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MATERIALS AND METHODS 

 This study was performed by the sites involved in the TREAT consortium from 2014-

2018.  The TREAT consortium includes three clinical sites (Virginia Commonwealth 

University, Indiana University and Mayo Clinic), a data coordinating center (Indiana 

University) and a microbiome analysis core (George Mason University).  This consortium 

is funded by the NIAAA and includes a registry of subjects with alcoholic hepatitis and 

controls consuming large amounts of alcohol who do not have clinically overt liver 

disease.  Healthy non-drinking controls (HC) with no evidence of liver disease were 

enrolled solely at VCU.  All subjects provided informed consent and the study was 

approved by the institutional review boards (IRB) at each center.  Sample collection and 

bacterial DNA extraction was performed at VCU whereas the microbiome analysis was 

performed at George Mason University.  The investigators have fully participated in the 

design, performance and analysis of the study and take full responsibility of the contents 

of the manuscript.  The NIAAA did not participate in the conduct of the studies but 

provided feedback on the contents of the manuscript. 

1. Patient Population: 

Alcoholic Hepatitis was defined by the development of jaundice, hepatomegaly and 

elevated AST with AST:ALT ratio > 1 in an individual with a history of sustained heavy 

alcohol consumption (> 5 units daily) within 6 weeks of diagnosis in accordance with the 



NIAAA consensus definition (16).  Those with concomitant alternate etiologies of liver 

disease such as hepatitis C were excluded. Also, those with active gastrointestinal 

bleeding, sepsis and those on antibiotics at the time of diagnosis were excluded.  Patients 

receiving lactulose or rifaximin for hepatic encephalopathy were also excluded.  The 

severity of alcoholic hepatitis was defined by a MELD score less than or equal to 20 

versus those with higher levels (17). 

Individuals with suspected alcoholic hepatitis were initially evaluated and liver enzymes 

and functions measured along with computation of the MELD score.  All patients were 

assessed clinically for infection and blood cultures obtained along with chest X-ray and 

urine examination.  In those with ascites, a diagnostic paracentesis was performed and 

the presence of spontaneous bacterial peritonitis excluded.  Stool studies for infection 

were performed as clinically indicated.  Participants were considered to have met entry 

criteria if they met inclusion criteria and had none of the exclusion criteria.  Based on the 

MELD score, patients were categorized to have moderate or severe alcoholic hepatitis 

(MAH or SAH).   

A control population without an alcohol use disorder and obvious liver disease served as 

a healthy control group (referred to as HC in figures).  These individuals were 

asymptomatic, had a normal physical examination, normal liver enzymes and functions 

and absence of sonographic evidence of liver disease or a CAP score < 250 db/sec on 

fibroscan (18).  Another set of heavy drinking controls (referred to as HDC in figures) who 

were consuming more than 5 units of alcohol daily but had no overt evidence of liver 

disease (normal liver enzymes, normal liver function and absence of jaundice or 



hepatomegaly) were also included to evaluate the impact of heavy alcohol consumption 

without clinically evident alcoholic hepatitis.  

2. Data collection and clinical evaluation: 

Demographic, medical history, and clinical data were collected. Alcohol drinking 

questionnaires to determine the quantity and pattern of alcohol consumption included 10-

question Alcohol Use Disorders Identification Test (AUDIT), the Time Line Follow-back 

(TLFB), as well as the National Institute on Alcohol Abuse and Alcoholism’s (NIAA) six-

question survey. Blood samples were collected for complete blood counts, metabolic 

panel, hepatic panel, and coagulation tests. The tests were performed at the local 

pathology and chemistry laboratory at each site. The MELD score, Child-Pugh (CP), and 

Maddrey’s DF were also recorded and patients were managed as clinically indicated 

based on the standard of care at each clinical sector. 

3. Stool collection: 

A standardized approach to stool collection was established and a standard operating 

procedure put in place.  This was based on prior studies of the stool microbiome (19).  In 

this study, most heavy drinking controls were outpatient and stool samples were collected 

at the time of a visit to the clinical research center.  For patients with alcoholic hepatitis 

and inpatient heavy drinking controls, stool samples were collected within 72 hours of the 

patient being admitted to the hospital and enrolled into the study. All clinical personnel 

involved in stool collection were formally trained and also provided written resources and 

a video on U-tube as additional resources. Fresh stool was collected in sterile plastic 

collection tubes that had a Puritan PurFlock Ultra swab (Cat# 25-3306-U) connected to 

the inside of the lid of the collection tube; one container was empty while the second 



container had 10 ml of RNA later.  Approximately 500mg of feces was transferred to each 

container and then shaken thoroughly taking care to avoid spillage.  The tubes were then 

placed in ziplock bags packed with ice for transportation to the laboratory.   

Stool samples were shipped in dry ice to the clinical center at VCU where they were 

stored at -70° C until they were to be analyzed.  This study is specifically related to 

samples collected in empty containers from which stool DNA was obtained from samples 

in batches.  The fecal DNA was also stored at -70° C until it was ready to be shipped to 

the microbiome core at GMU.  Such shipments were also made in dry ice. 

4. Stool Microbiome Analysis: 

We used the 16S rRNA to interrogate and characterize gut microbiome composition.  

Length Heterogeneity PCR (LH-PCR) fingerprinting was routinely used to rapidly survey 

our samples and standardize the community amplification. We then interrogated the 

microbial taxa associated with the gut mucosal microbiome using Multitag Sequencing 

(MTS) on the samples.  This latter technique allows the rapid sequencing of multiple 

samples at one time yielding thousands of sequence reads per sample (19).   

Bacterial Community Fingerprinting.  LH-PCR was done as previously published (1).  

Briefly, total genomic DNA was extracted from tissue using Bio101 kit from MP 

Biomedicals Inc., Montreal, Quebec as per the manufacturer’s instructions.  About 10 ng 

of extracted DNA was amplified by PCR using a fluorescently labeled forward primer 27F 

(5’-(6FAM) AGAGTTTGATCCTGGCTCA G-3’) and unlabeled reverse primer 355R’ (5’-

GCTGCCTCCCGTAGGAGT-3’).  Both primers are universal primers for Bacteria (2).  

