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Abstract
Background Emerging neuroimaging datasets (collected with imaging techniques such as Electron Microscopy, Optical
Microscopy, or X-ray Microtomography) describe the location and properties of neurons and their connections at
unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to
interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many
neuroscience laboratories lack the computational resources to work with datasets of this size: computer vision tools are
often not portable or scalable, and there is considerable di�culty in reproducing results or extending methods.
Results We developed an ecosystem of neuroimaging data analysis pipelines that utilize open source algorithms to create
standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level
connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate
scienti�c discovery, we propose a generalized processing framework, that connects and extends existing open-source
projects to provide large-scale data storage, reproducible algorithms, and work�ow execution engines.
Conclusions Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments
can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets,
but may be applied to similar problems in other domains.
Key words: Computational Neuroscience; Microtomography; Electron Microscopy; Work�ows; Containers; Optimization;
Reproducible science

Introduction

Testing modern neuroscience hypotheses often requires ro-
bustly processing large datasets. Often the labs best suited for
collecting such large, specialized datasets lack the capabilities

to store and process the resulting images [1]. A diverse set of
imagingmodalities, including electronmicroscopy (EM) [1], ar-
ray tomography [2], CLARITY [3], light microscopy [4], and X-
ray microtomography (XRM) [5] will allow scientists unprece-
dented exploration of the structure of healthy and diseased
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brains. The resulting structural connectomes, cell type maps,
and functional data have the potential to radically change our
understanding of neurodegenerative disease.
Traditional techniques and pipelines developed and vali-

dated on smaller datasets may not easily transfer to datasets
that are acquired by a di�erent laboratory or that are too large
to analyze on a single computer or with a single script. Prior
machine vision pipelines for EM processing, for instance, have
had considerable success [6, 7, 8, 9, 10]. However, these
pipelines may require extensive con�guration and are not scal-
able [8], may require proprietary software and have unknown
hyperparameters [9], or are highly optimized for a single hard-
ware platform [10].
In other domains, computer science solutions exist for im-

proving algorithm portability and reproducibility, including
containerization tools like Docker [11] and work�ow speci�-
cation such as the Common Work�ow Language (CWL) [12].
Cloud computing frameworks enable the deployment of con-
tainerized tools [13, 14], pipelines for scalable execution of
Python code [15], and reproducible execution [16]. Work�ow
management and execution systems such as Apache Air�ow
[17] and related projects such as Toil [18] and CWL-Air�ow
[19] allow execution of pipelines on scalable cloud resources.
Despite the existence of these tools, a gap currently exists for
extracting knowledge from neuroimaging datasets (due to the
general lack of experience with these solutions as well as a lack
of neuroimaging-speci�c features). We propose a solution that
includes a library of reproducible tools and pipelines, integra-
tion with compute and storage solutions, and tools to automate
and optimize deployment over large (spatial) datasets. This
gap is highlighted in Table 1 and discussed further in the meth-
ods section; critically our proposed solution combines common
work�ow speci�cations, Dockerized tools, and automation for
large-scale jobs over volumetric neuroimaging datasets.
We introduce a library of neuroimaging pipelines and tools,

Scalable Analytics for Brain Exploration Research (SABER), to
address the needs of the neuroimaging community. SABER in-
troduces canonical pipelines for EM and XRM, speci�ed in CWL,
with a library of Dockerized tools. These tools are deployed us-
ing the work�ow execution engine Apache Air�ow [17] using
Amazon Web Services (AWS) Batch to scale compute resources
with imaging data stored in the volumetric database bossDB
[20]. Metadata, parameters, and tabular results are logged us-
ing the neuroimaging database Datajoint [21]. Automated tools
allow deployment of pipelines over blocks of spatial data, as
well as end-to-end optimization of hyperparameters given la-
beled training data.
We demonstrate the use of SABER for three use cases crit-

ical to neuroimaging using EM, XRM, and light microscopy
methods as exemplars. While light microscopy is commonly
used to image cell bodies and functional activity with calcium
markers, EM o�ers unique insight into nanoscale connectivity
[22, 23, 24, 25], and XRM allows for rapid assessment of cells
and blood vessels at scale [26, 5, 27]. These approaches provide
complementary information and have been successfully used
on the same biological sample [5], as XRM is non-destructive
and compatible with EM sample preparations and light mi-
croscopy preparations. Being able to extract knowledge from
large-scale volumes is a critical capability, and being able to re-
liably and automatically apply tools across these large datasets
will enable the testing of exciting new hypotheses.
Our integrated framework is an advance toward easily and

rapidly processing large-scale data, both locally and in the
cloud. Processing these datasets is currently the major bot-
tleneck in making new, large-scale maps of the brain — maps
that promise insights into how our brains function and are im-
pacted by disease.

