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10th Jun 20201st Editorial Decision

Thank you for submit t ing your work to Molecular Systems Biology. We have now received all the 
reports and as you will see below, the reviewers think that the presented methodology and findings 
seem interest ing. They raise however a series of concerns, which we would ask you to convincingly 
address in a revision. 

The recommendat ions provided by the reviewers are very clear and therefore there is no need to 
reiterate the points listed below. In part icular, Reviewer #3 is concerned about the lack of 
experimental validat ion of the novel gene funct ions. If you have such data at hand, we would 
encourage you to include it in the revised manuscript . However, this is not mandatory for 
publicat ion. Further, in light of the concerns of Reviewer #1, we would ask you to edit the 
manuscript to make sure that the main findings are sufficient ly clear and easily accessible to the 
general audience of Molecular Systems Biology. 

All other issues raised by the reviewers would need to be convincingly addressed. As you may 
already know, our editorial policy allows in principle a single round of major revision and it is 
therefore essent ial to provide responses to the reviewers' comments that are as complete as 
possible. Please feel free to contact me in case you would like to discuss in further detail any of the 
issues raised by the reviewers. 

On a more editorial level, please do the following. 
------------------------------------------------------- 

Reviewer #1: 

In the work of Cruz et al., The authors take an interest ing approach, examining the transcriptomes 
and metabolomes of individually grown maize plants in the field, and comparing these results to 
the individual phenotypes of the plants. In general, this appears a promising approach to 
understanding and transferring lab based plant results to the field. It reveals a high level of 
phenotypic variabilit y between plants in the field which can to some degree be matched to 
t ranscript ional differences between plants. In general, I think the paper is an interest ing and 
important step forward for the plant systems biology field. I have the following concerns: 

Readabilit y for a general audience: Many of the aspects of this study will be very interest ing to the 
general audience of Molecular Systems Biology. However, it is writ ten for a plant audience 
current ly. It would aid the impact of the work if the int roduct ion and discussion could be a lit t le less 
plant specific. The issue of individual variabilit y within populat ions has been explored in microbial 
and mammalian systems, and I would think that the MSB readers would appreciate a link to this 
work, as well as more general points to be made about the use of using the variabilit y between 
individuals under the same environment for generat ing regulatory networks. 

Analysis of Individual t ranscriptome data. In examining individual t ranscript ional variabilit y (either 
single cell or single individual) it is important to correct for technical noise (e.g,
ht tps://doi.org/10.1038/nmeth.2645). As detected levels get lower, CV increases due to this. Hence, 
it is important to use, or consider, a corrected CV score to account for this. I can't see a figure



showing how CV scales with the mean expression of genes in the paper. It  would be interest ing if
this could be added, as well as a more detailed explanat ion for why CV was chosen as the measure
of variability. Addit ionally, the authors write 'The average transcript  level CV of ~0.3 is about three
t imes higher than the transcript  level CV of lab-grown A. thaliana plants in a recent study (Cort ijo et
al., 2019)'. In the Cort ijo study they use a corrected CV measurement - does that affect  the
comparison? 

Addit ionally, the authors harvest plants on two separate days. They acknowledge that this is a
source of addit ional heterogeneity (In the PCA in figure 1). It  seems important to redo parts of the
analysis on plants just  from the same day - Although most plants were harvested on the first  day, it
was unclear to me how much of the variability was caused by the two separate t imepoints being
added together, which seems to somewhat go against  the idea of the individual plant approach. An
equivalent bulk study of plants a week older would be expected to have differences in gene
expression compared to bulk measurements of younger plants. 

The authors also find a spat ial correlat ion between plants across the field and their t ranscriptomes
and phenotypes. It  wasn't  clear to me what fract ion of differences between Maize plants were due
to extrinsic differences (Locat ion, harvest ing t ime, developmental stage?) versus 'intrinsic'
differences in the levels of t ranscript ion or metabolites between plants. Is there a way of simply
quant ifying this, or making the current analysis clearer to the reader (as the authors have already
done a great job of looking at  each of these aspects individually)? This quest ion of where the
variability comes from seems to be one that would be of general interest  to MSB readers. 

References to authors previous work: At two points in the paper the authors refer to their previous
work: 
' gene expression variat ions among individual Arabidopsis thaliana plants grown under the same
stringent ly controlled lab condit ions contain a lot  of informat ion on the molecular wiring of the
plants, on par with t radit ional expression profiles of pooled plant samples subject  to controlled
perturbat ions (Bhosale et  al, 2013).' And 

In previous work, we showed that expression variat ions among individual Arabidopsis thaliana
plants, all grown under the same stringent ly controlled condit ions, can efficient ly predict  gene
funct ions (Bhosale et  al., 2013) 

From this descript ion, readers will miss that the work in Bhosale et  al. was analysis of individual
Arabidopsis leaves from different genotypes grown in different labs. The first  step of the work was
to remove these differences 'in silico', but  this is not ment ioned here. Readers might think that
these plants were all genet ically ident ical plants grown under the exact same condit ions in one
laboratory, which is not the case. The descript ion of this work should be revised to reflect  the actual
condit ions used. 

