

Supporting Information

Site-selective C-H Oxygenation via Aryl Sulfonium Salts

Ruocheng Sang, Stamatis E. Korkis⁺, Wanqi Su⁺, Fei Ye, Pascal S. Engl, Florian Berger, and Tobias Ritter^{*}

anie_201908718_sm_miscellaneous_information.pdf

TABLE OF CONTENTS

TABLE OF CONTENTS	1
MATERIALS AND METHODS	11
EXPERIMENTAL DATA	12
General procedure and reaction condition optimization for hydroxylation	12
General procedure of hydroxylation with Cu ₂ O	12
General procedure of hydroxylation with CuTC	12
Table S1. Reaction condition optimization	13
Figure S1. Comparison of the hydroxylation of TT and TFT salts	14
Figure S2. Comparison of the hydroxylation with Cu_2O and $CuTC$	14
Thianthrenation and hydroxylation of arenes	15
Flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)	15
Flurbiprofen methylester thianthrenium salt (1-TT)	16
Hydroxy-flurbiprofen methyl ester (1)	16
4-Chlorophenol (2)	17
2-Methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)	
5-Hydroxy-2-methoxybenzaldehyde (3)	19
2,2,2-Trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)	19
2,2,2-Trifluoro-N-(4-hydroxyphenyl)acetamide (4)	20
Methyl acetyl-L-phenylalate tetrafluorothianthrenium salt (5-TFT)	21
Methyl acetyl-L-tyrosinate (5)	22
Hydroxy-nefiracetam (6)	23
Bromobenzene tetrafluorothianthrenium salt (7-TFT)	23
4-Bromophenol (7)	24
2-Methoxybenzoate tetrafluorothianthrenium salt (8-TFT)	25
5-Hydroxy-2-methoxybenzoate (8)	26
Xanthone tetrafluorothianthrenium salt (9-TFT)	26
Hydroxyl xanthone (9)	27
(R)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one (10)	
Hydroxy-boscalid (11)	29
Methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)	29
Methyl 5-hydroxy-2,4-dimethylbenzoate (12)	
2-Methoxy-benzonitrile thianthrenium salt (13-TT)	31
5-Hydroxy-2-methoxybenzonitrile (13)	
3-Chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)	32

4-(3-Chloropropyl)phenol (14)	33
4-(3-Hydroxy-1-phenylpropyl)phenol (15)	34
Hydroxy-salicin pentaacetate (16)	35
Methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)	35
Methyl 1-(4-hydroxyphenyl)cyclopropane-1-carboxylate (17)	36
6-Methyl-4-chromanone thianthrenium salt (18-TT)	37
8-Hydroxy-6-methylchroman-4-one (18)	38
Benzyl benzoate tetrafluorothianthrenium salt (19-TFT)	38
4-Hydroxybenzyl benzoate (19)	39
N-benzyloxycarbonyl-4-cis-phenoxy-L-proline methyl ester tetrafluorothianthrenium salt (20-TFT).	40
Hydroxy-N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester (20)	41
Hydroxy-etofenprox (21)	42
Biphenyl tetrafluorothianthrenium salt (22-TFT)	42
Biphenyl thianthrenium salt (22-TT)	43
4-Phenylphenol (22)	44
(3r,5r,7r)-1-(p-Tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)	45
5-((3r,5r,7r)-Adamantan-1-yl)-2-methylphenol (23)	46
4'-Hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)	46
Diclofenac amide thianthrenium salt (25-TT)	47
Hydroxy-diclofenac amide (25)	48
Hydroxy-pyriproxyfen (26)	49
General procedure and reaction condition optimization for etherification	49
General procedure of etherification	49
Table S2. Reaction condition optimization	50
Side product without Na ₂ CO ₃ : 4-ethylphenyl thiophene-2-carboxylate (29-B)	51
Side product biarylether (29-C)	51
Figure S3. Comparison of the etherifcation of TT and TFT salts	53
Thianthrenation and etherfication of arenes	53
2-Fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)	53
2-Fluoro-6-(4-methoxyphenoxy)benzonitrile (27)	54
1-Ethyl-4-phenoxybenzene (28)	55
tert-Butyl 3-(4-ethylphenoxy)azetidine-1-carboxylate (29)	56
trans-2-(4-Rthylphenoxy)cyclohexan-1-ol (30)	56
2-Fluoro-6-(4-(methoxy-d ₃)phenoxy)benzonitrile (31)	57
1-Cyclobutoxy-4-ethylbenzene (32)	58
3-(4-Ethylphenoxy)oxetane (33)	59
2-(2,2,2-Trifluoroethoxy)-9H-xanthen-9-one (34)	60

2-(4-Ethoxyphenoxy)-6-fluorobenzonitrile (36) 67 3-(4-Ethylphenoxy)butan-2-ol (37) 62 1-(<i>tert</i> -Butyl) 2-methyl (2S,4R)-4-(4-ethylphenoxy)pyrrolidine-1,2-dicarboxylate (38) 63 (3aR,5R,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(4-ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3-d][1,3]dioxole (39) 64 4-Methyl-N-phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT) 64 N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40) 65 <i>tert</i> -Butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41) 66 <i>tert</i> -Butyl (R)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carboxylate (42) 67 4-Methoxy-flurbiprofen methyl ester (43) 68 <i>tert</i> -Butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44) 68)
3-(4-Ethylphenoxy)butan-2-ol (37) 62 1-(tert-Butyl) 2-methyl (2S,4R)-4-(4-ethylphenoxy)pyrrolidine-1,2-dicarboxylate (38) 62 (3aR,5R,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(4-ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3-d][1,3]dioxole (39) 64 4-Methyl-N-phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT) 64 N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40) 64 tert-Butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41) 64 4-Methoxy-flurbiprofen methyl ester (43) 64 4-Methoxy-flurbiprofen methyl ester (43) 64	
1-(<i>tert</i> -Butyl) 2-methyl (2 <i>S</i> ,4 <i>R</i>)-4-(4-ethylphenoxy)pyrrolidine-1,2-dicarboxylate (38)	,
(3a <i>R</i> ,5 <i>R</i> ,6 <i>S</i> ,6a <i>R</i>)-5-((<i>R</i>)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(4-ethylphenoxy)-2,2-dimethyltetrahydro- furo[2,3-d][1,3]dioxole (39)	3
furo[2,3-d][1,3]dioxole (39)	
4-Methyl- <i>N</i> -phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT) 65 N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40) 65 <i>tert</i> -Butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41) 66 <i>tert</i> -Butyl (<i>R</i>)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carboxylate (42) 67 4-Methoxy-flurbiprofen methyl ester (43) 68 <i>tert</i> -Butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44) 68	ļ
N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40)	;
<i>tert</i> -Butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41)	;
<i>tert</i> -Butyl (<i>R</i>)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carboxylate (42) .67 4-Methoxy-flurbiprofen methyl ester (43)	;
4-Methoxy-flurbiprofen methyl ester (43)68 <i>tert</i> -Butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44)	•
tert-Butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44)69	;
)
tert-Butyl 3-(5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenoxy)azetidine-1-carboxylate (45)69)
tert-Butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46))
5-Oxetan-3-yloxy boscalid (47)7 [.]	
4-(Cyclohexylthio)-1,1'-biphenyl (48)72	,
4-Fluoro-1,1'-biphenyl thianthrenium salt (49-TT)72	,
Cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)73	;
2-Methoxy-5-(phenylthio)benzonitrile (50)	ļ
Phenylthio-etofenprox (51)75	;
Gram-scale synthesis of tert-butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46)	;
Figure S4. Gram-scale synthesis of 46 77	,
Determination of the stereochemistry of 20	;
Figure S5. NOESY correlations of 20	;
MECHANISTIC STUDIES)
UV-Vis absorption spectra of the aryl thianthrenium salts79)
Figure S6. UV-Vis absorption spectra of biphenyl tetrafluorothianthrenium salt (22-TFT))
Figure S7. UV-Vis absorption spectra of ethylbenzene tetrafluorothianthrenium salt (28-TFT)80)
Emission spectrum of the blue LEDs80)
Figure S8. Emission spectrum of Kessil LEDs A160WE Tuna Blue)
Stern-Volmer luminescence quenching studies)
Figure S9 Emission spectrum for $Ir(dF(CE_2)ppy)_2(dtbpy)PE_2$ luminescence quenching by biphenyl	
tetrafluorothianthrenium salt 22-TFT (left) and Stern-Volmer plot (right)	
Figure S10. Emission spectrum for $Ir(dF(CF_3)ppv)_2(dtbpv)PF_2$ luminescence quenching by	
tetrafluorthianthrene TFT (left) and Stern-Volmer plot (right).	,
Figure S11. Emission spectra for $Ir(dF(CF_3)ppy)_2(dtbpy)PF_6$ luminescence quenching by	

tetrafluorthianthrene TFT and biphenyl tetrafluoro-thianthrenium salt 22-TFT (left) and q	uencher rate
coefficient (right)	82
TEMPO trapping experiment	82
ArTEMPO product (52)	81
SPECTROSCOPIC DATA	84
¹ H NMR of flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)	84
¹³ C NMR of flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)	85
¹⁹ F NMR of flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)	86
¹ H NMR of flurbiprofen methylester-derived thianthrenium salt (1-TT)	87
¹³ C NMR of flurbiprofen methylester thianthrenium salt (1-TT)	88
¹⁹ F NMR of flurbiprofen methylester thianthrenium salt (1-TT)	89
¹ H NMR of hydroxy-flurbiprofen methyl ester (1)	90
¹³ C NMR of hydroxy-flurbiprofen methyl ester (1)	91
¹⁹ F NMR of hydroxy-flurbiprofen methyl ester (1)	92
¹ H NMR of 4-chlorophenol (2)	93
¹³ C NMR of 4-chlorophenol (2)	94
¹ H NMR of 2-methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)	95
¹³ C NMR of 2-methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)	96
¹⁹ F NMR of 2-methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)	97
¹ H NMR of 5-hydroxy-2-methoxybenzaldehyde (3)	98
¹³ C NMR of 5-hydroxy-2-methoxybenzaldehyde (3)	
¹ H NMR of 2,2,2-trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)	100
¹³ C NMR of 2,2,2-trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)	101
¹⁹ F NMR of 2,2,2-trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)	102
¹ H NMR of 2,2,2-trifluoro-N-(4-hydroxyphenyl)acetamide (4)	103
¹³ C NMR of 2,2,2-trifluoro-N-(4-hydroxyphenyl)acetamide (4)	104
¹⁹ F NMR of 2,2,2-trifluoro-N-(4-hydroxyphenyl)acetamide (4)	105
¹ H NMR of methyl acetyl-L-phenylalate tetrafluorothianthrenium salt (5-TFT)	106
¹³ C NMR of methyl acetyl-L-phenylalate tetrafluorothianthrenium salt (5-TFT)	107

¹⁹ F NMR of methyl acetyl-L-phenylalate tetrafluorothianthrenium salt (5-TFT)	108
¹ H NMR of methyl acetyl-L-tyrosinate (5)	109
¹³ C NMR of methyl acetyl-L-tyrosinate (5)	110
¹ H NMR of hydroxy-nefiracetam (6)	111
¹³ C NMR of hydroxy-nefiracetam (6)	112
¹ H NMR of bromobenzene tetrafluorothianthrenium salt (7-TFT)	113
¹³ C NMR of bromobenzene tetrafluorothianthrenium salt (7-TFT)	114
¹⁹ F NMR of bromobenzene tetrafluorothianthrenium salt (7-TFT)	115
¹ H NMR of 4-bromophenol (7)	116
¹³ C NMR of 4-bromophenol (7)	117
¹ H NMR of methyl 2-methoxybenzoate tetrafluorothianthrenium salt (8-TFT)	118
¹³ C NMR of methyl 2-methoxybenzoate tetrafluorothianthrenium salt (8-TFT)	119
¹⁹ F NMR of methyl 2-methoxybenzoate tetrafluorothianthrenium salt (8-TFT)	120
¹ H NMR of methyl 5-hydroxy-2-methoxybenzoate (8)	121
¹³ C NMR of methyl 5-hydroxy-2-methoxybenzoate (8)	122
¹ H NMR of xanthone tetrafluorothianthrenium salt (9-TFT)	123
¹³ C NMR of xanthone tetrafluorothianthrenium salt (9-TFT)	124
¹⁹ F NMR of xanthone tetrafluorothianthrenium salt (9-TFT)	125
¹ H NMR of hydroxyl xanthone (9)	126
¹³ C NMR of hydroxyl xanthone (9)	127
¹ H NMR of (<i>R</i>)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one (10)	128
¹³ C NMR of (<i>R</i>)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one (10)	129
¹ H NMR of hydroxy-boscalid (11)	130
¹³ C NMR of hydroxy-boscalid (11)	131
¹ H NMR of methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)	132
¹³ C NMR of methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)	133
¹⁹ F NMR of methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)	134
¹ H NMR of methyl 5-hydroxy-2,4-dimethylbenzoate (12)	135
¹³ C NMR of methyl 5-hydroxy-2,4-dimethylbenzoate (12)	136

¹ H NMR of 2-methoxy-5-methylbenzonitrile thianthrenium salt (13-TT)	137
¹³ C NMR of 2-methoxy-5-methylbenzonitrile thianthrenium salt (13-TT)	138
¹⁹ F NMR of 2-methoxy-5-methylbenzonitrile thianthrenium salt (13-TT)	139
¹ H NMR of 5-hydroxy-2-methoxybenzonitrile (13)	140
¹³ C NMR of 5-hydroxy-2-methoxybenzonitrile (13)	141
¹ H NMR of 3-chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)	142
¹³ C NMR of 3-chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)	143
¹⁹ F NMR of 3-chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)	144
¹ H NMR of 4-(3-chloropropyl)phenol (14)	145
¹³ C NMR of 4-(3-chloropropyl)phenol (14)	146
¹ H NMR of 3-(3-hydroxy-1-phenylpropyl)phenol (15)	147
¹³ C NMR of 3-(3-hydroxy-1-phenylpropyl)phenol (15)	148
¹ H NMR of hydroxy salicin pentaacetate (16)	149
¹³ H NMR of hydroxy salicin pentaacetate (16)	150
¹ H NMR of methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)	151
¹³ C NMR of methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)	152
¹⁹ F NMR of methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)	153
¹ H NMR of methyl 1-(4-hydroxyphenyl)cyclopropane-1-carboxylate (17)	154
¹³ C NMR of methyl 1-(4-hydroxyphenyl)cyclopropane-1-carboxylate (17)	155
¹ H NMR of 6-methyl-4-chromanone thianthrenium salt (18-TT)	156
¹³ C NMR of 6-methyl-4-chromanone thianthrenium salt (18-TT)	157
¹⁹ F NMR of 6-methyl-4-chromanone thianthrenium salt (18-TT)	158
¹ H NMR of 8-hydroxy-6-methylchroman-4-one (18)	159
¹³ C NMR of 8-hydroxy-6-methylchroman-4-one (18)	160
¹ H NMR of benzyl benzoate tetrafluorothianthrenium salt (19-TFT)	161
¹³ C NMR of benzyl benzoate tetrafluorothianthrenium salt (19-TFT)	162
¹⁹ F NMR of benzyl benzoate tetrafluorothianthrenium salt (19-TFT)	163
¹ H NMR of 4-hydroxybenzyl benzoate (19)	164
¹³ C NMR of 4-hydroxybenzyl benzoate (19)	165

¹ H NMR of N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester tetrafluorothianthrenium sa TFT)	ılt (20- 166
¹³ C NMR of N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester tetrafluorothianthrenium sa	alt (20-
¹⁹ F NMR of N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester tetrafluorothianthrenium sa TFT)	alt (20- 168
¹ H NMR of hydroxy-N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester (20)	169
¹³ C NMR of hydroxy-N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester (20)	170
¹ H- ¹³ C HSQC NMR of hydroxy-N-benzyloxycarbonyl-4- <i>cis</i> -phenoxy-L-proline methyl ester (20)	170
NOESY NMR of hydroxy-N-benzyloxycarbonyl-4-cis-phenoxy-L-proline methyl ester (20)	172
¹ H NMR of hydroxy-etofenprox (21)	173
¹³ C NMR of hydroxy-etofenprox (21)	174
¹ H NMR of biphenyl tetrafluorothianthrenium salt (22-TFT)	175
¹³ C NMR of biphenyl tetrafluorothianthrenium salt (22-TFT)	176
¹⁹ F NMR of biphenyl tetrafluorothianthrenium salt (22-TFT)	177
¹ H NMR of biphenyl thianthrenium salt (22-TT)	178
¹³ C NMR of biphenyl thianthrenium salt (22-TT)	179
¹⁹ F NMR of biphenyl thianthrenium salt (22-TT)	180
¹ H NMR of 4-phenylphenol (22)	181
¹³ C NMR of 4-phenylphenol (22)	182
¹ H NMR of (3r,5r,7r)-1-(<i>p</i> -tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)	183
¹³ C NMR of (3r,5r,7r)-1-(<i>p</i> -tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)	184
¹⁹ F NMR of (3r,5r,7r)-1-(<i>p</i> -tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)	185
¹ H NMR of 5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenol (23)	186
¹³ C NMR of 5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenol (23)	187
¹ H NMR of 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)	188
¹³ C NMR of 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)	189
¹⁹ F NMR of 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)	190
¹ H NMR of diclofenac amide thianthrenium salt (25-TT)	191

¹³ C NMR of diclofenac amide thianthrenium salt (25-TT)	
¹⁹ F NMR of diclofenac amide thianthrenium salt (25-TT)	
¹ H NMR of hydroxy diclofenac amide (25)	
¹³ C NMR of hydroxy diclofenac amide (25)	
¹ H NMR of hydroxy-pyriproxyfen (26)	
¹³ C NMR of hydroxy-pyriproxyfen (26)	
¹ H NMR of 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)	
¹³ C NMR of 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)	
¹⁹ F NMR of 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)	
¹ H NMR of 2-fluoro-6-(4-methoxyphenoxy)benzonitrile (27)	201
¹³ C NMR of 2-fluoro-6-(4-methoxyphenoxy)benzonitrile (27)	202
¹⁹ F NMR of 2-fluoro-6-(4-methoxyphenoxy)benzonitrile (27)	
¹ H NMR of 1-ethyl-4-phenoxybenzene (28)	
¹³ C NMR of 1-ethyl-4-phenoxybenzene (28)	
¹ H NMR of <i>tert</i> -butyl 3-(4-ethylphenoxy)azetidine-1-carboxylate (29)	
¹³ C NMR of <i>tert</i> -butyl 3-(4-ethylphenoxy)azetidine-1-carboxylate (29)	
¹ H NMR of 4-ethylphenyl thiophene-2-carboxylate (29-B)	
¹³ C NMR of 4-ethylphenyl thiophene-2-carboxylate (29-B)	
¹ H NMR of 4,4'-oxybis(ethylbenzene) (29-C)	
¹³ C NMR of 4,4'-oxybis(ethylbenzene) (29-C)	211
¹ H NMR of <i>trans</i> -2-(4-ethylphenoxy)cyclohexan-1-ol (30)	212
¹³ C NMR of <i>trans</i> -2-(4-ethylphenoxy)cyclohexan-1-ol (30)	213
¹ H NMR of 2-fluoro-6-(4-(methoxy-d ₃)phenoxy)benzonitrile (31)	214
¹³ C NMR of 2-fluoro-6-(4-(methoxy-d ₃)phenoxy)benzonitrile (31)	215
¹⁹ F NMR of 2-fluoro-6-(4-(methoxy-d ₃)phenoxy)benzonitrile (31)	216
¹ H NMR of 1-cyclobutoxy-4-ethylbenzene (32)	217
¹³ C NMR of 1-cyclobutoxy-4-ethylbenzene (32)	218
¹ H NMR of 3-(4-ethylphenoxy)oxetane (33)	219
¹³ C NMR of 3-(4-ethylphenoxy)oxetane (33)	

¹ H NMR of 2-(2,2,2-trifluoroethoxy)-9H-xanthen-9-one (34)	221
¹³ C NMR of 2-(2,2,2-trifluoroethoxy)-9H-xanthen-9-one (34)	222
¹⁹ F NMR of 2-(2,2,2-trifluoroethoxy)-9H-xanthen-9-one (34)	223
¹ H NMR of methoxy-PEG(4) ethylbenzene (35)	224
¹³ C NMR of methoxy-PEG(4) ethylbenzene (35)	225
¹ H NMR of 2-(4-ethoxyphenoxy)-6-fluorobenzonitrile (36)	226
¹³ C NMR of 2-(4-ethoxyphenoxy)-6-fluorobenzonitrile (36)	227
¹⁹ F NMR of 2-(4-ethoxyphenoxy)-6-fluorobenzonitrile (36)	228
¹ H NMR of <i>erythro</i> -3-(4-ethylphenoxy)butan-2-ol (37a)	229
¹³ C NMR of <i>erythro</i> -3-(4-ethylphenoxy)butan-2-ol (37a)	230
¹ H NMR of <i>threo</i> -3-(4-ethylphenoxy)butan-2-ol (37b)	231
¹³ C NMR of <i>threo</i> -3-(4-ethylphenoxy)butan-2-ol (37b)	232
¹ H NMR of 1-(<i>tert</i> -butyl) 2-methyl (2 <i>S</i> ,4 <i>R</i>)-4-(4-ethylphenoxy)pyrrolidine-1,2-dicarboxylate (38)	233
¹³ C NMR of 1-(<i>tert</i> -butyl) 2-methyl (2 <i>S</i> ,4 <i>R</i>)-4-(4-ethylphenoxy)pyrrolidine-1,2-dicarboxylate (38)	234
¹ H NMR of $(3aR, 5R, 6S, 6aR)$ -5- $((R)$ -2,2-dimethyl-1,3-dioxolan-4-yl)-6- $(4$ -ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3-d][1,3]dioxole (39)	235
¹³ C NMR of $(3aR, 5R, 6S, 6aR)$ -5- $((R)$ -2,2-dimethyl-1,3-dioxolan-4-yl)-6- $(4$ -ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3-d][1,3]dioxole (39)	236
¹ H NMR of 4-methyl- <i>N</i> -phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT)	237
¹³ C NMR of 4-methyl- <i>N</i> -phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT)	238
¹⁹ F NMR of 4-methyl- <i>N</i> -phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT)	239
¹ H NMR of N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40)	240
¹³ C NMR of N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40)	241
¹ H NMR of <i>tert</i> -butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41)	242
¹³ C NMR of <i>tert</i> -butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41)	243
¹ H NMR of <i>tert</i> -butyl (<i>R</i>)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carbox (42)	ylate 244
¹³ C NMR of <i>tert</i> -butyl (<i>R</i>)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carbox	xylate
(42)	245
¹ H NMR of 4-methoxy-flurbiprofen methyl ester (43)	246

	¹³ C NMR of 4-methoxy-flurbiprofen methyl ester (43)	247
	¹⁹ F NMR of 4-methoxy-flurbiprofen methyl ester (43)	248
	¹ H NMR of <i>tert</i> -butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44)	249
	¹³ C NMR of <i>tert</i> -butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44)	250
	¹ H NMR of <i>tert</i> -butyl 3-(5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenoxy)azetidine-1-carboxylate (45)	251
	¹³ C NMR of <i>tert</i> -butyl 3-(5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenoxy)azetidine-1-carboxylate (45).	252
	¹ H NMR of <i>tert</i> -butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46)	253
	¹³ C NMR of <i>tert</i> -butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46)	254
	¹ H NMR of 5-oxetan-3-yloxy boscalid (47)	255
	¹³ C NMR of 5-oxetan-3-yloxy boscalid (47)	256
	¹ H NMR of 4-(cyclohexylthio)-1,1'-biphenyl (48)	257
	¹³ C NMR of 4-(cyclohexylthio)-1,1'-biphenyl (48)	258
	¹ H NMR of 4-fluoro-1,1'-biphenyl (49-TT)	259
	¹³ C NMR of 4-fluoro-1,1'-biphenyl (49-TT)	260
	¹⁹ F NMR of 4-fluoro-1,1'-biphenyl (49-TT)	261
	¹ H NMR of cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)	262
	¹³ C NMR of cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)	263
	¹⁹ F NMR of cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)	264
	¹ H NMR of 2-methoxy-5-(phenylthio)benzonitrile (50)	265
	¹³ C NMR of 2-methoxy-5-(phenylthio)benzonitrile (50)	266
	¹ H NMR of phenylthio-etofenprox (51)	267
	¹³ C NMR of phenylthio-etofenprox (51)	268
	¹ H NMR of ArTEMPO product (52)	269
	¹³ C NMR of ArTEMPO product (52)	270
R	EFERENCES	.271

MATERIALS AND METHODS

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). High-resolution mass spectra were obtained using *Q Exactive Plus* from *Thermo*. Concentration under reduced pressure was performed by rotary evaporation at 25–40 °C at an appropriate pressure. Purified compounds were further dried under vacuum $(10^{-6} - 10^{-3} \text{ bar})$. Yields refer to purified and spectroscopically pure compounds, unless otherwise stated. A LED Kessil[®] A160WE was used as the light source.

