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1. Materials and methods 

1.1. Natural compounds database construction 

In brief, we employed high-throughput virtual screening followed by a post docking for binding free 

energy calculation. Molecular modeling studies were performed on a personal computer running 

on Windows 7. Schrödinger suite 2012 as well as and modules such as Ligprep, Glide, 

Prime/MMGBSA, and Virtual Screening Workflow were used in this study.[1-3] In the proposed study, 

virtual screening was performed to identify hit compounds from the NPASS (natural product activity 

and species source) database consisting of 30926 natural compounds 

(http://bidd.group/NPASS/downloadnpass.html). This is freely accessible with its contents 

searchable by keywords, physicochemical property range, structural similarity, species and target 

search facilities. 

1.2. Natural product database 

The structures downloaded from NPASS database were prepared using Ligprep module available in 

Schrödinger suite 2017.[4] All possible states at pH 7 ± 1 were generated using Epik. “Desalt” and 

“generate tautomers” tools were also selected on the Ligprep interface and the stereoisomer 

computation was kept to retain specific chiralities and to generate at most 32 isomers per ligand. 

For each molecule, a set of conformers were generated through Monte Carlo multiple minimum 

(MCMM)/low-mode conformational search method, followed by 100 minimization steps with the 

OPLS3 force field. The maximum number of conformers per compound was limited to 1000. After 

the generation of conformers, only one conformer was displayed and carried for the further 

analyses.[5] 

1.3. Structure-Based Virtual Screening 

Virtual Screening was performed using virtual screening workflow of Schrödinger suite 2017-2. 

Structure-based virtual screening method was employed for filtering out the compounds from the 



database based on dock score. Structure-based virtual screening uses HTVS (high-throughput virtual 

screening) docking protocol followed by SP (standard precision) docking and XP (extra precision) 

docking.[6] 

Since the protein was devoid of any co-crystallized ligand, we used site map tool to identify the 

binding pocket of the selected crystal structure and the site with the highest site score was selected 

and based on the identified site points grid box was created which in turn was used for grid 

generation and virtual screening studies were carried out as follows. In the first step, Glide was run 

in high-throughput virtual screen mode, top 50% of the compounds were retained hence a total of 

15463 molecules were picked up after HTVS docking. 

It was then allowed to go to the next, Glide Single Precision (SP), stage, and the criteria set was 

oriented to pick up the top 5%. The retrieved hits were narrowed down to 773 molecules and these 

were retained and docked using Glide Extra Precision (XP) mode keeping the final output to 5%. The 

38 molecules obtained from XP method were taken further to calculate ΔGbind values using 

MM/GBSA calculations. Prime was performed using the VSGB solvation model to estimate the 

binding affinity of the selected ligands to the active site. In prioritizing the potential compounds, 

docking score and ΔGbind were taken into account and two lead candidates were identified. The 

sequential virtual screening performed in this study is schematically represented in a flowchart in 

Figure 2 of the main text. 

1.4. Post Docking and Binding Free Energy Calculation 

Post docking calculations for the docked poses were calculated by using Prime MM/GBSA (molecular 

mechanics based generalized born/surface area) post docking scoring protocol of Schrödinger 

software using VSGB solvation model. The Prime MM-GBSA approach in Schrödinger predicts the 

total free energy of binding for a given receptor and a set of ligands. The total free energy of binding 

is then expressed in the form below mentioned equation (1): 



 

ΔGbind = Ecomplex (minimized) − (Eprotein (unbound, minimized) + Elig (unbound, minimized)) (1) 

 

where, ΔGbind is the calculated binding free energy, Ecomplex (minimized) is the MM-GBSA energy of 

the minimized complex, Eprotein (unbound, minimized) is the MM-GBSA energy of the minimized 

protein after separating it from its bound ligand and Elig (unbound, minimized) is the MM-GBSA 

energy of the ligand after separating it from the crystal complex and allowing it to relax.[7] 

1.5. Molecular dynamics simulation 

The crystallographic structure of SARS-CoV-2 spike (S) protein was downloaded from the Protein 

Data Bank (PDB) with entry 6VSB (release date: 26-02-2020).[8] A S1/S2 S-protein monomer was 

prepared on UCSF Chimera GUI to minimize computational cost, while other co-crystalized 

molecules not applicable to this study were also removed. Missing residues were further filled using 

the integrated MODELLER module.[9] 2D structures of the natural compounds, Karuquinone B (KQB) 

and Castanospermine (CTN), were prepared on MarvinSketch and were then optimized on 

Avogadro-based UFF force field.[10] Ligand binding coordinates were defined using grid boxes on 

Autodock Vina prior to the docking of the compounds at the SiteMap predicted site.[11] The most 

favorable poses (highest negative) were selected for both compounds with values -6.4 and -5.0 

kcal/mol for KQB and CTN, respectively. These complexes were then used for an all-atom molecular 

dynamics (MD) simulation run and they include KQB-S-protein and CTN-S-protein. Using in-house 

protocols previously implemented successfully based on their efficiencies,[12] MD simulations were 

performed with AMBER18 software package for 65 ns production runs. Resulting simulation 

trajectories were analyzed upon the completion of the MD run using the integrated CPPTRAJ 

module.[13] 



Conformational variations across the protein structures were measured using parameters such as 

Cα-root mean square deviation (Cα-RMSD), root mean square fluctuation (Cα-RMSF), radius of 

gyration (Cα-RoG), surface accessible surface area (SASA), and principal component analysis (PCA). 

These metrics have been successfully used in previous studies to measure structural changes in 

protein systems across MD simulation trajectories and were also used herein to determine the 

inhibitory effects of the compounds on the target protein.[14] Visual analyses were also performed 

on the GUI of Discovery studio client 2016, Maestro 11.5 and UCSF Chimera.[15] 

The affinities with which the compounds bind to the S-protein were also assessed using the 

Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) method, which estimated their 

relative binding free energies (ΔGbind). To minimize entropic effects, the 3000 snapshots from the 

more stable terminal 10 ns time-frame were used for MM/PBSA calculation. Moreover, ligand 

interaction mechanisms were measured by decomposing the binding energies into those 

contributed by individual residues of the target site (per-residue decomposition).[16, 17] 

1.6. ADME Prediction 

Lastly, in silico ADME parameters were predicted to identify some physical-chemical properties, 

lipophilicity, water solubility, and pharmacokinetic data, through the login‐free website 

http://www.swissadme.[18] 
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