Reviewer #2: 

In this manuscript , Cruz and colleagues put forward an intriguing concept to connect genotype to
phenotype in plants, namely the correlat ion of gene expression and metabolome with phenotypes
in field grown individuals. The reasoning is quite simple: funct ionally relevant and connected
regulatory networks will respond coherent ly to the subt le variat ions in growth condit ions
encountered within a field. This in turn may provide the ideal level of variat ion within "omix"



datasets to filter out relevant genes for important real-world phenotypes. The authors present very
thorough analyses of selected phenotypes along with t ranscriptome and metabolome data from
roughly 60 plants picked from a small field site and convincingly demonstrate that the single plant
approach works well and indeed represents a promising strategy for gene funct ion discovery in the
future. 
Some of the major conclusions include that local variat ion within a field is pervasive, both at  the
phenotypic and the molecular level; that  single point  molecular data obtained from the field have at
least as much informat ion than pooled samples derived from controlled condit ions, and that causal
genes can be ident ified with a good probability for phenotypes that are connected with the t issue
sample. 
Overall, the manuscript  is very well writ ten, the analyses are carried out at  a very high level and the
conceptual advance is clear. 

I only have the following points that I feel need to be addressed: 

1. Figure 1 does not allow to appreciate the spat ial correlat ions of plants within the sampling site.
We need some sort  of color coordinate system to recognize the patterns in the analyses.

2. Variable genes must be analyzed for circadian or diurnal effects, since the sampling has been
carried out over a longer period of t ime. What variat ion is left  when all genes with known diurnal
expression are taken out of the analysis?

3. I think that the t ranscript-phenotype correlat ions deserve more at tent ion. I would like to see more
data on why certain phenotypes can be predicted and others not. The authors comment that
genes expressed in the leaf may also be expressed elsewhere, e.g. in the embryo and therefore leaf
t ranscriptome may predict  embryo phenotypes. These types of correlat ions can systemat ically be
tested from published data. Is the leaf t ranscriptome more similar to embryos than to flowers? Do
they share specific important regulatory modules, e.g. auxin signaling, that  may explain the
connect ion? These types of analyses would provide important groundwork for future studies, since
they would allow to design sampling strategies that maximize predict ive power.

4. The authors advert ise the metabolome, but essent ially never make use of it  for their analyses. I
would like to learn more about this dataset and the correlat ion with the transcriptome. I would
imagine that individual field grown plants could represent a gold mine to drill deep into this
correlat ion, especially with regards to plant pathogen interact ions.

Reviewer #3: 

The study profiled phenotype and the transcriptome of 60 individual maize plants of the same
inbred background (B104) in the same field to study gene-phenotype relat ionships, with 50 of them
also with metabolite profiles. The idea is to use the inherent stochast icity of molecular processes
and external factors (e.g. variability in the micro-environment) as perturbat ions to discover novel
gene funct ions that could be ignored/averaged out in the pooled lab samples. The study showed
that the average transcript  level coefficient  of variat ion (CV) in the field is three t imes higher than
those for lab-grown A. thaliana plants. The variability allows the predict ions of phenotypes from
both t ranscriptome and metabolome data, which are comparable with each other and with lab data
under controlled perturbat ion. However, the combinat ion of both t ranscriptome and metabolome
data does not outperform the model learned individually and the hypothesis is that  the relevant



phenotype informat ion is redundant ly present in both data types. For gene funct ion predict ions, the
single-plant dataset outperforms more than 75% of the sampled datasets for predict  genes
involved in leaf development. For novel gene funct ions, literature screening is used to complement
the possible incompleteness in available GO annotat ions and some pieces of evidence are found to
support  the model. Both Elast ic net and random forest  techniques were used to construct  models
predict ing the phenotypes of individual plants as a funct ion of the t ranscript  and metabolite levels.
The funct ion of maize genes are predicted from the funct ion of their coexpression network
neighbors ('guilt -by-associat ion') via a command-line version of PiNGO. 

This is an interest ing study for revealing gene funct ions from subt le phenotypical variat ions. In
some sense, this might complement the usual harsh perturbat ion based experiment design.
However, the novel gene funct ions are not confirmed experimentally. Literature screening provides
some evidence for a small percentage of target genes but not all. On the other hand, could the
variat ion be due to somatic mutat ions? Since there is RNA-Seq data available for individual plants,
it  could be checked to provide further clues for the target genes.
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Reviewer #1: 

In the work of Cruz et al., The authors take an interesting approach, examining the 
transcriptomes and metabolomes of individually grown maize plants in the field, and 
comparing these results to the individual phenotypes of the plants. In general, this 
appears a promising approach to understanding and transferring lab based plant 
results to the field. It reveals a high level of phenotypic variability between plants in the 
field which can to some degree be matched to transcriptional differences between 
plants. In general, I think the paper is an interesting and important step forward for the 
plant systems biology field. I have the following concerns: 

Comment 1.1: Readability for a general audience: Many of the aspects of this study 
will be very interesting to the general audience of Molecular Systems Biology. 
However, it is written for a plant audience currently. It would aid the impact of the work 
if the introduction and discussion could be a little less plant specific. The issue of 
individual variability within populations has been explored in microbial and mammalian 
systems, and I would think that the MSB readers would appreciate a link to this work, 
as well as more general points to be made about the use of using the variability 
between individuals under the same environment for generating regulatory networks. 

