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Monte Carlo simulations

We employed the Monte Carlo (MC) method with the standard Metropolis scheme to explore

the equilibrium properties of the lattice model introduced in the previous section. We used three

types of trial moves in the MC simulations: (i) vertical displacements of membrane patches to

capture thermal fluctuations in the local separation between the adhering membranes, (ii) lateral

translations of the receptors and ligands to mimic their diffusion, and (iii) lateral translations of

lipid raft patches. The MC trial moves of type (i) were variations of local separations li of the

apposing membrane patches i. All trial moves leading to li < 0 were rejected. In the MC trial

moves of type (ii), the receptors and ligands were attempted to hop between neighboring membrane

patches, which led to variations in the composition fields m+ and m−. The MC trial moves of type

(iii) were analogous to these of type (ii) but were applied to the composition fields n+ and n−. The

proportion of the trial moves (i), (ii) and (iii) in each of the MC sweeps was chosen according to

the physical timescales as in our earlier work.1

We simulated membranes with the lateral size of up to 100×100 patches and periodic bound-

ary conditions. A relaxation run of 5× 107 MC sweeps was performed in each simulation for

thermal equilibration and a subsequent run of 5× 107 MC sweeps for statistical sampling. The

simulation parameters were chosen according to existing literature data. Specifically, we assumed

κ1 = κ2 = 10kBT ,2 leading to the effective bending rigidity κ = κ1κ2/(κ1 +κ2) = 5kBT , where

kB and T denote the Boltzmann constant and room temperature, respectively. The square-well

binding potential Vb was characterized by the binding energy Ub = 3kBT or 6kBT , the binding

range lb = 1 nm, and the receptor-ligand complex length lc = 15 nm.3,4 The energy of coupling

between a receptor or ligand molecule and a lipid raft was Ua = 4kBT or 3kBT so that the protein

concentration in the lipid rafts was within the experimentally reported range of around 103 to 104

molecules per µm2.5 The energy of coupling between the raft-containing patches, U , was set to be

in the range from 0.6 U∗0 to 1.2 U∗0 with U∗0 = 2ln(1+
√

2)kBT being the critical interaction pa-

rameter for the lattice-gas model on the two-dimensional square lattice. The area concentration of

proteins, cp, was varied between 0 and 0.2/a2 in the MC simulations, corresponding to a maximal
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concentration of 2000/µm2.6 The membrane area occupied by the lipid rafts was varied up to 30%

of the membrane surface area,7 i.e., parameter x was varied between 0 and 0.3.

To recognize the influence of membrane shape fluctuations on the spatial distribution of lipid

rafts, we performed MC simulations of planar membranes with li = lc at any site i. In these sim-

ulations, the MC trial moves of type (i) were omitted and, thus, the membrane shape fluctuations

were totally suppressed. The planar membrane simulations were carried out in the same range of

model parameters as the simulations in which the membrane shape fluctuations were taken into

account.

In the MC simulations we monitored the instantaneous number of the receptor-ligand com-

plexes. We could thus determine the average area concentration of the receptor-ligand complexes

[RL]. We note that for a given set of the model parameter values, [RL] is smaller in the fluctu-

ating membrane system than in the planar membrane system, see Fig. S1. This effect is more

pronounced when the receptor-ligand binding energy Ub is relatively small, compare panels a and

b in Fig. S1.
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Figure S1: The area concentration of the receptor-ligand complexes, [RL], as a function of the
total area concentration of the adhesion proteins, cp, for different values of parameters Ub, Ua and x.
Panel a shows the simulation results for Ub = 6kBT and Ua = 3kBT . Panel b shows the simulation
results for Ub = 3kBT and Ua = 3kBT . The filled and open symbols correspond to fluctuating and
planar membrane systems, respectively. The points in red, green and blue correspond to x = 0.1,
x = 0.2 and x = 0.3, respectively.

One of the key quantities in this study is the domain size distribution. To identify a membrane
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domain, a lattice site occupied by a lipid raft is selected, then all its nearest neighbors, next-nearest

neighbors, etc., are searched until none of the neighbors is occupied by the raft.8 The domain sizes

are monitored in the course of the MC simulation and, in this way, the domain size distribution is

determined. To identify phase transitions in the membrane system, we also monitor how the heat

capacity per lattice site

Cv =
〈E2〉−〈E〉2

NkBT 2 (1)

changes when the model parameters are varied. Here, N is the total number of lattice sites and the

square brackets 〈. . .〉 denote the ensemble average.