The LH-PCR products were diluted according to their intensity on agarose gel 

electrophoresis and mixed with ILS-600 size standards (Promega) and HiDi Formamide 



(Applied Biosystems, Foster City, CA).  The diluted samples were then separated on a 

ABI 3130xl fluorescent capillary sequencer (Applied Biosystems, Foster City, CA) and 

processed using the Genemapper™ software package (Applied Biosystems, Foster City, 

CA). Normalized peak areas were calculated using a custom PERL script by and 

operational taxonomic units (OTUs) constituting less than 1% of the total community from 

each sample were eliminated from the analysis to remove the variable low abundance 

components within the communities (19). 

Multitag Sequencing (MTS): We then interrogated the microbial taxa associated with 

the gut fecal microbiome using multitag sequencing (MTS). This technique allows the 

rapid sequencing of multiple samples at one time, yielding thousands of sequence reads 

per sample (19). Specifically, we have generated a set of 96 emulsion PCR fusion primers 

that contain the Ion Torrrent PGM linkers on the 27F primer 

(AGAGTTTGATCCTGGCTCA G-3′) and 355R′ (5′-GCTGCCTCCCGTAGGAGT-3′) and 

different eight-base “barcode” between the A adapter and the 27F primer. Thus each fecal 

sample was amplified with unique barcoded forward 16S rRNA primers, and then up to 

96 samples were pooled and subjected to emulsion PCR and sequenced using a Ion 

Torrent PGM sequencer (Thermo-Fisher). Data from each pooled sample were 

“deconvoluted” by sorting the sequences into bins based on the barcodes using custom 

PERL scripts. Reads were filtered based on quality scores and length.  Thus, we were 

able to normalize each sample by the total number of reads from each barcode. We have 

noted that ligating tagged primers to PCR amplicons distorts the abundances of the 

communities, and thus it is critical to incorporate the tags during the original amplification 

step (19).  



5. Fecal metabolite sample processing for short chain fatty acids 

Sample storage and transport: Stool samples were shipped in dry ice to the clinical 

center at VCU where they were stored at -70° C until they were to be analyzed. The 

samples were then shipped in dry ice to Metabolon, Inc, where they were maintained at -

80°C until processed. Sample Preparation:  Samples were prepared using the 

automated MicroLab STAR® system from Hamilton Company.  Several recovery 

standards were added prior to the first step in the extraction process for QC purposes.  

To remove protein, dissociate small molecules bound to protein or trapped in the 

precipitated protein matrix, and to recover chemically diverse metabolites, proteins were 

precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 

2000) followed by centrifugation.  The resulting extract was divided into five fractions: two 

for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion 

mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative 

ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and 

one sample was reserved for backup. Samples were placed briefly on a TurboVap® 

(Zymark) to remove the organic solvent.  The sample extracts were stored overnight 

under nitrogen before preparation for analysis.   

QA/QC:  Several types of controls were analyzed in concert with the experimental 

samples: a pooled matrix sample generated by taking a small volume of each 

experimental sample (or alternatively, use of a pool of well-characterized human plasma) 

served as a technical replicate throughout the data set; extracted water samples served 

as process blanks; and a cocktail of QC standards that were carefully chosen not to 

interfere with the measurement of endogenous compounds were spiked into every 



analyzed sample, allowed instrument performance monitoring and aided 

chromatographic alignment.  Instrument variability was determined by calculating the 

median relative standard deviation (RSD) for the standards that were added to each 

sample prior to injection into the mass spectrometers.  Overall process variability was 

determined by calculating the median RSD for all endogenous metabolites (i.e., non-

instrument standards) present in 100% of the pooled matrix samples. Ultrahigh 

Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS):  

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass 

analyzer operated at 35,000 mass resolution.  The sample extract was dried then 

reconstituted in solvents compatible to each of the four methods. Each reconstitution 

solvent contained a series of standards at fixed concentrations to ensure injection and 

chromatographic consistency.  One aliquot was analyzed using acidic positive ion 

conditions, chromatographically optimized for more hydrophilic compounds. In this 

method, the extract was gradient eluted from a C18 column (Waters UPLC BEH C18-

2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic 

acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was also analyzed using acidic 

positive ion conditions, however it was chromatographically optimized for more 

hydrophobic compounds.  In this method, the extract was gradient eluted from the same 

afore mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% 

FA and was operated at an overall higher organic content.  Another aliquot was analyzed 

using basic negative ion optimized conditions using a separate dedicated C18 column.   



The basic extracts were gradient eluted from the column using methanol and water, 

however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed 

via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 

2.1x150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM 

Ammonium Formate, pH 10.8. The MS analysis alternated between MS and data-

dependent MSn scans using dynamic exclusion.  The scan range varied slighted between 

methods but covered 70-1000 m/z.  Raw data files are archived and extracted as 

described below. 

Bioinformatics for stool metabolites:  The informatics system consisted of four major 

components, the Laboratory Information Management System (LIMS), the data extraction 

and peak-identification software, data processing tools for QC and compound 

identification, and a collection of information interpretation and visualization tools for use 

by data analysts.  The hardware and software foundations for these informatics 

components were the LAN backbone, and a database server running Oracle 10.2.0.1 

Enterprise Edition. 

LIMS:  The purpose of the Metabolon LIMS system was to enable fully auditable 

laboratory automation through a secure, easy to use, and highly specialized system.  The 

scope of the Metabolon LIMS system encompasses sample accessioning, sample 

preparation and instrumental analysis and reporting and advanced data analysis.  All of 

the subsequent software systems are grounded in the LIMS data structures.  It has been 

modified to leverage and interface with the in-house information extraction and data 

visualization systems, as well as third party instrumentation and data analysis software. 