Reply 1.1: We extended the introduction to include a discussion of previous work on 
individual variability in other kingdoms of life, noting that this work is mostly focused 
on either studying developmental plasticity of organisms (Waddington’s canalization 
concept) or studying stochasticity in single-celled organisms or single cells of 
multicellular organisms. At the end of the discussion, we now highlight that systems 
biology studies in most organisms moved straight from replicated experiments on 
pools of individuals to single-cell profiling, and that the ‘individual’ level deserves a 
reappraisal. 

Comment 1.2: Analysis of Individual transcriptome data. In examining individual 
transcriptional variability (either single cell or single individual) it is important to correct 
for technical noise (e.g, https://doi.org/10.1038/nmeth.2645). As detected levels get 
lower, CV increases due to this. Hence, it is important to use, or consider, a corrected 
CV score to account for this. I can't see a figure showing how CV scales with the mean 
expression of genes in the paper. It would be interesting if this could be added, as well 
as a more detailed explanation for why CV was chosen as the measure of variability. 

18th Sep 20201st Authors' Response to Reviewers

https://doi.org/10.1038/nmeth.2645
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Additionally, the authors write 'The average transcript level CV of ~0.3 is about three 
times higher than the transcript level CV of lab-grown A. thaliana plants in a recent 
study (Cortijo et al., 2019)'. In the Cortijo study they use a corrected CV measurement 
- does that affect the comparison?

Reply 1.2: We did indeed not take into account previously that the CV increases for 
lowly expressed genes due to technical noise, and now calculate normalized CV 
values instead as in Cortijo et al. (2019). This also affected our ranking of variable 
genes, with the main effect that some lowly expressed genes, including several 
histones that previously showed behavior different from other chromatin-associated 
genes, disappeared from the list of most variable genes. The sentence in the previous 
version of our manuscript on the transcript level CV in our data being about 3 times 
higher than in the Cortijo et al. (2019) study was based on visual comparison of the 
log(CV2) values in our data with figure 1B in Cortijo et al. (2019), which displays the 
log-scale uncorrected CV2 distribution as a function of mean expression. We now 
computationally compared our dataset (without day-of-harvest, sequencing batch and 
population structure effects, so with somewhat lower variance) to the Cortijo et al. 
(2019) dataset, and found that the average transcript level CV in our dataset is 2.49 
times higher than in the Cortijo et al. (2019) dataset. Plots comparing the CV2 values 
and their relationship to mean expression in both our dataset and the Cortijo et al. 
(2019) dataset can be found in the new Appendix Figure S5. 

Comment 1.3: Additionally, the authors harvest plants on two separate days. They 
acknowledge that this is a source of additional heterogeneity (In the PCA in figure 1). 
It seems important to redo parts of the analysis on plants just from the same day - 
Although most plants were harvested on the first day, it was unclear to me how much 
of the variability was caused by the two separate timepoints being added together, 
which seems to somewhat go against the idea of the individual plant approach. An 
equivalent bulk study of plants a week older would be expected to have differences in 
gene expression compared to bulk measurements of younger plants. 

Reply 1.3: This is a very good point. We initially left the day-of-harvest (DOH) effect 
in the data because it gives rise to variation that may be useful from the perspective 
of predicting gene functions or phenotypes, but this indeed undermines the single-
plant character of our study. We therefore decided to remove the DOH effect (together 
with a sequencing batch effect we did not adequately correct for previously and a 
genetic population structure effect that we discovered while addressing a comment of 
Reviewer #3, see the introductory paragraph and our response to Comment 3.2), and 
redid all analyses on the corrected dataset. The DOH effect (in contrast to the batch 
and SNP effects) was found to affect a substantial proportion of variables, notably 
22.2% of transcripts, in particular of genes involved in photosynthesis, nucleosome 
organization and transcriptional regulation (see Appendix Table S1 and Dataset 
EV3). Removing the DOH effect removed some 8% of the variability for the average 
transcript, about 5% of the variability for the average metabolite, and between 0 and 
20% of the phenotype variability, most notably for leaf 16 blade length (18.5% 
decrease in variation, see Figure EV1). However, our downstream analyses still 
generate comparable results overall, and our conclusions remain the same. 

Comment 1.4: The authors also find a spatial correlation between plants across the 
field and their transcriptomes and phenotypes. It wasn't clear to me what fraction of 
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differences between Maize plants were due to extrinsic differences (Location, 
harvesting time, developmental stage?) versus 'intrinsic' differences in the levels of 
transcription or metabolites between plants. Is there a way of simply quantifying this, 
or making the current analysis clearer to the reader (as the authors have already done 
a great job of looking at each of these aspects individually)? This question of where 
the variability comes from seems to be one that would be of general interest to MSB 
readers. 