Findings

Pipelines and Tools for Neuroimaging Data

To address the needs of the neuroimaging community, we have
developed a library of containerized tools and canonical work-
�ows for reproducible, scalable discovery. Key features re-
quired for neuroimaging applications include:
• Canonical neuroimaging work�ows speci�ed in CWL [12]
and containerized, open-source image processing tools

• Integration of work�ows with infrastructure to deploy jobs
and store imaging data at scale

• Tools to optimize work�ow hyperparameters and automate
deployment of imaging work�ows over blocks of data

Building on existing tools, our framework provides a more ac-
cessible approach for neuroimaging analysis, and can enable
a set of use cases for the neuroscientist by improving repro-
ducibility. Details on adoption can be found in the Section “Re-
quired Background and Getting Started.”
To ensure broad impact, the SABER is designed to be as

generalizable as possible. The core abilities to schedule and
launch Dockerized work�ows are applicable to a wide range of
volumetric datasets provided that 1) Dockerized tools exist, 2)
CWL work�ows can be speci�ed, and 3) raw data can be ac-
cessed from existing volumetric repositories [20, 28, 29], local
�les or cloud buckets. The standardized work�ows described
below are developed speci�cally for EM and XRM. These work-
�ows perform generalized, repeated processing techniques like
classi�cation, object detection, and 2D and 3D segmentation,
but with parameters and weights speci�c to these modalities.
Users may be able to adapt these tools to additional problems
with the use of annotated training data and appropriate tuning.

Standardized Work�ows and Tools

While many algorithms and work�ows exist to process neu-
roimagery datasets, these tools are frequently lab and task spe-
ci�c. As a result, teams often duplicate common infrastruc-
ture code (e.g., data download or contrast enhancement) and
re-implement algorithms, when it would be faster and more
reliable to instead reuse previously vetted tools. This hinders
attempts to reproduce results and accurately benchmark new
image processing algorithms.
In our framework, work�ows are speci�ed by CWL pipeline

speci�cations. Individual tools are then speci�ed by an ad-
ditional CWL �le, a container �le, and corresponding source
code. This ensures a modular design for pipelines and pro-
vides a library of tools for the neuroscientist. This library of
pre-packaged tools and work�ows helps reduce the number of
computational frameworks and software libraries users need to
be familiar with, helping to limit the computational experience
required to run these pipelines.
Initially, we have implemented two canonical pipelines for

EM and XRM processing. For EM, we estimate graphs of con-
nectivity between neurons from stacks of raw images. Given
XRM images, we estimate cell body position and blood vessel
position. Each of these work�ows is broken into a sequence
of canonical steps. Such a step-wise work�ow can be viewed
as a directed, acyclic graph (DAG). Each step of a pipeline is
implemented by a particular containerized software tool. The
speci�c tools implemented in our reference canonical pipelines
are discussed below.
Cell Detection from X-ray Microtomography and Light Microcscopy
XRM provides a rapid approach for producing large-scale sub-
micron images of intact brain volumes, and computational
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work�ows have been developed to extract cell body densities
and vasculature [5]. Individual XRM processing tools have been
developed for tomographic reconstruction [30], pixel classi�ca-
tion [31], segmentation of cells and blood vessels [5], estima-
tion of cell size [5], and computation of the density of cells and
blood vessels [5]. Running this work�ow on a volume of X-ray
images produces an estimate of the spatially-varying density
of cells and vessels. Cubic millimeter-sized samples (100 GB)
can be imaged, reconstructed, and analyzed in a few hours [5].
To implement a canonical XRM work�ow, we de�ne a set

of steps: extracting subvolumes of data, classifying cell and
vessel pixel probabilities, identifying cell objects and vascula-
ture, merging the results, and estimating densities. Details on
data storage and access can be found in the implementation
section. We de�ned Dockerized tools implementing a random
forest classi�er, a Gaussian Mixture Model, and a U-net [32]
for pixel classi�cation and the cell detection and vessel detec-
tion strategies [5]. These tools provide a standard reference for
the XRM community, and modular replacements can be made
as new tools are developed and benchmarked against this ex-
isting standard. Figure 1 shows this canonical work�ow for
XRM data, with each block representing a separate container-
ized tool. Also shown in Panel B is example output from run-
ning the pipeline, highlighting the resulting cell body positions
and blood vessels.
These same tools can also be applied (with appropriate re-

training) to detecting cell bodies from light microscopy data,
such as from the Allen Institute Brain Atlas [4]. Here the same
pipeline tools can be reused to detect cell bodies using the step
for pixel classi�cation followed by the step for cell detection.
This result demonstrates the application of these tools across
modalities and datasets to ease the path to discover.
Deriving Synapse-level Connectomes from Electron Microscopy
Several work�ows exist to produce graphs of brain connectivity
from EM data [6, 10, 7], including an approach that optimizes
each stage in the processing pipeline based on end-to-end per-
formance [8]. However, these tools were not standardized into
a reproducible processing environment, making reproduction
of results and comparison of new algorithms challenging.
We have de�ned a series of standard steps required to pro-

duce brain graphs from EM images, seen in Figure 2. First,
data is divided into subvolumes; cell membranes are estimated
for each volume. Next, synapses are estimated and individual
neurons are segmented from the data. After this, synaptic con-
nections must be associated with neurons, and results merged
together across blocks. Then a graph can be generated by iter-
ating over each synapse to �nd the neurons representing each
connection. Many tools have been developed for various sec-
tions of this pipeline, and a single tool may accomplish more
than one step of the pipeline. Examples of tools for membrane
segmentation include CNN [33] and U-nets [32] approaches.
Synapse detection has been achieved using deep learning tech-
niques and random forest classi�ers [34, 35]. Neural segmen-
tation has been previously done using agglomeration-based
approaches [36] and automated selection of neural networks
[9]. For our initial implementation of this work�ow, we create
CWL speci�cations and containerized versions of U-nets [32]
for synapse and membrane detection, the GALA tool [37] for
neuron segmentation, and algorithms for associating synapses
to neurons and generating connectomes [8].
When creating this canonical pipeline for EM processing,

our initial implementation goal is not to focus on pipeline per-
formance in the context of reconstruction metrics. Rather,
we aim to provide a reference pipeline for scientists and algo-
rithms developers. For scientists, this provides an established
and tested pipeline for initial discovery. For algorithm develop-
ers, this pipeline can be used to benchmark algorithms which

encompass one or more steps in the pipeline.