Solvents

Acetonitrile *was* purchased from *Sigma-Aldrich* and used as received. Anhydrous solvents were obtained from Phoenix Solvent Drying Systems. All deuterated solvents were purchased from Euriso-Top®.

Chromatography

Thin layer chromatography (TLC) was performed using EMD TLC silica gel 60 F_{254} plates pre-coated with 250 μ m thickness silica gel 60 F_{254} and visualized by fluorescence quenching under UV light. Flash column chromatography was performed using silica gel (40–63 μ m particle size) purchased from Geduran®. Preparatory high-performance liquid chromatographic separation was executed on a Shimadzu Prominence Preparative HPLC system with an YMC-Triart C18 HPLC column.

Spectroscopy and Instruments

NMR spectra were recorded on a Bruker *Ascend*TM 500 spectrometer operating at 500 MHz, 471 MHz, and 126 MHz, for ¹H, ¹⁹F, and ¹³C acquisitions, respectively. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; CD₂Cl₂, δ 5.32; CD₃CN, δ 1.94; (CD₃)₂SO, δ 2.50; CD₃OD, δ 3.31; (CD₃)₂CO, δ 2.05. For ¹³C NMR: CDCl₃, δ 77.16; CD₂Cl₂, δ 53.84; CD₃CN, δ 1.32, 118.26; (CD₃)₂SO, δ 39.52; CD₃OD, δ 49.00; (CD₃)₂CO, δ 29.84. ¹⁹F NMR spectra were referenced using a unified chemical shift scale based on the ¹H resonance of tetramethylsilane (1% (v/v) solution in the respective solvent). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants in Hz; integration.

Starting materials

All substrates and materials were used as received from commercial suppliers, unless otherwise stated. Compounds **2-TFT**, **6-TFT**, **10-TFT**, **11-TFT**; **15-TFT**, **16-TFT**, **21-TT**, **24-TFT**, **26-TFT**, **28-TFT**, thianthrene-*S*-oxide (TTO) and tetrafluorothianthrene-*S*-oxide (TFTO) were prepared according to the litterature.¹

EXPERIMENTAL DATA

General procedure and reaction condition optimization for hydroxylation

General procedure of hydroxylation with Cu₂O

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 μ mol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 μ mol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, (tetrafluoro)thianthrenium salt (0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 μ mol, 1.0 mol%) in MeCN (0.40 mL, *c*= 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo,* and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexanes to afford the hydroxylated product.

Note: The amount of dimethylglyoxime is curial. Control experiments showed that yields were lower if different amounts of dimethylglyoxime were used.

General procedure of hydroxylation with CuTC

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%), copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), and (tetrafluoro)thianthrenium salt (0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by H₂O (72.1 mg, 721 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with ethyl acetate (1 mL). The reaction mixture was filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexanes to afford the hydroxylated product.

Table S1. Reaction condition optimization

Change of reaction conditions	Yield of 22 ^b
none ^a	83%
no water	< 1%
no Cu ₂ O	< 1%
no Ir[dF(CF ₃)ppy] ₂ (dtbpy)PF ₆	< 1%
no dimethylglyoxime	11%
50 mol% dimethylglyoxime	38%
Cul instead of Cu ₂ O ^c	< 5%
$Cu(MeCN)_4BF_4$ instead of Cu_2O^d	9%
$Ru(bipy)_3(PF_6)_2$ instead of Ir[dF(CF_3)ppy]_2(dtbpy)PF_6^e	24%
Organic dye 4CzIPN instead of [Ir[dF(CF ₃)ppy] ₂ (dtbpy)PF ₆ ^f	20%
Reaction is carried out without purification of the aryl thianthrenium salts ⁹	24%

^aThianthrenium salt (1.0 equiv.), $[Ir[dF(CF_3)ppy]_2(dtbpy)PF_6]$ (1 mol%), dimethylglyoxime (0.1 equiv.), Cu₂O (0.8 equiv.), H₂O (0.30 mL.), acetonitrile (1.0 mL), blue LED (34W), 30 °C, 16 hours. ^bYield based on NMR with 0.1 mmol styrol as internal standard. ^cCul (1.0 equiv). ^dCu(MeCN)₄BF₄ (1.0 equiv). ^eRu(bipy)₃(PF₆)₂ (2.5 mmol%). ^fOrganic dye 4CzIPN (10 mmol%). ^gisolated yield over two steps.

Figure S1. Comparison of the hydroxylation of TT and TFT salts

Et - TFT $\oplus \ominus$ BF₄ $(r) + [Cu'] + H_2O$ 28-TFT MeCN, 30 °C, blue LEDs, 16 h Et -OH44% with Cu₂O^a 72% with CuTC^b

^aReaction conditions: thianthrenium salt (1.0 equiv.), $[Ir[dF(CF_3)ppy]_2(dtbpy)PF_6]$ (1 mol%), dimethylglyoxime (0.1 equiv.), Cu₂O (0.8 equiv.), H₂O (160 equiv.), acetonitrile, blue LED (34W), 30 °C, 16 hours. ^bReaction conditions: thianthrenium salt (1.0 equiv.), $[Ir[dF(CF_3)ppy]_2(dtbpy)PF_6]$ (1 mol%), CuTC (1.5 equiv.), H₂O (20 equiv.), acetonitrile, blue LED (34W), 30 °C, 16 hours.

Thianthrenation and hydroxylation of arenes

Flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with flurbiprofen methyl ester (395 mg, 1.30 mmol, 1.00 equiv) and MeCN (10 mL, c = 0.13 M). Trifluoroacetic anhydride (0.54 mL, 0.82 g, 3.9 mmol, 3.0 equiv.) was added while stirring the reaction mixture at 23°C. After cooling to 0°C, tetrafluorothianthrene-S-oxide (395 mg, 1.30 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (230 µL, 274 mg, 1.69 mmol, 1.30 equiv.). The mixture was stirred at 0°C for 2 hours, then at 23°C for 14 hours. The solution was diluted with CH₂Cl₂ (5 mL) and poured onto a mixture of CH₂Cl₂ (20 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **1-TFT** (744 mg, 91%) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD_2Cl_2 , 25 °C, δ): 8.54 (dd, J = 8.6, 7.0 Hz, 2H), 7.82 (dd, J = 9.3, 6.8 Hz, 2H), 7.71 – 7.62 (m, 2H), 7.45 – 7.26 (m, 3H), 7.22 – 7.02 (m, 2H), 3.77 (q, J = 7.2 Hz, 1H), 3.65 (s, 3H), 1.49 (d, J = 7.2 Hz, 3H).

¹³C {¹H}NMR (75 MHz, CD₂Cl₂, 25 °C, δ): 174.6, 156.0 (d, J = 249.4 Hz), 154.7 (dd, J = 241.1, 13.2 Hz), 151.2 (dd, J = 235.0, 13.2 Hz), 144.8 (d, J = 7.9 Hz), 141.6 (d, J = 1.4 Hz), 134.8 (dd, J = 8.1, 4.1 Hz), 131.6 (d, J = 3.5 Hz), 131.1 (d, J = 3.2 Hz), 128.8, 125.3 (dd, J = 21.8, 2.5 Hz), 124.8 (d, J = 3.3 Hz), 124.1 (d, J = 12.8 Hz), 121.7, 120.5 (d, J = 21.4 Hz), 116.0 (d, J = 23.3 Hz), 114.9 (dd, J = 6.8, 3.6 Hz), 52.6, 45.4 (d, J = 1.5 Hz), 18.6.

¹⁹**F NMR** (282 MHz, CD₂Cl₂, 25 °C, δ): -117.8, -122.6 (d, J = 20.7Hz), -130.7 (dt, J = 20.6, 8.1 Hz), - 149.2 (brs), -149.3 (brs).

HRMS-FIA(m/z) calc'd for $C_{28}H_{18}O_2S_2F_5^+$ [M-BF₄]⁺, 545.0663; found, 545.0660 deviation: -0.6 ppm.

Flurbiprofen methylester thianthrenium salt (1-TT)

Under an ambient atmosphere, a 20-mL glass vial was charged with flurbiprofen methyl ester (1.29 g, 5.00 mmol, 1.00 equiv) and MeCN (5.0 mL, c = 1.0 M). After cooling to 0°C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.2 g, 15 mmol, 3.0 equiv) was added in one portion at 0°C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23°C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23°C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed in vacuo to afford **1-TT** (2.63 g, 94%) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, DMSO-d₆, 25 C, δ): 8.62 (dd, J = 7.9, 1.4 Hz, 2H), 8.09 (d, J = 7.1 Hz, 2H), 7.94 (td, J = 7.7, 1.5 Hz, 2H), 7.88 (td, J = 7.7, 1.4 Hz, 2H), 7.72 (dd, J = 8.7, 1.6 Hz, 2H), 7.47 (t, J = 8.2 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.30 – 7.19 (m, 2H), 3.90 (q, J = 7.1 Hz, 1H), 3.60 (s, 3H),

¹³C {¹H} NMR (126 MHz, DMSO-d₆, 25 °C, δ): 173.6, 158.8 (d, J = 247.4 Hz), 144.0 (d, J = 7.9 Hz), 139.0, 135.7, 135.4, 134.8, 130.9 (d, J = 3.1 Hz), 130.6 (d, J = 3.0 Hz), 130.3, 129.6, 128.4, 124.6 (d, J = 12.8 Hz), 124.3, 124.2 (d, J = 16.0 Hz), 119.1, 115.4 (d, J = 23.0 Hz), 52.0, 43.8, 18.3.

¹⁹**F NMR** (471 MHz, DMSO-d₆, 25 C, δ): -117.8 (t, J = 10.0 Hz), -148.2 (brs), -148.3 (brs).

HRMS-ESI(m/z) calc'd for C₂₈H₂₂FO₂S₂⁺ [M-BF₄]⁺, 473.1040; found, 473.1044; deviation: -0.9 ppm.

Hydroxy-flurbiprofen methyl ester (1)

To a 20-mL glass vial, equipped with a magnetic stir bar was added copper(I) oxide (134 mg, 0.936 mmol, 0.800 equiv.), dimethylglyoxime (13.5 mg, 117 μ mmol, 0.100 equiv.), and MeCN/H₂O (9.1 mL, v/v = 10:3). After stirring for 10 mins at ambient temperature, flurbiprofen methyl ester tetrafluorothianthrenium salt **1-TFT** (656 mg, 1.17 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (13.1mg, 11.7 μ mol, 1.00 mol%) was then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (5 mL). The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane 1:10 (v/v) to afford **1** (227 mg, 71% yield) as a colorless oil.

R_f = 0.35 (EtOAc/pentane, 1:5, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.42 – 7.35 (m, 3H), 7.24 – 7.07 (m, 3H), 6.89 (d, *J* = 8.7 Hz, 2H), 3.80 (q, *J* = 7.1 Hz, 1H), 3.63 (s, 3H), 1.46 (d, *J* = 7.2 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 175.2, 160.4 (d, J = 245.5 Hz), 157.7, 142.9 (d, J = 8.2 Hz), 131.5 (d, J = 3.7 Hz), 131.1 (d, J = 3.5 Hz), 128.2 (d, J = 14.1 Hz), 127.7, 124.7 (d, J = 3.5 Hz), 116.2, 115.9 (d, J = 23.9 Hz), 52.6, 45.4, 18.7.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –119.6 (dd, *J* = 11.7, 8.8 Hz).

HRMS-ESI(m/z) calc'd for C₁₆H₁₆O₃F⁺[M+H]⁺, 275.1078; found, 275.1081; deviation: –1.2 ppm.

4-Chlorophenol (2)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (22.9 mg, 0.160 mmol, 0.800 equiv.), dimethylglyoxime (2.3 mg, 20 µmol, 0.10 equiv.), and MeCN/H₂O (1.6 mL, v/v= 5:3). After stirring for 10 mins at ambient temperature, chlorobenzene tetrafluorothianthrenium salt **2-TFT** (97.3 mg, 0.200 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.50 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue

was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10, v/v) to afford **2** (19.2 mg, 75% yield) as a colorless soild.

R_f = 0.29 (EtOAc/pentane ,1:20, v/v, (UV, cerium molybdate)).

NMR Spectroscopy:

¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 7.24 – 7.13 (m, 2H), 6.87 – 6.70 (m, 2H), 4.99 (brs, 1H, OH).

¹³C {¹H} NMR (75 MHz, CDCl₃, 25 °C, δ): 154.1, 129.7, 125.9, 116.8.

HRMS-ESI(m/z) calc'd for C₆H₄ClO⁺ [M-H]⁺, 126.9956; found, 126.9957; deviation: -0.4 ppm.

2-Methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)

Under ambient atmosphere, a 20 mL round-bottom flask was charged with 2-methoxybenzaldehyde (434 mg, 3.19 mmol, 1.00 equiv.), and dry MeCN (32 mL, c = 0.10 M). After cooling to 0°C, HBF₄·OEt₂ (0.52 mL, 3.8 mmol, 1.2 equiv.) was added to the reaction mixture. Tetrafluorothianthrene-S-oxide (970 mg, 3.19 mmol, 1.00 equiv.) was added at 0°C in one portion, followed by trifluoroacetic anhydride (1.33 mL, 2.01 g, 9.56 mmol, 3.00 equiv.) addition in one portion at 0 °C. The vial was sealed with a screw-cap, and the mixture was allowed to stand at 0°C for 1 hour and then warmed to 25°C. After stirring the deep purple reaction mixture at 25 °C for 1 hour, the reaction mixture was concentrated under reduced pressure, and diluted with 30 mL CH₂Cl₂. The CH₂Cl₂ phase was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was washed with aqueous NaBF₄ solution (2 × ca. 20 mL, 5 % w/w), and with water (2 × ca. 20 mL). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH₂Cl₂/*i*·PrOH (30:1, v/v). The product was precipitated by addition of 2 mL CH₂Cl₂, and 20 mL Et₂O. The suspension was decanted, and the solid was dried in vacuo to afford **3-TFT** (1.45 g, 90 % yield) as a colorless solid.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 10.26 (s, 1H), 8.39 (dd, J = 9.2 Hz, 7.2 Hz, 2H), 7.97 (dd, J = 9.9 Hz, 7.2 Hz, 2H), 7.60 (d, J = 2.9 Hz, 1H), 7.47 (dd, J = 9.2 Hz, 2.9 Hz, 1H), 7.27 (d, J = 9.2 Hz, 1H), 3.98 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 188.3, 166.01, 154.8 (dd, J = 262.0 Hz, 13.2 Hz), 151.6 (dd, J = 255.6 Hz, 13.7 Hz), 136.6, 135.0 (dd, J = 8.6, 3.9 Hz), 130.0, 127.0, 125.3 (dd, J = 21.8, 2.2 Hz),

121.2 (d, *J* = 21.8 Hz), 116.3, 115.84 (d, *J* = 3.6 Hz), 115.78 (d, *J* = 3.6 Hz), 114.2, 57.9.

¹⁹**F NMR** (471 MHz, CD₃CN, 23^oC, δ): –125.3 (m), –133.5 (m), –151.5 (brs), –151.6 (brs).

HRMS-ESI(m/z) calc'd for $C_{20}H_{11}O_2S_2F_4^+$ [M-BF₄]⁺, 423.0131; found, 423.0131; deviation: 0 ppm.

5-Hydroxy-2-methoxybenzaldehyde (3)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, 2-methoxybenzaldehyde tetrafluorothianthrenium salt **3-TFT** (51.0 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:5, v/v) to afford **3** (12.1 mg, 79% yield) as a colorless solid.

R_f = 0.40 (EtOAc/pentane, 1:2, v/v (UV)).

NMR Spectroscopy:

¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 10.40 (s, 1H), 7.37 (d, J = 3.2 Hz, 1H), 7.12 (dd, J = 9.0, 3.2 Hz, 1H), 6.90 (d, J = 9.0 Hz, 1H), 3.88 (s, 3H).

¹³C {¹H} NMR (75 MHz, CDCl₃, 25 °C, δ): 190.4, 156.8, 150.0, 125.1, 123.9, 113.9, 113.5, 56.3.

HRMS-ESI(m/z) calc'd for C₈H₈O₃⁺[M]⁺, 152.0468; found, 152.0470; deviation: –1.2 ppm.

2,2,2-Trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with aniline (279 mg, 3.00 mmol, 1.00 equiv)

and MeCN (3.0 mL, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.51 mL, 0.59 g, 3.6 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.89 mL, 2.83 g, 13.5 mmol, 4.50 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **4-TFT** (1.1 g, 82%) as a colorless solid.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CO(CD₃)₂, 25 °C, δ): 8.82 (dd, J = 9.3, 7.3 Hz, 2H), 8.25 (dd, J = 10.0, 7.1 Hz, 2H), 8.07 – 7.85 (m, 2H), 7.53 (d, J = 9.3 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CO(CD₃)₂, 25 °C, δ): 156.2 (q, J = 38.1 Hz), 154.6 (dd, J = 261.4, 13.1 Hz), 151.3 (dd, J = 255.1, 13.7 Hz), 141.9, 135.3 (dd, J = 8.6, 3.8 Hz), 130.6, 125.9 (dd, J = 22.4, 2.3 Hz), 122.9, 121.0 (d, J = 21.9 Hz), 119.5, 116.3 (q, J = 287.3 Hz, CF₃), 116.1 (dd, J = 7.3, 3.4 Hz).

¹⁹**F NMR** (126 MHz, CO(CD₃)₂, 25 °C, δ): -76.4 (s), -126.1 (ddd, J = 20.8, 10.3, 7.3 Hz), -134.4 (ddd, J = 20.8, 9.3, 7.3 Hz), -149.9 (brs), -150.0 (brs).

HRMS-ESI(m/z) calc'd for $C_{20}H_9NOS_2F_7^+$ [M-BF₄]⁺, 476.0008; found, 476.0006; deviation: 0.5 ppm.

2,2,2-Trifluoro-N-(4-hydroxyphenyl)acetamide (4)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (57.2 mg, 0.400 mmol, 0.800 equiv.), dimethylglyoxime (5.8 mg, 50 µmol, 0.10 equiv.), and MeCN/H₂O (3 mL, v/v= 3:2). After stirring for 10 mins at ambient temperature, 2,2,2-Trifluoro-N-phenylacetamide thianthrenium salt **4-TT** (282 mg, 0.500 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (5.6 mg, 5.0 µmol, 1.0 mol%) in MeCN (1.0 mL, c = 0.50 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue

LED irradiation, and then diluted with CH_2Cl_2 (2 mL). The reaction mixture was filtered through a short pad of Celite using CH_2Cl_2 (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10 to 1:4, v/v) to afford **4** (68.9 mg, 67% yield) as a colorless solid.