Reply 1.4: As part of our data reanalysis, we used linear mixed effect (LME) models 
with harvesting date (DOH), population substructure (based on SNPs) and sequencing 
batch as fixed effects and incorporating the spatial structure of the field setup in the 
error model. From this, we estimated how much of the variance in all variables was 
due to these effects (see Figure EV1). Plants were harvested based on identical 
developmental stage and minor developmental differences were not scored, so we 
cannot account for these. Overall, the batch, DOH and SNP effects explained only 
minor proportions of the variance for most genes and metabolites (see Figure EV1). 
Additionally, 14.1% of the transcript profiles and 8% of the metabolite profiles were 
found to have a spatial structure as judged by Moran’s I (q ≤ 0.01), and around 60% 
on average of the variance in those transcript and metabolite profiles (after removing 
DOH, SNP and batch effects) was due to spatial covariance according to the LME 
modeling results (see Appendix Figure S6). There is no guarantee however that the 
remaining ~40% of the variability for the average transcript or metabolite (the i.i.d. 
distributed part of the LME model residuals) is intrinsic. A substantial portion of what 
is left may also be extrinsic in the sense that it may be due to environmental differences 
without spatial structure or with a spatial structure on a smaller scale than can be 
observed in our sampling grid. 

Comment 1.5: References to authors previous work: At two points in the paper the 
authors refer to their previous work: ' gene expression variations among individual 
Arabidopsis thaliana plants grown under the same stringently controlled lab conditions 
contain a lot of information on the molecular wiring of the plants, on par with traditional 
expression profiles of pooled plant samples subject to controlled perturbations 
(Bhosale et al, 2013).' And 

In previous work, we showed that expression variations among individual Arabidopsis 
thaliana plants, all grown under the same stringently controlled conditions, can 
efficiently predict gene functions (Bhosale et al., 2013) 

From this description, readers will miss that the work in Bhosale et al. was analysis of 
individual Arabidopsis leaves from different genotypes grown in different labs. The first 
step of the work was to remove these differences 'in silico', but this is not mentioned 
here. Readers might think that these plants were all genetically identical plants grown 
under the exact same conditions in one laboratory, which is not the case. The 
description of this work should be revised to reflect the actual conditions used. 

Reply 1.5: The reviewer is correct that insufficient details were given on the 
experimental conditions used to generate the Arabidopsis data we analyzed previously 
in Bhosale et al. (2013), and that this could cause misunderstandings. This has been 
corrected. We opted to not include these details in the introduction, to avoid breaking 
the flow of the text, but include them instead in the results section upon second 
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mention of the Bhosale et al. (2013) study. This allows us to provide more context and 
better highlight similarities and differences with the present study. 
  
 
Reviewer #2: 
  
In this manuscript, Cruz and colleagues put forward an intriguing concept to connect 
genotype to phenotype in plants, namely the correlation of gene expression and 
metabolome with phenotypes in field grown individuals. The reasoning is quite simple: 
functionally relevant and connected regulatory networks will respond coherently to the 
subtle variations in growth conditions encountered within a field. This in turn may 
provide the ideal level of variation within "omix" datasets to filter out relevant genes for 
important real-world phenotypes. The authors present very thorough analyses of 
selected phenotypes along with transcriptome and metabolome data from roughly 60 
plants picked from a small field site and convincingly demonstrate that the single plant 
approach works well and indeed represents a promising strategy for gene function 
discovery in the future. Some of the major conclusions include that local variation 
within a field is pervasive, both at the phenotypic and the molecular level; that single 
point molecular data obtained from the field have at least as much information than 
pooled samples derived from controlled conditions, and that causal genes can be 
identified with a good probability for phenotypes that are connected with the tissue 
sample. Overall, the manuscript is very well written, the analyses are carried out at a 
very high level and the conceptual advance is clear.  
 
I only have the following points that I feel need to be addressed:  
 
Comment 2.1: Figure 1 does not allow to appreciate the spatial correlations of plants 
within the sampling site. We need some sort of color coordinate system to recognize 
the patterns in the analyses.  
 
Reply 2.1: As incorporating additional colors in the new Figure 1 led to a messy figure 
(because also the harvesting day, genetic population structure and sequencing batch 
groups are indicated there on the PCA), we now present PCA plots with color-coded 
field locations in Appendix Figure S3. 
  
Comment 2.2: Variable genes must be analyzed for circadian or diurnal effects, since 
the sampling has been carried out over a longer period of time. What variation is left 
when all genes with known diurnal expression are taken out of the analysis?  
 
Reply 2.2: We tried to avoid diurnal effects as much as possible by keeping the 
sampling timeframe as short as possible. All plants and organs were sampled in a 2-
hour timeframe, and the same timeframe (10:00 am to 12:00 pm) was used on both 
harvest days, so we expected diurnal effects to be limited. Even in lab experiments, 
sampling often takes longer than 2 hours and diurnal corrections are to our knowledge 
rarely if ever performed.  
 