Optimization and Deployment of Work�ows

To process modern neuroimaging datasets, users need more
than standardized pipelines and the ability to deploy them to
individual blocks of data. Scaling these work�ows to current
datasets requires specialized interfaces to distribute jobs over
large volume and tune them to new data. The SABER project
provides 1) a paramterization API to distribute jobs over large
volumes of data and 2) an optimization API to train pipelines
and �ne-tune hyperparameters for new datasets.
To apply SABER work�ows to large volumetric datasaets,

such as those hosted in bossDB [20], a parameterization API al-
lows control over creating blocks from large datasets (by spec-
ifying sizes and overlap of blocks in each dimension), running
pipelines on each block, and merging results (i.e., a distribute-
collect approach). A second parameter �le speci�es these de-
sired parameters and can be used with any compatible work-
�ow to deploy it to a new dataset. Deployment scripts en-
able rapid con�guration and deployment of work�ows for new
datasets.
In order to tune SABER work�ows for new datasets, it in

necessary to train the parameters of the pipeline, including any
hyperparameter optimization (Figure 3). Our tools currently
require a small volume of labeled training data from the new
dataset (although recent e�orts are also exploring unsuper-
vised methods [38]). To perform the hyperparameter search,
we pursue an optimization strategy that assumes a black-box
work�ow, avoiding assumptions such as di�erentiability of the
objective function. SABER enables iteratively selecting param-
eters, scheduling parallel jobs, and collecting results. This ap-
proach supports both batch and sequential optimization ap-
proaches. Initially, we implemented a simple grid search, ran-
dom search, and the adaptive search method shown in Figure
3, based on random resampling [39]. This will be expanded to
techniques such as sequential Bayesian optimization [40] and
convex bounding approaches [41] to develop a library of read-
ily available, proven techniques. To provide benchmarking for
these approaches, the team hosts available ground truth data
(e.g., [23] for EM), and scoring tools to compute metrics such
as precision-recall or f1-score.

Datasets for Benchmarking Work�ows

A critical feature for new users as well as developers of
new containerized tools is the availability of benchmark
datasets for deriving synapse-level connectomes from EM
as well as segmentation of cell bodies and vasculature from
XRM data. Datasets are hosted in the bossDB syatem
([20],https://bossdb.org/projects) for this purpose. For testing
XRM pipelines, data from the datasets “Dyer et al. 2016” [5]
and “Prasad et al. 2020” [42] can be used. These datasets con-
tain di�erent brain regions including labels of cell bodies and
vasculature for training new users, developing new algorithms,
Similarly, for EM data, datasets such as “Kasthuri et al. 2015”
[23] provide EM data along with segmentation and synapse la-
bels. These similarly enable new users and algorithm develop-
ers to compare to existing data and approaches.

Neuroimaging Use Cases

Use Case 1: Pipeline Optimization

When collecting a new neuroimaging dataset, it is often neces-
sary to �ne-tune or retrain existing pipelines. This is typically
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done by labeling a small amount of training data, which can
often be labor intensive, followed by optimizing the automated
image processing pipeline for the new dataset. These pipelines
consist of heterogeneous tools withmany hyperparameters and
are not necessarily end-to-end di�erentiable.
Users can execute the optimization routines using a simple

con�guration �le to specify algorithms, parameter ranges, and
metrics. Figure 3 demonstrates the application of three algo-
rithms for pipeline optimization. We choose the Allen Institute
for Brain Science (AIBS) Reference Atlas [4] as a demonstration
of generalization beyond EM and XRM datasets. In order to op-
timize the pipeline, this example optimizes over: the initial
threshold applied to the probability map, size of circular tem-
plate, size of circular window used when removing a cell from
the probability map, and the stopping criterion for maximum
correlation within the image. The user speci�es the range of
each parameter.
Our framework supports implementations of di�erent op-

timization routines, such as random selection of parameters
with resampling, as seen in Figure 3. Random selection of pa-
rameters often produces comparable results to grid search, and
users may need to explore algorithms to �nd an approach that
works well for the structure of their pipeline [39]. For the re-
sampling approach, we initially choose parameters at random,
and then re�ne search parameters by choosing new parame-
ters near the best initial set, with the user setting a maximum
number of iterations. Figure 3B shows a parameter reduction of
twenty percent at each resampling, leading to a more e�cient
parameter search and improved performance. Using SABER, it
is possible for a user to explore the trade-o�s for a range of
hyperparameter optimization routines.