Data Extraction and Compound Identification:  Raw data was extracted, peak-identified 

and QC processed using Metabolon’s hardware and software.  These systems are built 

on a web-service platform utilizing Microsoft’s .NET technologies, which run on high-

performance application servers and fiber-channel storage arrays in clusters to provide 

active failover and load-balancing.  Compounds were identified by comparison to library 

entries of purified standards or recurrent unknown entities.  Metabolon maintains a library 

based on authenticated standards that contains the retention time/index (RI), mass to 

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all 

molecules present in the library.  Furthermore, biochemical identifications are based on 

three criteria: retention index within a narrow RI window of the proposed identification, 

accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse 

scores between the experimental data and authentic standards.  The MS/MS scores are 

based on a comparison of the ions present in the experimental spectrum to the ions 

present in the library spectrum.  While there may be similarities between these molecules 

based on one of these factors, the use of all three data points can be utilized to distinguish 

and differentiate biochemicals.  More than 3300 commercially available purified standard 

compounds have been acquired and registered into LIMS for analysis on all platforms for 

determination of their analytical characteristics.  Additional mass spectral entries have 

been created for structurally unnamed biochemicals, which have been identified by virtue 

of their recurrent nature (both chromatographic and mass spectral).  These compounds 

have the potential to be identified by future acquisition of a matching purified standard or 

by classical structural analysis. 



Curation:  A variety of curation procedures were carried out to ensure that a high quality 

data set was made available for statistical analysis and data interpretation.  The QC and 

curation processes were designed to ensure accurate and consistent identification of true 

chemical entities, and to remove those representing system artifacts, mis-assignments, 

and background noise.  Metabolon data analysts use proprietary visualization and 

interpretation software to confirm the consistency of peak identification among the various 

samples.  Library matches for each compound were checked for each sample and 

corrected if necessary. 

 

Metabolite Quantification and Data Normalization:  Peaks were quantified using area-

under-the-curve.   

 

6. Bioinformatical Data Analysis: 

RDP11 Bayesian Analysis: We identified the taxa present in each sample using the 

Bayesian analysis tool in Version 11 of the Ribosomal Database Project (RDP11). The 

abundances of the bacterial identifications were then normalized using a custom PERL 

script, and taxa present at >0.1% of the community were tabulated. We chose this cutoff 

because of our a priori assumption that taxa present in <0.1% of the community vary 

between individuals and have minimal contribution to the functionality of that community 

and that 20,000 reads per sample will only reliably identify community components that 

are >0.1% in abundance.  

7. Statistical Data Analysis: 



Software: The Statistical analysis was performed using R software. Full analysis script is 

available in the Supporting Information.   

Filtering of rare taxa: Taxa that are observed in small number of samples and are likely 

to be sequencing and bioinformatics artifacts were removed using principled permutation 

filtering algorithm with default settings implemented in function PERFect_perm() in R 

software package PERFect (20).   

Relative abundance across comparison groups: Significance of differences in phylum 

level taxa average relative abundances across two groups of samples (e.g. HC vs HDC) 

were tested using t-test for the difference in the means between two population 

proportions.  

Alpha Diversity Analysis: Shannon alpha diversity was estimated using 

estimate_richness() function implemented in R package phyloseq(). Overall 

significance of differences in alpha diversity across four patient groups (HDC, HC, MAH, 

SAH) was tested using rank-based non-parametric Kruskal-Wallis test implemented in R 

function kruskal.test(). Dunn’s test with Benjamini-Hochberg Controlling the false 

discovery rate: a practical and powerful approach to multiple testing, JRSS 1995 multiple 

comparisons adjustment implemented in R function dunn.test() in package dunn.test 

was used to access the significance between pairs of patient groups.  

PCO Analysis of Community Structure: Principle Coordinates Analysis (PCoA) is an 

Eigen analysis performed on the sample pairwise distance derived from the taxa 

abundance table. Graphically, it is a rotation of a swarm of data points in multidimensional 

space so that the largest Eigen value denotes the Eigen vector or first principal 

component that accounts for the greatest variance. The second principal component is 



orthogonal to the first and accounts for the next highest amount of variance. The first few 

PCoA axes represent the greatest amount of variation in the data set. A Brays-Curtis 

distance metric on taxa relative abundance was used for species beta diversity. From the 

resulting scatter diagram, it was determined how species clustered with the study groups. 

The permutational analysis of variance (PERMANOVA) McArdie and Anderson. Fitting 

Multivariate models to community data: a comment on distance-based redundancy 

analysis, Ecology, 82(1) implemented in R function adonis() was used to access 

significance of beta diversity differences across four patient groups.  

LEfSe:  The linear discriminant analysis effect size (LEfSe) (3), an algorithm for biomarker 

discovery that identifies enrichment of abundant taxa or function between two or more 

groups, was used to compare all taxa at different taxonomic levels simultaneously (i.e., 

phylum, class, order, family, genus) between treatment groups. The non-parametric 

Kruskal-Wallis statistical test was used to compute differences among treatment groups 

and then paired Wilcoxon Rank sum tests among subgroups. This method uses a linear 

discriminant analysis (LDA) model which utilizes continuous independent variables to 

predict one dependent variable and provides an effect size for the significantly different 

taxa or metabolic function based on relative differences between two conditions; taking 

into account both variability and discriminatory power. Unless stated otherwise, alpha 

values of 0.05 were used for the Kruskal-Wallis rank sum test, and a threshold of >2.0 

was chosen for logarithmic LDA score display. A series of bar graphs were constructed 

to show the relationship between significantly different metabolic functions or taxa at 

different phylogenetic levels differentiating clades with a common ancestor. 

