i is

given by by,a,i ∼ Gamma
(
ρARIy,a, ρ

)
, where ARIy,a is the mean incidence

in year y and age group a, and ρ is the rate parameter.
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Further, we assume that the number of RSV hospitalisations in a given week

and age group is binomially distributed with totals given by the size of the

age group and parameter given by the (modelled) incidence of infection mul-

tiplied by probability of hospitalisation. Likewise, the number of ARI case is

binomially distributed with totals given by the size of the relevant catchment

population and parameter given by sum of the ARI incidence caused by RSV

and other sources. Figure S1 gives an overview of the model structure.

5 Parameter estimation

Parameters are estimated in a Bayesian framework using Hamlitonian Monte

Carlo as implemented in Stan [9]. Main parameters are the basic reproduc-

tion number (R0), the infectious period (D), the reporting probabilities for

hospitalisation and GP consultation in different age groups (phospa and pGP
a ),

the age-specific probabilities that immunity is retained from one epidemic to

the next (fa), and the spline weights (by,a,i). Since data is scarce in non-aged

adults, we have lumped reporting probabilities in the age groups 5-9 yr, 10-

19 yr, 20-44 yr, and 45-64 yr. In addition, we estimate the rate parameter

of the gamma prior distribution for the B-splines generating the background

ARI.

To prevent unrealistic parameter excursions with GP reporting rates higher

in age groups other than infants, we take for those other age groups pGP
a =

gGP
a · pGP

[0,1), where 0 ≤ gGP
a ≤ 1 (a ∈ {[1, 5), [5, 65), [65, 100)}) is the reduction

in the probability of reporting in age group a as compared to infants. For con-

sistency we have modelled both hospital and GP reporting in this way. Prior

distributions for the reduction in GP consultations are gGP
a ∼ Beta (1, 9),

to incorporate our prior belief that the probability of reporting should be

substantially lower in children and adults than in infants.

Estimates of the infectious period of RSV are scarce and variable. The Cen-

ters for Disease Control and Prevention reports that the infectious period

varies from 3 to 8 days, while the European Centre for Disease Prevention

and Control reports a wide range from a couple of days up to 27 days [10].
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A recent study with dense sampling of Kenyan persons suggest an infectious

period of approximately 1.5 weeks [11]. Here, we take a Gamma prior distri-

bution with most mass between 0.5 and 1 week: D ∼ Gamma (30, 40) (shape

and rate, mean 0.75 wk). Further, R0 ∼ U (1, 50), D ∼ U (0.28, 4) weeks

(Supplementary Information for alternative scenario), and inocula seeding

the epidemics are given U (e−5, e−3) prior distributions. Rate parameters

of beta distributions are equipped with Pareto (2.0, 1.5) prior distributions

[12], and all other parameters have uniform prior distributions their domains.

Details are given in the Supplementary Information.

6 Tables and figures

Tables S1-S2 and Figures S1-S3 below give the results presented and dis-

cussed in the main text.

Figure S1. Overview of model structure and data. The boxes on top show

the transmission model (top left-hand) and other sources of ARI reported at

the GP (top right-hand). The boxes at the bottom show the data sources.

Dotted arrows depict relations between model and data.
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Parameter 2.5% 50% 97.5%

R0 20.1 22.9 25.7

D (wk) 2.2 2.5 2.8

phosp0 0.013 0.014 0.015

phosp1−4 0.0013 0.0014 0.0017

phosp5−64 0.00058 0.00070 0.00084

phosp65+ 0.0012 0.0014 0.0017

pGP
0 0.21 0.23 0.25

pGP
1−4 0.17 0.19 0.21

pGP
5−64 0.14 0.17 0.20

pGP
65+ 0.12 0.15 0.18

f0 0.024 0.47 0.97

f1−4 0.10 0.86 0.99

f5−9 0.67 0.94 1.0

f10−19 0.76 0.94 1.0

f20−44 0.78 0.95 1.0

f45−64 0.70 0.93 0.98

f65+ 0.64 0.85 0.96

Table S1. Parameter estimates of the default scenario. Estimates are repre-

sented by posterior medians and 2.5%-97.5% posterior quantiles. R0 and D

are the basic reproduction number and infectious period, phospa and pGP
a are

the probabilities of hospitalisation and GP consultation in age group a, and

fa is the fraction that retains its immunity from one epidemic to the next.
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Age group Infection attack rate Vaccination impact

No intervention

0 yr 0.84 (0.73, 0.94) NA

1-4 yr 0.24 (0.16, 0.42) NA

5-9 yr 0.085 (0.024, 0.23) NA

65+ yr 0.13 (0.040, 0.34) NA

Maternal vaccination

0 yr 0.62 (0.52, 0.70) 0.27 (0.25, 0.30)