Rf = 0.40 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 9.14 (brs, 1H, OH), 7.43 (d, *J* = 9.0 Hz, 2H), 7.19 (s, 1H), 6.85 (d, *J* = 9.0 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ) 155.6, 155.5 (q, *J* = 32.2 Hz), 128.6, 123.8, 116.1, 115.9 (q, *J* = 280.4 Hz).

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –76.3 (s).

HRMS-ESI(m/z) calc'd for C₈H₆NO₂F₃⁺[M]⁺, 205.0345; found, 205.0345; deviation: 0 ppm.

Methyl acetyl-L-phenylalate tetrafluorothianthrenium salt (5-TFT)

Under ambient atmosphere, a 20 mL round-bottom flask was charged with acetyl-L-phenylalanine methyl ester (664 mg, 3.00 mmol, 1.00 equiv.), and dry MeCN (30 mL, c = 0.10 M). After cooling to 0 °C, HBF₄·OEt₂ (0.49 mL, 3.6 mmol, 1.2 equiv.) was added to the reaction mixture. Tetrafluorothianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv.) was added at 0 °C in one portion, followed by trifluoroacetic anhydride (1.25 mL, 1.89 g, 9.00 mmol, 3.00 equiv.) addition in one portion at 0 °C. The vial was sealed with a screw-cap, and the mixture was allowed to stand at 0 °C for 1 hour and then warmed to 25 °C. After stirring the deep purple reaction mixture at 25 °C for 1 hour, the reaction mixture was concentrated under reduced pressure, and diluted with 30 mL CH₂Cl₂. The CH₂Cl₂ phase was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was washed with aqueous NaBF₄ solution (2 × ca. 20 mL, 5 % w/w), and with water (2 × ca. 20 mL). The CH₂Cl₂ layer was purified by chromatography on silica gel eluting with CH₂Cl₂/*i*-PrOH (30:1, v/v). The product was precipitated by addition of 2 mL CH₂Cl₂, and 20 mL Et₂O. The suspension was decanted, and the solid was dried in vacuo to afford **5-TFT** (1.34 g, 89 % yield) as a colorless solid.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹H NMR (500 MHz, CD₃CN, 25 °C, δ): 8.43–8.39 (m, 2H), 7.96 (dd, *J* = 10.0 Hz, 7.1 Hz, 2H), 7.37–7.35

(m, 2H), 7.15–7.12 (m, 2H), 6.76 (d, *J* = 8.1 Hz, 1H), 4.61 – 4.57 (m, 1H), 3.60 (s, 3H), 3.17 – 2.93 (m, 2H), 1.78 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 172.5, 170.7, 154.8 (d, J = 261.8 Hz, 13.1 Hz), 151.6 (dd, J = 255.4 Hz, 13.6 Hz), 144.9, 135.24 (dd, J = 8.5, 3.9 Hz), 132.54, 129.2, 125.6 (dd, J = 22.1, 2.3 Hz), 121.6, 121.2 (d, J = 21.8 Hz), 115.5–115.4 (m), 54.0, 52.8, 37.7, 22.6.

¹⁹F NMR (471 MHz, CD₃CN, 25 °C, δ): –125.3 (m), –133.5 (m), –151.5 (brs), –151.6 (brs).

HRMS-ESI(m/z) calc'd for C₂₄H₁₈F₄NO₃S₂⁺ [M-BF₄]⁺, 508.0659, found, 508.0659, deviation: 0 ppm.

Methyl acetyl-L-tyrosinate (5)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%), copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), and methyl acetyl-L-phenylalate tetrafluorothianthrenium salt **5-TFT** (119 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by H₂O (72.1 mg, 721 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with ethyl acetate (1 mL). The reaction mixture was filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane 1:1 (v/v) to afford **5** (38 mg, 80% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.30$ (ethyl acetate/pentane, 1:2, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.01 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 8.6 Hz, 2H), 6.70 – 6.64 (m, 1H), 4.54 (td, *J* = 7.9 Hz, 5.8 Hz, 1H), 3.63 (s, 3H), 2.98 (dd, *J* = 14.0 Hz, 5.9 Hz, 1H), 2.85 (dd, *J* = 13.9 Hz, 7.9 Hz, 1H), 1.85 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 172.7, 170.6, 156.4, 130.9, 128.4, 115.7, 54.6, 52.2, 36.9, 22.3.

HRMS-ESI(m/z) calc'd for C₁₂H₁₅NO₄Na⁺ [M+Na]⁺, 260.0893; found, 260.0896. Deviation: – 0.9 ppm.

Hydroxy-nefiracetam (6)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, nefiracetam tetrafluorothianthrenium salt **6-TFT** (67.9 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with DCM/MeOH (20:1, v/v) to afford **6** with impurities. Further purification of **6** by HPLC (YMC-Actus Triart C18 (30×150 mm: 5 µM), MeOH/TFA in water (1/1000, v/v) = 50:50, flow rate = 42.5 mL/min, 25 °C, retention time; 2.1 min) provided **6** (14.1 mg, 54%) as a colorless solid.

 $\mathbf{R}_{f} = 0.58$ (MeOH/CH₂Cl₂, 1:10, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃OD, 25 °C, δ): 6.51 (s, 2H), 4.15 (s, 2H), 3.62 – 3.55 (m, 2H), 2.44 (t, *J* = 8.1 Hz, 2H), 2.13 (m, 8H).

¹³C {¹H} NMR (101 MHz, CD₃OD, 25 °C, δ): 177.2, 168.2, 156.0, 136.7, 125.4, 114.2, 48.3, 45.2, 30.0, 17.4, 17.1.

HRMS-ESI(m/z) calc'd for C₁₄H₁₇N₂O₃⁺[M]⁺, 261.1245; found, 261.1247; deviation: –0.8 ppm.

Bromobenzene tetrafluorothianthrenium salt (7-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with bromobenzene (780 mg, 5.00 mmol, 1.00 equiv) and MeCN (5.0 mL, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (1.51 g, 5.00 mmol, 1.00 equiv) was added to the vial while

stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **7-TFT** (2.15 g, 85%) as a grey powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (600 MHz, CD₂Cl₂, 25 °C, δ): 8.58 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.77 (dd, *J* = 9.1, 6.7 Hz, 2H), 7.67 (d, *J* = 9.1 Hz, 2H), 7.08 (d, *J* = 9.1 Hz, 2H).

¹³**C** {¹**H**} **NMR** (151 MHz, CD_2CI_2 , 25 °C, δ): 154.5 (dd, J = 266.1, 13.1 Hz), 151.4 (dd, J = 260.5, 13.4 Hz), 134.5, 134.4 (dd, J = 8.0, 4.2 Hz), 129.7, 129.4, 125.5 (dd, J = 21.8, 2.6 Hz), 122.0, 120.3 (d, J = 21.3 Hz), 114.7 (dd, J = 6.8, 3.6 Hz).

¹⁹**F NMR** (376 MHz, CD₂Cl₂, 25 °C, δ): -121.7 (d, *J* = 20.7 Hz), -129.6 (d, *J* = 20.8 Hz), -149.3 (brs), -149.4 (brs).

HRMS-ESI (m/z) calculated for C₁₈H₈BrF₄S₂⁺ [M-BF₄]⁺, 442.9182; found, 442.9185; deviation: –0.7 ppm.

4-Bromophenol (7)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, bromobenzene tetrafluorothianthrenium salt **7-TFT** (48.7 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:20 to

1:10, v/v) to afford **7** (12.1 mg, 70% yield) as a brown oil.

 $\mathbf{R}_{f} = 0.29$ (EtOAc/pentane ,1:20, v/v, (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (300 MHz, CDCl₃, 25 °C, δ): 7.33 (d, J = 8.9 Hz, 2H), 6.72 (d, J = 8.9 Hz, 2H).

¹³C {¹H} NMR (75 MHz, CDCl₃, 25 °C, δ): 154.7, 132.6, 117.3, 113.1.

HRMS-ESI(m/z) calc'd for C₆H₅OBr⁺ [M]⁺, 171.9520; found, 171.9518; deviation: –1.1 ppm.

2-Methoxybenzoate tetrafluorothianthrenium salt (8-TFT)

Under ambient atmosphere, a 20 mL round-bottom flask was charged with 2-methoxybenzoate (49.8 mg, 0.300 mmol, 1.00 equiv.), and dry MeCN (3.0 mL, c = 0.10 M). After cooling to 0 °C, tetrafluorothianthrene-*S*-oxide (91 mg, 0.30 mmol, 1.0 equiv.) was added to the reaction mixture in one portion. Trifluoroacetic anhydride (125 µL, 189 mg, 0.900 mmol, 3.00 equiv.) was added at 0 °C in one portion, followed by HBF₄·OEt₂ (49 µL, 58 mg, 0.36 mmol, 1.2 equiv.) dropwise addition at 0 °C. The vial was sealed with a screw-cap, and the mixture was allowed to stand at 0 °C for 1 hour and then warmed to 25 °C. After stirring the deep purple reaction mixture at 25 °C for 14 hours, the reaction mixture was concentrated under reduced pressure, and diluted with 30 mL CH₂Cl₂. The CH₂Cl₂ phase was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was washed with aqueous NaBF₄ solution (2 × ca. 20 mL, 5 % w/w), and with water (2 × ca. 20 mL). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH₂Cl₂/MeOH (30:1, v/v). The product was precipitated by addition of 2 mL CH₂Cl₂, and 20 mL Et₂O. The suspension was decanted, and the solid was dried in vacuo to afford **8-TFT** (109 mg, 67 % yield) as a colorless solid.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.38 (dd, J = 9.2, 7.2 Hz, 2H), 7.97 (dd, J = 10.0, 7.1 Hz, 2H), 7.56 (d, J = 2.8 Hz, 1H), 7.39 (dd, J = 9.2, 2.9 Hz, 1H), 7.20 (d, J = 9.2 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 165.3, 163.1, 154.6 (dd, *J* = 261.7, 13.1 Hz), 151.5 (dd, *J* = 255.6, 13.6 Hz), 134.8 (dd, *J* = 8.6, 3.9 Hz), 134.5, 132.2, 125.1 (dd, *J* = 22.2, 2.6 Hz), 123.9, 121.1 (d, *J* = 21.9 Hz), 115.7 (dd, *J* = 7.3, 3.5 Hz), 115.5, 112.7, 57.5, 53.1.

¹⁹F NMR (471 MHz, CD₃CN, 25 °C, δ): –125.5 (m), –133.6 (m), –151.0 (brs), –151.1 (brs).

HRMS-ESI(m/z) calc'd for $C_{21}H_{13}O_3S_2F_4^+$ [M-BF₄]⁺, 453.0237; found, 453.0231; deviation: 1.2 ppm.

5-Hydroxy-2-methoxybenzoate (8)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, 2-methoxybenzoate tetrafluorothianthrenium salt **8-TFT** (54.0 mg, 0.100 mmol, 1.00 equiv.), and $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6(1.1 mg, 1.0 µmol, 1.0 mol%)$ in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:5, v/v) to afford **8** (15.5 mg, 85% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.35$ (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.32 (d, *J* = 3.2 Hz, 1H), 6.99 (dd, *J* = 8.9, 3.2 Hz, 1H), 6.87 (d, *J* = 8.9 Hz, 1H), 5.21 (brs, 1H, OH), 3.89 (s, 3H), 3.84 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 166.7, 153.6, 149.2, 120.7, 120.5, 118.3, 114.1, 56.9, 52.4.

HRMS-ESI(m/z) calc'd for C₉H₁₀O₄ [M]⁺, 182.0574; found, 182.0576; deviation: –1.1 ppm.

Xanthone tetrafluorothianthrenium salt (9-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with xanthone (392 mg, 2.00 mmol, 1.00 equiv) and MeCN (10 mL, c = 0.20 M). Trifluoroacetic anhydride (0.834 mL, 1.26 g, 6.00 mmol, 3.00 equiv.) was added while stirring the reaction mixture at 25 °C. After cooling to 0 °C, tetrafluorothianthrene-*S*-oxide (608 mg, 2.00 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (327 µL, 389 mg, 2.40 mmol, 1.20 equiv.). The mixture was stirred at 0°C for 1 hour, then warmed

to 23°C for 2.5 hours. The solution was diluted with CH_2CI_2 (5 mL) and poured onto a mixture of CH_2CI_2 (25 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 25 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/*i*-PrOH (50:1 (v/v)), then the solvent was removed *in vacuo* to afford **9-TFT** (689 mg, 60% yield) as a colorless solid.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.49 (dd, J = 9.1, 7.1 Hz, 2H), 8.15 (dd, J = 8.0, 1.8 Hz, 1H), 8.07 (d, J = 2.8 Hz, 1H), 7.98 (dd, J = 9.9, 7.0 Hz, 2H), 7.84 (ddd, J = 8.7, 7.1, 1.8 Hz, 1H), 7.67 (d, J = 9.1 Hz, 1H), 7.61 – 7.53 (m, 2H), 7.45 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ) 175.4, 159.0, 156.4, 154.5 (dd, *J* = 262.4, 13.8 Hz), 150.2 (dd, *J* = 255.9, 13.6 Hz), 137.0, 135.0 (d, *J* = 12.3 Hz), 134.1, 128.5, 126.8, 125.9, 125.3 (dd, *J* = 22.7, 2.2 Hz), 123.3, 121.8, 121.0 (d, *J* = 22.0 Hz), 118.9, 118.3, 115.1 (d, *J* = 7.0 Hz).

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): -124.8 (m), -133.26 (dt, J = 20.2, 8.0 Hz), -151.03 (brs), - 151.08(brs).

HRMS-ESI(m/z) calc'd for $C_{25}H_{11}F_4O_2S_2^+$ [M-BF₄]⁺, 483.0131; found, 483.0137; deviation: -1.2 ppm.

Hydroxyl xanthone (9)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (22.9 mg, 0.160 mmol, 0.800 equiv.), dimethylglyoxime (2.3 mg, 20 µmol, 0.10 equiv.), and MeCN/H₂O (1.6 mL, v/v= 5:3). After stirring for 10 mins at ambient temperature, 6-methyl-4-chromanone tetrafluorothianthrenium salt **9-TFT** (114 mg, 0.200 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.50 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10, v/v) to afford **9** (27.8 mg, 66% yield) as a colorless solid.

R_f = 0.43 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 9.03 (brs, 1H, OH), 8.24 (dd, J = 8.0, 1.7 Hz, 1H), 7.82 (td, J = 7.9, 7.1, 1.7 Hz, 1H), 7.63 (d, J = 3.1 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.51 (d, J = 9.0 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.37 (dd, J = 9.0, 3.1 Hz, 1H).

¹³C {¹H} NMR (126 MHz, CO(CD₃)₂, 25 °C, δ): 176.9, 157.0, 154.9, 150.9, 135.7, 127.0, 125.1, 124.6, 123.2, 121.9, 120.3, 118.9, 109.9.

HRMS-ESI(m/z) calc'd for C₁₃H₈O₃⁺ [M]⁺, 212.0468; found, 212.0467; deviation: 0.4 ppm.

(R)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one (10)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), (*R*)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one tetrafluoro-thianthrenium salt **10-TFT** (121 mg, 0.200 mmol, 1.00 equiv.), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 1.0 mol%), water (72 µL, 36 mg, 4.0 mmol, 20 equiv.) and MeCN (1.0 mL, *c* = 0.20 M). The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:5 to 1:2, v/v) to afford **10** (37.1 mg, 74% yield) as a colorless solid.

Rf = 0.31 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.11 – 6.98 (m, 2H), 6.88 (brs, 1H, OH), 6.75 (d, *J* = 8.5 Hz, 2H), 4.78 – 4.56 (m, 1H), 4.24 (dd, *J* = 9.0, 8.2 Hz, 1H), 4.14 (dd, *J* = 9.0, 2.8 Hz, 1H), 3.04 – 2.72 (m, 4H), 1.12 (t, *J* = 7.3 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 174.7, 156.9, 154.8, 131.7, 127.7, 116.2, 67.2, 55.6, 37.0, 29.7, 8.7.

HRMS-ESI(m/z) calc'd for C₁₃H₁₄N₁O₄ [M+H]⁺, 250.1074; found, 250.1071; deviation: 1.2 ppm.

Hydroxy-boscalid (11)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, boscalid tetrafluorothianthrenium salt **11-TFT** (67.9 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/ pentane (1:5 to 1:2, v/v) to afford **11** (20.3 mg, 57%) as a colorless solid.

Rf = 0.25 (EtOAc/pentane, 1:1, v/v (UV)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.39 (dd, J = 4.8, 2.0 Hz, 1H), 8.16 (brs, 1H, OH), 7.74 (dd, J = 7.6, 2.0 Hz, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.48 – 7.21 (m, 5H), 6.89 (dd, J = 8.6, 2.8 Hz, 1H), 6.79 (d, J = 2.8 Hz, 1H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 164.8, 155.9, 150.9, 147.3, 138.2, 138.1, 137.9, 133.5, 133.1, 131.2, 128.8, 128.5, 128.4, 126.3, 123.2, 117.7, 117.0, 115.5.

HRMS-ESI(m/z) calc'd for $C_{18}H_{11}N_2O_2Cl_2^+[M-H]^+$, 357.0203; found, 357.0206; deviation: -0.9 ppm.

Methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)

Under ambient atmosphere, a 20 mL round-bottom flask was charged with 2,4-dimethyl-methylbenzoate (328 mg, 2.00 mmol, 1.00 equiv.), and dry MeCN (10 mL, c = 0.20 M). After cooling to 0 °C, trifluoroacetic

anhydride (834 µL, 1.26 g, 6.00 mmol, 3.00 equiv.) was added to the reaction mixture. HBF₄·OEt₂ (327 µL, 2.40 mmol, 1.20 equiv.) was added at 0 °C in one portion, followed by tetrafluorothianthrene-*S*-oxide (752 mg, 2.00 mmol, 1.00 equiv.) addition in one portion at 0 °C. The vial was sealed with a screw-cap, and the mixture was allowed to stand at 0 °C for 1 hour and then warmed to 25 °C. After stirring the deep purple reaction mixture at 25 °C for 5 hours, the reaction mixture was concentrated under reduced pressure, and diluted with 30 mL CH₂Cl₂. The CH₂Cl₂ phase was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was washed with aqueous NaBF₄ solution (2 × ca. 20 mL, 5 % w/w), and with water (2 × ca. 20 mL). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH₂Cl₂/*i*·PrOH (30:1, v/v). The product was precipitated by addition of 5 mL CH₂Cl₂, and 10 mL Et₂O. The suspension was decanted, and the solid was dried in vacuo to afford **12-TFT** (998 mg, 93 %) as a colorless solid.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.24 (ddt, *J* = 9.0, 5.5, 1.7 Hz, 2H), 8.00 (dd, *J* = 9.9, 7.0 Hz, 2H), 7.47 (s, 1H), 7.45 (s, 1H), 3.76 (s, 3H), 2.63 (s, 3H), 2.54 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 165.4, 153.7 (dd, J = 266.1, 13.1 Hz), 150.8 (dd, J = 260.0, 13.2 Hz), 147.7, 143.7, 137.8, 135.3 (dd, J = 7.9, 3.9 Hz), 131.5, 129.0, 124.6 (d, J = 21.6 Hz), 120.1 (d, J = 21.0 Hz), 117.0, 113.6 (dd, J = 6.5, 3.4 Hz), 52.8, 21.7, 20.2.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): -125.55 (ddd, *J* = 20.3, 9.8, 7.0 Hz), -133.24 (ddd, *J* = 20.3, 9.1, 7.0 Hz), -151.57 (brs), -151.62 (brs).

HRMS-ESI (m/z) calculated for C₂₂H₁₅F₄O₂S₂⁺ [M-BF₄]⁺, 451.0444; found, 451.0448; deviation: –0.9 ppm.

Methyl 5-hydroxy-2,4-dimethylbenzoate (12)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt **12-TFT** (108 mg, 0.200 mmol, 1.00 equiv.), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6(1.1 mg, 1.0 \mu mol, 1.0 mol%)$, water (72 µL, 36 mg, 4.0 mmol, 20 equiv.), and MeCN (1.0 mL, c = 0.2 M). The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was

filtered through a short pad of Celite using CH_2CI_2 (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10 to 1:5, v/v) to afford **12** (15.1 mg, 42% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.40$ (EtOAc/pentane, 1:10, v/v, (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.38 (s, 1H), 6.99 (s, 1H), 3.87 (s, 3H), 2.49 (s, 3H), 2.25 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 168.4, 153.5, 135.0, 131.9, 130.3, 128.6, 117.0, 52.2, 20.7, 16.1.

HRMS-ESI(m/z) calc'd for C₁₀H₁₂O₃Na₁⁺ [M+Na]⁺, 203.0679; found, 203.0678; deviation: -0.2 ppm.

2-Methoxy-benzonitrile thianthrenium salt (13-TT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 2-methoxy-benzonitrile (266 mg, 2.00 mmol, 1.00 equiv) and MeCN (3.0 mL, c = 0.67 M). After cooling to 0 °C, HBF₄·OEt₂ (0.34 mL, 0.40 g, 2.4 mmol, 1.2 equiv) and thianthrene-S-oxide (464 mg, 2.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.84 mL, 1.3 g, 6.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **13-TT** (770 mg, 90% yield) as a colorless solid.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.32 (dd, J = 8.0, 1.4 Hz, 2H), 7.95 (dd, J = 7.9, 1.4 Hz, 2H), 7.87 (td, J = 7.7, 1.4 Hz, 2H), 7.79 (td, J = 7.7, 1.4 Hz, 2H), 7.40 (d, J = 2.7 Hz, 1H), 7.34 (dd, J = 9.3, 2.7 Hz, 1H), 7.16 (d, J = 9.3 Hz, 1H), 3.92 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 165.4, 137.4, 136.2, 135.9, 135.7, 134.7, 131.8, 131.0, 119.4, 115.5, 115.0, 114.9, 104.5, 58.2.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ):–151.5 (brs), –151.6 (brs).

HRMS-ESI(m/z) calc'd for C₂₀H₁₄NOS₂⁺[M]⁺, 348.0511; found, 348.0508; deviation: 0.9 ppm.