 



Predictive modeling: Random forest classification and regression models based on taxa 

genus level relative abundance data were used to build the prediction models of alcoholic 

hepatitis and MELD score, respectively. R function randomForest() with default settings 

implemented in package randomForest was used to fit the models. Models were 

accessed using K=3 fold cross validation procedure implemented in function train() in R 

package caret.  Model significance was evaluated using rf.significance() function in R 

package rfUtilities. Heavy alcoholic consuming patients (i.e.  HDC, MAH, and SAH 

groups) were considered in this analysis. For the prediction model for AH, the binary, AH 

not present (HDC group) versus AH present (SAH and MAH groups) was used as a 

response and taxa relative abundances as predictors. Predictive ability of AH 

classification model was accessed using area under the curve criteria (AUC) calculated 

via roc() function if pROC package in R. Variable significance was evaluated based on 

the mean Gini impurity decrease (MGID), where taxa with larger MGID values were more 

important for classification. For the prediction model of MELD score, MELD score was 

used as a continuous response and taxa relative abundances as predictors. Variable 

significance was evaluated based on the node purity increase (NPI), where taxa with 

larger values of NPI were more important for classification. 

Inferred metagenomic analysis: The OTU table was used to generate inferred 

metagenome data using the online Galaxy interface for Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt, version 1.0.0) with 

default settings as described (4). Briefly, the abundance values of each OTU were 

normalized to their respective predicted 16S rRNA copy numbers and then multiplied by 

the respective predicted gene counts for metagenome prediction. The resulting core 



output was a list of Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues 

and predicted gene count data for each sample. We used in‐house scripts to parse the 

output into KEGG module categories for functional pathways and structural complex 

hierarchies using the KEGG database (http://www.genome.jp/kegg/module.html). 

The output matrix containing the relative abundance of KEGG orthologous groups (KO) 

per sample was processed with the online Galaxy interface for LEfSe with a threshold 

logarithmic LDA score set at 2.0 and ranked. 

DETAILED COMPARISON BETWEEN SPECIFIC GENERA WITHIN 

LACNOSPIRACEAE AND RUMINOCOCCACEAE FAMILIES 

 
Within the Lachnospiraceae family, the genera reduced in both SAH and MAH as 

compared to HDC were Clostridium cluster XIVb, Incertaesedis, Roseburia, 

Ruminococcus, Anaerostipes, Eisenbergiella, and Syntrophococcus, while the genera 

reduced in SAH but not in MAH included Blautia, Coprococcus, Dorea, Fusicatenibacter, 

Clostridium cluster XIVa, Lachnobacterium, Lactonifactor, and Robinsoniella. Within the 

Ruminococcaceae family, the genera reduced in both SAH and MAH as compared to 

HDC were Clostridium cluster IV, Subdoligranulum, Acetanaerobacterium, and 

Anaerotruncus, while the genera reduced in SAH but not in MAH included Ruminococcus, 

Anaerofilum, Ethanoligenens, Flavonifractor, Faecalibacterium, Gemmiger, 

Hydrogenoanaerobacterium, Intestimonas, Oscillibacter, and Sporobacter. 
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SUPPLEMENTARY FIGURES 

S1: Time Between Last Drink and Study Enrollment 

 

Figure S1: Time since last drink, in days, by study participant groups.  

 

S2: Effects of Acid Reducing and Treatment Medication 

 



Figure 2. Principal coordinate analysis (PCoA) Bray-Curtis distance plots depicting the 
relationships between the microbiomes with respect to alcohol use and alcoholic 
hepatitis study groups. Each point represents a study participant, colored by disease 
group and shaped by the prescription of acid suppressant (AS) medications (S2A) and 
treatment (trt) medication (S2B). PERMANOVA test values for microbiota differences 
between patient and medication groups are displayed as text in top right corner of each 
subfigure. 
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This document is intended to provide the data analysis details, additional model quality accessment reports
and R code statements used to produce results and figures reported in the main manuscript. We further
provide the estimates and significance tests for group comparisons that were not found significant and were
not reported in the manuscript.

R packages used in this analysis
# library(devtools) install_github('katiasmirn/PERFect')
library(pheatmap)
library(readr)
library(genefilter)
library(RColorBrewer)
library(Matrix)
library(ggplot2)
library(reshape2)
library(phyloseq)
require(plyr)
require(dplyr)
library(Hmisc) # needed for labelling
library(readr)
library(tidyr)
library(here)
library(tableone)
library(pander)
library(ggplot2)
library(reshape2)
library(gridExtra)
library(readxl)
library(Matrix)
library(dunn.test)
library(kableExtra)
library(magrittr)
library(pROC)
library("randomForest")
library("rfUtilities")
library(caret)
library(corrplot)

Time since last drink
Supplementary figure 1 looking at the time since last drink and corresponding significance tests
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$HDC
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.0 4.0 8.0 8.2 12.5 17.0 5

$MAH
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
3.00 4.50 9.50 14.25 19.25 35.00 6

$SAH
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
1.00 4.75 14.00 16.55 25.75 39.00 4

# pairwise test between groups
dunn.res <- dunn.test(df$drink_diff, df$Class, kw = TRUE, method = "bh")

Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 3.0462, df = 2, p-value = 0.22

Comparison of x by group
(Benjamini-Hochberg)

Col Mean-|
Row Mean | HDC MAH
---------+----------------------

MAH | -0.712943
| 0.3569
|

SAH | -1.741471 -0.353518
| 0.1224 0.3618

alpha = 0.05
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Reject Ho if p <= alpha/2
dunn.res.df <- data.frame(comparison = dunn.res$comparisons, difference = round(dunn.res$Z,

2), p_value = round(dunn.res$P.adjusted, 2))
kable(dunn.res.df) %>% kable_styling("striped", full_width = F)

comparison difference p_value
HDC - MAH -0.71 0.36
HDC - SAH -1.74 0.12
MAH - SAH -0.35 0.36

Phylum level proportions test

Phyla average percentage
HC HDC MAH SAH

Actinobacteria 2 4 3 6
Bacteroidetes 46 26 39 31
Candidatus.Saccharibacteria 0 0 0 0
Chloroflexi 0 0 0 0
Cyanobacteria.Chloroplast 0 0 0 0
Firmicutes 49 62 53 48
Fusobacteria 2 0 0 1
Proteobacteria 2 7 5 14
Spirochaetes 0 0 0 0
Synergistetes 0 0 0 0
Tenericutes 0 0 0 0
Verrucomicrobia 0 0 0 0

Significance of differences in phylum level taxa average relative abundances across two groups of samples
(e.g. HC vs HDC) were tested using t-test for the difference in the means between two population proportions.