Even so, it is indeed possible that part of the expression variation between plants is 
caused by diurnal effects in the 2-hour sampling period. Removing genes with known 
diurnal variation patterns will not teach us a lot about what fraction of a transcript’s 
variance is caused by diurnal effects, as this will not impact the variation of the 
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remaining genes. On the other hand, fully estimating and correcting for diurnal 
variation effects in our data is not evident as the exact time points at which the plants 
were harvested were not recorded. In theory, it should be possible to use a latent 
variable model to estimate the unknown diurnal phases of samples using the 
expression of known diurnal rhythm marker genes, and then remove the estimated 
effects. This is for instance also done for removing cell cycle effects in single-cell RNA-
seq datasets (see e.g. Buettner et al. 2015 Nature Biotechnology, 
https://doi.org/10.1038/nbt.3102 ). The efficacy of such an approach would however 
likely be limited given that the sampling period in our data is only 2 hours long. 

We took an alternative approach to assess which proportion of transcript variance 
could be due to diurnal effects. We compared the diurnal variations for maize 
transcripts as observed in a recent study (Lai et al. BMC Genomics (2020) 21:428, 
https://doi.org/10.1186/s12864-020-06824-3) with the corresponding transcript level 
variations among the individual plants in our study. We first preprocessed and 
normalized the Lai et al. (2020) raw data using the same protocol as used for our data, 
except that read mapping was not done with GSNAP, but with the faster HiSat2. The 
5% most lowly expressed genes in both datasets were removed, and we then 
compared plots of the transcript CV2 versus mean expression for the two datasets 
(Figure R1 below). 9,329 out of 18,171 transcripts in the single-plant dataset were 
identified by Lai et al. (2020) as diurnally varying at q < 0.05 (Table S3 in Lai et al. 
2020), and after removing the 5% most lowly expressed genes, 2,256 transcripts 
showed a strong diurnal rhythm (q < 1e-05). We mainly focused our analysis on these 
transcripts (colored dots in Figure R1). A couple of observations can be made from 
Figure R1. First, genes with higher mean expression in the Lai et al. (2020) dataset 
tend to also be more highly expressed on average in the single-plant dataset. This 
renders the CV2 versus mean expression plots for the two datasets more comparable. 
For highly expressed genes, the CV2 trend values in the single-plant dataset are only 
about 19.1% of the CV2 trend values in the Lai et al. (2020) dataset, indicating that the 
expression variability in the single-plant data is generally substantially lower than the 
variability of genes over a 24-hour period. CV2 values in both datasets only become 
similar for lowly expressed genes, for which CV values are dominated by technical 
noise. 

That there might be some time-of-day effect in our data is indicated by the fact that 
strongly rhythmic genes in the Lai et al. (2020) dataset have a higher median 
normalized CV (i.e. log2(CV2/trend), see Methods) in our data than weakly rhythmic or 
non-rhythmic genes (Mann-Whitney U test p values < 1e-67, Figure R2). The set of 
strongly rhythmic genes is enriched in genes involved in photosynthesis and small-
molecule metabolism (Dataset EV3). The shift in median normalized CV between 
strongly rhythmic genes and other genes is however small compared to the range of 
normalized CV values across all genes (Figure R2), indicating that only a minor part 
of the expression variance in our dataset is due to diurnal effects. Furthermore, it 
cannot be excluded that there are other reasons or cues than diurnal rhythmicity that 
may cause strongly rhythmic genes to be more variably expressed in our dataset than 
the average gene. The difference in median normalized CV between weakly rhythmic 
and non-rhythmic genes is not significant (Mann-Whitney U test p = 0.7523). 

We also assessed whether diurnally varying genes would be differentially affected in 
our data dependent on their time of peak expression in the Lai et al. (2020) dataset. 

https://doi.org/10.1038/nbt.3102
https://doi.org/10.1186/s12864-020-06824-3
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Figure R3C and Table R1 show that rhythmic genes with peak expression between 
9:00 and 13:00 tend to have higher normalized CV values in the single-plant dataset, 
which could be taken to suggest that these genes show considerable variation in the 
10:00-12:00 harvesting timeframe. On the other hand, these genes also have higher 
normalized CV values in the Lai et al. (2020) dataset (Figure R3B), indicating that they 
are more variably expressed overall than rhythmic genes peaking at other times of the 
day. Generally, there are no obvious shifts in the normalized CV of genes peaking at 
any particular time of day in the single plant dataset versus the Lai et al. (2020) dataset 
(Figure R3), indicating that any time-of-day effects in our dataset similarly affect genes 
peaking at different times of day. 

In summary, up to a few thousand genes may exhibit minor diurnal variation effects 
because of the 2-hour sampling timespan of our experiment. These variations however 
do not disturb the single-plant character of the study (in contrast to e.g. the day-of-
harvest effect), and we therefore did not attempt to remove them. Moreover, such 
removal would likely work only partially and would require estimating diurnal effect 
sizes simultaneously with the DOH, sequencing batch, population substructure and 
particularly spatial autocorrelation effects, which is technically challenging. In order not 
to inflate the manuscript size too much, we only included the analysis depicted on 
Figure R2 in the new manuscript version (Appendix Figure S4). 