The phase daigrams obtained from the MC simulations are shown in panels a and b of Fig. 3

in the Letter. To check for finite size effects, we performed the MC simulations with lattices of

60×60 and 100×100 sites. We found out that the values of U at the phase transition points were

identical – within the statistical error – for the simulation systems with 60×60 and 100×100 sites

(see Fig. S2).
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Figure S2: Phase diagrams for the planar (a) and fluctuating (b) membrane systems as obtained
from the MC simulations with Ub = 6kBT and Ua = 3kBT . The data points marked as circles come
from MC simulations with 100× 100 lattice sites, and the data points marked as squares – from
simulations with 60× 60 lattice sites. The points in red, green and blue correspond to x = 0.1,
x = 0.2 and x = 0.3, respectively.
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Mean field theory

To implement the mean field theory we consider the grand-canonical Hamiltonian

H = E1 +E2 +E3 +E4−µr ∑
i

(
n+i +n−i

)
−µp ∑

i

(
m+

i +m−i
)

(2)

where the energy terms E1, E2, E3 and E4 are given in the main text of the Letter, whereas µr and µp

are the chemical potentials of the raft-type patches and the membrane-protein patches, respectively.

Transforming membrane composition variables no
i = 0,1 to spin variables so

i = 2no
i − 1 = ±1,

where the superscript o = +,− distinguishes between the upper and lower membrane, and using

the mean-field approximation so
i so

j ≈ 〈so
i 〉so

i + 〈so
j〉so

j −〈so
i 〉〈so

j〉 with the average 〈so
i 〉 = 〈so

j〉, we

obtain the mean-field total energy

HMF = E1(l)+E2(l,m+,m−)+ ∑
o=+,−

∑
i

[
ε−Ueffso

i −
Ua

2
so

i mo
i −
(

Ua

2
+µp

)
mo

i

]
(3)

with ε = 1
2

(
Us2−U−µr

)
and Ueff =Us+U+ 1

2 µr, where s= 〈s+i 〉= 〈s
−
i 〉 because of the up-down

symmetry of membrane system. Then the grand-canonical partition function

ZMF =
[
∏

i

∫
∞

0
dli
][

∏
i

∑
s+i =±1

∑
s−i =±1

∑
m+

i =0,1
∑

m−i =0,1

]
e−βHMF

= e−2Nβε

[
∏

i

∫
∞

0
dli

][
e−βE1(l)∏

i
∑

σ+=±1
∑

σ−=±1
wσ+,σ−(li)

]
(4)

where β = 1
kBT and

wσ+,σ−(li) =
[
1+ eβ

(
σ++1

2 Ua+µp

)
+ eβ

(
σ−+1

2 Ua+µp

)
+eβ

(
σ++σ−

2 Ua+Ua+2µp

)
eβUbθ(lb/2−|li−lc|)

]
·

eβUeff(σ
++σ−) (5)
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By introducing Aσ+,σ− = wσ+,σ−(li)|θ(lb/2−|li−lc|)=0 and Bσ+,σ− = wσ+,σ−(li)|θ(lb/2−|li−lc|)=1, the

mean-field partition function given by Eq. (4) can be rewritten as

ZMF = e−2Nβε

[
∑

σ+=±1
∑

σ−=±1
Aσ+,σ−

]N[
∏

i

∫
∞

0
dli
]
e−β

[
E1(l)+∑i Vb,eff(li)

]
(6)

where the effective binding potential Vb,eff(li) =−Ub,effθ(lb/2−|li− lc|) is a square-well potential

of the same width lb and location lc as the receptor-ligand binding potential Vb. The effective

potential depth

Ub,eff = kBT ln
∑σ+ ∑σ− Bσ+,σ−

∑σ+ ∑σ− Aσ+,σ−
(7)

is a function of parameters Ub, Ua, U , µp, µr and T . The free energy per lattice site is

F =−kBT
N

lnZMF = 2ε− kBT ln
[

∑
σ+=±1

∑
σ−=±1

Aσ+,σ−

]
+F0 (8)

where

F0 =−
kBT
N

ln

{[
∏

i

∫
∞

0
dli
]
e−β

[
E1(l)+∑i Vb,eff(li)

]}
(9)

is the free energy per lattice site for two homogeneous membranes with Hamiltonian H0(l) =

E1(l)+∑iVb,eff(li).