1-4 yr 0.27 (0.19, 0.44) -0.10 (-0.31, -0.0029)

5-9 yr 0.088 (0.022, 0.24) -0.0022 (-0.038, -0.032)

65+ yr 0.13 (0.033, 0.34) 0.00026 (-0.013, 0.010)

Pediatric vaccination

0 yr 0.59 (0.47, 0.69) 0.30 (0.27, 0.36)

1-4 yr 0.19 (0.12, 0.31) 0.24 (0.20, 0.27)

5-9 yr 0.078 (0.019, 0.23) 0.078 (-0.0020, 0.21)

65+yr 0.14 (0.031, 0.36) 0.0025 (-0.011, 0.013)

Table S2. Impact of vaccination. Shown are the infection attack rates (AR)

in different age groups (95%CrI between brackets) in a scenario without

intervention and with maternal or pediatric vaccination. Results are based

on 1,000 samples from the posterior distribution 20 years after initiation of

the vaccination program. Infection attack rates are shown for the main age

groups with high RSV circulation. Within each age group vaccination impact

is calculated as 1 minus the ratio of the infection attack rates in the scenario

with and without intervention. NA: not applicable.
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Figure S2. Weekly age-stratified number of hospitalisations with confirmed

RSV infection in the Netherlands (dots) with model fit (lines) in infants

(under 1 year), young children (1-5 years), and older adults (over 65 years).

Number of hospitalisations are very low in all other age groups (see below).

Results are shown for the 2012/2013 up to and including the 2016/2017

epidemics (left to right). Bold lines correspond to posterior medians, and

shaded areas represent the 95% credible ranges of the posterior distribution.
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Figure S3. Weekly age-stratified fraction of virological samples that are pos-

itive for RSV (dots) with model fit of the probability that an ARI presenting

at the GP is caused by RSV (lines). Bold lines correspond to posterior

medians, and shaded areas represent 95% credible ranges of the posterior

distribution. Size of the dots indicate the sample size.

7 Extended results

Here we provide additional results for the default scenario presented in the

main text and the variant scenario with fixed infectious period, including

trace plots, plots of pairwise correlations for key parameters, and figures of

data and model fits for hospitalisations and GP consultations for all age

groups. We also provide tables with more complete results of parameters

estimates. Finally, for both scenarios we also report (an estimate of) the

widely applicable Bayesian information criterion (WBIC) to be able to select

the more likely data generating process [8].

The model has been coded in Stan [9], and is available on reasonable request.
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In both scenarios, we run 10 chains of 2,000 iterations in parallel. The

first 1,000 iterations (warmup) are discarded. We then sample every tenth

iteration, yielding a total of 1,000 samples for both scenarios. Convergence

of chains is assessed visually by inspection of trace plots and pair plots, and

by assessment of the empirical variance within and between chains (Rhat)

[13]. To prevent the occurrence of divergent transitions we set adapt delta

= 0.97 and take max treedepth = 15 for more efficient sampling.

7.1 Default scenario

Table S3 shows estimates of transmission parameters and reporting rates

with convergence diagnostics. For all parameters Rhat is close to 1, and the

effective sample size is usually close to the actual sample size, suggesting ad-

equate convergence. This is corroborated by Figures S4 and S5, which show

trace plots of main parameters, and pair plots of the basic reproduction num-

ber, infectious period, and reporting probabilities for hospitalisations and GP

consultations in infants. Interestingly, the pair plots show a positive correla-

tion between the basic reproduction number and infectious period, and strong

negative correlations between the basic reproduction number/infectious pe-

riod and reporting probabilities, especially with regard to hospitalisations.

Figures S6 and S7 give results of model fits to hospitalisations and GP con-

sultations for all age classes (cf. Figure 1 and Figures S2 and S3). Figure S6

shows that RSV coded hospitalisations occur very infrequently (usually less

than 10 per week) in persons 5-44 years, even at the peak of RSV epidemics.

In persons 45-65 years the number of cases is somewhat higher, although it

should be noted that this age group is relatively large in the Netherlands.

Figure S7 shows the model fit to GP consultations for ARI in the Nether-

lands. In all epidemics and age groups, GP consultations for ARI peak in

winter, but in most age groups only a small fraction is ascribed to RSV, due

to the very low fraction of ARI samples testing positive for RSV.