Table R1. Median normalized CV2 values in the single-plant dataset of rhythmic 
genes according to peak expression time. Median normalized CV2 values are 
calculated from the single-plant expression data for groups of rhythmic genes (q < 5e-
02) with peak expression in a given 2-hour interval.

peak 
expr. time 

09:00-
11:00 

11:00-
13:00 

13:00-
15:00 

15:00-
17:00 

17:00-
19:00 

19:00-
21:00 

21:00-
23:00 

23:00-
01:00 

01:00-
03:00 

03:00-
05:00 

05:00-
07:00 

07:00-
09:00 

median 
CV2 

-0.264 -0.229 -1.157 -1.217 -1.459 -1.721 -1.921 -1.904 -1.791 -1.398 -0.751 -0.491
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Figure R1. Comparison of the CV2 distributions of transcripts in the single-plant 
data and the Lai et al. (2020) dataset profiling diurnal rhythms. (A) Plot comparing 
the CV2 values in both dataset for genes identified in Lai et al. (2020) as having a 
strong diurnal rhythm (q < 1e-5). The pink line displays a linear fit of the datapoints in 
log space, points on the black line have equal CV2 in both datasets. (B) CV2 versus 
mean expression plot for the Lai et al. (2020) dataset. The red trendline is a 
generalized linear model (GLM) fit of the gamma family with identity link, as in 
Brennecke et al. (2013) (C) CV2 versus mean expression plot for the single-plant 
dataset, with a trendline in orange constructed as for panel (B). (D) Overlay of the CV2 
versus mean expression relationships in both datasets, for genes with a strong diurnal 
rhythm (q < 1e-5) in Lai et al. (2020). In all plots, genes with a strong diurnal rhythm 
(q < 1e-5) are colored according to their mean expression in the Lai et al. (2020) 
dataset (see color legend on the right). 
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Figure R2. Normalized expression CV distributions in the single-plant dataset 
for diurnally varying genes versus non-diurnally varying genes. Violin plots of 
normalized CV distributions are shown for genes identified in Lai et al. (2020) as 
strongly rhythmic (A), weakly rhythmic (B) or non-rhythmic (C), and for all genes (D). 
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Figure R3. Time of peak expression mapped to CV2 distributions of the single-
plant data and the Lai et al. (2020) dataset. (A) Plot comparing the CV2 values in 
both dataset for genes identified in Lai et al. (2020) as having a strong diurnal rhythm 
(q < 1e-5). The pink line displays a linear fit of the datapoints in log space, points on 
the black line have equal CV2 in both datasets. (B) CV2 versus mean expression plot 
for the Lai et al. (2020) dataset. The red trendline is a generalized linear model (GLM) 
fit of the gamma family with identity link, as in Brennecke et al. (2013) (C) CV2 versus 
mean expression plot for the single-plant dataset, with a trendline in orange 
constructed as for panel (B). (D) Overlay of the CV2 versus mean expression 
relationships in both datasets, for genes with a strong diurnal rhythm (q < 1e-5) in Lai 
et al. (2020). In all plots, genes with a strong diurnal rhythm (q < 1e-5) are colored 
according to their time of peak expression in the Lai et al. (2020) dataset (see color 
legend on the right). 

Comment 2.3: I think that the transcript-phenotype correlations deserve more 
attention. I would like to see more data on why certain phenotypes can be predicted 
and others not. The authors comment that genes expressed in the leaf may also be 
expressed elsewhere, e.g. in the embryo and therefore leaf transcriptome may predict 
embryo phenotypes. These types of correlations can systematically be tested from 
published data. Is the leaf transcriptome more similar to embryos than to flowers? Do 
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they share specific important regulatory modules, e.g. auxin signaling, that may 
explain the connection? These types of analyses would provide important groundwork 
for future studies, since they would allow to design sampling strategies that maximize 
predictive power. 

Reply 2.3: We assume this question of Reviewer #2 is about our gene function 
prediction performance results, where performance scores of our dataset relative to 
the datasets sampled from the SRA database are better for some organ development 
categories than for others. In the previous version of the manuscript, we found that our 
dataset outperformed the datasets sampled from SRA for predicting genes involved in 
embryo, root and leaf development, despite the fact that all datasets only profiled 
leaves. It is important to stress however that this does not mean that our dataset 
predicts e.g. root development genes well, only that it does so better than the SRA 
datasets. For actual data on how well genes involved in a particular process are 
predicted, one needs to look at the recall, precision and F-measure score plots, now 
given in Dataset EV12. The old prediction performance figure for root development 
for instance, reproduced below as Figure R4, shows that recall, precision and F-
measure are in fact low for all datasets, or in other words that root development genes 
are not at all well predicted. Based on our corrected dataset (after removal of DOH, 
population structure and sequencing batch effects), the same is true for flower 
development, and, surprisingly, also leaf development, despite the fact that it scores 
very well relative to the SRA datasets (Dataset EV12, root development could no 
longer be scored because it produced too few root development predictions, but this 
can in fact be considered even worse). The F-measure values for embryo, seed and 
fruit development on the other hand go up to ~0.08, which is substantially higher than 
for e.g. leaf development (~0.01). The cause for this is technical rather than biological: 
fewer genes are annotated in GO to leaf, root or flower development than to embryo, 
seed and fruit development (Table R2 below), likely because the latter processes have 
been studied and annotated more  than the  former (also in Arabidopsis thaliana, 
where most of the GO annotations for plants derive from). This means there are more 
known genes for e.g. embryo development than for leaf development in the network. 
As the number of known genes for a process increases, also the density of genes 
annotated to this process will increase in certain parts of the network, assuming that 
genes functioning in the same process will cluster together more than expected by 
chance (guilt-by-association dogma). This in turn makes it statistically easier to 
associate genes (either known or new) with the process concerned, which explains 
why prediction performance F-measures for embryo development can be higher than 
for leaf development despite the fact that leaves and not embryos were profiled.  