5-Hydroxy-2-methoxybenzonitrile (13)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, 2-methoxy-5-methylbenzonitrile thianthrenium salt **13-TT** (43.8 mg, 0.100 mmol, 1.00 equiv.), and $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6(1.1 mg, 1.0 µmol, 1.0 mol%)$ in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:5, v/v) to afford **13** (12.1 mg, 81% yield) as a colorless solid.

Rf = 0.35 (EtOAc/pentane, 1:2, v/v, (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.13 – 7.03 (m, 2H), 6.85 (d, J = 9.9 Hz, 1H), 3.87 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 155.8, 149.6, 122.1, 119.8, 116.4, 112.8, 101.8, 56.6.

HRMS-ESI(m/z) calc'd for C₈H₇NO₂⁺[M]⁺, 149.0471; found, 149.0473; deviation: -1.1 ppm.

3-Chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 3-chloropropyl benzene (154 mg, 1.00 mmol, 1.00 equiv) and MeCN (4.0 mL, c = 0.25 M). Trifluoroacetic anhydride (0.42 mL, 0.63 g, 3.0 mmol, 3.0 equiv.) was added while stirring the reaction mixture at 25 °C. After cooling to 0 °C, tetrafluorothianthren-S-oxide (304 mg, 1.00 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of

HBF₄·OEt₂ (163 µL, 194 mg, 1.20 mmol, 1.20 equiv.). The mixture was stirred at 0 °C for 2 hours, then warmed to 25 °C for 14 hours. The solution was diluted with CH_2Cl_2 (5 mL) and poured onto a mixture of CH_2Cl_2 (20 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **14-TFT** (378 mg, 72% yield) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.41 (dd, J = 9.1, 7.1 Hz, 2H), 7.95 (dd, J = 10.0, 7.0 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 3.53 (t, J = 6.5 Hz, 2H), 2.92 – 2.70 (m, 2H), 2.07 – 1.98 (m, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ) 154.4 (dd, *J* = 255.6, 13.7 Hz), 151.2 (dd, *J* = 255.8, 13.7 Hz), 148.5, 134.8 (dd, *J* = 8.8, 3.8 Hz), 131.3, 129.0, 125.1 (d, *J* = 24.2 Hz), 120.7 (d, *J* = 21.8 Hz), 120.3, 115.1 (dd, *J* = 7.7, 3.8 Hz), 44.8, 33.8, 32.6.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –125.2 (m), –133.8 (m), –151.2 (brs), –151.3 (brs).

HRMS-ESI(m/z) calc'd for C₂₁H₁₄ClF₄S₂⁺ [M-BF₄]⁺, 441.0156; found, 441.0156; deviation: 0 ppm.

4-(3-Chloropropyl)phenol (14)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)pp]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%), copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), and 3-chloropropyl benzene tetrafluorothianthrenium salt **14-TFT** (105 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by H₂O (72.1 mg, 721 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with ethyl acetate (1 mL). The reaction mixture was filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo,* and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane 1:10 (v/v) to afford **14** (25 mg, 75% yield) as a colorless oil.

 $\mathbf{R}_{f} = 0.40$ (ethyl acetate/pentane, 1:5, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.04 (d, J = 8.5 Hz, 2H), 6.82 (s, 1H), 6.73 (d, J = 8.5 Hz, 2H), 3.55 (t, J = 6.6 Hz, 2H), 2.65 (t, J = 6.6 Hz, 2H), 2.03 – 1.96 (m, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 155.5, 132.5, 129.9, 115.5, 44.9, 34.7, 31.9.

HRMS-ESI(m/z) calc'd for C₉H₁₁OCl⁺ [M]⁺, 170.0493; found, 170.0497. Deviation: –2.2 ppm.

4-(3-Hydroxy-1-phenylpropyl)phenol (15)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, 3,3-diphenyl-propanol tetrafluorothianthrenium salt **15-TFT** (56.7 mg, 0.100 mmol, 1.00 equiv.), Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%), and MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:5 to 1:2, v/v) to afford **15** (16.1 mg, 71% yield) as a colorless solid.

Rf = 0.20 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ) 7.32 – 7.21 (m, 4H), 7.20 – 7.15 (m, 2H), 7.11 (d, *J* = 8.5 Hz, 2H), 6.74 (d, *J* = 8.6 Hz, 2H), 4.07 (t, *J* = 7.9 Hz, 1H), 3.62 (t, *J* = 6.4 Hz, 2H), 2.28 (dt, *J* = 8.0, 6.4 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 154.1, 145.0, 136.8, 129.1, 128.7, 127.9, 126.4, 115.5, 61.4, 46.7, 38.5.

HRMS-ESI(m/z) calc'd for C₁₅H₁₆O₂⁺ [M]⁺, 228.1145; found, 228.1145; deviation: 0 ppm.

Hydroxy-salicin pentaacetate (16)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, salicin pentaacetate tetrafluorothianthrenium salt **16-TFT** (92.8 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆(1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:3 to 1:1, v/v) to afford **16** (36.4 mg, 71% yield) as a pale yellow solid.

 $\mathbf{R}_{f} = 0.46$ (EtOAc/pentane, 1:1, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 6.98 (d, *J* = 8.8 Hz, 1H), 6.83 (d, *J* = 3.1 Hz, 1H), 6.72 (dd, *J* = 8.8, 3.1 Hz, 1H), 5.32 – 5.23 (m, 2H), 5.23 – 5.13 (m, 1H), 5.08 (d, *J* = 13.0 Hz, 1H), 5.00 (d, *J* = 13.0 Hz, 1H), 4.94 – 4.88 (m, 1H), 4.26 (dd, *J* = 12.3, 5.1 Hz, 1H), 4.18 (dd, *J* = 12.3, 2.6 Hz, 1H), 3.78 (ddd, *J* = 10.0, 5.1, 2.5 Hz, 1H), 2.12 – 2.00 (m, 15H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 171.1, 170.9, 170.5, 169.6, 169.6, 152.2, 148.4, 128.1, 119.0, 116.1, 115.8, 100.7, 72.9, 72.1, 71.3, 68.5, 62.0, 61.1, 21.1, 20.9, 20.8, 20.7.

HRMS-ESI(m/z) calc'd for $C_{23}H_{28}O_{13}Na^{+}$ [M+Na]⁺, 535.1422; found, 535.1423; deviation: -0.1 ppm.

Methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)

Under ambient atmosphere, a 20 mL round-bottom flask was charged with methyl 1-phenylcyclopropane-1carboxylate (88.1 mg, 0.500 mmol, 1.00 equiv.), and dry MeCN (5.0 mL, c = 0.10 M). After cooling to 0 °C,
trifluoroacetic anhydride (209 µL, 315 mg, 1.50 mmol, 3.00 equiv.) was added to the reaction mixture. HBF₄·OEt₂ (82 µL, 0.60 mmol, 1.2 equiv.) was added at 0 °C in one portion, followed by tetrafluorothianthrene-*S*-oxide (152 mg, 0.500 mmol, 1.00 equiv.) addition in one portion at 0 °C. The vial was sealed with a screw-cap, and the mixture was allowed to stand at 0 °C for 1 hour and then warmed to 25 °C. After stirring the deep purple reaction mixture at 25 °C for 14 hours, the reaction mixture was concentrated under reduced pressure, and diluted with 30 mL CH₂Cl₂. The CH₂Cl₂ phase was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was washed with aqueous NaBF₄ solution (2 × ca. 20 mL, 5 % w/w), and with water (2 × ca. 20 mL). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **17-TFT** (203 mg, 82% yield) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H** NMR (500 MHz, CD₃CN, 25 °C, δ): 8.48 (dd, J = 9.2, 7.2 Hz, 2H), 7.98 (dd, J = 10.0, 7.1 Hz, 2H), 7.52 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H), 3.53 (s, 3H), 1.54 (q, J = 4.2 Hz, 2H), 1.17 (q, J = 4.2 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 174.1, 154.6 (dd, *J* = 263.3, 13.6 Hz), 151.4 (dd, *J* = 255.6, 13.6 Hz), 146.6, 135.1 (dd, *J* = 8.5, 3.9 Hz), 133.5, 128.9, 125.5 (dd, *J* = 22.2, 2.3 Hz), 121.8, 120.9 (d, *J* = 21.9 Hz), 115.1 (dd, *J* = 7.3, 3.4 Hz), 52.8, 29.1, 17.1.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): -125.2 (ddd, *J* = 20.4, 9.9, 7.1 Hz), -133.6 (ddd, *J* = 20.8, 9.3, 7.1 Hz), -150.4 (brs), -150.5 (brs).

HRMS-ESI(m/z) calc'd for C₂₃H₁₅F₄O₂S₂⁺[M-BF₄]⁺, 463.0444; found, 463.0435; deviation: 2.0 ppm.

Methyl 1-(4-hydroxyphenyl)cyclopropane-1-carboxylate (17)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%), copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), and methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt **17-TFT** (110 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by H₂O (72.1 mg, 721 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with

ethyl acetate (1 mL). The reaction mixture was filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane 1:8 (v/v) to afford **17** (27mg, 71% yield) as a colorless solid.

 $\mathbf{R}_f = 0.40$ (ethyl acetate/pentane, 1:4, v/v)

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 7.17 (d, J = 8.7 Hz, 2H), 6.91 (s, 1H), 6.73 (d, J = 8.7 Hz, 2H), 3.55 (s, 3H), 1.48 (q, J = 3.9 Hz, 2H), 1.12 (q, J = 3.9 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C , δ): 175.5, 156.5, 132.2, 131.7, 115.3, 52.2, 28.4, 16.7.

HRMS-ESI(m/z) calc'd for C₁₁H₁₂O₃⁺ [M]⁺, 192.0781; found, 192.0783. Deviation: –1.2 ppm.

6-Methyl-4-chromanone thianthrenium salt (18-TT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 6-methyl-4-chromanone (294 mg, 1.50 mmol, 1.00 equiv) and MeCN (3.0 mL, c = 0.50 M). After cooling to 0 °C, HBF₄·OEt₂ (0.26 mL, 0.31 g, 1.8 mmol, 1.2 equiv) and thianthrene-S-oxide (348 mg, 1.50 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.63 mL, 0.95 g, 4.5 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **18-TT** (530 mg, 77% yield) as a light yellow solid.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.35 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.84 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.80 (s, 2H), 7.73 (dd, *J* = 7.9, 1.5 Hz, 3H), 6.53 (d, *J* = 2.1 Hz, 1H), 4.71 (t, *J* = 6.5 Hz, 2H), 2.75 (t, *J* = 6.5 Hz, 2H), 2.13 (s, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 189.0, 157.9, 137.1, 135.1, 135.1, 134.3, 133.0, 132.1, 130.5,

130.2, 128.5, 127.7, 123.1, 116.3, 109.4, 69.0, 37.2, 20.6.

¹⁹F NMR (471 MHz, CDCl₃, 25 °C, δ):–151.8 (brs), –151.9 (brs).

HRMS-ESI(m/z) calc'd for C₂₂H₁₇S₂O₂⁺ [M-BF₄]⁺, 377.0665; found, 377.0664; deviation: 0.2 ppm.

8-Hydroxy-6-methylchroman-4-one (18)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (22.9 mg, 0.160 mmol, 0.800 equiv.), dimethylglyoxime (2.3 mg, 20 µmol, 0.10 equiv.), and MeCN/H₂O (1.6 mL, v/v= 5:3). After stirring for 10 mins at ambient temperature, 6-methyl-4-chromanone thianthrenium salt **18-TT** (92.9 mg, 0.200 mmol, 1.00 equiv.), and $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.50 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10, v/v) to afford **18** (26.9 mg, 51% yield) as a colorless solid.

Rf = 0.28 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.12 (dd, *J* = 2.1, 1.1 Hz, 1H), 6.90 (d, *J* = 2.1 Hz, 1H), 6.70 (brs, 1H, OH), 4.61 – 4.35 (m, 3H), 2.83 – 2.68 (m, 2H), 2.16 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 192.6, 149.1, 146.6, 131.7, 122.5, 118.3, 117.5, 68.5, 38.5, 20.7.

HRMS-ESI(m/z) calc'd for C₁₀H₁₁O₃⁺ [M+H]⁺, 179.0703; found, 179.0705; deviation: -1.2 ppm.

Benzyl benzoate tetrafluorothianthrenium salt (19-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with benzyl benzoate (636 mg, 3.00 mmol,

1.00 equiv) and MeCN (5.0 mL, c = 0.60 M). After cooling to 0 °C, HBF₄·OEt₂ (0.50 mL, 0.59 g, 3.6 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.3 mL, 1.8 g, 9.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **19-TFT** (1.05 g, 61% yield) as a colorless solid.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.48-8.45 (m, 2H), 7.98-7.93 (m, 4H), 7.62-7.58 (m, 3H), 7.63 (t, *J* = 8.0 Hz, 3H), 7.26 (d, *J* = 8.5 Hz, 2H), 5.36 (s, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 166.8, 154.9 (dd, J = 262.1, 13.9 Hz), 151.6 (dd, J = 254.5, 12.6 Hz), 143.6, 135.3 (dd, J = 8.8, 5.0 Hz), 134.5, 130.6, 130.4, 130.3, 129.7, 129.6, 125.7 (dd, J = 22.7, 2.5 Hz), 123.1, 121.2 (d, J = 21.4 Hz), 115.2 (dd, J = 7.4, 3.8 Hz), 65.9.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –125.2 (ddd, J = 20.8, 10.2, 7.3 Hz), –133.6 (ddd, J = 20.8, 9.2, 7.2 Hz), –150.7 (brs), –150.8 (brs).

HRMS-ESI(m/z) calc'd for C₂₆H₁₅F₄O₂S₂⁺ [M-BF₄]⁺, 499.0444; found, 499.0442; deviation: 0.4 ppm.

4-Hydroxybenzyl benzoate (19)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%), copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), and benzyl benzoate tetrafluorothianthrenium salt **19-TFT** (117 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by H₂O (72.1 mg, 721 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with ethyl acetate (1 mL). The reaction mixture was filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column

chromatography on silica gel, eluting with ethyl acetate/pentane 1:8 (v/v) to afford **19** (38 mg, 84% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.40$ (ethyl acetate/pentane, 1:4, v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.00 (dd, J = 8.4 Hz, 1.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (dd, J = 8.6 Hz, 7.1 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 7.05 (s, 1H), 6.83 (d, J = 8.6 Hz, 2H), 5.24 (s, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 166.9, 157.8, 133.8, 131.1, 130.9, 130.0, 129.3, 128.4, 116.0, 67.1.

HRMS-ESI(m/z) calc'd for C₁₄H₁₂O₃⁺ [M]⁺, 228.0781; found, 228.0778. Deviation: 1.4 ppm.

N-benzyloxycarbonyl-4-cis-phenoxy-L-proline methyl ester tetrafluorothianthrenium salt (20-TFT)

20-TFT

Under an ambient atmosphere, a 20-mL glass vial was charged with N-benzyloxycarbonyl-4-*trans*-phenoxy-L-proline methyl ester (178 mg, 0.500 mmol, 1.00 equiv) and MeCN (5 ml, c = 0.1 M). Trifluoroacetic anhydride (208 µL, 315 mg, 1.50 mmol, 3.00 equiv.) was added while stirring the reaction mixture at 25 °C. After cooling to 0 °C, tetrafluorothianthrene-S-oxide (152 mg, 0.500 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (82 µL, 0.60 mmol, 1.2 equiv.). The mixture was stirred at 0 °C for 1 hour, then warmed to 25 °C for 1 hour. The solution was diluted with CH₂Cl₂ (5 mL) and poured onto a mixture of CH₂Cl₂ (20 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **20-TFT** (112 mg, 31% yield) as a light yellow powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD_2CI_2 , 25 °C, δ): 8.40 – 8.23 (m, 2H), 7.70 – 7.62 (m, 2H), 7.30 – 7.17 (m, 7H), 6.90 – 6.82 (m, 2H), 5.10 – 4.84 (m, 3H), 4.48 (ddd, *J* = 15.7, 8.7, 2.4 Hz, 1H), 3.73 (ddd, *J* = 12.5, 10.4, 4.8 Hz, 1H), 3.64 – 3.50 (m, 4H), 2.49 – 2.34 (m, 2H). ¹³C {¹H} NMR (126 MHz, CD₂Cl₂, 25 °C, δ): 172.4, 172.2, 161.7, 154.9, 154.7, 154.3 (dd, J = 261.6, 13.2 Hz), 151.3 (dd, J = 259.3, 13.5 Hz), 137.2, 137.1, 134.1 (dd, J = 8.6, 3.8 Hz),131.4, 131.3, 129.0, 128.9, 128.6, 128.5, 128.3, 128.1, 124.5 (d, J = 21.9 Hz), 120.3 (d, J = 21.2 Hz), 118.5, 118.4, 115.6 (dd, J = 7.4, 3.6 Hz), 113.0, 77.2, 76.2, 67.6, 67.5, 58.5, 58.2, 52.7, 52.5, 52.2, 36.6, 35.6.

¹⁹**F NMR** (471 MHz, CD₂Cl₂, 25 °C, δ): –120.8 (m), –129.2 (m), –148.9 (brs), –149.0 (brs).

HRMS-ESI(m/z) calc'd for $C_{24}H_{18}F_4NO_5S_2^+[M-BF_4]^+$, 642.1027, found, 642.1021, deviation: 0.9 ppm.

Hydroxy-N-benzyloxycarbonyl-4-cis-phenoxy-L-proline methyl ester (20)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, N-benzyloxycarbonyl-4-*trans*-phenoxy-L-proline methyl ester tetrafluorothianthrenium salt **20-TFT** (72.9 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/ pentane (1:10 to 1:4, v/v) to afford **20** (18.4 mg, 50% yield) as a colorless solid.

Rf = 0.29 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.42 – 7.29 (m, 5H), 6.70 (qd, *J* = 9.2, 2.4 Hz, 4H), 6.61 (bs, 1H, OH), 5.18 – 4.97 (m, 2H), 4.92 – 4.80 (m, 1H), 4.49 (ddd, *J* = 9.7, 8.1, 2.0 Hz, 1H), 3.77 – 3.52 (m, 5H), 2.45 (m, 1H), 2.37 – 2.28 (m, 1H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 173.2, 172.9, 155.5, 155.2, 152.4, 150.8, 138.1, 138.0, 134.3, 133.7, 129.4, 129.3, 128.9, 128.8, 128.6, 128.5, 118.1, 116.8, 77.3, 76.2, 67.5, 58.9, 58.6, 53.0, 52.7, 52.7, 36.7, 35.8.

HRMS-ESI(m/z) calc'd for C₂₀H₂₁NO₆Na₁⁺ [M+Na]⁺, 394.1261, found, 394.1263, deviation: -0.4 ppm.

Hydroxy-etofenprox (21)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) thiophene-2-carboxylate (28.6 mg, 0.150 mmol, 1.50 equiv.), etofenprox thianthrenium salt **21-TT** (67.8 mg, 0.100 mmol, 1.00 equiv.), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 1.0 mol%), water (36 µL, 18 mg, 2.0 mmol, 20 equiv.), and MeCN (0.5 mL, c = 0.2 M). The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH_2Cl_2 (2 mL). The reaction mixture was filtered through a short pad of Celite using CH_2Cl_2 (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:20, v/v) to afford **21** (24.2 mg, 62% yield) as a colorless solid.

Rf = 0.36 (EtOAc/pentane, 1:20, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.40 – 7.23 (m, 3H), 7.11 (ddt, J = 7.7, 6.9, 1.1 Hz, 1H), 7.07 –6.87 (m, 6H), 6.84 – 6.69 (m, 2H), 5.61 (brs, 1H, OH), 4.45 (s, 2H), 4.08 (q, J = 7.0 Hz, 2H), 3.40 (s, 2H), 1.42 (t, J = 7.0 Hz, 3H), 1.29 (s, 6H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 157.3, 157.2, 145.2, 143.9, 141.0, 140.9, 129.7, 129.5, 123.2, 122.0, 120.0, 117.7, 117.6, 117.5, 112.7, 111.1, 80.2, 72.8, 64.5, 38.7, 26.1, 15.0.

HRMS-ESI(m/z) calc'd for C₂₅H₂₈O₄Na⁺ [M+Na]⁺, 415.1880; found, 415.1877; deviation: 0.8 ppm.

Biphenyl tetrafluorothianthrenium salt (22-TFT)

Under an ambient atmosphere, a 50-ml glass vial was charged with biphenyl (0.77 g, 5.0 mmol, 1.0 equiv) and MeCN (20 ml, c = 0.25 M). Trifluoroacetic anhydride (2.08 mL, 3.15 g, 15.0 mmol, 3.00 equiv.) was added at 25 °C while stirring the reaction mixture. After cooling to 0 °C, tetrafluorothianthrene-S-oxide (1.52 g, 5.00 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (1.08 mL,

1.29 g, 8.00 mmol, 1.60 equiv.). The mixture was stirred at 0 °C for 1 hour, then warmed to 25 °C for 14 hours. The solution was diluted with CH_2Cl_2 (5 mL) and poured onto a mixture of CH_2Cl_2 (20 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **22-TFT** (1.88g, 82% yield) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 8.47 (dd, *J* = 9.1, 7.2 Hz, 2H), 7.97 (dd, *J* = 9.9, 7.0 Hz, 2H), 7.80 – 7.71 (m, 2H), 7.64 – 7.58 (m, 2H), 7.52 – 7.40 (m, 3H), 7.34 – 7.24 (m, 2H).

¹³C {¹H} NMR (75 MHz, CD₃CN, 25 °C, δ): 154.7 (dd, J = 260.2, 13.5 Hz), 151.5 (dd, J = 254.3, 13.6 Hz), 146.8, 138.8, 135.2 (dd, J = 8.6, 4.0 Hz), 130.1, 130.0, 129.8, 129.7, 128.2, 125.5 (dd, J = 22.2, 2.6 Hz), 121.9, 121.1 (d, J = 21.8 Hz), 115.3 (dd, J = 7.3, 3.6 Hz).