Phase separation occurs if F (s) exhibits two equal minima separated by a maximum, which

implies that ∂F/∂ s = 0 has three roots, and ∂ 2F/∂ s2 is negative for one of the roots and positive

for the other two. The condition ∂F/∂ s = 0 leads to the following self-consistent equation

s = Pb
∑σ+ ∑σ−

1
2 (σ

++σ−)Bσ+,σ−

∑σ+ ∑σ− Bσ+,σ−
+(1−Pb)

∑σ+ ∑σ−
1
2 (σ

++σ−)Aσ+,σ−

∑σ+ ∑σ− Aσ+,σ−
(10)

where Pb =−∂F0/∂Ub,eff = 〈θ(lb/2−|li− lc|)〉H0 is the so-called contact probability of the ho-

mogeneous membranes.9 More precisely, 0 ≤ Pb ≤ 1 is the expectation value for the fraction of

bound membrane patches, i.e., membrane patches with lc− lb
2 < li < lc +

lb
2 in the homogeneous

membrane system.
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Planar membranes within the receptor-ligand binding range

In the case of two planar membranes within the receptor-ligand binding range, i.e. with θ(lb/2−

|li− lc|) = 1 at each lattice site i, implying Pb = 1, the self-consistent equation (10) reduces to

s =
∑σ+ ∑σ−

1
2 (σ

++σ−)Bσ+,σ−

∑σ+ ∑σ− Bσ+,σ−

=
f̃1,1e2βUs− f̃−1,−1e−2βUs

f̃1,1e2βUs + f̃−1,−1e−2βUs +2 f−1,1
(11)

with f̃1,1 = f1,1eβ (µr+2U), f̃−1,−1 = f−1,−1e−β (µr+2U), and fσ+,σ− = 1+eβ (σ++1
2 Ua+µp)+eβ (σ−+1

2 Ua+µp)+

eβ (σ++σ−
2 Ua+Ua+2µp+Ub). The free energy in Eq. (8) becomes

F = Us2−U−µr− kBT ln
(

f̃1,1e2βUs + f̃−1,−1e−2βUs +2 f−1,1

)
(12)

For f̃1,1 = f̃−1,−1 = ( f1,1 f−1,−1)
1/2, i.e., µr = −2U − kBT ln t with t = ( f1,1/ f−1,−1)

1/2, Eq. (11)

has one trivial root s = 0 and two other roots opposite in signs and yielding the same free energy.

For U <U∗ one then obtains

U = −kBT
1
2s

ln
(1− s2 + r2s2)1/2− rs

1+ s
(13)

with the critical coupling energy U∗ given by

U∗ =−kBT lim
s→0

1
2s

ln
(1− s2 + r2s2)1/2− rs

1+ s
= kBT

r+1
2

(14)

where r = f−1,1/( f1,1 f−1,−1)
1/2 ≤ 1 is a function of parameters Ua, Ub and µp. For Ua = 0 or

Ub = 0 or µp→−∞ (i.e. for membranes without adhesion proteins), r = 1 and Eq. (14) reduces to

the mean-field solution of the two-dimensional Ising model. The area concentration of the adhesion
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proteins on each of the membranes, cp =− 1
2a2

(
∂F/∂ µp

)
, is given by

a2cp = 1−
e2βUs

t

[
1+ eβ (Ua+µp)

]
+ e−2βUs[1+ eβ µp

]
t +
[
2+ eβ (Ua+µp)+ eβ µp

]
f̃1,1 + f̃−1,−1 +2 f−1,1

(15)

Eqs. (13) and (15) together determine the phase diagram in the U–cp plane for the planar membrane

system. At the critical point, the protein concentration cp is obtained from Eq. (15) in the limit

s→ 0, i.e.

a2cp = 1−
1
t

[
1+ eβ (Ua+µp)

]
+
[
1+ eβ µp

]
t +
[
2+ eβ (Ua+µp)+ eβ µp

]
f̃1,1 + f̃−1,−1 +2 f−1,1

(16)

Eqs. (11), (14), and (16) allow us to determine how the contact energy at the critical point, U∗,

depends on cp and other model parameters.

Fluctuating membranes

Thermal fluctuations cause vertical displacements of the apposing membranes, which leads to

Pb < 1. To solve the self-consistent Eq. (10) and find the conditions for the lateral phase separation,

it is then necessary to determine how the contact probability Pb depends on the model parameters.