Note: code is shown only one group comparison, significance for other groups is evaluated similarly
# average across groups
Firmicutes_HC_HDC <- t.test(x = meta.phyla[meta.phyla$Class == "HC", "Firmicutes"],

y = meta.phyla[meta.phyla$Class == "HDC", "Firmicutes"], paired = FALSE,
var.equal = FALSE, alternative = "two.sided")$p.value

comparison pval
Firmicutes_HC_HDC 0.08
Firmicutes_HDC_SAH 0.09
Bacteroides_HC_HDC 0.01
Bacteroidetes_SAH_HDC 0.59
Proteobacteria_SAH_HDC 0.20
Proteobacteria_SAH_HC 0.01

Significance of the ratio between proportions in two sample groups phyla were tested using t-test approximation
for the difference in the means between two population log(ratios).
ratio.test <- function(x.class, y.class, taxa.num, taxa.denom, alternative = c("two.sided",

"less", "greater"), test = TRUE) {
pval = NA
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x.est <- mean(meta.phyla[meta.phyla$Class == x.class, taxa.num])/mean(meta.phyla[meta.phyla$Class ==
x.class, taxa.denom])

y.est <- mean(meta.phyla[meta.phyla$Class == y.class, taxa.num])/mean(meta.phyla[meta.phyla$Class ==
y.class, taxa.denom])

if (test == TRUE) {
x.r <- meta.phyla[meta.phyla$Class == x.class, taxa.num]/meta.phyla[meta.phyla$Class ==

x.class, taxa.denom]
y.r <- meta.phyla[meta.phyla$Class == y.class, taxa.num]/meta.phyla[meta.phyla$Class ==

y.class, taxa.denom]

pval <- t.test(x = log10(x.r), y = log10(y.r), paired = FALSE, var.equal = FALSE,
alternative = alternative)$p.value

}
return(list(x.est = x.est, y.est = y.est, pval = pval))

}

Firm_to_Bact_HDC_vs_HC <- ratio.test(x.class = "HDC", y.class = "HC", taxa.num = "Firmicutes",
taxa.denom = "Bacteroidetes", alternative = "greater")

df <- data.frame(test = c("HDC", "HC"), est = c(Firm_to_Bact_HDC_vs_HC$x.est,
Firm_to_Bact_HDC_vs_HC$y.est), pval = c(Firm_to_Bact_HDC_vs_HC$pval, NA))

test est pval
HDC 2.39 0.02
HC 1.05 NA

Filtering
Taxa that are observed in small number of samples and are likely to be sequencing and bioinformatics artifacts
were removed using principled permutation filtering algorithm with default settings implemented in function
PERFect_perm() in R software package PERFect (https://bioconductor.org/packages/devel/bioc/html/
PERFect.html).

We apply permutation PERFect method with abundance ordering to the counts data to identify significant
taxa. Here we reduce the data form 345 to 150 most abundant taxa.
# basic 5% abundance filtering
abund <- sort(apply(mtx.count, 1, nnzero), decreasing = TRUE)
taxa <- names(abund[(abund/length(abund)) > 0.05]) #62 taxa that appear in 5% of the samples
mtx.count.5p <- mtx.count[match(taxa, rownames(mtx.count)), ]

# apply PERFect
library(PERFect)
NP <- NP_Order(t(mtx.count))
Order_Ind <- match(NP, colnames(t(mtx.count)))
FL <- FiltLoss(t(mtx.count))
dFL <- DiffFiltLoss(t(mtx.count), Order_Ind = Order_Ind, Plot = TRUE, Taxa_Names = NP)

grid.arrange(FL$p_FL, dFL$p_FL, ncol = 2)

# apply permutations PERFect with NP ordering
res_perm <- PERFect_perm(X = t(mtx.count))
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mtx.count <- t(res_perm$filtX)
# res_sim<- PERFect_sim(X=t(mtx.count)) dim(res_sim$filtX)

saveRDS(mtx.count, "mtx.count.RDS")

Alpha and Beta diversity
Differences in taxa composition across Healthy Controls (HC; n=24), Alcoholic Controls (HDC; n=20), Mild
Alcoholics (MAH; n=10) and Severe Alcoholics (SAH; n=24) groups were compared using Shannon alpha
diversity measure. Kruskal-Wallis test was used to test significance of alpha diversity differences between
groups.
alpha_div <- estimate_richness(physeq, measures = richness_measures)
# all(rownames(meta) == rownames(alpha_div))
alpha_div <- cbind(alpha_div, meta)

count <- aggregate(Shannon ~ Class, alpha_div, sum)
mean <- aggregate(Shannon ~ Class, alpha_div, mean)
median <- aggregate(Shannon ~ Class, alpha_div, median)
sd <- aggregate(Shannon ~ Class, alpha_div, sd)
IQR <- aggregate(Shannon ~ Class, alpha_div, IQR)

div.summary <- data.frame(Class = count$Class, count = count$Shannon, mean = mean$Shannon,
median = median$Shannon, sd = sd$Shannon, IRQ = IQR$Shannon)

Dunn test results to compare alpha diversity across patient groups. Here, we used Benjamini-Hochberg
correction for multiple testing implemented in dunn.test() function in R.
# overall test
ks.pval <- round(kruskal.test(Shannon ~ Class, data = alpha_div)$p.value, 2)
# pairwise test between groups
dunn.res <- dunn.test(alpha_div$Shannon, alpha_div$Class, kw = TRUE, method = "bh")

comparison difference p_value
HC - HDC 1.04 0.30
HC - MAH 1.25 0.63
HDC - MAH 0.40 0.41
HC - SAH 0.13 0.45
HDC - SAH -0.91 0.27
MAH - SAH -1.15 0.38