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –125.3 (m), –133.7 (m), –150.6 (brs), –150.7 (brs).

HRMS-ESI (m/z) calculated for C₂₂H₁₅F₄O₂S₂⁺ [M-BF₄]⁺, 441.0389; found, 441.0382; deviation: 1.7 ppm.

Biphenyl thianthrenium salt (22-TT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 1,1'-biphenyl (720mg, 5.00 mmol, 1.00 equiv) and MeCN (5.0 mL, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **22-TT** (1.94 g, 85% yield) as a colorless powder.

$R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, DMSO-*d*₆, 25 °C, δ): 8.65 (dd, J = 7.9, 1.3 Hz, 2H), 8.13 (dd, J = 7.9, 1.3 Hz, 2H), 7.99 (td, J = 7.7, 1.4 Hz, 2H), 7.94 – 7.88 (m, 4H), 7.70 – 7.68 (m, 2H), 7.53 – 7.50 (m, 2H), 7.48 – 7.47 (m, 1H), 7.34 – 7.33 (m, 2H).

¹³C NMR (126 MHz, CD₃CN, 25 °C, δ): 144.7, 137.1, 135.8, 134.3, 134.2, 129.9, 129.1, 128.3, 128.1, 128.0, 127.7, 126.4, 121.5, 117.7.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –152.4 (brs), –152.5 (brs).

HRMS-ESI (m/z) calculated for C₂₄H₁₇S₂⁺ [M-BF₄]⁺, 369.0766; found, 369.0767; deviation: -0.3 ppm.

4-Phenylphenol (22)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (22.9 mg, 0.160 mmol, 0.800 equiv.), dimethylglyoxime (2.3 mg, 20 µmol, 0.10 equiv.), and MeCN/H₂O (1.6 mL, v/v= 3:2). After stirring for 10 mins at ambient temperature, biphenyl tetrafluorothianthrenium salt **22-TFT** (107 mg, 0.200 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 1.0 mol%) in MeCN (0.40 mL, *c*= 0.50 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:20, v/v) to afford **22** (27.1 mg, 80% yield) as a colorless solid.

 $R_f = 0.25$ (EtOAc/pentane, 1:20, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.66 – 7.55 (m, 2H), 7.52 – 7.48 (m, 2H), 7.41 (dd, *J* = 8.6, 7.0 Hz, 2H), 7.34 – 7.26 (m, 1H), 7.09 (brs, 1H, OH), 7.01 – 6.87 (m, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 157.6, 141.6, 133.5, 129.7, 129.0, 127.5, 127.3, 116.6.

HRMS-ESI(m/z) calc'd for C₁₂H₉O⁺ [M-H]⁺, 169.0659; found, 169.0660; deviation: –0.5 ppm.

(3r,5r,7r)-1-(p-Tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with p-(1-Adamantyl)toluene (452 mg, 2.00 mmol, 1.00 equiv) and MeCN (8.0 mL, c = 0.25 M). Trifluoroacetic anhydride (834 µL, 1.26 g, 6.00 mmol, 3.00 equiv.) was added while stirring the reaction mixture at 25 °C. After cooling to 0 °C, tetrafluorothianthrene-S-oxide (608 mg, 2.00 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (299 µL, 356 mg, 2.20 mmol, 1.10 equiv.). The mixture was stirred at 0 °C for 2 hours, then warmed to 25 °C for 14 hours. The solution was diluted with CH₂Cl₂ (5 mL) and poured onto a mixture of CH₂Cl₂ (20 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **23-TFT** (780 mg, 65% yield) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.25 (dd, J = 9.2, 7.1 Hz, 2H), 8.02 (dd, J = 9.9, 7.0 Hz, 2H), 7.67 (dd, J = 8.0, 1.9 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 1.9 Hz, 1H), 2.66 (s, 3H), 2.00 (q, J = 3.2 Hz, 3H), 1.76 – 1.63 (m, 12H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 154.4 (dd, J = 261.7, 13.0 Hz), 152.5, 151.8 (dd, J = 14.5, 1.0 Hz), 138.8, 135.2 (dd, J = 8.3, 3.9 Hz), 134.8, 132.7, 127.0, 124.4 (dd, J = 22.1, 2.3 Hz), 121.0 (d, J = 21.7 Hz), 120.6, 115.4 (dd, J = 7.0, 3.6 Hz), 43.0, 37.0, 36.8, 3.54, 20.1.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –125.7 (dd, *J* = 10.0, 4.7 Hz), –133.2 (m), –150.7 (brs), –150.8 (brs).

HRMS-ESI(m/z) calc'd for C₂₉H₂₅F₄S₂⁺ [M-BF₄]⁺, 513.1328; found, 513.1327. Deviation: –1.1 ppm.

5-((3r,5r,7r)-Adamantan-1-yl)-2-methylphenol (23)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%), copper(I) thiophene-2-carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), and (3r,5r,7r)-1- (p-tolyl)adamantane tetrafluorothianthrenium salt **23-TFT** (120 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by H₂O (72.1 mg, 721 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LEDs, and then diluted with ethyl acetate (1 mL). The reaction mixture was filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane 1:20 (v/v) to afford **23** (29.1mg, 60% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.40$ (ethyl acetate/pentane, 1:10, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 7.08 – 6.91 (m, 1H), 6.79 – 6.76 (m, 2H), 6.52 (s, 1H), 2.12 (d, J = 0.7 Hz, 3H), 2.07 – 2.03 (m, 3H), 1.86 (d, J = 2.9 Hz, 6H), 1.84 – 1.71 (m, 6H).

¹³C {¹H} NMR (75 MHz, CD₃CN, 25 °C, δ): 155.1, 151.2, 130.9, 121.6, 116.8, 112.0, 43.5, 37.0, 36.2, 29.6, 15.2.

HRMS-ESI(m/z) calc'd for C₁₇H₂₂O⁺ [M]⁺, 242.1665; found, 242.1668. Deviation: -1.1 ppm.

4'-Hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (22.9 mg, 0.160 mmol, 0.800 equiv.), dimethylglyoxime (2.3 mg, 20 µmol, 0.10 equiv.), and MeCN/H₂O (1.6 mL, v/v= 5:3). After stirring for 10 mins at ambient temperature, 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate tetrafluorothianthrenium salt **24-TFT** (135 mg, 0.200 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.50 M) were then added. The vial was evacuated and then

filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH_2Cl_2 (2 mL). The reaction mixture was filtered through a short pad of Celite using CH_2Cl_2 (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10, v/v) to afford **24** (44.9 mg, 71% yield) as a grey solid.

R_f = 0.33 (EtOAc/pentane, 1:10, v/v (UV)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.71 – 7.53 (m, 2H), 7.44 (d, *J* = 8.6 Hz, 2H), 7.35 – 7.28 (m, 2H), 6.92 (d, *J* = 8.6 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 155.9, 148.7, 141.4, 132.2, 128.7, 128.5, 121.7, 118.9 (q, *J* = 280.2 Hz, CF₃), 116.0.

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C, δ): –72.8 (s).

HRMS-ESI(m/z) calc'd for C₁₂H₁₅NO₄Na⁺ [M+Na]⁺, 260.0893; found, 260.0896; deviation: -0.9 ppm.

Diclofenac amide thianthrenium salt (25-TT)

Under an ambient atmosphere, a 20-mL glass vial was charged with diclofenac amide (695 mg, 2.50 mmol, 1.00 equiv) and MeCN (10 mL, c = 0.25 M). Trifluoroacetic anhydride (1.04 mL, 1.58 g, 7.50 mmol, 3.00 equiv.) was added while stirring the reaction mixture at 25 °C. After cooling to -40 °C, thianthrene-S-oxide (580 mg, 2.50 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (408 μ L, 485 mg, 3.00 mmol, 1.2 equiv.). The mixture was stirred at -40 °C for 1 hour, then warmed to 25 °C for 14 hours. The solution was diluted with CH₂Cl₂ (5 mL) and poured onto a mixture of CH₂Cl₂ (20 mL) and saturated aqueous NaHCO₃ solution (30 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 20 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 20 mL). The DCM layer was dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (40:1 (v/v)), then the solvent was removed *in vacuo* to afford **25-TT** (1.03 g, 71% yield) as a grey powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ) 7.93 (d, J = 1.4 Hz, 2H), 7.85 (td, J = 7.7, 1.4 Hz, 2H), 7.78 (td, J = 7.7, 1.4 Hz, 2H), 7.57 (dd, J = 8.1, 0.9 Hz, 2H), 7.49 (dd, J = 9.1, 7.2 Hz, 2H), 7.27 (dt, J = 2.3, 1.2 Hz, 1H), 7.10 (ddd, J = 8.5, 2.1, 1.0 Hz, 1H), 6.51 (d, J = 8.6 Hz, 1H), 3.75 (d, J = 1.0 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 173.6, 148.4, 137.1, 135.9, 135.5, 135.5, 133.0, 131.5, 130.9, 130.2, 129.9, 128.5, 125.8, 119.6, 117.6, 111.2, 35.8.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –150.5 (brs), –150.6 (brs).

HRMS-ESI(m/z) calc'd for C₂₆H₁₆Cl₂NOS₂⁺ [M-BF₄]⁺, 492.0045; found, 492.0041; deviation: 0.8 ppm.

Hydroxy-diclofenac amide (25)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) thiophene-2-carboxylate (28.6 mg, 0.150 mmol, 1.50 equiv.), diclofenac amide thianthrenium salt **25-TT** (58.1 mg, 0.100 mmol, 1.00 equiv.), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6(1.1 mg, 1.0 \mu mol, 1.0 mol%), water (36 \mu L, 18 mg, 2.0 mmol, 20 equiv.), and MeCN (0.5 mL,$ *c*= 0.2 M). The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated*in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10 to 1:5, v/v) to afford**25**(12.1 mg, 41% yield) as a black solid.

Rf = 0.30 (EtOAc/pentane,1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ) 7.61 (d, *J* = 8.1 Hz, 2H), 7.49 (dd, *J* = 8.7, 7.6 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 6.77 (brs, 1H, OH), 6.63 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.24 (d, *J* = 8.4 Hz, 1H), 3.69 (s, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 174.2, 154.2, 137.1, 136.1, 132.3, 131.7, 130.2, 127.0, 114.7, 113.9, 110.2, 36.5.

HRMS-ESI(m/z) calc'd for C₁₅H₁₆NO₂Cl₂⁺ [M]⁺, 294.0083; found, 294.0083; deviation: 0 ppm.

Hydroxy-pyriproxyfen (26)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) oxide (11.5 mg, 80.0 µmol, 0.800 equiv.), dimethylglyoxime (1.2 mg, 10 µmol, 0.10 equiv.), and MeCN/H₂O (0.9 mL, v/v= 2:1). After stirring for 10 mins at ambient temperature, pyriproxyfen tetrafluorothianthrenium salt **26-TFT** (92.8 mg, 0.100 mmol, 1.00 equiv.), and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) in MeCN (0.40 mL, c = 0.25 M) were then added. The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of Celite using CH₂Cl₂ (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:20 to 1:5, v/v) to afford **26** (16.6 mg, 49% yield) as a pale yellow solid.

 $\mathbf{R}_{f} = 0.29$ (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.13 (ddd, *J* = 5.0, 2.0, 0.9 Hz, 1H), 7.64 (ddd, *J* = 8.4, 7.1, 2.0 Hz, 1H), 7.04 – 6.59 (m, 10H), 5.66 – 5.50 (m, 1H), 4.23 – 4.02 (m, 2H), 1.39 (d, *J* = 6.4 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 163.1, 154.6, 152.0, 151.6, 151.5, 146.3, 139.7, 119.9, 119.5, 117.1, 116.4, 115.9, 112.0, 71.3, 70.4, 17.1.

HRMS-ESI(m/z) calc'd for C₂₀H₂₀NO₂⁺[M+H]⁺, 338.1387; found, 338.1388; deviation: -0.4 ppm.

General procedure and reaction condition optimization for etherification

General procedure of etherification

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), alcohol (0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M)

was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 $^{\circ}$ C: After 2 hours, the vial was opened and (tetrafluoro)thianthrenium salt (0.200 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexanes to afford the etherificated product.

Note: The reaction is air sensitive. Schlenk techniques can be used to avoid air if a glovebox is not available. For simplicity, in our own research, we have opted to execute the transformation for most compounds by using a glovebox. If moisture is present, phenols (resulting from hydroxylation as opposed to alkoxylation) are observed as byproducts. In addition, biarylethers (**29-C**) are observed as byproducts, possibly resulting from cross coupling of the in situ formed phenols and arylthianthrenium salts.

Table S2. Reaction condition optimization

Change of reaction conditions	Yield of 29 ^b
none ^a	72%
no Na ₂ CO ₃	30%
Open air instead of in an anhydrous, N ₂ -filled glovebox	42%
1 equiv. N-Boc-3-hydroxyazetidine	61%
No prestrring of N-Boc-3-hydroxyazetidine, Na ₂ CO ₃ and CuTC	64%

Organic dye 4CzIPN instead of [Ir[dF(CF ₃)ppy] ₂ (dtbpy)PF ₆ ^c	30%
Reaction is carried out without purification of the aryl thianthrenium salts	17%

^aN-Boc-3-hydroxyazetidine (2.0 equiv.), CuTC (1.0 equiv.), Na₂CO₃ (1.0 equiv.), 3 Å MS, acetonitrile, 2 hours; followed by addition of thianthrenium salt (1.0 equiv.), [Ir[dF(CF₃)ppy]₂(dtbpy)PF₆] (1 mol%), blue LED (34 W), 30 °C, 16 hours. ^bYield based on NMR with 0.1 mmol styrol as internal standard. ^cOrganic dye 4CzIPN (5 mmol%).

Side product without Na₂CO₃: 4-ethylphenyl thiophene-2-carboxylate (29-B)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (19.0 mg, 0.100 mmol, 1.00 equiv.), N-Boc-3-hydroxyazetidin (34.6 mg, 0.200 mmol, 2.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1.0 mL, c = 0.10 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1: 100 v/v) to afford **29-B** (8.9 mg, 42% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.3$ (EtOAc/pentane, 1:50, v/v (UV)

NMR Spectroscopy:

¹**H NMR** (500 MHz, $CDCI_3$, 25 °C, δ): 7.98 (dd, J = 3.7, 1.4 Hz, 1H), 7.65 (dd, J = 4.9, 1.3 Hz, 1H), 7.24 (d, J = 8.5 Hz, 2H), 7.17 (dd, J = 5.1, 3.7 Hz, 1H), 7.12 (d, J = 8.5 Hz, 2H), 2.67 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 160.9, 148.6, 142.1, 134.7, 133.5, 133.2, 128.9, 128.1, 121.5,

28.5, 15.7.

HRMS-ESI(m/z) calc'd for $C_{13}H_{12}O_2S_1^+[M]^+$, 232.0553; found, 232.0553. Deviation: 0 ppm.

Side product: biarylether (29-C)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (19.0 mg, 0.100 mmol, 1.00 equiv.), 5-methylhexan-2-ol (23.2 mg, 0.200 mmol, 2.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1.0 mL, c = 0.10 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo,* and the residue was then purified by flash column chromatography on silica gel, eluting with pentane to afford **29-C** (5.4 mg, 25% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.30$ (pentane (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.21 – 7.11 (m, 4H), 7.03 – 6.87 (m, 4H), 2.74 – 2.61 (m, 4H), 1.23 (td, *J* = 7.6, 0.9 Hz, 6H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 155.6, 139.0, 129.1, 118.8, 28.3, 15.9.

HRMS-ESI(m/z) calc'd for C₁₆H₁₈O₁⁺ [M]⁺, 226.1352; found, 226.1354. Deviation: –0.82 ppm.

Figure S3. Comparison of the etherifcation of TT and TFT salts

Thianthrenation and etherfication of arenes

2-Fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 2-fluoro-6-phenoxybenzonitrile (640 mg, 3.00 mmol, 1.00 equiv) and MeCN (5 mL, c = 0.6 M). After cooling to 0 °C, HBF₄·OEt₂ (0.50mL, 0.59 g, 3.6 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.25 mL, 1.89 g, 9.00 mmol, 3.00 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 4 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **27-TFT** (963 mg, 64% yield) as a colorless solid.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.44 (dd, *J* = 9.1, 7.2 Hz, 2H), 7.97 (dd, *J* = 9.9, 7.0 Hz, 2H), 7.67 (dd, *J* = 8.6, 6.6 Hz, 1H), 7.40 – 7.28 (m, 2H), 7.26 – 7.12 (m, 3H), 6.94 – 6.82 (m, 1H) ppm.

¹³**C** {¹**H**} **NMR** (126 MHz, CD₃CN, 25 °C, δ): 164.8 (d, J = 257.7 Hz), 160.4, 158.7 (d, J = 3.6 Hz), 154.7 (d, J = 262.0, 13.1 Hz), 151.5 (dd, J = 255.5, 13.5 Hz), 137.4 (d, J = 10.7 Hz), 135.2 (dd, J = 8.7, 3.9 Hz), 132.0, 125.4 (dd, J = 22.1, 2.4 Hz), 121.3, 121.1 (d, J = 21.7 Hz), 118.4, 116.1 (d, J = 3.1 Hz), 115.5 (dd, J = 7.2, 3.5 Hz), 113.1 (d, J = 19.7 Hz), 111.6, 95.9 (d, J = 18.3 Hz) ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): δ –106.6 (d, J = 6.8 Hz), –125.3 (m), –133.7 (ddd, J = 20.4, 9.3, 7.0 Hz), –150.9 (brs), –151.0 (brs) ppm.

HRMS-ESI(m/z) calc'd for C₂₅H₁₁F₅NOS₂⁺ [M-BF₄]⁺, 500.0197; found, 500.0195; deviation: 0.4 ppm.

2-Fluoro-6-(4-methoxyphenoxy)benzonitrile (27)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt **27-TFT** (118 mg, 0.200 mmol, 1.00 equiv.), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), and MeCN/MeOH (1.2 mL, v/v= 5:1, c = 0.17 M). The vial was evacuated and then filled with argon; this procedure was repeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with TBME (1 mL). The reaction mixture was filtered through a short pad of silica using TBME (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with Et₂O/pentane (1:5, v/v) to afford **27** (42.0 mg, 86% yield) as a colorless oil.

 $R_f = 0.40$ (EtOAc/pentane, 1:10, v/v (UV)).

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₂Cl₂, 25 °C, δ): 7.42 (td, *J* = 8.6, 6.6 Hz, 1H), 7.12 – 7.04 (m, 2H), 7.02 – 6.93 (m, 2H), 6.87 (td, *J* = 8.5, 0.8 Hz, 1H), 6.55 (dt, *J* = 8.7, 0.8 Hz, 1H), 3.82 (s, 3H).

¹³C {¹H} NMR (101 MHz, CD₂Cl₂, 25 °C, δ): 164.6 (d, J = 258.0 Hz), 162.5 (d, J = 4.3 Hz), 158.0, 148.0, 135.5 (d, J = 10.5 Hz), 122.3, 115.7, 111.8, 111.5 (d, J = 3.3 Hz), 109.6 (d, J = 19.6 Hz), 93.3 (d, J = 18.1 Hz), 56.2.

¹⁹**F NMR** (376 MHz, CD₂Cl₂, 25 °C, δ): –106.5.

HRMS-ESI(m/z) calc'd for C₁₄H₁₀NO₂F⁺ [M]⁺, 243.0690; found, 243.0690. Deviation: 0 ppm.

1-Ethyl-4-phenoxybenzene (28)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), phenol (37.6 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with pentane to afford **28** (32.8 mg, 83% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.30 \text{ (pentane (UV))}$

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.37–7.30 (m, 2H), 7.18 (d, J = 8.6 Hz, 2H), 7.09 (tt, J = 7.4 Hz, 1.2 Hz, 1H), 7.01 (dd, J = 8.7 Hz, 1.1 Hz, 2H), 6.98 – 6.94 (m, 2H), 2.66 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 157.8, 154.9, 139.3, 129.7, 129.0, 122.8, 119.1, 118.5, 28.2, 15.8.

HRMS-ESI(m/z) calc'd for calc'd for C₁₄H₁₄O⁺ [M]⁺,198.1039; found,198.1040. Deviation: -0.2 ppm.

tert-Butyl 3-(4-ethylphenoxy)azetidine-1-carboxylate (29)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), N-Boc-3-hydroxyazetidin (69.2 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1: 10 v/v) to afford **29** (40.0 mg, 72% yield) as a colorless solid.

R_f = 0.40 (EtOAc/pentane, 1:10, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 7.13 (d, J = 8.8 Hz, 2H), 6.71 (d, J = 8.6 Hz, 2H), 4.89 (tt, J = 6.4 Hz, 4.0 Hz, 1H), 4.25 (ddd, J = 9.6 Hz, 6.4 Hz, 1.1 Hz, 1H), 3.87 – 3.80 (m, 1H), 2.58 (q, J = 7.6 Hz, 2H), 1.42 (s, 9H), 1.17 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 157.3, 156.0, 138.6, 130.1, 115.8, 80.2, 67.2, 57.5, 28.7, 28.7, 16.3.

HRMS-ESI(m/z) calc'd for C₁₆H₂₃NO₃Na⁺ [M+Na]⁺, 300.1570; found, 300.1572. Deviation: –0.5 ppm.

trans-2-(4-Rthylphenoxy)cyclohexan-1-ol (30)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged

with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), *trans*-1,2-cyclohexandiol (46.5 mg, 0.400 mmol, 2.00 equiv.), Na_2CO_3 (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH_2Cl_2 (2 mL). The reaction mixture was filtered through a short pad of silica using CH_2Cl_2 (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:10 v/v) to afford **30** (34.5 mg, 78% yield) as a colorless solid.