Use Case 2: Scalable Pipeline Deployment

The second critical use case of interest to neuroscientists is
the deployment of pipelines to large datasets of varying sizes.
Datasets may be on the order of gigabytes or terabytes, as
in XRM, to multiple petabytes, as in large EM volumes used
for connectome estimation. SABER provides a framework for
blocking large datasets, executing optimized pipelines on each
block, thenmerging the results through a functional API. Given
a dataset in a volumetric database, such as bossDB, our Python
scripts control blocking, execution, and merging. Results are
placed back into a database for further analysis, or stored lo-
cally. An example of this use case for XRM data can be seen in
Figure 4, and another example of this use case for extracting
synapse-level connectomes can be seen in Figure 5.

Use Case 3: Benchmarking Neuroimaging Algorithms

The third major use case applies to developers implementing
new algorithms for neuroimaging datasets. Due to tools being
written in a variety of languages for a variety of platforms, it
has been di�cult for the community to standardize compari-
son between algorithms. Moreover, it is important to assess
end-to-end performance of new tools in a pipeline which has
been properly optimized. Without this comparison, it is dif-
�cult to directly compare algorithms or their impact. Using
the speci�ed pipelines, a new tool may subsume one or more
of these steps, with the speci�cation de�ning the inputs and
outputs. A new CWL pipeline can be quickly speci�ed with the
new tool replacing the appropriate step or steps. Hyperparam-
eter optimization can be run on each example to compare tools,
leveraging reference images and annotations for the pipelines
provided in SABER.

Discussion

We have developed a framework for neural data analysis along
with corresponding infrastructure tools to allow scalable com-
puting and storage. We facilitate the sharing of work�ows by
compactly and completely describing the associated set of tools
and linkages. Future enhancements will introduce versioning
to track changes in work�ows and tools.
The SABER project aims to support multiple modalities, fo-

cusing initially on EM and XRM data through the development
of containerized tools for di�erent steps such as synapse and
cell detection. The same tools can be used for di�erent steps of
both work�ows. For instance, our U-net [32] tool can be used
to generate probability maps for synapses, cell bodies, or cell
membranes when training with di�erent data. The framework
also allows for joint analysis of co-registered datasets using
our CWL pipelines using di�erent parameterized sweeps. The
user can then use simple Python scripts to pull and analyze any
parts of these data.
While the SABER project has focused on tools for processing

large EM and XRM datasets, many of the tools and infrastruc-
ture developed would also be of interest to researchers investi-
gating light microscopy, PET, and fMRI. The features of SABER
are most appropriate for large-scale volumetric data, where
records are large (gigabytes or larger) and it is di�cult to pro-
cess a dataset in memory. Therefore, larger light microscopy
datasetsmay bene�t themost from SABER. The developed tools
focus on canonical problems such as object detection, 2D seg-
mentation, and 3D segmentation. These are generally useful
for structural neuroimaging datasets, and may be reused in
other contexts.
Our goal is to establish accessible reference work�ows and

tools which can be used for benchmarking new algorithms and
assessing performance on new datasets. Moving forward, we
will encourage algorithm developers to containerize their solu-
tions for pipeline deployment and to incorporate state-of-the-
art methods. Through community engagement, we hope to
grow the library of available algorithms and demonstrate large-
scale pipelines which have been vetted on di�erent datasets.
We also hope to recruit researchers from di�erent domains to
explore how these tools apply outside of the neuroimaging com-
munity.
Prior solutions have taken di�erent approaches to process-

ing neuroimaging data. For example, the work�ow execution
engine LONI has been used for processing EM data [8], but re-
quires extensive con�guration and is not scalable to very large
volumes. The SegEM framework [9] o�ers extensive features
for optimizing and deploying EM pipelines, but is speci�cally
focused on neuron segmentation from EM data and is tied to a
MATLAB cluster implementation. Highly optimized pipelines
can be deployed on a single workstation [10], which is ideal
for proven pipelines as part of ongoing data collection, but is
limited in developing and benchmarking new pipelines.
A major strength of the SABER approach is the use of CWL

to provide a common speci�cation for work�ows, which has
considerable advantages compared to work�owmanagers with
speci�c Python syntax (e.g. [15, 43]. The common, interoper-
able standard is important to allow reuse of the SABER work-
�ows in other work�ow managers as they continue to evolve.
This approach also encourages tools developed for other open
source projects to be deployed using the SABER system.
A limitation of our existing tooling is interactive visualiza-

tion. Although we provide basic capabilities, additional work is
needed to interrogate raw and derived data products and iden-
tify failure modes. We are extending open source packages,
substrate [44] and neuroglancer [45], to easily visualize data
inputs and outputs of our work�ows and tools.
Scalable solutions for container such as Kubernetes [13] and
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general work�ow execution systems like Apache Air�ow [17]
have provided the ability to orchestrate execution of containers
at scale. These solutions, however, lack work�ow de�nitions,
imaging databases, and deployment tools to enable neuroimag-
ing usecases. SABER builds on top of these technologies to
enable neuroimaging use cases while avoiding the specialized,
one-o� approaches often used in conventional neuroimaging
pipelines.
Our solution leverages many powerful existing 3rd party so-

lutions (e.g. AWS, Apache Air�ow). While this allows use of
powerful modern software packages and shared development,
it creates a risk if these technologies are not supported and de-
veloped in the future. While it is not possible to completely
mitigate this risk, the modular strategies for storage and com-
putation, described below, help to mitigate this challenge by
allowing components related to these services to be replaced.
The key dependency is Apache Air�ow, but even in this case
the work�ows and Dockerized tools have potential applications
with future work�ow managers.