For this reason, our function prediction performance results can better be compared 
across datasets (e.g. our network versus the sampled SRA networks) than directly 
across GO categories. These relative performances can then still be interpreted 
across GO categories however. For instance, based on our corrected dataset, the 
single-plant network scores very well relative to the SRA networks for leaf and embryo 
development (Figure 6), but worse for other developmental processes. We consider 
this a positive result as leaves and embryos (which contain embryonic leaves) are the 
two developmental processes that are most closely related to the material profiled, 
both in the single plant and the SRA datasets. 
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Table R2. Numbers of genes annotated to different developmental process 
categories in the maize GO annotation. 

GO ID GO Name 
Number of 

annotated genes 

48366 leaf development 508 

9790 embryo development 707 

48316 seed development 907 

9908 flower development 639 

48364 root development 653 

10154 fruit development 959 

The question remains why it is possible to predict e.g. seed development genes from 
leaf data. As already stated in the previous version of the manuscript, it is known that 
several genes expressed in leaves have roles in the development of other organs. 
Parts of e.g. the auxin signaling network and essentially all other hormone signaling 
pathways are reused in different developmental programs. A thorough analysis of 
which parts of which pathways are conserved across which organs is outside the 
scope of this study. It is however very likely that many commonalities between different 
developmental programs remain to be discovered and/or annotated. 

Figure R4. Gene function prediction performance plots for root development in 
the previous version of the manuscript. 
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Comment 2.4:  The authors advertise the metabolome, but essentially never make 
use of it for their analyses. I would like to learn more about this dataset and the 
correlation with the transcriptome. I would imagine that individual field grown plants 
could represent a gold mine to drill deep into this correlation, especially with regards 
to plant pathogen interactions. 

Reply 2.4: We did indeed focus mostly on interpretation of the results of transcriptome 
analyses, mainly because of the fact that many metabolites in our dataset remain 
unknown and hence difficult to interpret. Although we did use the metabolome data for 
various analyses in the previous manuscript version, e.g. PCA analysis, spatial 
autocorrelation analysis and predictive models for the phenotypes, we acknowledge 
that we could have done more. In the revised manuscript, we also included clustering 
results for autocorrelated metabolite profiles and associations of these clusters with 
phenotypes (Datasets EV4, EV5 and EV6), a ranking of metabolites according to field 
variability (Appendix Figure S7 and Dataset EV7) and spatially corrected correlation 
analyses to associate single metabolites to phenotypes (Dataset EV15), but the 
results remain difficult to interpret biologically. Correlations between transcript and 
metabolite profiles are depicted in the global hierarchical clustering in Figure EV4. 
Which metabolites and transcripts belong to which cluster can be found in Dataset 
EV9. We can unfortunately not go into detail about which metabolites are linked to 
genes involved in various kinds of plant-pathogen interactions, as this is not our field 
of expertise. All our datasets are made available however for further mining, and we 
definitely agree that many other interesting findings may emerge from the data if they 
are looked at from another perspective than ours.     

Reviewer #3: 

The study profiled phenotype and the transcriptome of 60 individual maize plants of 
the same inbred background (B104) in the same field to study gene-phenotype 
relationships, with 50 of them also with metabolite profiles. The idea is to use the 
inherent stochasticity of molecular processes and external factors (e.g. variability in 
the micro-environment) as perturbations to discover novel gene functions that could 
be ignored/averaged out in the pooled lab samples. The study showed that the 
average transcript level coefficient of variation (CV) in the field is three times higher 
than those for lab-grown A. thaliana plants. The variability allows the predictions of 
phenotypes from both transcriptome and metabolome data, which are comparable 
with each other and with lab data under controlled perturbation. However, the 
combination of both transcriptome and metabolome data does not outperform the 
model learned individually and the hypothesis is that the relevant phenotype 
information is redundantly present in both data types. For gene function predictions, 
the single-plant dataset outperforms more than 75% of the sampled datasets for 
predict genes involved in leaf development. For novel gene functions, literature 
screening is used to complement the possible incompleteness in available GO 
annotations and some pieces of evidence are found to support the model. Both Elastic 
net and random forest techniques were used to construct models predicting the 
phenotypes of individual plants as a function of the transcript and metabolite levels. 
The function of maize genes are predicted from the function of their coexpression 
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network neighbors ('guilt-by-association') via a command-line version of PiNGO. 

Comment 3.1: This is an interesting study for revealing gene functions from subtle 
phenotypical variations. In some sense, this might complement the usual harsh 
perturbation based experiment design. However, the novel gene functions are not 
confirmed experimentally. Literature screening provides some evidence for a small 
percentage of target genes but not all. 