R_f = 0.30 (EtOAc/pentane, 1:5. v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.17 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 3.94 (ddd, *J* = 9.8 Hz, 8.2 Hz, 4.2 Hz, 1H), 3.57 (ddt, J = 9.7 Hz, 7.9 Hz, 3.8 Hz, 1H), 3.18 (d, *J* = 3.3 Hz, 1H), 2.57 (q, *J* = 7.6 Hz, 2H), 2.08 – 2.04 (m, 1H), 1.98 – 1.95 (m, 0.5H), 1.69 – 1.66 (m, 2H), 1.39 – 1.21 (m, 4.5H), 1.18 (t, *J* = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 157.4, 137.5, 129.7, 117.0, 82.6, 73.4, 33.5, 30.2, 28.6, 24.5, 24.5, 16.4.

HRMS-ESI(m/z) calc'd for C₁₄H₂₀O₂Na⁺ [M+Na]⁺, 243.1355; found, 243.1353. Deviation: 1.2 ppm.

2-Fluoro-6-(4-(methoxy-d₃)phenoxy)benzonitrile (31)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mol, 1.00 equiv.), and 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt **27-TFT** (118 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by CD₃OD (0.16 g, 0.20 mL, 4.4 mmol, 22 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl-

tert-butylether (1 mL). The reaction mixture was filtered through a short pad of silica using methyl-*tert*butylether (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with Et_2O /pentane (1:5 v/v) to afford **31** (46.2 mg, 94% yield) as a colorless oil.

R_f = 0.40 (EtOAc/pentane, 1:10, v/v (UV)).

NMR Spectroscopy:

¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.06–7.03 (m, 2H), 6.95–6.92 (m, 2H), 6.83 (td, J = 8.5 Hz, 0.9 Hz, 1H), 6.53 (dt, J = 8.5 Hz, 0.9 Hz, 1H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 165.3, 163.2, 162.2 (d, J = 4.1 Hz), 157.5, 147.6, 134.9 (d, J = 10.2 Hz), 122.0, 115.3, 111.4, 111.0 (d, J = 3.4 Hz), 109.2 (d, J = 19.6 Hz), 55.5–54.7 (m, OCD₃).

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C, δ): –105.0.

HRMS-ESI(m/z) calc'd for C₁₄H₇NO₂FD₃Na⁺ [M+Na]⁺, 269.0776; found, 269.0777. Deviation: –0.4 ppm.

1-Cyclobutoxy-4-ethylbenzene (32)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), cyclobutanol (72.1 mg, 78.3 μ L, 1.00 mmol, 5.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, *c* = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1: 200 v/v) to afford **32** (21.4 mg, 60% yield) as a colorless oil.

R_f = 0.30 (EtOAc/pentane, 1:100, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.09 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 4.68 – 4.56 (m, 1H), 2.59 (q, J = 7.6 Hz, 2H), 2.44 (dddt, J = 9.5 Hz, 8.1 Hz, 6.7 Hz, 2.6 Hz, 2H), 2.27 – 2.09 (m, 2H), 1.85 (m, 1H), 1.68 (dtt, J = 11.2 Hz, 10.1 Hz, 8.2 Hz, 1H), 1.21 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 155.6, 136.3, 128.7, 114.8, 71.5, 30.8, 28.0, 15.9, 13.3. HRMS-ESI(m/z) calc'd for C₁₂H₁₇O⁺ [M+H]⁺, 177.1274; found, 177.1274. Deviation: –0.3 ppm.

3-(4-Ethylphenoxy)oxetane (33)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), 3-hydroxyoxetan (37.0 mg, 31.7 μ L, 0.500 mmol, 2.50 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, *c* = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1: 100 v/v) to afford **33** (20.6 mg, 58% yield) as a colorless oil.

R_f = 0.30 (EtOAc/pentane, 1:50, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹H NMR (300 MHz, CDCl₃, 25 °C, δ): 7.03 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 8.6 Hz, 2H), 5.15 - 5.07(m, 1H), 4.92 - 4.83 (m, 2H), 4.75 - 4.61 (m, 2H), 2.51 (q, J = 7.6 Hz, 2H), 1.13 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 154.6, 137.4, 129.0, 114.3, 78.2, 70.1, 28.0, 15.8.

HRMS-ESI(m/z) calc'd for C₁₁H₁₅O₂ [M+H]⁺, 179.1067; found, 179.1067. Deviation: 0 ppm.

2-(2,2,2-Trifluoroethoxy)-9H-xanthen-9-one (34)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mol, 1.00 equiv.), and xanthen tetrafluorothianthrenium salt **9-TFT** (114 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by 2,2,2-trifluoroethanol (0.56 g, 0.40 mL, 5.4 mmol, 28 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl-*tert*-butylether (1 mL). The reaction mixture was filtered through a short pad of silica using methyl-*tert*-butylether (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with TBME/pentane (1:10, v/v) to afford **34** (28.9 mg, 49% yield) as a colorless solid.

Rf = 0.45 (EtOAc /pentane, 1:5, v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.33 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.84 – 7.66 (m, 2H), 7.57 – 7.46 (m, 2H), 7.44 – 7.34 (m, 2H), 4.47 (q, *J* = 8.0 Hz, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 176.7, 156.1, 153.6, 151.8, 134.9, 126.7, 125.2, 124.0, 122.1, 121.2, 120.0, 118.0, 107.4, 77.2, 66.2 (q, J = 35.9 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C, δ): –73.8.

HRMS-ESI(m/z) calc'd for C₁₅H₉O₃F₃Na⁺ [M+Na]⁺, 317.0396; found, 317.0399. Deviation: –0.9 ppm.

Methoxy-PEG(4) ethylbenzene (35)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), 2,5,8,11-tetraoxatridecan-13-ol (208 mg, 200 μ L, 1.00 mmol, 5.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, *c* = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived

tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:1 v/v) to afford **35** (32.4 mg, 51% yield) as a pale yellow oil.

R_f = 0.30 (EtOAc/pentane, 2:1, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.09 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 4.10 (dd, J = 5.8 Hz, 4.1 Hz, 2H), 3.84 (dd, J = 5.8 Hz, 4.1 Hz, 2H), 3.72 (dd, J = 5.9 Hz, 3.5 Hz, 2H), 3.68 – 3.62 (m, 8H), 3.54 (dd, J = 5.8 Hz, 3.5 Hz, 1H), 3.37 (s, 3H), 2.58 (q, J = 7.6 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 156.8, 136.6, 128.7, 114.5, 71.9, 70.8, 70.6, 70.6, 70.5, 69.8, 67.5, 59.0, 28.0, 15.9.

HRMS-ESI(m/z) calc'd for C₁₇H₂₈O₅Na [M+Na]⁺, 335.1829; found, 335.1827. Deviation: 0.6 ppm.

2-(4-Ethoxyphenoxy)-6-fluorobenzonitrile (36)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mol, 1.00 equiv.), and 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt **27-TFT** (118 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by EtOH (0.32 g, 0.40 mL, 6.8 mmol, 34 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl-*tert*-butylether (1 mL). The reaction mixture was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with Et₂O/pentane (1:5 v/v) to afford **36** (42.2 mg, 82% yield) as a colorless oil.

 $R_f = 0.40$ (EtOAc/pentane, 1:10, v/v (UV)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.38 (td, *J* = 8.5 Hz, 6.5 Hz, 1H), 7.05–7.01 (m, 2H), 6.94–6.91 (m, 2H), 6.83 (td, *J* = 8.5 Hz, 0.9 Hz, 1H), 6.53 (dt, *J* = 8.5 Hz, 0.9 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 1.43 (t, *J* = 7.0 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 165.3, 163.2, 162.2 (d, J = 4.1 Hz), 156.9, 147.5, 134.9 (d, J = 10.2 Hz), 121.9, 115.9, 111.4, 111.0 (d, J = 3.5 Hz), 109.2 (d, J = 19.6 Hz), 64.1, 15.0.

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C, δ): –105.0.

HRMS-ESI(m/z) calc'd for C₁₅H₁₂FNO₂Na [M+Na]⁺, 280.0744; found, 280.0745. Deviation: –0.4 ppm.

3-(4-Ethylphenoxy)butan-2-ol (37)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), 2,3-butandiol (50.1 mg, 50.0 μ L, 0.560 mmol, 2.77 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, *c* = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 μ mol, 1.0 mol%) were added into the reaction mixture. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1: 10 v/v) to afford **37a** and **37b** (23.0 mg, **37a:37b** = 3:2, 59% yield) as a colorless solid.

R_f = 0.50 (EtOAc/pentane, 1:5, v/v (UV, cerium molybdate))

NMR Spectroscopy (37a):

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.11 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 4.28 (qd, J = 6.3 Hz, 3.3 Hz, 1H), 4.02 (qd, J = 6.5 Hz, 3.3 Hz, 1H), 2.59 (q, J = 7.6 Hz, 2H), 1.26 (d, J = 6.3 Hz, 3H), 1.23 (d, J = 6.4 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 155.5, 137.0, 128.8, 116.1, 77.5, 69.4, 28.0, 17.9, 15.8, 13.5.

HRMS-ESI(m/z) calc'd for calc'd for C₁₂H₁₈O₂ [M]⁺, 194.1301; found, 194.1303. Deviation: -0.72 ppm.

NMR Spectroscopy (37b):

¹**H NMR** (300 MHz, CDCl₃, 25 °C, δ): 7.11 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.10 (p, *J* = 6.3 Hz, 1H), 3.82 (p, *J* = 6.4 Hz, 1H), 2.60 (q, *J* = 7.6 Hz, 2H), 1.25 (d, *J* = 3.1 Hz, 3H), 1.23 (d, *J* = 2.9 Hz, 3H), 1.20 (d, *J* = 7.6 Hz, 3H).

¹³C {¹H} NMR (101 MHz, CDCl₃, 25 °C, δ): 155.7, 137.1, 128.8, 116.2, 79.2, 71.0, 28.0, 18.5, 15.8, 15.7. HRMS-ESI(m/z) calc'd for C₁₂H₁₈O₂Na [M+Na]⁺, 217.1199; found, 217.1199. Deviation: 0.2 ppm.

1-(tert-Butyl) 2-methyl (2S,4R)-4-(4-ethylphenoxy)pyrrolidine-1,2-dicarboxylate (38)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), N-Boc-*trans*-4-hydroxy-L-prolinmethylester (105 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and $r[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:5 v/v) to afford **38** (33.5 mg, 48% yield) as a colorlesssolid.

 $\mathbf{R}_{f} = 0.30$ (EtOAc/pentane, 1:4, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.14 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 4.94 – 4.90 (m, 1H), 4.35 (td, *J* = 8.1 Hz, 2.9 Hz, 1H), 3.70, 3.68 (s, 3H), 3.66 – 3.57 (m, 2H), 2.57 (q, *J* = 7.6 Hz, 2H), 2.51 – 2.37 (m, 1H), 2.21 – 2.11 (m, 1H), 1.40, 1.38 (s, 9H), 1.18 (t, *J* = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 173.9, 173.6, 155.5, 154.1, 137.9, 129.5, 116.3, 116.2, 80.3, 76.4, 75.5, 58.5, 58.2, 52.7, 52.3, 52.3, 36.7, 35.9, 28.1, 28.1, 28.0, 15.9.

HRMS-ESI(m/z) calc'd for $C_{19}H_{27}NO_5Na^+$ [M+Na]⁺, 372.1781; found, 372.1777. Deviation: 1.2 ppm.

(3a*R*,5*R*,6*S*,6a*R*)-5-((*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(4-ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3-d][1,3]dioxole (39)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), 1,2:5,6-Di-O-isopropyliden-alpha-D-glucofuranose (104 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (2 mL, c = 0.1 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:20 (v/v)) to afford **39** (32.8 mg, 45% yield) as a colorless solid.

R_f = 0.30 (EtOAc/pentane, 1:10, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.14 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 5.92 (d, J = 3.8 Hz, 1H), 4.69 (d, J = 3.1 Hz, 1H), 4.60 (d, J = 3.9 Hz, 1H), 4.47 (dt, J = 7.3 Hz, 5.8 Hz, 1H), 4.33 (dd, J = 7.3 Hz, 3.1 Hz, 1H), 4.20 – 4.08 (m, 2H), 2.60 (q, J = 7.6 Hz, 2H), 1.55 (s, 3H), 1.44 (s, 3H), 1.32 (s, 3H), 1.30 (s, 3H), 1.21 (t, J = 7.6 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 154.9, 137.6, 129.0, 115.4, 112.0, 109.1, 105.3, 82.1, 80.5, 79.9, 72.4, 67.0, 28.0, 26.8, 26.7, 26.2, 25.3, 15.9.

HRMS-ESI(m/z) calc'd for C₂₀H₂₈O₆Na⁺ [M+Na]⁺, 387.1778; found, 387.1774. Deviation: 1.1 ppm.

4-Methyl-N-phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 4-methyl-*N*-phenylbenzenesulfonamide (1.24 g, 5.00 mmol, 1.00 equiv), and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (1.51 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0°C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach at 23 °C and stirred for 12 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 v/v), then the solvent was removed *in vacuo* to afford **40-TFT** (2.86 g, 92% yield) as a pale yellow powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.71 (brs, 1H), 8.33 (dd, *J* = 9.0, 2.0 Hz, 2H), 7.92 (dd, *J* = 10.0, 2.0 Hz, 2H), 7.69–7.69 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.21–7.19 (m, 2H), 7.11–7.08 (m, 2H), 2.36 (s, 3H) ppm.

¹³**C** NMR (126 MHz, CD₃CN, 25 °C, δ): 155.3 (dd, J = 261.7, 13.2 Hz), 152.1 (dd, J = 255.6, 13.4 Hz), 146.6, 144.2, 137.4, 135.6 (dd, J = 8.5, 4.0 Hz), 131.6, 131.5, 128.7, 125.8 (dd, J = 22.1, 2.4 Hz), 121.7 (d, J = 21.9 Hz), 121.3, 117.2, 116.1 (dd, J = 7.2, 3.4 Hz), 22.2.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): -125.5 (ddd, J = 20.8, 10.2, 7.3 Hz), -133.8 (ddd, J = 20.8, 9.2, 7.3 Hz), -151.0 (brs), -151.1 (brs)

HRMS-ESI (m/z) calculated for $C_{25}H_{16}F_4NO_2S_3^+$ [M-BF₄]⁺, 534.0274; found, 534.0267; Deviation: 1.3 ppm.

N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mol, 1.00 equiv.), 4-methyl-N-phenylbenzenesulfonamide tetrafluorothianthrenium salt **40-TFT** (124 mg, 0.200 mmol, 1.00 equiv.), and Na₂HPO₄ (28.4 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by MeOH (0.16 g, 0.20 mL, 4.9 mmol, 25 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl-*tert*-butylether (1 mL). The reaction mixture was filtered through a short pad of silica using methyl-*tert*-butylether (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with TBME/pentane (1:5, v/v) to afford **40** (36.6 mg, 66% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.57$ (EtOAc/pentane,1:1, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₂Cl₂, 25 °C, δ): 7.57 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.04 – 6.88 (m, 2H), 6.83 – 6.73 (m, 2H), 6.60 (s, 1H), 3.74 (d, J = 0.9 Hz, 3H), 2.38 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₂Cl₂, 25 °C, δ): 158.53, 144.52, 136.54, 130.1, 129.6, 127.8, 125.7, 114.9, 55.9, 21.8.

HRMS-ESI(m/z) calc'd for C₁₄H₁₅NO₃SNa⁺ [M+Na]⁺, 300.0665; found, 300.0666. Deviation: – 0.3 ppm.

tert-Butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), N-Boc-3-hydroxyazetidin (69.2 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and ethyl benzene-derived tetrafluorothianthrenium salt **28-TFT** (48.0 mg, 0.100 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (1.1 mg, 1.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel,

eluting with EtOAc/pentane (1:8 v/v) to afford 41 (42.0 mg, 55% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.40$ (EtOAc/pentane, 1:4, v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.00 (dd, *J* = 8.4 Hz, 1.4 Hz, 2H), 7.61 (ddt, *J* = 8.8 Hz, 7.1 Hz, 1.3 Hz, 1H), 7.48 (dd, *J* = 8.2 Hz, 7.4 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 5.27 (s, 2H), 4.92 (tt, *J* = 6.4 Hz, 4.0 Hz, 1H), 4.26 (dd, *J* = 9.6 Hz, 6.4 Hz, 2H), 3.85 (dd, *J* = 9.8 Hz, 3.9 Hz, 2H), 1.41 (s, 9H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 167.0, 157.7, 157.1, 134.1, 131.2, 131.1, 130.3, 130.2, 129.6, 115.6, 80.0, 67.1, 66.9, 57.1, 28.5.

HRMS-ESI(m/z) calc'd for C₂₂H₂₅NO₅Na⁺ [M+Na]⁺,406.1625; found, 406.1619. Deviation: 1.4 ppm.

tert-Butyl (R)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carboxylate (42)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), N-Boc-3-hydroxyazetidin (69.2 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 4 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and (*R*)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one tetrafluoro-thianthrenium salt **10-TFT** (121 mg, 0.200 mmol, 1.00 equiv.) and $r[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 2.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:2 v/v) to afford **42** (51.0 mg, 63% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.40$ (EtOAc/pentane, 1:2, v/v (cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.12 (d, *J* = 8.6 Hz, 2H), 6.73 (d, *J* = 8.6 Hz, 2H), 4.89 (tt, J = 6.5 Hz, 4.0 Hz, 1H), 4.62 (tt, J = 7.9 Hz, 3.1 Hz, 1H), 4.26 – 4.22 (m, 3H), 4.13 (dd, *J* = 9.0 Hz, 2.8 Hz, 1H), 3.82 (dd, *J* = 10.3 Hz, 4.0 Hz, 2H), 2.99 (dd, *J* = 13.8 Hz, 3.4 Hz, 1H), 2.95 – 2.77 (m, 3H), 1.41 (s, 9H),

1.12 (t, J = 7.4 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 174.3, 156.7, 156.4, 154.3, 131.5, 129.3, 115.3, 79.6, 66.8, 66.5, 56.59, 55.2, 36.7, 29.3, 28.1, 8.3.

HRMS-ESI(m/z) calc'd for C₂₁H₂₈N₂O₆Na⁺ [M+Na]⁺, 427.1840; found, 427.1833. Deviation: 1.6 ppm.

4-Methoxy-flurbiprofen methyl ester (43).

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38 mg, 40 µmol, 1.0 equiv.), and flurbiprofen methyl ester-derived thianthrenium salt **1-TT** (112 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by MeOH (128 mg, 162 µL, 4.00 mmol, 20.0 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl-*tert*-butylether (1 mL). The reaction mixture was filtered through a short pad of silica using methyl-*tert*-butylether (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with Et₂O/pentane(1:20 v/v) to afford **43** (27.9 mg, 49% yield) as a colorless oil.

Rr = 0.30 (Et₂O/pentane, 1:10,.v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.48–7.46 (m, 2H), 7.36 (t, *J* = 8.1 Hz, 1H), 7.13–7.09 (m, 2H), 6.99–6.96 (m, 2H), 3.85 (s, 3H), 3.77–3.73 (m, 1H), 3.70 (s, 3H), 1.53 (d, *J* = 7.1 Hz, 3H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 174.6, 159.8 (d, J = 247.4 Hz), 159.4, 141.3 (d, J = 7.7 Hz), 130.7 (d, J = 4.1 Hz), 129.7, 130.19, 130.17, 128.0, 127.6 (d, J = 13.6 Hz), 123.6 (d, J = 3.2 Hz), 115.3 (d, J = 23.8 Hz), 114.1, 55.4, 52.4, 45.0, 18.6.

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C, δ): –117.8.

HRMS-ESI(m/z) calc'd for C₁₇H₁₇O₃FNa⁺ [M+Na]⁺, 311.1054; found, 311.1054. Deviation: –0.2 ppm.

tert-Butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)pp]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mol, 1.00 equiv.), N-Boc-3-hydroxyazetidin (173 mg, 1.00 mmol, 5.00 equiv.), and 2-methoxybenzaldehyde tetrafluorothianthrenium salt **3-TFT** (102 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, c = 0.2 M) was added. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl*tert*-butylether (1 mL). The reaction mixture was filtered through a short pad of silica using methyl*tert*-butylether (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with TBME/pentane (1:2, v/v) to afford **44** (27.3 mg, 44% yield) as a colorless solid.

Rr = 0.56 (EtOAc/pentane, 1:2, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 10.42 (s, 1H), 7.09–7.06 (m, 2H), 6.97–6.95 (m, 1H), 4.86 (tt, J = 6.4 Hz, 4.1 Hz, 1H), 4.30 (ddd, J = 9.6 Hz, 6.4 Hz, 1.1 Hz, 2H), 3.96 (ddd, J = 9.6 Hz, 4.1 Hz, 1.1 Hz, 2H), 3.90 (s, 3H), 1.44 (s, 9H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 189.2, 157.2, 156.1, 150.5, 125.0, 124.0, 113.7, 111.3, 79.9, 66.2, 56.3, 56.2, 28.4.

HRMS-ESI(m/z) calc'd for $C_{16}H_{21}O_5NNa^+$ [M+Na]⁺, 330.1312; found, 330.1312.Deviation: 0 ppm.

tert-Butyl 3-(5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenoxy)azetidine-1-carboxylate (45)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 1.00 equiv.), N-Boc-3-hydroxyazetidin (69.2 mg, 0.400 mmol, 2.00 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 1.00 equiv.), and 3 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The

reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and (3r,5r,7r)-1-(p-tolyl)adamantane (120 derived-tetrafluorothianthrenium salt 23-TFT 0.200 mmol. 1.00 mg, equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 1.0 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated in vacuo, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:20 v/v) to afford 45 (36.5 mg, 46% yield) as a colorless solid.