Beta diversity was accessed using Bray-Curtis dissimilarity measure based on relative abundance data;
PERMANOVA test was performed to access the differences in beta diversity.
library(vegan)
metadata <- as(sample_data(physeq.prop), "data.frame")

res <- adonis(distance(physeq.prop, method = "bray") ~ Class, data = metadata)
permanova.pval <- round(res$aov.tab[1, 6], 3)
if (permanova.pval < 0.01) {

permanova.pval <- "< 0.001"
}
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physeq_ordination <- ordinate(physeq.prop, method = "PCoA", distance = "bray")

beta.div <- physeq.prop %>% plot_ordination(physeq_ordination, color = "Class",
shape = "Class")

Random forest predictive modeling
Random forest classification and regression models based on taxa genus level relative abundance data were used
to build the prediction models of alcoholic hepatitis and MELD score, respectively. R function randomForest()
with default settings implemented in package randomForest was used to fit the models. Models were accessed
using K=3 fold cross validation procedure implemented in function train() in R package caret.

Prediction of alcoholic hepatitis (among all heavy drinking patients) based on
the genus level taxa
We start by subsetting the data to all heavy drinking patients, that is groups HDC, MAH and SAH combined.
Differences in these groups are visualized using Bray-Curtis PCoA plots and tested using PERMANOVA
implemented in R package adonis().
physeq.AH <- subset_samples(physeq.prop, Class %in% c("HDC", "MAH", "SAH"))
# trim 0 OTUs
physeq.AH %<>% taxa_sums() %>% is_greater_than(0) %>% prune_taxa(physeq.AH)

metadata.AH <- sample_data(physeq.AH)
metadata.AH$Class_AH <- as.character(metadata.AH$Class)
metadata.AH$Class_AH <- factor(ifelse(metadata.AH$Class_AH == "HDC", "HDC",

"AH"))

physeq.AH <- phyloseq(otu_table(physeq.AH), metadata.AH, tax_table(physeq.AH))

metadata.AH <- as(sample_data(physeq.AH), "data.frame")

# subset of AH patients
res <- adonis(distance(physeq.AH, method = "bray") ~ Class_AH, data = metadata.AH)
res

Call:
adonis(formula = distance(physeq.AH, method = "bray") ~ Class_AH, data = metadata.AH)

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
Class_AH 1 1.0346 1.03459 3.2955 0.0596 0.002 **
Residuals 52 16.3251 0.31394 0.9404
Total 53 17.3597 1.0000
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
permanova.pval.AH <- round(res$aov.tab[1, 6], 3)
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Random forest categorical prediction model

In categorical prediction model, we create a binary outcome variable with two levels:

1. HDC - heavy drinking controls (i.e. patients without alcoholic hepatitis)

2. AH - patients with alcoholic hepatitis
# categorical prediction model data
OTU.pred <- t(otu_table(physeq.AH))
y <- ifelse(metadata.AH$Class.AH.num == 1, "AH", "HDC")
data.AH <- data.frame(y, OTU.pred)

Accuracy is the percentage of correctly classified instances out of all instances. It is more useful on a binary
classification than multi-class classification problems because it can be less clear exactly how the accuracy
breaks down across those classes (e.g. you need to go deeper with a confusion matrix).

Kappa or Cohen’s Kappa is like classification accuracy, except that it is normalized at the baseline of random
chance on your dataset. It is a more useful measure to use on problems that have an imbalance in the classes
(e.g. 70-30 split for classes 0 and 1 and you can achieve 70% accuracy by predicting all instances are for class
0).
nfolds = 3
fit_control <- trainControl( method = "cv",

number = nfolds,
classProbs = TRUE,
savePredictions = TRUE)

RF_classify_cv <- train(y~. , data = data.AH, method="rf", ntree=501 ,
tuneGrid=data.frame( mtry=sqrt(dim(OTU.pred)[2]) ), #rule of thumb: sqrt(# variables)
preProcess=c("center", "scale"),
trControl=fit_control)
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RF_classify_cv$results

mtry Accuracy Kappa AccuracySD KappaSD
1 12.20656 0.7962963 0.547504 0.1398117 0.3261615

Summary of the final cross-validated random forest classification model
# final classification model
RF_classify <- RF_classify_cv$finalModel
RF_classify

Call:
randomForest(x = x, y = y, ntree = 501, mtry = param$mtry)

Type of random forest: classification
Number of trees: 501

No. of variables tried at each split: 12

OOB estimate of error rate: 22.22%
Confusion matrix:

AH HDC class.error
AH 29 5 0.1470588
HDC 7 13 0.3500000

Model significance was evaluated using rf.significance() function in R package rfUtilities. Heavy alcoholic
consuming patients (i.e. HDC, MAH, and SAH groups) were considered in this analysis. For the prediction
model for AH, the binary, AH not present (HDC group) versus AH present (SAH and MAH groups) was
used as a response and taxa relative abundances as predictors.
RF_classify_sig <- rf.significance(x = RF_classify, xdata = OTU.pred, nperm = 1000,

ntree = 501)
# saveRDS(RF_classify_sig, file = paste0(path, '/Code/MELD_classify.rds'))
RF_classify_sig

Number of permutations: 1000
p-value: 0
Model signifiant at p = 0

Model OOB error: 0.2222222
Random OOB error: 0.4259259
min random global error: 0.2222222
max random global error: 0.5740741
min random within class error: 0.55
max random within class error: 0.55

Predictive accuracy

First, we calculate and plot AUC for the final predictive model using roc() function in R package pROC.
pred <- predict(RF_classify, type = "prob")[, "AH"] #predict cases
auc <- roc(ifelse(data.AH$y == "AH", 1, 0), pred) #set to 1 if AH -- i.e. case

Cross-validated AUC values for each fold of prediction are listed below.
auc_list <- list()

for (i in 1:nfolds) {
df <- subset(RF_classify_cv$pred, Resample == paste0("Fold", i))
# make predictions for each fold, calculate auc, average across folds,