Finally, Table S4 shows, for each of the epidemics, estimates of the infection

attack rates in different age groups. Infection attack rates are low in most

age groups, but invariably very high in infants and, to a lesser extent, also
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in 1-4 year-old children. In the 2015-2016 and 2016-2017 epidemics infection

attack rates also seem increased in older adults (65 years and older) and to

a lesser extent also in persons 45-65 years.

Parameter Rhat n eff mean sd 2.5% 50% 97.5%

R0 1.00 856 22.9 1.4 20.2 22.9 25.7

D (wk) 1.00 928 2.5 0.15 2.2 2.5 2.8

phosp0 1.00 895 0.014 0.00049 0.013 0.014 0.015

phosp1−4 1.00 938 0.0015 0.000099 0.0013 0.0014 0.0017

phosp5−64 1.00 1046 0.00070 0.000067 0.00058 0.00070 0.00084

phosp65+ 1.00 935 0.0014 0.00014 0.0012 0.0014 0.0017

pGP
0 1.00 943 0.23 0.010 0.21 0.23 0.25

pGP
1−4 1.00 920 0.19 0.011 0.17 0.19 0.21

pGP
5−64 0.99 990 0.17 0.015 0.14 0.17 0.20

pGP
65+ 1.00 1047 0.15 0.016 0.12 0.15 0.18

f0 1.00 1118 0.49 0.28 0.024 0.47 0.97

f1−4 0.99 1088 0.84 0.10 0.60 0.86 0.99

f5−9 1.00 956 0.92 0.067 0.76 0.94 1.0

f10−19 1.01 941 0.92 0.065 0.76 0.94 1.0

f20−44 1.00 796 0.93 0.062 0.78 0.95 1.0

f45−64 1.00 1079 0.90 0.075 0.70 0.93 0.98

f65+ 1.00 988 0.84 0.083 0.64 0.85 0.96

Table S3. Parameter estimates for the default scenario (cf. main text). For

all parameters the R-hat convergence diagnostic is close to 1, and effective

sample sizes are approximately 1, 000. Estimates are represented by posterior

medians and 2.5%-97.5% posterior quantiles. R0 and D are the basic repro-

duction number and infectious period, phospa and pGP
a are the probabilities of

hospitalisation and GP consultation in age group a, and fa is the fraction

that retains its immunity from one epidemic to the next.
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7.2 Fixed infectious period

In the default scenario estimates of the infectious period are in excess of

two weeks, which is on the high end of what is considered reasonable. High

values for estimates of the infectious period tend to come with high estimates

for the reproduction number to get the timing of the epidemic right (see

the pair plots of the default scenario), and consequently with relatively low

reporting rates for GP consultations and hospitalisations. To investigate

how the results would be affected if the infectious period would be lower, we

analyzed a scenario in which the infectious period is fixed at 1 week.

Table S5 shows estimates of transmission parameters and reporting rates with

convergence diagnostics. Again, for all parameters Rhat is close to 1, and the

effective sample size is close to the actual sample size, suggesting adequate

convergence. Figures S8 and S9 show trace plots of the main parameters and

pair plots for selected parameters, while Figures S10 and S11 show the model

fits to hospitalisations and GP consultations for all age classes. Superficially,

model fits are close to the default model scenario.

Interestingly, even though model fits of hospitalisations and GP consultations

are similar in the default scenario and variant scenario, parameter estimates

show substantial differences. Specifically, in the scenario with fixed infectious

period, estimates of the basic reproduction number are much lower and esti-

mates of the reporting probabilities are much higher (Table S5). In addition,

infection attack rates in the scenario with fixed infectious period are much

lower in infants and older adults (65 years and older) than in the default sce-

nario, while infection attack rates rates are much higher in children 1-4 years.

Similar results are obtained when the infectious period is fixed at 1 week,

and in addition informative prior distributions are used for the (age-specific)

fractions of the population that retain their immunity (not shown).

Comparison of both scenarios with WBIC indicates that the default model

is favoured over the variant models on statistical grounds (WBIC = 32, 177

versus WBIC = 32, 286 in the scenario without informative priors). The

variant models also yield unrealistically low infection attack rates in infants

(well under 40%), thus suggesting that the default model should also be
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favoured on biological grounds.