 $R_f = 0.30$ (EtOAc/pentane (1:20 v/v))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.11 (d, *J* = 7.8 Hz, 1H), 6.90 (dd, *J* = 7.9 Hz, 1.8 Hz, 1H), 6.46 (d, *J* = 1.8 Hz, 1H), 4.92 (tt, *J* = 6.5 Hz, 4.3 Hz, 1H), 4.33 (dd, *J* = 9.6 Hz, 6.5 Hz, 2H), 4.03 (dd, *J* = 9.8 Hz, 4.3 Hz, 2H), 2.21 (s, 3H), 2.12 – 2.05 (m, 3H), 1.87 (d, *J* = 2.9 Hz, 6H), 1.82 – 1.70 (m, 6H), 1.47 (s, 9H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 156.4, 154.7, 150.7, 130.8, 124.1, 117.7, 107.9, 79.9, 65.6, 56.8, 43.5, 36.9, 36.2, 29.1, 28.5, 15.8.

HRMS-ESI(m/z) calc'd for C₂₅H₃₅NO₃Na⁺ [M+Na]⁺, 420.2509; found, 420.2502. Deviation: 1.7 ppm.

tert-Butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 0.200 mmol, 0.800 equiv.), N-Boc-3-hydroxyazetidin (76.2 mg, 0.440 mmol, 1.76 equiv.), Na₂CO₃ (10.6 mg, 0.100 mmol, 0.800 equiv.), and 4 Å molecular sieves (120 mg). Dry MeCN (1 mL, c = 0.2 M) was then added into the vial. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C: After 2 hours, the vial was opened and 3-chloropropyl benzene derived-tetrafluorothianthrenium salt **14-TFT** (132 mg, 0.250 mmol, 1.00 equiv.) and Ir[dF(CF₃)ppy]₂(dtbpy)PF₆ (2.2 mg, 2.0 µmol, 0.80 mol%) were added into the reaction mixture. The vial was sealed with the same Teflon cap and transferred out of glovebox. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (2 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (25 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:8 v/v) to afford **46** (61.0 mg, 74% yield) as a colorless solid.

R_f = 0.30 (EtOAc/pentane, 1:8, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 7.14 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 8.6 Hz, 2H), 4.89 (tt, J = 6.4 Hz, 4.0 Hz, 1H), 4.25 (ddd, J = 9.6 Hz, 6.4 Hz, 1.1 Hz, 2H), 3.83 (ddd, J = 9.5 Hz, 4.0 Hz, 1.1 Hz, 2H), 3.55 (t, J = 6.6 Hz, 2H), 2.68 (dd, J = 8.5 Hz, 6.6 Hz, 2H), 2.07 – 1.96 (m, 2H), 1.42 (s, 9H).

¹³C {¹H} NMR (75 MHz, CD₃CN, 25 °C, δ): 157.1, 156.1, 135.0, 130.7, 115.6, 80.0, 66.9, 66.9, 57.29, 45.4, 35.1, 32.5, 28.5.

HRMS-ESI(m/z) calc'd for C₁₇H₂₄NO₃CINa⁺ [M+Na]⁺, 348.1337; found, 348.1334. Deviation: 0.9 ppm.

5-Oxetan-3-yloxy boscalid (47)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)pp]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38 mg, 40 µmol, 1.0 equiv.), 3-hydroxyoxetane (74.0 mg, 63.5 µL, 1.00 mmol, 5.00 equiv.), and boscalid derived-tetrafluorothianthrenium salt **11-TFT** (144 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with methyl-*tert*-butylether (1 mL). The reaction mixture was filtered through a short pad of silica using methyl-*tert*-butylether (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with EtOAc/DCM (2:15, v/v) to afford **47** (42.8 mg, 52% yield) as a colorless solid.

Rf = 0.36 (EtOAc/pentane, 1:2, v/v (UV)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 8.44 (d, *J* = 2.7 Hz, 1H), 8.19 (d, *J* = 9.0 Hz, 1H), 8.12 (dd, *J* = 7.7 Hz, 2.0 Hz, 1H), 7.99 (bs, 1H), 7.44–7.32 (m, 2H), 7.36–7.30 (m, 3H), 6.75 (dd, *J* = 8.9 Hz, 2.9 Hz, 1H), 6.65 (d, *J* = 2.9 Hz, 1H), 5.26–5.21 (m, 1H), 4.99–4.96 (m, 2H), 4.79–4.76 (m, 2H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 162.7, 154.1, 151.4, 146.9, 140.3, 136.1, 134.9, 134.8, 131.1, 130.7, 129.5, 128.3, 124.7, 123.1, 116.6, 114.3, 78.0, 70.6.

HRMS-ESI(m/z) calc'd for C₂₁H₁₆O₃N₂Cl₂Na⁺ [M+Na]⁺, 437.0430; found, 437.0434. Deviation: -0.9 ppm.
4-(Cyclohexylthio)-1,1'-biphenyl (48)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)pp]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38 mg, 40 µmol, 1.0 equiv.), NaH (c = 60 % dispersion in mineral oil; 36 mg, 0.80 mmol, 4.0 equiv.), and biphenyl thianthrenium salt **22-TT** (91.3 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, *c* = 0.2 M) was added, followed by cyclohexanethiol (116 mg, 48.9 µL, 0.400 mmol, 2.00 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, then diluted with ethyl acetate (1 mL), and filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane 1:200 (v/v) to afford **48** (41.8 mg, 68% yield) as a colorless solid.

 $\mathbf{R}_{f} = 0.30$ (ethyl acetate/pentane, 1:200, v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.58 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.49 – 7.40 (m, 4H), 7.35 (dd, J = 8.3, 6.4 Hz, 1H), 3.25 – 3.10 (m, 1H), 2.12 – 1.97 (m, 2H), 1.80 (dt, J = 13.0, 3.8 Hz, 2H), 1.64 (dt, J = 12.4, 3.8 Hz, 1H), 1.52 – 1.26 (m, 5H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C , δ): 140.5, 139.5, 134.3, 132.1, 128.8, 127.4, 127.3, 126.9, 46.6, 33.4, 26.1, 25.8.

HRMS-ESI(m/z) calc'd for C₁₈H₂₀S⁺ [M]⁺, 268.1285; found, 268.1280. Deviation: –1.7 ppm.

4-Fluoro-1,1'-biphenyl thianthrenium salt (49-TT)

Under an ambient atmosphere, a 20-mL glass vial was charged with 4-fluoro-1,1'-biphenyl (516 mg, 3.00 mmol, 1.00 equiv) and MeCN (11 mL, c = 0.24 M). After cooling to 0 °C, HBF₄·OEt₂ (0.40 mL, 0.49 g,

3.0 mmol, 1.0 equiv) and thianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.3 mL, 1.8 g, 9.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 15 hours. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **49-TT** (1.1 g, 77% yield) as a colorless solid.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.40 (dd, J = 8.0, 1.4 Hz, 2H), 7.98 (dd, J = 7.9, 1.4 Hz, 2H), 7.91 (td, J = 7.7, 1.4 Hz, 2H), 7.84 (td, J = 7.7, 1.4 Hz, 2H), 7.74 – 7.67 (m, 2H), 7.67 – 7.59 (m, 2H), 7.24 – 7.14 (m, 4H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 164.2 (d, *J* = 247.0 Hz), 145.3, 137.5, 136.1 (d, *J* = 16.6 Hz), 135.3 (d, *J* = 3.1 Hz), 131.6, 130.9, 130.3 (d, *J* = 8.4 Hz), 129.6 (d, *J* = 16.9 Hz), 123.3, 119.4, 116.9 (d, *J* = 21.6 Hz).

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –114.8 (dd, J = 9.3, 5.3 Hz), –151.7 (brs), –151.8 (brs).

HRMS-ESI(m/z) calc'd for C₂₄H₁₆FS₂⁺ [M-BF₄]⁺, 387.0672; found, 387.0665; deviation: 1.8 ppm.

Cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38 mg, 0.20 mmol, 1.0 equiv.), NaH (c = 60 % dispersion in mineral oil; 36 mg, 0.80 mmol,4.0 equiv.), and 4-fluoro-1,1'-biphenyl thianthrenium salt **49-TT** (94.8 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, c = 0.2 M) was added, followed by 1,2-bis(dimethylamino)ethane (5 mg, 6 µL, 0.04mmol, 0.2 equiv.) and cyclohexanethiol (116 mg, 48.9 µL, 0.400 mmol, 2.00 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept

at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, then diluted with ethyl acetate (1 mL), and filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with pentane to afford **49** (44.6 mg, 78% yield) as a colorless solid.

Rf = 0.30 (EtOAc/pentane, 1:200, v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 25 °C, δ): 7.53 (dd, J = 8.6, 5.4 Hz, 2H), 7.46 (d, J = 1.1 Hz, 4H), 7.12 (t, J = 8.6 Hz, 2H), 3.15 (tt, J = 10.6 Hz, 3.7 Hz, 1H), 2.09 – 1.95 (m, 2H), 1.80 (dt, J = 12.8 Hz, 3.9 Hz, 2H), 1.63 (dd, J = 11.6 Hz, 4.8 Hz, 1H), 1.47 – 1.23 (m, 5H).

¹³C {¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 162.5 (d, J = 246.2 Hz), 138.5, 136.6 (d, J = 3.3 Hz), 134.4, 132.1, 128.5 (d, J = 8.0 Hz), 127.3, 115.7 (d, J = 21.4 Hz), 46.6, 33.4, 26.1, 25.8.

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C, δ): –115.5.

HRMS-ESI(m/z) calc'd for C₁₈H₁₉SF⁺ [M]⁺, 286.1186; found, 286.1184. Deviation: 0.7 ppm.

2-Methoxy-5-(phenylthio)benzonitrile (50)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38 mg, 0.20 mmol, 1.0 equiv.), NaH (c = 60 % dispersion in mineral oil; 36 mg, 0.80 mmol,4.0 equiv.), and (2-methoxy-5-methylbenzonitrile thianthrenium salt **13-TT** (87.0 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, c = 0.2 M) was added, followed by 1,2-bis(dimethylamino)ethane (5 mg, 6 µL, 0.04mmol, 0.2 equiv.) and thiophenol (44.1 mg, 41.0 µL, 0.400 mmol, 2.00 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, then diluted with ethyl acetate (1 mL), and filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:10 v/v) to afford **50** (33.7 mg, 70% yield) as a pale yellow solid.

 $\mathbf{R}_{f} = 0.40$ (EtOAc/pentane, 1:9, v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.68 (d, J = 2.3 Hz, 1H), 7.64 (dd, J = 8.8 Hz, 2.4 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.29 – 7.24 (m, 3H), 7.13 (d, J = 8.8 Hz, 1H), 3.93 (s, 3H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 161.8, 139.8, 138.1, 136.7, 130.3, 130.0, 127.7, 126.8, 116.1, 113.7, 102.9, 56.9.

HRMS-ESI(m/z) calc'd for C₁₄H₁₁NOS⁺ [M]⁺, 241.0556; found, 241.0557. Deviation: – 0.4 ppm.

Phenylthio-etofenprox (51)

To a 4-mL borosilicate vial, equipped with a magnetic stir bar was added $Ir[dF(CF_3)pp]_2(dtbpy)PF_6$ (1.1 mg, 1.0 µmol, 0.50 mol%), copper(I) thiophene-2-carboxylate (38 mg, 0.20 mmol, 1.0 equiv.), NaH (c = 60 % dispersion in mineral oil; 36 mg, 0.80 mmol,4.0 equiv.), and entofenprox thianthrenium salt **21-TT** (135 mg, 0.200 mmol, 1.00 equiv.) at 25 °C. The vial was evacuated and then filled with argon; this procedure was repeated three times. MeCN (1 mL, c = 0.2 M) was added, followed by 1,2-bis(dimethylamino)ethane (5 mg, 6 µL, 0.04mmol, 0.2 equiv.) and thiophenol (44.1 mg, 41.0 µL, 0.400 mmol, 2.00 equiv.). The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, then diluted with ethyl acetate (1 mL), and filtered through a short pad of silica using ethyl acetate (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo* and then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:20 v/v) to afford **51** (69.6 mg, 72% yield) as a colorless solid.

Rf = 0.70 (EtOAc/pentane, 1:10 v/v (UV))

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.41 – 7.32 (m, 2H), 7.32 – 7.20 (m, 7H), 7.18 (d, *J* = 2.5 Hz, 1H), 7.13 (tt, *J* = 7.4 Hz, 1.1 Hz, 1H), 6.98 (dd, *J* = 8.7 Hz, 1.1 Hz, 2H), 6.97 – 6.94 (m, 1H), 6.92 – 6.85 (m, 2H), 6.84 (t, *J* = 2.0 Hz, 1H), 4.34 (s, 2H), 4.01 (q, *J* = 7.0 Hz, 2H), 3.36 (s, 2H), 1.23 (t, *J* = 7.0 Hz, 3H), 1.17 (s, 6H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C , δ): 157.9, 157.7, 155.9, 141.8, 141.0, 136.0, 135.2, 131.0, 130.9, 130.5, 130.3, 129.7, 127.3, 127.3, 124.0, 122.8, 122.7, 119.4, 118.1, 112.6, 80.3, 72.7, 64.8, 38.9, 26.0, 14.6.

HRMS-ESI(m/z) calc'd for C₃₁H₃₂O₃SNa⁺ [M+Na]⁺, 507.1964; found, 507.1965. Deviation: – 0.1 ppm.

Gram-scale synthesis of tert-butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46)

Under an ambient atmosphere, a 50-mL glass flask was charged with 3-chloropropyl benzene (1.23 g, 8.00 mmol, 1.00 equiv) and MeCN (20 mL, c = 0.40 M). Trifluoroacetic anhydride (3.33 mL, 5.04 g, 24.0 mmol, 3.00 equiv.) was added while stirring the reaction mixture at 25 °C. After cooling to 0 °C, tetrafluorothianthren-S-oxide (2.43 g, 8.00 mmol, 1.00 equiv.) was added in one portion, followed by the dropwise addition of HBF₄·OEt₂ (1.31 mL, 1.55 g, 9.60 mmol, 1.20 equiv.). The mixture was stirred at 0 °C for 2 hours, then warmed to 25 °C for 14 hours. The solution was diluted with CH₂Cl₂ (10 mL) and poured onto a mixture of CH₂Cl₂ (70 mL) and saturated aqueous NaHCO₃ solution (100 mL). After stirring for 5 min, the mixture was poured into a separating funnel, and the aqueous phase was extracted with DCM (2 × 30 mL). The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 2 × ca. 100 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (20:1 (v/v)), then the solvent was removed *in vacuo* to afford **14-TFT** (2.90 g, 69% yield) as a colorless powder.

 $R_f = 0.30$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 8.41 (dd, J = 9.1, 7.1 Hz, 2H), 7.95 (dd, J = 10.0, 7.0 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 3.53 (t, J = 6.5 Hz, 2H), 2.92 – 2.70 (m, 2H), 2.07 – 1.98 (m, 2H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ) 154.4 (dd, *J* = 255.6, 13.7 Hz), 151.2 (dd, *J* = 255.8, 13.7 Hz), 148.5, 134.8 (dd, *J* = 8.8, 3.8 Hz), 131.3, 129.0, 125.1 (d, *J* = 24.2 Hz), 120.7 (d, *J* = 21.8 Hz), 120.3, 115.1 (dd, *J* = 7.7, 3.8 Hz), 44.8, 33.8, 32.6.

¹⁹**F NMR** (471 MHz, CD₃CN, 25 °C, δ): –125.2 (m), –133.8 (m), –151.2 (brs), –151.3 (brs).

HRMS-ESI(m/z) calc'd for C₁₇H₂₄NO₃ClNa⁺ [M+Na]⁺, 348.1337; found, 348.1334. Deviation: 0.9 ppm.

In an anhydrous, N₂-filled glovebox, a 50-mL borosilicate flask equipped with a magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (836 mg, 4.39 mmol, 0.800 equiv.), N-Boc-3-hydroxyazetidin (1.67 g, 9.65 mmol, 1.76 equiv.), Na₂CO₃ (465 mg, 4.39 mmol, 0.800 equiv.), and 4 Å molecular sieves (1 g).

Dry MeCN (22 mL, c = 0.25 M) was then added into the flask. The vial was sealed with a rubber septum. The reaction mixture was stirred at 23 °C for 2 hours: After 2 hours, 3-chloropropyl benzene derived-tetrafluorothianthrenium salt **14-TFT** (2.90 g, 5.48 mmol, 1.00 equiv.), and $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6(49 mg, 44 \mumol, 0.80 mol%) were added into the reaction mixture. The vial was sealed with the same rubber septum and transferred out of the glovebox. The flask was placed in 2 cm distance to three 34 W blue LEDs (see Figure S4 left). The temperature was kept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 16 hours under blue LED irradiation, and then diluted with CH₂Cl₂ (40 mL). The reaction mixture was filtered through a short pad of silica using CH₂Cl₂ (100 mL) as the eluent. The filtrate was collected and concentrated$ *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with EtOAc/pentane (1:8 v/v) to afford**46**(1.36 g, 76% yield) as a yellow oil, which solidified upon standing to a pale yellow solid. (see Figure S4 right)

R_f = 0.30 (EtOAc/pentane, 1:8, v/v (UV, cerium molybdate))

NMR Spectroscopy:

¹**H NMR** (300 MHz, CD₃CN, 25 °C, δ): 7.14 (d, *J* = 8.8 Hz, 2H), 6.72 (d, *J* = 8.6 Hz, 2H), 4.89 (tt, *J* = 6.4 Hz, 4.0 Hz, 1H), 4.25 (ddd, *J* = 9.6 Hz, 6.4 Hz, 1.1 Hz, 2H), 3.83 (ddd, *J* = 9.5 Hz, 4.0 Hz, 1.1 Hz, 2H), 3.55 (t, *J* = 6.6 Hz, 2H), 2.68 (dd, *J* = 8.5 Hz, 6.6 Hz, 2H), 2.07 – 1.96 (m, 2H), 1.42 (s, 9H).

¹³C {¹H} NMR (75 MHz, CD₃CN, 25 °C, δ): 157.1, 156.1, 135.0, 130.7, 115.6, 80.0, 66.9, 66.9, 57.29, 45.4, 35.1, 32.5, 28.5.

HRMS-ESI(m/z) calc'd for C₁₇H₂₄NO₃CINa⁺ [M+Na]⁺, 348.1337; found, 348.1334. Deviation: 0.9 ppm.

Figure S4. Gram-scale synthesis of 46 : reaction set up under blue LEDs (left), reaction after 16 h (middle), and solidified product 46 (right).

Determination of the stereochemistry of 20

Figure S5. NOESY correlations of 20

Due to the N-CBz group of **20**, the molecule has 2 slowly converting forms. The equilibrium is surprisingly almost exactly 50:50. This is seen from peak doubling in most ¹³C and ¹H signals. In a full equilibration due to epimerization of one stereocenter, 2 sets of NMR signals (peak doubling 50:50) would also be visible, however, with the important difference that the two forms would **NOT be interconverting**. In the NOESY spectrum, we clearly see "exchange peaks" between the two forms (e.g. between the 2 methyl signals near 3.7 ppm). This rules out the presence of 2 diastereomers.

NOESY can present the evidence to determine the stereochemistry of **20** for which diastereomer is present. The strongest evidence is between the methyl (CH_3 -11) and the aromatic CH-12 and CH-13). This NOE can be explained if both substituents are on the same side of the 5-ring plane. H5 and H3 also have the same partner H4a as close neighbors. This is also the evidence that they are on the same side. The fact that H3 and H5 do not have a direct NOE between them, is probably due to the fact that they assume a more "equatorial" position.

MECHANISTIC STUDIES

UV-Vis absorption spectra of the aryl thianthrenium salts

In a typical procedure, biphenyl tetrafluorothianthrenium tetrafluoroborate salt (**22-TFT**) (52.8 mg, 0.100 mmol) was dissolved in MeCN (10 mL, c = 10 mM arylthianthrenium salt). Next, 60 µL of the above solution was further diluted with MeCN to a final volume of 25 mL (c = 24 µM arylthianthrenium salt). The absorbance of the 24 µM solution was measured using a UV-Vis spectrometer in a cuvette (I = 1.0 cm).

Figure S6. UV-Vis absorption spectra of biphenyl tetrafluorothianthrenium salt (22-TFT) in MeCN ($c = 24 \mu$ M)

In a typical procedure, ethylbenzene tetrafluorothianthrenium tetrafluoroborate salt (**28-TFT**) (24 mg, 0.050 mmol) was dissolved in MeCN (10 mL, c = 5.0 mM arylthianthrenium salt). Next, 100 µL of the above solution was further diluted with MeCN to a final volume of 25 mL (c = 50 µM arylthianthrenium salt). The absorbance of the 50 µM solution was measured using a UV-Vis spectrometer in a cuvette (I = 1.0 cm).

Emission spectrum of the blue LEDs

Figure S8. Emission spectrum of Kessil LEDs A160WE Tuna Blue

Stern-Volmer luminescence quenching studies

The visible light luminescence intensities were recorded using an Edinburgh Instruments FS5 spectrofluorometer. All luminescence measurements were recorded using a screw-top quartz cuvette (Hellma fluorescence quartz cuvette, 10×10 mm, 3.5 mL). All solutions of [Ir{dF(CF₃)ppy}₂(dtbpy)]PF₆, biphenyl tetrafluorothianthrenium tetrafluoroborate salt (**22-TFT**), and tetrafluorothianthrene were prepared in MeCN, in a nitrogen-filled glovebox. The solutions were transferred to a screw-top cuvette, sealed, and then brought out of the glovebox for visible light luminescence measurements.