Reply 3.1: Reviewer #3 is correct that experimental validations of our gene function 
predictions are lacking. We do plan follow-up experiments in particular for the top 
genes predicted to influence leaf length and width, but it would still cost us about a 
year to generate the necessary lines, and we would like to publish the results we 
already have before that time. Although the literature screening we performed only 
gives partial information on the validity of our predictions, it does give a good idea 
about whether or not our predictions make sense. Using a corrected dataset (with day-
of-harvest, population structure and sequencing batch effects removed, see the 
introductory paragraph), we redid the gene function predictions and literature 
validations and found that the percentage of predictions validated to at least some 
extent by literature increased to more than 45%. 

Comment 3.2: On the other hand, could the variation be due to somatic mutations? 
Since there is RNA-Seq data available for individual plants, it could be checked to 
provide further clues for the target genes. 

Reply 3.2: There is indeed residual genetic variability in the B104 inbred line due to 
germline and somatic mutations, and how much of the molecular and phenotypic 
variability between plants can be explained by this genetic variability is a very 
interesting question. We therefore investigated the genetic variant structure of our 
RNA-seq data, and unexpectedly discovered that two slightly different subpopulations 
of plants were part of our experiment, likely derived from different mother plants 
(Appendix Figure S1). The SNPs differentiating the subpopulations are found on all 
chromosomes, but mainly in a few regions on chromosome 1 (Appendix Figure S2). 

Because this introduces a systematic effect that may interfere with the single-plant 
character of our study, we decided to remove this population structure effect using 
linear mixed effect (LME) modeling, together with the day-of-harvest and sequencing 
batch effects (see introduction). The levels of 103 transcripts, 1 metabolite and none 
of the phenotypes were found to exhibit a significant population structure effect (q ≤ 
0.01 in the LME models, Appendix Table S1), which indicates that the effects of the 
population structure on the molecular and phenotypic data are limited, even before 
correcting for them. 

After removal of the population structure effect, there are however still a lot of other   
genetic variants in the data that may affect transcript, metabolite or phenotype levels. 
In total 10,311 biallelic SNPs (including 1,377 SNPs for which the allele profile 
corresponded with the population structure) were called in at least 48 plants and had 
a minor allele frequency (MAF) of ≥5% (≥3 individuals) after imputation of missing 
values (Appendix Table S6). The number of other types of variants was 
comparatively limited. We focused on this set of 10,311 biallelic SNPs to investigate 
whether genetic variants significantly affect the phenotypes of the individual plants. 
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This analysis is necessarily incomplete, as we cannot recover e.g. SNPs in cis-
regulatory regions from the RNA-seq data, but it should give a good idea about the 
distribution of effect sizes of genetic variants in our dataset. The effects of many cis-
regulatory variants are likely also captured indirectly through linkage with variants in 
the coding sequence. We focused on linking genetic variability to phenotypic 
variability, and took two different approaches to estimate the effect of biallelic SNPs 
on the phenotypes observed. 

In a first approach, we performed a classical GWAS analysis to associate SNPs with 
phenotypes. We focused on a set of 10,311 biallelic SNPs that were called in at least 
48 plants and that had a minor allele frequency (MAF) after imputation of missing 
values of ≥5% (≥3 individuals). We did not uncover any reliable evidence linking SNPs 
to phenotypic differences. A single SNP, which is not associated with a known gene, 
was found to surpass the significance threshold (Bonferroni-corrected p≤0.01) for ear 
length, but the corresponding quantile-quantile (Q-Q) plot displays abnormalities 
indicating that this result is likely unreliable (Appendix Figure S9).   

In parallel, we used the biallelic SNPs as features in machine learning models to 
predict the phenotypes, similar to the analyses we did for linking transcriptome and 
metabolome data to phenotypes. This gives us a view on how much information the 
set of SNPs as a whole contains about any particular phenotype (rather than how 
much information individual SNPs contain). An added benefit of the machine learning 
approach is that the models are trained using crossvalidation and tested on out-of-bag 
samples, giving a more accurate view on their predictive power on unseen samples 
than in a classical GWAS. Also in the machine learning models, SNPs were not found 
to be good predictors of the individual plant phenotypes (Appendix Table S7). 
Together, these results show that the impact of the residual genetic variance in our 
population on phenotypes is small. 

Given these results, it made little sense to us to also perform a full-scale e-GWAS 
analysis to check the effects of genetic variants on gene expression levels. We did 
however investigate how genetic variability compares with micro-environmental or 
stochastic variability as an information source for gene function prediction. To this end, 
we compared how the function prediction performance of the expression variability in 
our dataset (individuals of B104 inbred background) compares to that of the 
expression variability in a genetic diversity panel, using the same sampling 
methodology we used on data from the Sequence Read Archive (SRA) on a dataset 
from Kremling et al. 2018 ( https://doi.org/10.1038/nature25966 ). We found that the 
gene function prediction performance (F-measures) of the single-plant dataset was 
higher than that of all sampled diversity datasets (Figure EV5), indicating that 
individual plant variation is at least as valuable as genetic variation for unraveling gene 
function. 

https://doi.org/10.1038/nature25966
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