Figure S4. Trace plots of the main parameters for the default scenario. Shown

are trace plots of the basic reproduction number, the age-specific probabili-

ties of hospitalisation and GP consultation, and age-specific fractions of the

population that retain their immunity from one epidemic to the next.
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Figure S5. Pair plots of selected parameters for the default scenario.
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Parameter Rhat n eff mean sd 2.5% 50% 97.5%

AR 2012[1] 1.00 892 0.73 0.02 0.69 0.73 0.78

AR 2012[2] 1.01 931 0.30 0.02 0.27 0.30 0.34

AR 2012[3] 1.00 1060 0.01 0.00 0.00 0.01 0.01

AR 2012[4] 1.00 906 0.01 0.00 0.00 0.01 0.01

AR 2012[5] 1.00 1080 0.01 0.00 0.01 0.01 0.01

AR 2012[6] 1.00 1034 0.03 0.00 0.02 0.03 0.04

AR 2012[7] 1.01 908 0.03 0.00 0.02 0.03 0.04

AR 2013[1] 1.00 883 0.69 0.02 0.64 0.69 0.73

AR 2013[2] 1.00 993 0.25 0.02 0.22 0.25 0.28

AR 2013[3] 1.00 981 0.01 0.00 0.01 0.01 0.02

AR 2013[4] 1.00 925 0.00 0.00 0.00 0.00 0.01

AR 2013[5] 1.01 964 0.01 0.00 0.00 0.01 0.01

AR 2013[6] 1.01 897 0.03 0.00 0.02 0.03 0.03

AR 2013[7] 1.00 867 0.03 0.00 0.03 0.03 0.04

AR 2014[1] 1.00 885 0.67 0.03 0.62 0.67 0.73

AR 2014[2] 1.00 984 0.19 0.01 0.16 0.19 0.22

AR 2014[3] 1.00 1173 0.03 0.01 0.02 0.03 0.04

AR 2014[4] 1.01 1072 0.00 0.00 0.00 0.00 0.01

AR 2014[5] 1.00 880 0.01 0.00 0.01 0.01 0.01

AR 2014[6] 1.01 984 0.05 0.01 0.04 0.05 0.06

AR 2014[7] 1.00 899 0.06 0.01 0.05 0.06 0.08

AR 2015[1] 1.00 903 0.70 0.02 0.66 0.70 0.74

AR 2015[2] 1.00 967 0.21 0.01 0.18 0.21 0.24

AR 2015[3] 1.00 1065 0.01 0.00 0.01 0.01 0.02

AR 2015[4] 1.00 944 0.01 0.00 0.00 0.01 0.01

AR 2015[5] 1.00 989 0.01 0.00 0.01 0.01 0.02

AR 2015[6] 1.00 1074 0.05 0.01 0.04 0.05 0.06

AR 2015[7] 1.00 966 0.11 0.01 0.09 0.11 0.13

AR 2016[1] 1.00 902 0.79 0.02 0.75 0.79 0.84

AR 2016[2] 1.00 1005 0.32 0.02 0.29 0.32 0.36

AR 2016[3] 0.99 1137 0.01 0.00 0.01 0.01 0.02

AR 2016[4] 1.00 1121 0.02 0.00 0.01 0.02 0.03

AR 2016[5] 1.00 1032 0.01 0.00 0.01 0.01 0.02

AR 2016[6] 1.01 1024 0.07 0.01 0.06 0.07 0.08

AR 2016[7] 1.00 985 0.18 0.02 0.15 0.18 0.21

Table S4. Estimates of the infection attack rates for the default scenario in

different years and age groups. Age groups (indexed by square brackets) are

as in the main text.
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Parameter Rhat n eff mean sd 2.5% 50% 97.5%

R0 1.00 872 5.7 0.12 5.5 5.7 6.0

phosp0 1.00 702 0.036 0.00097 0.034 0.036 0.038

phosp1−4 1.00 944 0.00076 0.00003 0.00071 0.00076 0.00081

phosp5−64 1.01 506 0.00073 0.00022 0.00048 0.00066 0.00133

phosp65+ 1.01 659 0.0014 0.00026 0.00092 0.0014 0.0019

pGP
0 1.00 929 0.43 0.031 0.37 0.43 0.50

pGP
1−4 1.00 880 0.12 0.0069 0.11 0.12 0.14

pGP
5−64 1.01 534 0.16 0.046 0.10 0.15 0.28

pGP
65+ 1.00 720 0.15 0.026 0.099 0.14 0.20

f0 1.00 1017 0.48 0.29 0.023 0.48 0.97

f1−4 1.00 1082 0.29 0.19 0.018 0.26 0.75

f5−9 1.00 1022 0.94 0.058 0.78 0.95 0.99

f10−19 1.00 925 0.91 0.078 0.72 0.93 1.0

f20−44 1.00 962 0.92 0.070 0.75 0.95 1.0

f45−64 1.00 1050 0.87 0.095 0.63 0.90 0.98

f65+ 1.00 931 0.70 0.15 0.38 0.72 0.95

Table S5. Parameter estimates for the variant scenario with infectious pe-

riod of fixed expected duration. For all parameters the R-hat convergence

diagnostic is close to 1, and effective sample sizes are approximately 1, 000.