Potential implications

While our initial work�ows focus on XRM and EM datasets,
many of these methods can be easily deployed to other modali-
ties like light microscopy [46], and the overall framework is ap-
propriate for problems in many domains. These include other
scienti�c data analysis tasks as varied as machine learning
for processing noninvasive medical imaging data or statistical
analysis of population data.
Code, demos, and results of the SABER platform are avail-

able on GitHub under an open source license, along with docu-
mentation and tutorials (see below). We make SABER available
to the public with the expectation it will help to enable and
democratize scienti�c discovery of large, high-value datasets,
and that these results will o�er insight into neurally-inspired
computation, the processes underlying disease, and paths to
e�ective treatment. Contributors and developers are also en-
couraged to visit and join the open source developers on the
project.
Future work will focus on usability, while integrating

SABER into existing open-source frameworks for data storage
and visualization (e.g. [20], [45]). In an e�ort to lower the
barriers for new users, this work will include Graphical User
Interfaces (GUIs), as well as the development of additional ref-
erence pipelines. Integration with datastores like bossDB will
enable a common ecosystem for new users to �nd storage, pro-
cessing, and visualization in a common location.

Methods

Existing Software Solutions

For small-scale problems, individual software tools and
pipelines which are fully portable and reproducible have been
produced (e.g., [47]), but this challenge has not yet been solved
at the scale of modern EM and XRM volumes.
Many tools have become available for scalable computa-

tion and storage, such as Kubernetes [13] and Hadoop [48],
which enable the infrastructure needed for running container-
ized code at scale. However, such projects are domain-agnostic
and do not necessarily provide the features or customization
needed by a neuroscientist. As scalable computation ecosys-
tems, these solutions can be integrated as the backend for
work�ow management systems such as SABER.
Traditional work�ow environments (e.g., LONI Pipeline

[49], Nipype [43], Galaxy [50], and Knime [51]) provide a tool

repository and work�ow manager, but require connection to a
shared compute cluster to scale. All of these systems rely on
software that are installed locally on the cluster or local work-
station, and can result in challenging or con�icting con�gura-
tions that slow adoption and hurt reproducibility.
New frameworks for work�ow execution have been devel-

oped, but solve only a subset of the challenges for neuroimag-
ing. Boutiques [52] manages and executes single, command-
line executable neuroscience tools in containers. Pipelines
must be encapsulated in a single tool, meaning that cod-
ing is required to swap pipeline components. Dray [53] exe-
cutes container-based pipelines as de�ned in a work�ow script.
While Dray contains some of the core functionality to exe-
cute container-based pipelines, non-programmers cannot eas-
ily use the system and it is limited in the types of work�ows
that are supported.
Similarly, Pachyderm [14], o�ers execution of containerized

work�ows but lacks support for storage solutions appropriate
for neuroimaging as well as optimization tools needed for these
neuroimaging pipelines. Work�ow execution engines such as
Toil [18] and CWL-Air�ow [19] are closely related to SABER,
providing light-weight Python solutions for work�ow schedul-
ing. However, like Pachyderm, they lack the automation tools
and storage scripts required by neuroimaging applications. The
most closely related tool is Air-tasks [54], which provides tools
to automate deployment of neuroimaging pipelines. Air-tasks,
however, provides fewer capabilities to the user and does not
support a common work�ow speci�cation or explicitly support
optimization or benchmarking.
Table 1 breaks down this comparison between SABER and

existing work�ow managers and execution solutions for scien-
ti�c computing. In general, neuroimaging applications bene�t
from several key features which are not provided in these more
general purpose scienti�c work�ow approaches due to the
use of volumetric data, few large datasets (vs. many smaller
images in a large collection), and the need for tool cross-
compatibility. SABER delivers these key features through the
use of standardized work�ows, containerized tools, automa-
tion of deployment over volumetric data (as opposed to pro-
cessing individual records) and the ability to optimize pipelines.
The closest existing solutions are work�ow managers such
as TOIL [18], Galaxy [50], and CWL-Air�ow [19]. These ap-
proaches are powerful but focused on other problems in bioin-
formatics, such as gene sequence analysis, consisting of many
small records. SABER adds the necessary features to provide
these capabilities for the neuroimaging community.
While existing pipeline tools like LONI [49] and Nipype [43]

enable the execution of scienti�c work�ows, they are still lack-
ing a few key features for the neuroimaging user and may limit
the portability and utility of work�ows. SABER provides a the
library of tools required for modern segmentation and detec-
tion problems on EM and XRM data, including GPU enabled
DNN tools. These tools, and their corresponding CWL de�ni-
tions, are useful in any system which can support them, rather
than being speci�c to a work�ow manager, as with LONI and
Nipype. We enable the use and sharing of Dockerized tools and
standardized work�ows within and beyond the SABER frame-
work.