8



auc_list[[i]] <- roc(ifelse(df[, "obs"] == "AH", 1, 0), df[, "AH"])
}
cv_auc_vec <- sapply(auc_list, function(x) x$auc[1])

round(cv_auc_vec, 3)

[1] 0.792 0.792 0.986

Averaged cross validated AUC

[1] 0.857

Plot of the final alcoholic hepatitis classification model AUC
p.roc <- ggroc(auc, color = "darkred") + annotate("text", x = 0.25, y = 0.75,

label = paste("AUC =", round(auc$auc[1], 3)), color = "darkred", size = 6) +
theme_bw() + theme(axis.title.x = element_text(size = 12), axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12), axis.title.y = element_text(size = 12))

p.roc

AUC = 0.826
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ggsave(paste0(path, "/Code/Plots/Figure4_ROC.tiff"), p.roc, width = 6, height = 6)

Notice, since sample size is small, we cannot use many folds in cross validation model. Thus, in each fold
cross validated AUC is evaluated based on 3 points only, which leads to high variability in AUC. For this
reason, we observe the effect that the cross-validated AUC averaged across 3 folds is slightly larger than the
final model AUC.

Variable importance

The Mean Decrease Gini measures the average gain of purity by splits of a given variable. If the variable is
useful, it tends to split mixed labeled nodes into pure single class nodes. Splitting by a permuted variables
tend neither to increase nor decrease node purities. Permuting a useful variable, tend to give relatively large
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decrease in mean gini-gain. GINI importance is closely related to the local decision function, that random
forest uses to select the best available split.
RF_classify_imp <- as.data.frame(importance(RF_classify_cv$finalModel))
RF_classify_imp$features <- rownames(RF_classify_imp)
RF_classify_imp_sorted <- arrange(RF_classify_imp, desc(MeanDecreaseGini))
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Prediction model of AH
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Random forest classification results ranked genera according to their predictive importance for the alcoholic
hepatitis classification model. However, often taxa genera are observed in low abundance and some taxa
might appear in only a few cases and not in controls. Classification models may be sensitive to such rare
taxa, therefore it is important to confirm that higly ranked predictive taxa appear in multiple samples and
examine their abundance levels.
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Table below ranks taxa by their relative contribution to the predictive model and lists the number of samples
their are present in by HDC and AH groups. Overall, a feature is more reliable for the prediction model if it
is observed in multiple samples and the difference in mean abundance is larger across two groups.
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Mean Number present
features Decrease Gini HDC AH HDC AH
Veillonellaceae
Veillonella

0.972 0.001 0.040 6 26

Lachnospiraceae
unknown
Roseburia

0.946 0.011 0.002 17 16

Lachnospiraceae
Roseburia

0.917 0.008 0.003 17 11

Ruminococcaceae
unknown
Anaerotruncus

0.904 0.013 0.001 14 5

Lachnospiraceae
unknown Lach-
nospiracea
incertae sedis

0.861 0.029 0.006 20 23

Lachnospiraceae
unknown Syn-
trophococcus

0.758 0.002 0.000 12 3

Lachnospiraceae
unknown
Blautia

0.684 0.011 0.002 14 10

Lachnospiraceae
unknown
Lactonifactor

0.638 0.001 0.000 9 2

Ruminococcaceae
unknown
Clostridium.IV

0.582 0.005 0.003 15 6

Ruminococcaceae
unknown Sub-
doligranulum

0.582 0.024 0.005 13 6

Lachnospiraceae
Blautia

0.517 0.049 0.015 19 21

Lachnospiraceae
Clostrid-
ium.XlVb

0.508 0.004 0.001 11 3

Lachnospiraceae
unknown
Dorea

0.450 0.010 0.001 15 11

Ruminococcaceae
unknown Fae-
calibacterium

0.415 0.002 0.001 13 5

Lachnospiraceae
Fusicatenibac-
ter

0.413 0.005 0.003 14 9

Bacteroidaceae
Bacteroides

0.398 0.205 0.240 19 29

Porphyromonadaceae
Parabac-
teroides

0.386 0.014 0.038 19 20

Ruminococcaceae
Clostridium.IV

0.383 0.005 0.001 13 7

Ruminococcaceae
Subdoligranu-
lum

0.379 0.019 0.007 13 6

Lachnospiraceae
unknown Ru-
minococcus2

0.373 0.015 0.004 16 15
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Finally, we examine the histogram of predicted probabilities for HDC (conrtol) and AH (case) patient groups.
The data is colored by the actual patient status. The x-axis represents the range of predicted probabilities
(from 0 to 1) for each patient under the final cross validated random forest model and the height of each bar
corresponds to the number of patients within the probability range. Overlapping colors indicate the patients
with and without alcoholic hepatitis who were predicted within the same probability range.

A good classification model would have a bimodal histogram with lower predicted probability values for HDC
and higher predicted probability values for the patients with AH. Visually, the two patient categories separate
well, which confirms good classification ability of the model.

0

2

4

6

0.00 0.25 0.50 0.75 1.00
predicted probability

fr
eq

ue
nc

y

AH

HDC

Continous random forest MELD score model

We work with the subset of heavy drinking patients (AH, MAH and SAH) groups and model MELD score as
a continuous response and microbial genera as predictors.