Estimates are represented by posterior medians and 2.5%-97.5% posterior

quantiles. R0 is the basic reproduction number, phospa and pGP
a are the prob-

abilities of hospitalisation and GP consultation in age group a, and fa is the

fraction that retains its immunity from one epidemic to the next.
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Parameter Rhat n eff mean sd 2.5% 50% 97.5%

AR 2012[1] 1.00 635 0.29 0.01 0.27 0.29 0.32

AR 2012[2] 1.00 957 0.52 0.01 0.49 0.52 0.54

AR 2012[3] 1.01 627 0.01 0.00 0.00 0.01 0.01

AR 2012[4] 1.00 894 0.01 0.00 0.00 0.01 0.01

AR 2012[5] 1.00 610 0.02 0.01 0.01 0.02 0.03

AR 2012[6] 1.01 570 0.04 0.01 0.02 0.04 0.06

AR 2012[7] 1.01 559 0.04 0.01 0.02 0.04 0.06

AR 2013[1] 1.00 676 0.27 0.01 0.26 0.27 0.29

AR 2013[2] 1.00 769 0.49 0.01 0.46 0.49 0.51

AR 2013[3] 1.00 794 0.02 0.01 0.01 0.02 0.03

AR 2013[4] 1.00 878 0.00 0.00 0.00 0.00 0.01

AR 2013[5] 1.00 704 0.01 0.00 0.00 0.01 0.01

AR 2013[6] 1.01 595 0.03 0.01 0.01 0.03 0.05

AR 2013[7] 1.00 662 0.04 0.01 0.02 0.04 0.06

AR 2014[1] 1.01 704 0.27 0.01 0.25 0.27 0.28

AR 2014[2] 1.00 904 0.44 0.01 0.42 0.44 0.46

AR 2014[3] 1.00 899 0.03 0.01 0.01 0.03 0.05

AR 2014[4] 1.00 950 0.00 0.00 0.00 0.00 0.01

AR 2014[5] 1.00 628 0.01 0.00 0.01 0.01 0.02

AR 2014[6] 1.01 597 0.05 0.01 0.02 0.05 0.07

AR 2014[7] 1.01 642 0.07 0.01 0.04 0.06 0.09

AR 2015[1] 1.00 677 0.27 0.01 0.25 0.27 0.28

AR 2015[2] 0.99 982 0.42 0.01 0.40 0.42 0.44

AR 2015[3] 1.00 790 0.01 0.00 0.01 0.01 0.02

AR 2015[4] 1.00 781 0.01 0.00 0.00 0.01 0.01

AR 2015[5] 1.01 645 0.01 0.00 0.01 0.01 0.02

AR 2015[6] 1.01 563 0.05 0.01 0.03 0.06 0.08

AR 2015[7] 1.01 613 0.11 0.02 0.08 0.11 0.16

AR 2016[1] 1.00 817 0.33 0.01 0.32 0.33 0.34

AR 2016[2] 1.00 939 0.57 0.01 0.54 0.57 0.58

AR 2016[3] 1.00 797 0.01 0.01 0.01 0.01 0.03

AR 2016[4] 1.00 725 0.02 0.00 0.01 0.02 0.03

AR 2016[5] 1.01 604 0.01 0.00 0.01 0.01 0.02

AR 2016[6] 1.01 586 0.07 0.01 0.04 0.07 0.09

AR 2016[7] 1.01 616 0.19 0.03 0.13 0.18 0.26

Table S6. Estimates of the infection attack rates for the variant scenario in

different years and age groups. Age groups are as in the main text.
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Figure S6. Weekly age-stratified number of hospitalisations with confirmed

RSV infection in the Netherlands (dots) with fit of the default model (lines)

for all age groups (Figure S2 for details).23



Figure S7. Weekly age-stratified number of GP consultations for ARI in the

Netherlands (dots) with fit of the default model (lines) for all age groups

(Figure 1 for details). 24



Figure S8. Trace plots of the main parameters for the variant scenario with

fixed infectious period. See Figure S4 for details.
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Figure S9. Pair plots of selected parameters for the variant scenario with

fixed infectious period. See Figure S5 for details.
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Figure S10. Weekly age-stratified number of hospitalisations with confirmed

RSV infection in the Netherlands (dots) with fit of the variant model (lines)

for all age groups. 27



Figure S11. Weekly age-stratified number of GP consultations for ARI in the

Netherlands (dots) with fit of the variant model (lines) for all age groups.
28
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