SABER

To overcome limitations in existing solutions, SABER provides
canonical neuroimaging work�ows speci�ed in a standard
work�ow language (CWL), integration with a work�ow exe-
cution engine (Air�ow), imaging database (bossDB), and pa-
rameter database (Datajoint) to deploy work�ows at scale, and
tools to automate deployment and optimization of neuroimag-
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ing pipelines. Our automation tools include end-to-end hy-
perparameter optimization methods and deployment by divid-
ing data into blocks, executing pipelines, and merging results
(block-merge). In our repository, this is broken into two key
components. The �rst is CONDUIT, which is the core frame-
work for deploying work�ows. The second is SABER, which
contains the code, Docker�les, and CWL �les for the work-
�ows (Fig. 6). A comparison of SABER/CONDUIT to existing
solutions is seen in Table 1.
The core framework (called CONDUIT) is provided in a

Docker container to reduce installation constraints and in-
crease portability (Figure 6). The core framework interfaces
with scalable cloud compute and storage resources as well as
local resources. The user interacts via command line tools, and
can visualize the status of work�ows using Air�ow’s graphical
user interface (GUI). Each tool used in the work�ows will also
be built into a separate image.
In our CONDUIT framework (Figure 6 highlights the archi-

tecture of the system), work�ows and tools are de�ned with
CWL v1.0 speci�cations. Tools additionally include Docker�les
and source code. Parameter �les contain user-speci�ed pa-
rameters for optimization and deployment of pipelines. The
features of CONDUIT include parsing the CWL parameters and
deploying work�ows, as in the CWL-Air�ow project [19]. Fea-
tures added on top of the existing CWL-Air�ow functionality
include an API for parameterizing jobs for deployment over
chunks of data in large volumetric datasets (speci�ed by coordi-
nates), iterative execution of the same work�ow with di�erent
parameters (for parameter optimization), and logging of meta-
data and job results. Moreover, wrappers allow for the use of
local �les and cloud �les (S3) for intermediate results with the
same work�ows and minimal recon�guration.
The repository at github.com/aplbrain/saber contains both

our CONDUIT framework and the SABER work�ows and tools,
as is visualized in Figure 6. The CONDUIT framework consists
of the Python code and scripts that build upon CWL and Air�ow
to enable the deployment of work�ows. The SABER work�ow
code contains the tools, Docker�les, CWL de�nitions for tools,
CWL de�nitions for work�ows, and example job �les. This
structure emphasizes the portability of SABER tools- the use
of Docker and CWL encourages their reuse in other contexts
where the full power of the framework may not be needed (e.g.
running on small, locally-stored datasets).

Framework Components

The overall structure of SABER is seen in Fig. 6, and consists of
tools, work�ows, parsers for user commands, work�ow execu-
tion, and cloud computation and storage. Work�ows, found in
the SABER component, consist of code, Docker�les, and CWL
�les. The core functionality of parsing work�ows, running air-
�ow, and scheduling jobs is found in the CONDUIT component.
SABER Work�ow Library
The SABER subproject consists of a library of code, tools, and
work�ows. Each SABER tool much have a corresponding Dock-
er�le. Tools and work�ows are speci�ed following CWL speci-
�cations. To package a tool for SABER, a developer must
• Provide a Docker�le for the tool
• Use command line arguments to specify �le input and out-
puts (which can be read as any local �le the tool can use)

• Provide a CWL tool �le with tool parameters and input and
output �le names speci�ed
Optionally, developers can choose to print metrics, scores,

or other information on the command line. When building
work�ows, tools are wrapped to allow for either local or cloud

execution and no additional requirements are placed on the tool
developer.
Work�ows are speci�ed using standard CWL syntax. To

specify local versus cloud execution, the CWL “doc” �ag can
be set to run with completely local compute and storage. In-
dividual step “hints” can be used to specify that an individual
step should use local compute resources. GPU resources can
be used through con�guration of the system Docker installa-
tion. Work�ow parameters are also speci�ed with standard
CWL �les.
To enable our neuroimaging use cases, parameter sweeps

are speci�ed with a new custom parameterization �le. This
speci�es the parameter start, stop, step, and overlap. A typical
use case is the speci�cation of boundaries of a large volumetric
dataset (xmin, xmax, ymin, ymax, zmin, zmax, and stepsize).
Any parameter speci�ed by a tool CWL can be included in the
parameterization �le.
To enable hyperparameter optimization of pipelines, a simi-

lar format to parameterization is used to specify which param-
eters are to be optimized and the range of these parameters,
as well as the algorithm (e.g. grid or random search). A CWL
“hint” is added to the work�ow indicating the name of the opti-
mization metric for each step, which will be parsed from stan-
dard out. This allows the speci�cation of multiple objective
functions or metrics for each work�ow stage.
CONDUIT Docker Container
The CONDUIT component (Fig. 6) contains the scripts for pars-
ing CWL work�ows, processing user commands, scheduling
jobs using Air�ow, and storing and accessing metadata in the
metadata store (Datajoint [21]). All of this functionality is itself
contained in a Docker container to simplify installation on the
user’s machine. The CONDUIT container and related contain-
ers are started with Docker-compose.
The user interacts with conduit through a series of com-

mand line tools. The user interface consists of:
• conduit init: used to con�gure AWS for cloud use through
the provided cloudformation template. Optional for local
use, and only needs to be run when con�guring a new AWS
account.