0 1 2 3 4 5 6
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

P b

u b , e f f

Figure S3: Contact probability Pb of two homogeneous membranes as a function of the depth
Ub,eff of the effective square-well potential Vb,eff with lc = 15 nm and lb = 1 nm. The MC data
points (dots) are well fitted by the function Pb = 1− c1/(c1 + ub,eff + c2u2

b,eff + c3u3
b,eff + c4u4

b,eff)

with ub,eff =Ub,eff/kBT and four fitting parameters c1 = 1.65, c2 = 0.78, c3 =−0.34 and c4 = 0.23
(solid line).
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We performed MC simulations of two apposing homogeneous membranes interacting via the

effective square-well potential Vb,eff(li) =−Ub,effθ(lb/2−|li− lc|) with lc = 15 nm and lb = 1 nm,

and determined Pb as a function of the depth Ub,eff of the effective potential well. The MC data

points (dots in Fig. S3) were found to lie on a curve given by a function Pb = 1− c1/(c1 +ub,eff +

c2u2
b,eff+c3u3

b,eff+c4u4
b,eff) (solid line in Fig. S3), where c1 = 1.65, c2 = 0.78, c3 =−0.34 and c4 =

0.23 are fitting parameters and ub,eff =Ub,eff/kBT is the rescaled depth of the effective potential.

Note that the free energy per lattice site of the two homogeneous membranes, F0, can be

determined from Pb(Ub,eff) via thermodynamic integration

F0 = F ∗
0 −

∫ Ub,eff

U∗b,eff

Pb(U ′b,eff)dU ′b,eff (17)

where F ∗
0 is the free energy per lattice site of the homogeneous membranes in the unbound state

at Ub,eff =U∗b,eff with limUb,eff→U∗b,eff
Pb = 0.

By combining the dependence of Pb on Ub,eff (shown in Fig. S3) with the definition of Ub,eff

(given by Eq. (7)) we determine how Pb depends on the mean-field parameter s and on the param-

eters of Hamiltonian (2). Solving the self-consistent equation (10) allows us then to obtain s as a

function of the Hamiltonian parameters. Eqs. (8) and (17) together give us then the free energy

per lattice site of the inhomogeneous membranes containing the adhesion proteins and the lipid

rafts. Then we calculate the area concentration of the adhesion proteins using the thermodynamic

relation cp =− 1
2a2

(
∂F/∂ µp

)
.

We solved Eq. (10) numerically using Mathematica and identified regions in the model parame-

ter space in which Eq. (10) was found to have three roots, say, s1, s2 and s3. We identified the phase

transition points using the condition F (s1) = F (s3). The resulting phase diagrams for the fluctu-

ating membrane system are shown in Figs. 3 and 4 in the Letter. Analogically, we identified the

critical point by numerically solving Eq. (10) and ensuring that the free energies F corresponding

to the obtained three solutions are equal within numerical precision, i.e., F (s1) =F (s2) =F (s3).

We thus obtained the contact energy U at the critical point, U =U∗. The dependence of U∗ on cp
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is shown in Fig. 4 in the Letter.

By comparing panels a-b and c-d of Fig. 3 in the Letter, we note small quantitative discrepan-

cies between the mean-field results and the MC simulation results. Since our mean-field approach

is based on the mean-field theory of the Ising model, these discrepancies come from the fact that

the mean-field theory assumes that fluctuations of local spin variables si around the average value

s are small. This assumption is sensible for phase transitions taking place away from the critical

point but fails in the vicinity of the critical point. We illustrate this issue in Fig. S4, where the

phase diagram of the Ising model, or the lattice gas model, is displayed.
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Figure S4: The phase diagram for the Ising model (or the lattice gas model) on a two-dimensional
square lattice. Here, s is the average magnetization in the Ising model and x is the fraction of
occupied sites in the lattice gas model. J is the Ising spin-spin coupling parameter with the critical
value J∗= 1

2 ln(1+
√

2)kBT according to the Onsager’s exact solution or J∗= 1
4kBT resulting from

the mean-field approximation. U is the contact energy between nearest neighbor particles in the
lattice gas model. By transforming from the Ising model to the lattice gas model, x = 1

2 (1+ s),
one obtains U = −4J and U∗ = −4J∗. The solid and dashed lines represent analytical results of
the Onsager’s exact solution and of the mean field theory, respectively. The red squares and green
circles indicate results obtained from the MC simulations of the Ising model on a 300× 300 square
lattice. In the ’grand-canonical’ MC simulations, one trial move consist in a single spin flip, i.e.,
an attempt to change si to −si. In the ’canonical’ MC simulations, any trial move is an attempt to
swap two spins, which conserves the magnetization s.
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