Summary of the cross validated random forest model accuracy measures.
#continuous prediction model data
OTU.pred.regress <- t(otu_table(physeq.AH))[!is.na(metadata.AH$MELD_SCORE),]
MELD <- metadata.AH$MELD_SCORE[!is.na(metadata.AH$MELD_SCORE)]

fit_control <- trainControl( method = "cv",
number=5,
savePredictions = TRUE)

#use default p/3 splits
RF_regress_cv <- train( OTU.pred.regress , y=MELD, method="rf", ntree=501 ,

tuneGrid=data.frame( mtry=round(dim(OTU.pred.regress)[2]/3)) ,#rule of thumb: (# variables/3)
trControl=fit_control )

RF_regress_cv$results
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mtry RMSE Rsquared MAE RMSESD RsquaredSD MAESD
1 50 8.479771 0.2108729 7.054021 1.102481 0.06473199 0.7938433
RF_regress <- RF_regress_cv$finalModel

Summary of the model significance test.
RF_regress_sig <- rf.significance(x = RF_regress, xdata = OTU.pred.regress,

nperm = 1000, ntree = 501)
RF_regress_sig

Number of permutations: 1000
p-value: 0.002
Model signifiant at p = 0.002

Model R-square: 0.1484297
Random R-square: -0.1426828
Random R-square variance: 0.009711888

Variable importance measures

We rank microbial genera according to their contribution to the node purity increase (NPI), where taxa with
larger values of NPI are more important for classification.
RF_regress_imp <- as.data.frame(RF_regress$importance)
RF_regress_imp$features <- rownames(RF_regress_imp)
RF_regress_imp_sorted <- arrange(RF_regress_imp, desc(IncNodePurity))
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While prediction model of MELD score models MELD as a continuum, for the purposes of visualizing relative
abundance of taxa, we separate patients into two groups that are used in clinical parctice to classify the
disease state:
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Mean Number present
features Inc Node

Purity
MELD<20 MELD>20 MELD<20 MELD>20

Veillonellaceae
Veillonella

623.666 0.008 0.046 11 21

Lachnospiraceae
unknown Lach-
nospiracea
incertae sedis

295.665 0.024 0.004 26 16

Lachnospiraceae
Roseburia

187.341 0.006 0.003 19 8

Lachnospiraceae
unknown
Roseburia

154.475 0.009 0.002 20 12

Lachnospiraceae
unknown Syn-
trophococcus

150.635 0.002 0.000 14 1

Lachnospiraceae
unknown
Dorea

121.263 0.008 0.001 20 5

Enterococcaceae
Enterococcus

110.739 0.022 0.072 7 9

Chloroplast
Streptophyta

106.553 0.000 0.001 5 3

Lactobacillaceae
unknown
Lactobacillus

105.876 0.002 0.002 5 8

Staphylococcaceae
Staphylococ-
cus

104.217 0.000 0.003 1 3

Streptococcaceae
Streptococcus

99.351 0.058 0.082 24 23

Fusobacteriaceae
Fusobacterium

98.168 0.000 0.014 1 12

Lachnospiraceae
Blautia

97.549 0.039 0.012 23 16

Lachnospiraceae
unknown
Blautia

92.142 0.008 0.001 18 5

Lachnospiraceae
unknown
Clostridium
XlVa

85.785 0.022 0.006 27 17

Porphyromonadaceae
Parabac-
teroides

82.724 0.021 0.039 23 15

Veillonellaceae
Megasphaera

82.320 0.008 0.022 4 13

Rikenellaceae
Alistipes

78.080 0.011 0.004 16 10

Lachnospiraceae
Clostridium
XlVb

75.868 0.003 0.001 12 2

Lachnospiraceae
unknown
Coprococcus

69.438 0.005 0.001 14 3
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Prediction of disease severity
For the purposes of disease severity prediction, we select patients with alcoholic hepatitis, that is MAH and
SAH groups. First, we visualize the differences between two groups using PCoA plots and test the significance
of taxa composition differences using PERMANOVA.
physeq.AH <- subset_samples(physeq.prop, Class %in% c("MAH", "SAH"))
metadata.AH <- sample_data(physeq.AH)
metadata.AH$Class_AH <- factor(metadata.AH$Class)

physeq.AH <- phyloseq(otu_table(physeq.AH), metadata.AH, tax_table(physeq.AH))

metadata.AH <- as(sample_data(physeq.AH), "data.frame")

# subset of AH patients
res <- adonis(distance(physeq.AH, method = "bray") ~ Class, data = metadata.AH)
res

Call:
adonis(formula = distance(physeq.AH, method = "bray") ~ Class, data = metadata.AH)

Permutation: free
Number of permutations: 999

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
Class 1 0.2261 0.22612 0.68746 0.02103 0.785
Residuals 32 10.5256 0.32893 0.97897
Total 33 10.7518 1.00000
permanova.pval.AH <- round(res$aov.tab[1, 6], 3)
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Random forest categorical prediction model

We apply cross-validated random forest model to classify disease severity. Model results indicate lack of
classification accuracy.

mtry Accuracy Kappa AccuracySD KappaSD
1 12.24745 0.6792929 -0.05128205 0.08310345 0.08882312

Summary of the final cross-validated random forest classification model

Call:
randomForest(x = x, y = y, ntree = 501, mtry = param$mtry)

Type of random forest: classification
Number of trees: 501

No. of variables tried at each split: 12

OOB estimate of error rate: 32.35%
Confusion matrix:

MAH SAH class.error
MAH 1 9 0.90000000
SAH 2 22 0.08333333

Significance tests of the final model indicate that the model is not significant

Number of permutations: 1000
p-value: 0.255
Model not signifiant at p = 0.255

Model OOB error: 0.3235294
Random OOB error: 0.3235294
min random global error: 0.1470588
max random global error: 0.4411765
min random within class error: NA
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max random within class error: NA

Random forest continous MELD score modeling

We apply cross-validated random forest model with MELD score as a continuum to the subset of patients
with alcoholic hepatitis. Model results indicate lack of fit.

mtry RMSE Rsquared MAE RMSESD RsquaredSD MAESD
1 50 7.063764 0.00326356 5.44227 1.956252 0.001279559 1.471655

Summary of the final cross validated model

Call:
randomForest(x = x, y = y, ntree = 501, mtry = param$mtry)

Type of random forest: regression
Number of trees: 501

No. of variables tried at each split: 50

Mean of squared residuals: 60.8545
% Var explained: -21.85

Summary of the significance test results
RF_regress_sig <- rf.significance(x = RF_regress, xdata = OTU.pred.regress,

nperm = 1000, ntree = 501)
RF_regress_sig

Number of permutations: 1000
p-value: 0.776
Model not signifiant at p = 0.776

Model R-square: -0.2564966
Random R-square: -0.1571444
Random R-square variance: 0.01566613
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