• conduit build: used to build the necessary tool Docker con-
tainers

• conduit parse: used to create a Directed Acyclic Graph from
the CWL and schedule with air�ow. Accepts an optional pa-
rameterization �le

• conduit collect: used to collect metadata results related to a
work�ow from the metadata database

• conduit optimize: used to schedule hyperparamter search
for a given work�ow

These commands provide the key method for users to schedule
work�ows, which can be monitored using the Apache Air�ow
webserver started with CONDUIT.
Work�ow Execution
The CONDUIT container shown in Figure 6 provides SABER
with a managed pipeline execution environment that can run
locally or scale using the AWS Batch service. Our custom com-
mand scripts and CWL parser generate DAG speci�cations for
execution by Apache Air�ow. We select Apache Air�ow to in-
terface with a cloud-based computing solution. As an exam-
ple, we utilize the AWS Batch service, although Air�ow can in-
terface with scalable cluster solutions such as Kubernetes or
Hadoop. The framework facilitates the execution of a batch
processing (versus streaming) work�ow composed of software
tools packaged inside multiple software containers. This re-
duces the need to install and con�gure many, possibly con�ict-

github.com/aplbrain/saber
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ing software libraries.
Cloud Computation and Storage
Large neuroimaging datasets are distinct from many canoni-
cal big data solutions because researchers typically analyze a
few (often one) very large datasets instead of many individ-
ual images. Custom storage solutions [20, 28, 29] exist, but
often require tools, knowledge, and access patterns that are
disparate from those used by many neuroscience laboratories.
SABER provides tools to connect to specialized neuroimaging
databases which integrate into CWL tool pipelines. We use in-
tern [55, 56] to provide access to bossDB and DVID and ab-
stract data storage, RESTful calls, and access details. Work�ow
parameters, objective functions, and summary results such
as graphs and cell densities can be stored using a DataJoint
database [21] using a custom set of table schemas.
Some datasets, however, can be stored locally but are too

large to process in memory on a single workstation. In addi-
tion to volumetric data stored in bossDB, SABER also supports
local imaging �le formats such as HDF5, PNG, or TIFF. As users
share pipelines, they might wish to use a pipeline originally
developed for data stored in one archive with that stored in
another. Therefore, using the existing SABER tools raw and
annotated data can be accessed, retrieved, and stored using:
• bossDB
• DVID
• Cloudvolume
• Amazon S3 buckets
• Local �les (hdf5, numpy, etc)
For intermediate results in a pipeline, �les can be stored locally
(or on any locally mounted drive) in numpy or HDF5 �les or
stored in AWS S3 buckets. Future work will increase the num-
ber of supported �le formats. The modular nature of raw data
access will allow additional tools to access new data sources
as they emerge. Supporting further cloud systems will require
additional development, although it will not a�ect the SABER
tools or work�ows. Currently only AWS is supported.
Modern cloud computing tools, such as AWS Batch or Kuber-

netes, allow large scale deployment of containerized tools on
demand. The CONDUIT container schedules work�ows using
Apache Air�ow, and currently supports two execution meth-
ods:
• AWS Batch
• Local compute resources
Work�ows have a “local” �ag which can be set to indicate a
choice of resources. Tools can also be con�gured to run with
GPU resources. Both methods can be used with local or remote
data storage. Further development will be required to enable
support of further executors, such as Kubernetes, using the op-
erators which exist in Apache Air�ow.

Required Background and Getting Started

A new user to the SABER framework will require intermedi-
ate familiarity with Python programming, the use of command
line tools (e.g. Bash), and Docker. These capabilities are of-
ten found in capable computer science undergraduates or new
computationally-oriented graduate students. To get started,
new users will:
• Install Docker
• Build the desired tool containers (e.g. EM or X-ray contain-
ers) in the SABER folder

• Build and con�gure the core CONDUIT Docker containers

• Use the command line interface to schedule work�ows
However, the use of SABER with the AWS cloud will require

an AWS account, and at least one experienced AWS user to con-
�gure the system and serve as the administrator. To con�gure
this system, the user needs to
• Use the cloudformation template to con�gure AWS Batch
and S3

• Create credentials for other users and con�gure access from
local machines
The envisioned users of this tool are neuroimaging labs, al-

gorithm developers, and data analysts. One experienced user
can quickly con�gure a cloud SABER deployment for use by oth-
ers in the lab. Envisioned use cases include neuroimaging labs
wanting to apply tools to newly collected datasets and tool de-
velopers who want to package and benchmark software tools to
reach new users. While this framework certainly does not re-
move all barriers to entry, the use of Dockerized tools limits the
number of competing software con�gurations for neuroimag-
ing users and provides a common and powerful system for tool
developers to share their work. Our system accomplishes this
with a set of Dockerized tools to replace installing many, often
con�icting dependencies with a single tool (i.e., Docker), the
use of standard CWL de�nitions which are cross-compatible
with other e�orts, and specialized scripts to handle di�cult
use cases such as scheduling runs over large datasets using
cloud computing resources. This approach attempts to balance
the �exibility needed by tool developers with standardization
to help the novice user. A user looking to deploy existing tools
and work�ows to new data will primarily interface through the
user commands for CONDUIT, and a tool developer will primar-
ily package tools following the Docker�les and CWL examples
in SABER (to ensure compatibility with existing tools).

Availability of source code and requirements

The SABER framework is open source and available online:
• Project name: SABER
• Project home page: e.g. https://github.com/aplbrain/saber
• Operating system(s): Platform independent
• Programming language: Python, other
• Other requirements: Docker, AWS account (if scalable cloud
computing required)

• License: Apache License 2.0
• RRID:SCR_018812

Availability of supporting data and materials

The source code for this project is available on GitHub, includ-
ing code for tools and demonstration work�ows. An extensive
wiki documenting the repository is also hosted on github. The
data are stored in a bossDB instance at https://api.bossdb.org.
Snapshots of our code and other supporting data are openly
available in the GigaScience repository, Giga DB [57].
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Figure 1. Work�ow for processing XRM data to produce cell and vessel location estimates. Raw pixels are used to predict probabilities of boundaries, followed
by detection of cell bodies and blood vessels. Finally, cell density estimates are created. Panel A shows the reconstruction pipeline, whereas Panel B shows a
reconstruction of the detected cells and blood vessels in the test volume. Cells are shown as spheres and blood vessels as red lines.

Figure 2. Canonical Work�ow for Graph Estimation in EM data volumes. This work�ow provides the ability to reconstruct a nanoscale map of brain circuitry
at the single synapse level. The procedure of mapping raw image stacks to graphs representing synapse-level connectomes consists of synapse and membrane
detection, segmentation of neurons, assignment of synapses, merging, and graph estimation. Panel A shows the reconstruction pipeline, and Panel B shows an
example segmentation of a neuron from a block of data.

Figure 3. Use case of optimizing a pipeline for light microscopy data, comparing grid search, random search, and the random resampling approach described in
the text. We demonstrate these tools on a light microscopy dataset, leveraging methods originally developed for XRM – showcasing the potential for applying tools
across diverse datasets. The framework allows a user to easily compare the trade-o�s of di�erent approaches for a particular dataset. The maximum f1 score for
each approach is marked with a red ’x’. Automating this process using SABER allows for rapid deployment and optimization.
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Figure 4. Example deployment of pipeline over spatial dataset, in this case cell detection in XRM data. An example slice of raw data can be seen in Panel A. The
pipeline in Fig.1̃ was used to classify pixels (Panel B) and detect cells. From the cells, a three dimensional scatter plot of the positions of the cell centers was
generated (Panel C).

SABER/
CONDUIT

CWL-Air�ow TOIL Galaxy Air-tasks Kubernetes

Purpose Work�ow
management
system

Work�ow
management
system

Work�ow
management
system

Work�ow
management
system

Work�ow
management
system

Distributed
Container
Orchestration

Container
Support

Yes Yes Yes Yes Yes Yes
Work�ow
Description

CWL CWL CWL
or WDL

Custom
(CWL beta)

Custom Python N/A
Computational
background

Novice-
Expert

Novice-
Expert

Novice-
Expert

Novice-
Expert

Intermediate-
Expert

Expert
Installation docker-

compose
pip install pip install Install scripts docker-

compose
Cluster con�gu-
ration

Cloud
Support

AWS Planned Multiple cloud
providers

Multiple cloud
providers

Docker Infrakit Multiple cloud
providers

Volumetric
Database

bossDB, DVID None None None Cloud
Volume

N/A
Parallel Processing
Model

Block-merge None None None Block-merge N/A
Work�ow
deployment for
neuroimaging

Yes No No No Yes N/A

Work�ow
optimization for
neuroimaging

Yes No No No No N/A

Tool
Benchmarking and
Datasets

Yes No No No No N/A

EM tool library Yes No No No Yes N/A
Tools for Other
Modalities

Yes No No No No N/A
Table 1. Comparison of existing projects related to work�ow execution of neuroimaging pipelines with lighter cells highlighting desirablefeatures, medium cells highlight partial implementations of desirable features, and darker cells highlighting limitations. SABER deliversintegrated containerized tools, a standardized work�ow and tool description, and a volumetric database. It also provides tools for automatingdeployment over datasets by dividing into blocks (block-merge) and optimization of work�ows. The most comparable tools are otherwork�owmanagement systems such as CWL-Air�ow, TOIL, Galaxy, and Air-tasks. Air-tasks provides similar capabilities, but lacks supportfor common work�ow descriptions and tool optimization, and less �exibility for users. Similar projects such as TOIL, Galaxy, and CWL-Air�ow lack neuroimaging speci�c features to enable the use cases described in Section 3. Scalable cluster systems, such as Kubernetes,provide essential functionality to deploy containers at scale, but need capabilities built to manage work�ows and data movement andare complementary to work�ow management systems such as SABER. The SABER project adds critical features for neuroimaging by 1)interfacing with existing solutions, 2) providing a library of portable, Dockerized neuroimaging tools, and 3) providing scripting to analyzelarge-scale neuroimaging datasets.
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Figure 5. Example deployment of EM segmentation pipeline to extract graph-
ical models of connectivity from raw images. The processing pipeline (Fig.1̃)
consists of neural network tools to perform A) membrane detection and B)
synapse detection. This is followed by a segmentation tool (Panel C). Finally,
segmentation and synapses are associated to create a graphical model. Visual-
izations of segmentations are done with Neuroglancer [45], a tool compatible
with SABER and integrated with the bossDB [20] system.
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Figure 6. The architecture and components of SABER. Tools, work�ows, and parameters for individual use cases (optimization, deployment) are captured in a
�le structure using standardized CWL speci�cations and con�guration �les. The core of the framework (called CONDUIT) is run locally in a Docker container.
CONDUIT consists of scripts to orchestrate deployment and optimization, a custom CWL parser, Apache Air�ow for work�ow execution, and tools to collect and
visualize results. Containerized tools are executed locally or using AWS Batch for a scalable solution. The bossDB provides a solution for scalable storage of imaging
data, and a local database is used for storing parameters and derived information.
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