In a typical procedure, **22-TFT** (211 mg, 0.400 mmol) was dissolved in 10 mL of stock solution ($c = 18 \mu$ M [Ir{dF(CF₃)ppy}₂(dtbpy)]PF₆ in MeCN) to the concentration (c = 40 mM arylthianthrenium salt). Next, the 7 mL

S81

of the arylthianthrenium salt solution (c = 40 mM arylthianthrenium salt) was further diluted with 3 mL of stock solution ($c = 18 \ \mu\text{M} [Ir\{dF(CF_3)ppy\}_2(dtbpy)]PF_6$ in MeCN) to the concentration (c = 28 mM arylthianthrenium salt). All subsequent solutions were prepared by diluting 7 mL of the preceding solution to the volume of 10 mL. The final solution with a concentration of 5 mM was prepared by diluting 2 mL of the 14 mM arylthianthrenium salt solution with 3 mL of stock solution ($c = 18 \ \mu\text{M} [Ir\{dF(CF_3)ppy\}_2(dtbpy)]PF_6$ in MeCN) to a final volume of 5 mL. All solutions were excited at 450 nm and the emission was measured from 455 to 600 nm.

Quenching was analyzed by plotting I₀/I according to the Stern-Volmer relationship:

 $I_0/I = k_q T_0[Q] + 1$

where I_0 represents the integral of the luminescence over the range of 455 to 600 nm in the absence of a quencher, I is the integral of luminescence over the range of 455 to 600 nm in the presence of a quencher, k_q represents the quenching rate constant, [Q] is the concentration of a given quencher, and τ_0 is the excited state lifetime of the emissive photocatalyst in the absence of quencher. The excited state lifetime of $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ in MeCN is 2300 ns.²

Figure S10. Emission spectrum for $Ir(dF(CF_3)ppy)_2(dtbpy)PF_6$ luminescence quenching by tetrafluorthianthrene TFT (left) and Stern-Volmer plot (right).

Figure S11. Emission spectra for $Ir(dF(CF_3)ppy)_2(dtbpy)PF_6$ luminescence quenching by tetrafluorthianthrene TFT and biphenyl tetrafluoro-thianthrenium salt 22-TFT (left) and quencher rate coefficient (right).

TEMPO trapping experiment

ArTEMPO product (52)

To a 4-mL borosilicate vial, equipped with a magnetic stirrer bar was added copper(I) thiophene-2carboxylate (57.2 mg, 0.300 mmol, 1.50 equiv.), (*R*)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one tetrafluoro-thianthrenium salt **10-TFT** (121 mg, 0.200 mmol, 1.00 equiv.), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6(2.2 mg,$ 2.0 µmol, 1.0 mol%), water (72 µL, 36 mg, 4.0 mmol, 20 equiv.), TEMPO (78.1 mg, 0.500 mmol, 2.50 equiv.),and MeCN (1 mL,*c*= 0.2 M). The vial was evacuated and then filled with argon; this procedure wasrepeated three times. The vial was placed in 2 cm distance to two 34 W blue LEDs. The temperature waskept at approximately 30 °C with the use of a cooling fan. The reaction mixture was stirred for 24 hours $under blue LED irradiation, and then diluted with <math>CH_2Cl_2$ (2 mL). The reaction mixture was filtered through a short pad of Celite using CH_2Cl_2 (20 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/pentane (1:10 to 1:5, v/v) to afford **52** (12.2 mg, 16% yield) as a colorless oil and **10** (5.4 mg, 11% yield) as a light yellow solid.

Rf = 0.50 (EtOAc/pentane, 1:5, v/v (UV, cerium molybdate)).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 25 °C, δ): 7.27 – 7.08 (m, 2H), 7.06 – 6.94 (m, 2H), 4.60 (tt, *J* = 7.9, 3.1 Hz, 1H), 4.24 (dd, *J* = 8.9, 8.1 Hz, 1H), 4.14 (dd, *J* = 8.9, 2.8 Hz, 1H), 3.08 – 2.68 (m, 4H), 1.81 – 1.54 (m, 5H), 1.48 – 1.34 (m, 1H), 1.22 (s, 6H), 1.11 (t, *J* = 7.4 Hz, 3H), 0.96 (d, *J* = 3.1 Hz, 6H).

¹³C {¹H} NMR (126 MHz, CD₃CN, 25 °C, δ): 174.7, 163.7, 154.8, 131.0, 128.0, 114.9, 67.3, 61.1, 61.1, 55.7, 40.4, 37.2, 32.9, 29.7, 20.7, 17.7, 8.7.

HRMS-ESI(m/z) calc'd for C₂₂H₃₃N₂O₄⁺ [M+H]⁺, 389.2435; found, 389.2432; deviation: 0.82 ppm.

SPECTROSCOPIC DATA

¹H NMR of flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)

CD₂Cl₂, 25 °C

¹³C NMR of flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)

CD₂Cl₂, 25 °C

¹⁹F NMR of flurbiprofen methyl ester tetrafluorothianthrenium salt (1-TFT)

CD₂Cl₂, 25 °C

¹H NMR of flurbiprofen methylester-derived thianthrenium salt (1-TT)

DMSO-d₆, 25 °C

¹⁹F NMR of flurbiprofen methylester thianthrenium salt (1-TT)

DMSO-d₆, 25 °C

LO

0

-10

-20

-30

-40

-50

¹H NMR of hydroxy-flurbiprofen methyl ester (1)

¹³C NMR of hydroxy-flurbiprofen methyl ester (1)

¹⁹F NMR of hydroxy-flurbiprofen methyl ester (1)

¹H NMR of 4-chlorophenol (2)

¹³C NMR of 4-chlorophenol (2)

CDCl₃, 25 °C

· · ·	1 1	1 1	1 1	1 1	1 1	1 1		1 1	1 1		1 1	1 1		1 1	1 1	1 1	1 1			- I - I	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											ppm										

¹H NMR of 2-methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)

CD₃CN, 25 °C

¹⁹F NMR of 2-methoxybenzaldehyde tetrafluorothianthrenium salt (3-TFT)

¹H NMR of 5-hydroxy-2-methoxybenzaldehyde (3)

¹³C NMR of 5-hydroxy-2-methoxybenzaldehyde (3)

¹H NMR of 2,2,2-trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)

CD₃CN, 25 °C

¹⁹F NMR of 2,2,2-trifluoro-N-phenylacetamide tetrafluorothianthrenium salt (4-TFT)

CD₃CN, 25 °C

¹H NMR of 2,2,2-trifluoro-N-(4-hydroxyphenyl)acetamide (4)

¹³C NMR of 2,2,2-trifluoro-N-(4-hydroxyphenyl)acetamide (4)

CD₃CN, 25 °C

T	- I I	- I - I	- · ·	- I - I	- I - I		- I - '	- I I	- I - I		· · · ·		· · · ·	'	- I - '	- I I		- I I	- I - '	- I - '	- I I	
!10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											ppm											

F₃C

ОН

ŇН

М М

¹⁹F NMR of 2,2,2-trifluoro-N-(4-hydroxyphenyl)acetamide (4)

¹⁹F NMR of methyl acetyl-L-phenylalate tetrafluorothianthrenium salt (5-TFT)

T T					- T - T	- T - T					1	· · · · ·				1				1	1			
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-27

¹H NMR of hydroxy-nefiracetam (6)

¹³C NMR of hydroxy-nefiracetam (6)

¹H NMR of bromobenzene tetrafluorothianthrenium salt (7-TFT)

CD₂Cl₂, 25 °C

¹³C NMR of bromobenzene tetrafluorothianthrenium salt (7-TFT)

CD₂Cl₂, 25 °C

www.contentwowww.

¹⁹F NMR of bromobenzene tetrafluorothianthrenium salt (7-TFT)

CD₂Cl₂, 25 °C

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 f1 (ppm) -130 -140 -150 -160 -170 -180 -190 -200 -210 -2

¹H NMR of 4-bromophenol (7)

CDCl₃, 25 °C

7

S116

¹³C NMR of 4-bromophenol (7)

¹H NMR of methyl 2-methoxybenzoate tetrafluorothianthrenium salt (8-TFT)

CD₃CN, 25 °C

¹⁹F NMR of methyl 2-methoxybenzoate tetrafluorothianthrenium salt (8-TFT)

CD₃CN, 25 °C

¹H NMR of methyl 5-hydroxy-2-methoxybenzoate (8)

¹³C NMR of methyl 5-hydroxy-2-methoxybenzoate (8)

¹H NMR of xanthone tetrafluorothianthrenium salt (9-TFT)

¹⁹F NMR of xanthone tetrafluorothianthrenium salt (9-TFT)

¹H NMR of hydroxyl xanthone (9)

0.85-I

¹H NMR of (*R*)-4-(4-hydroxybenzyl)-3-propionyloxazolidin-2-one (10)

CD₃CN, 25 °C

¹H NMR of hydroxy-boscalid (11)

¹³C NMR of hydroxy-boscalid (11)

ppm

0

¹H NMR of methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)

CD₃CN, 25 °C

¹³C NMR of methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)

¹⁹F NMR of methyl 2,4-dimethylbenzoate tetrafluorothianthrenium salt (12-TFT)

· · · ·	- I - I	·	· · ·	, i	· · ·				· · · ·	1	· · · ·	· · ·	· · ·	1 1	- I - I	1 1	1 1	- I I	- I - I	· · ·	1
-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110 ppm	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	

¹H NMR of methyl 5-hydroxy-2,4-dimethylbenzoate (12)

¹³C NMR of methyl 5-hydroxy-2,4-dimethylbenzoate (12)

¹H NMR of 2-methoxy-5-methylbenzonitrile thianthrenium salt (13-TT)

CD₃CN, 25 °C

¹³C NMR of 2-methoxy-5-methylbenzonitrile thianthrenium salt (13-TT)

· · · ·			- I - I	- I - I	- I - I				I		· · ·	- I - I	- I - I	- I - I						- I - I			Γ
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											ppr	n											

¹⁹F NMR of 2-methoxy-5-methylbenzonitrile thianthrenium salt (13-TT)

I		1 1	1 1	1	'		1 '	1	1		1 1	1 1	1 1	1 1	1 1	1 '	· · · ·	1 1	1 1	1 1
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

¹H NMR of 5-hydroxy-2-methoxybenzonitrile (13)

¹³C NMR of 5-hydroxy-2-methoxybenzonitrile (13)

¹H NMR of 3-chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)

14-TFT

¹³C NMR of 3-chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)

¹⁹F NMR of 3-chloropropyl benzene tetrafluorothianthrenium salt (14-TFT)

Т !				1	'			·			'	'			1					'				<u> </u>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

¹H NMR of 4-(3-chloropropyl)phenol (14)

CD₃CN, 25 °C

14

¹³C NMR of 4-(3-chloropropyl)phenol (14)

Т Т	- I - I	· · · ·	- I I	- I - I	- I I	- I - '	- I - I	- I I		- I - '		- I '	- I I	- I - I	- I - I	- I - '	- I I	- I - I		- I - '		1	<u> </u>
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											pp	om											

¹H NMR of 3-(3-hydroxy-1-phenylpropyl)phenol (15)

¹³C NMR of 3-(3-hydroxy-1-phenylpropyl)phenol (15)

¹H NMR of hydroxy salicin pentaacetate (16)

¹³H NMR of hydroxy salicin pentaacetate (16)

¹H NMR of methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)

CD₃CN, 25 °C

ppm

-1

¹⁹F NMR of methyl 1-phenylcyclopropane-1-carboxylate tetrafluorothianthrenium salt (17-TFT)

1		1					- I I	1 1	1 1							1 1				1 1	1 1	1 1	- I I	— Т
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

¹H NMR of methyl 1-(4-hydroxyphenyl)cyclopropane-1-carboxylate (17)

CD₃CN, 25 °C

¹H NMR of 6-methyl-4-chromanone thianthrenium salt (18-TT)

¹³C NMR of 6-methyl-4-chromanone thianthrenium salt (18-TT)

¹⁹F NMR of 6-methyl-4-chromanone thianthrenium salt (18-TT)

		1						· · ·	. 1		1 1	1 1								- I I	
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-2

¹H NMR of 8-hydroxy-6-methylchroman-4-one (18)

¹H NMR of benzyl benzoate tetrafluorothianthrenium salt (19-TFT)

CD₃CN, 25 °C

¹³C NMR of benzyl benzoate tetrafluorothianthrenium salt (19-TFT)

¹⁹F NMR of benzyl benzoate tetrafluorothianthrenium salt (19-TFT)

 _										· · ·														
20	10	Ó	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

¹H NMR of 4-hydroxybenzyl benzoate (19)

¹³C NMR of 4-hydroxybenzyl benzoate (19)

· · ·	· · · ·		- I I	· · · ·	- I I	- I I	·	- I I	- I '	1	- I I	· · ·	- I I	- I I	1 1	1		1	· · · ·	- I - I	· ·
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
	ppm																				

¹H NMR of N-benzyloxycarbonyl-4-*cis*-phenoxy-L-proline methyl ester tetrafluorothianthrenium salt (20-TFT)

CD₂Cl₂, 25 °C

¹³C NMR of N-benzyloxycarbonyl-4-*cis*-phenoxy-L-proline methyl ester tetrafluorothianthrenium salt (20-TFT)

CD₂Cl₂, 25 °C

¹⁹F NMR of N-benzyloxycarbonyl-4-*cis*-phenoxy-L-proline methyl ester tetrafluorothianthrenium salt (20-TFT)

CD₂Cl₂, 25 °C

20-TFT

CD₃CN, 25 °C

Т

ppm

NOESY NMR of hydroxy-N-benzyloxycarbonyl-4-cis-phenoxy-L-proline methyl ester (20)

CD₃CN, 25 °C

¹H NMR of hydroxy-etofenprox (21)

¹³C NMR of hydroxy-etofenprox (21)

Т

¹³C NMR of biphenyl tetrafluorothianthrenium salt (22-TFT)

CD₃CN, 25 °C

20

¹⁹F NMR of biphenyl tetrafluorothianthrenium salt (22-TFT)

¹H NMR of biphenyl thianthrenium salt (22-TT)

DMSO-*d*₆, 25 °C

CD₃CN, 25 °C

20

¹⁹F NMR of biphenyl thianthrenium salt (22-TT)

1 1			- I I	- I - I	- I - I		· · ·	1 1	1 1					· · ·				· · ·		- I - I			
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppn	-110 n)	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

¹H NMR of 4-phenylphenol (22)

¹³C NMR of 4-phenylphenol (22)

1 1	- I - I		- I - I		- I - I	· · ·		· · ·	- I - I	- I - I	· · ·	- I - I	· ·	- I - I	- I - I	- I - I	- I - I	'	- I - I	· · ·	- I - I	
:10	200	190	180	170	160	150	140	130	120	110	100 ppm	90	80	70	60	50	40	30	20	10	0	

¹H NMR of (3r,5r,7r)-1-(*p*-tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)

CD₃CN, 25 °C

¹⁹F NMR of (3r,5r,7r)-1-(*p*-tolyl)adamantane tetrafluorothianthrenium salt (23-TFT)

¹H NMR of 5-((3r,5r,7r)-adamantan-1-yl)-2-methylphenol (23)

CD₃CN, 25 °C

¹H NMR of 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)

24

¹³C NMR of 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)

¹⁹F NMR of 4'-hydroxy-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (24)

	- I '	- I I		1 1	· · ·	- I - I		- I - I	- I - I	· · ·		· · ·	- I I	· · ·	· · ·		'	· · ·		- I I	- I '	'	- I I		
200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	-260	-280	-300
												pp	m												

¹H NMR of diclofenac amide thianthrenium salt (25-TT)

25-TT

¹³C NMR of diclofenac amide thianthrenium salt (25-TT)

¹⁹F NMR of diclofenac amide thianthrenium salt (25-TT)

¹H NMR of hydroxy diclofenac amide (25)

110 100 ppm

¹H NMR of hydroxy-pyriproxyfen (26)

¹³C NMR of hydroxy-pyriproxyfen (26)

CDCl₃, 25 °C

Г 20

¹H NMR of 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)

CD₃CN, 25 °C

¹⁹F NMR of 2-fluoro-6-phenoxybenzonitrile tetrafluorothianthrenium salt (27-TFT)

¹H NMR of 2-fluoro-6-(4-methoxyphenoxy)benzonitrile (27)

CD₂Cl₂, 25 °C

Г

OMe

¹³C NMR of 2-fluoro-6-(4-methoxyphenoxy)benzonitrile (27)

CD₂Cl₂, 25 °C

¹⁹F NMR of 2-fluoro-6-(4-methoxyphenoxy)benzonitrile (27)

CD₂Cl₂, 25 °C

			- I I	- I I	I '	- I I	1		1 1					'				- I I	- I - I	·	
.0	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-2
										р	pm										

¹H NMR of 1-ethyl-4-phenoxybenzene (28)

¹³C NMR of 1-ethyl-4-phenoxybenzene (28)

¹H NMR of *tert*-butyl 3-(4-ethylphenoxy)azetidine-1-carboxylate (29)

¹³C NMR of *tert*-butyl 3-(4-ethylphenoxy)azetidine-1-carboxylate (29)

<u>г</u>	- I '	· · · ·	1 1	- I '	· · · ·	- I '	- I I	- I '		· · ·	- I - I	· ·	· ·	· · ·	1 1	- I I	· · ·	- I - '	· · ·	- I - I	· · ·		
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											pp	m											

¹H NMR of 4-ethylphenyl thiophene-2-carboxylate (29-B)

CDCl₃, 25 °C

Г

0

¹³C NMR of 4-ethylphenyl thiophene-2-carboxylate (29-B)

¹H NMR of 4,4'-oxybis(ethylbenzene) (29-C)

¹³C NMR of 4,4'-oxybis(ethylbenzene) (29-C)

¹H NMR of *trans*-2-(4-ethylphenoxy)cyclohexan-1-ol (30)

CD₃CN, 25 °C

<u>г</u>	1 1	1 1	- I '	1 '	1 '	1 '	1 1	1 1	1 1	- I I	1 1	- I I	1 '	1 1	1 1	· · ·	1 1	1 1	· ·	1	1 1	1 1	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											pp	m											

¹H NMR of 2-fluoro-6-(4-(methoxy-d₃)phenoxy)benzonitrile (31)

CDCl₃, 25 °C

QCD₃

¹³C NMR of 2-fluoro-6-(4-(methoxy-d₃)phenoxy)benzonitrile (31)

¹⁹F NMR of 2-fluoro-6-(4-(methoxy-d₃)phenoxy)benzonitrile (31)

¹H NMR of 1-cyclobutoxy-4-ethylbenzene (32)

¹³C NMR of 1-cyclobutoxy-4-ethylbenzene (32)

¹H NMR of 3-(4-ethylphenoxy)oxetane (33)

°O

¹H NMR of 2-(2,2,2-trifluoroethoxy)-9H-xanthen-9-one (34)

¹³C NMR of 2-(2,2,2-trifluoroethoxy)-9H-xanthen-9-one (34)

¹⁹F NMR of 2-(2,2,2-trifluoroethoxy)-9H-xanthen-9-one (34)

¹H NMR of methoxy-PEG(4) ethylbenzene (35)

¹³C NMR of methoxy-PEG(4) ethylbenzene (35)

¹H NMR of 2-(4-ethoxyphenoxy)-6-fluorobenzonitrile (36)

¹³C NMR of 2-(4-ethoxyphenoxy)-6-fluorobenzonitrile (36)

CDCl₃, 25 °C

OEt

¹⁹F NMR of 2-(4-ethoxyphenoxy)-6-fluorobenzonitrile (36)

¹H NMR of *erythro*-3-(4-ethylphenoxy)butan-2-ol (37a)

¹³C NMR of *erythro*-3-(4-ethylphenoxy)butan-2-ol (37a)

¹H NMR of *threo*-3-(4-ethylphenoxy)butan-2-ol (37b)

¹³C NMR of *threo*-3-(4-ethylphenoxy)butan-2-ol (37b)

¹H NMR of (3a*R*,5*R*,6*S*,6a*R*)-5-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-(4-ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3d][1,3]dioxole (39) Me

¹³C NMR of (3a*R*,5*R*,6*S*,6a*R*)-5-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-6-(4-ethylphenoxy)-2,2-dimethyltetrahydro-furo[2,3d][1,3]dioxole (39)

¹H NMR of 4-methyl-*N*-phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT)

CD₃CN, 25 °C

100

ppm

0

-1

¹⁹F NMR of 4-methyl-*N*-phenylbenzenesulfonamide tetrafluorothianthrenium salt (40-TFT)

T	1		· I	· · ·	· · ·	· · ·	· · ·	· I	· · ·	· · ·	· · ·	· · ·	· · ·	· I	· · ·	· · ·	· · ·	· · ·	· · ·	' '	· · ·	· · ·	· · ·	ΓT
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

¹H NMR of N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40)

CD₂Cl₂, 25 °C

¹³C NMR of N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (40)

CD₂Cl₂, 25 °C

¹³C NMR of *tert*-butyl 3-(4-((benzoyloxy)methyl)phenoxy)azetidine-1-carboxylate (41)

<u>г</u>	1 1	- I I	- I - I	1 1	1 1	- I I	1 '	1 1	1 1	1 1	1	1 '	1 1	1 1	· ·	- I I	1 '	1 '	1 1	1	1 1	1	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
	ppm																						

¹H NMR of *tert*-butyl (*R*)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carboxylate (42)

¹³C NMR of *tert*-butyl (*R*)-3-(4-((2-oxo-3-propionyloxazolidin-4-yl)methyl)phenoxy)azetidine-1-carboxylate (42)

CD₃CN, 25 °C

Ο

¹H NMR of 4-methoxy-flurbiprofen methyl ester (43)

¹³C NMR of 4-methoxy-flurbiprofen methyl ester (43)

CDCl₃, 25 °C

Т

ppm

¹⁹F NMR of 4-methoxy-flurbiprofen methyl ester (43)

1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1		1 1	1		'	1 1	1 1	1 1		1	1 1	1 1			
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-2

¹³C NMR of *tert*-butyl 3-(3-formyl-4-methoxyphenoxy)azetidine-1-carboxylate (44)

¹³C NMR of *tert*-butyl 3-(4-(3-chloropropyl)phenoxy)azetidine-1-carboxylate (46)

· · ·	1 1	- I I	- I I	- I I	1 '	1 1	1 1	1 1	1 1	1 1	1 1	- I I	- I I	1 '	1 '	1 1	· ·		1 1	1 1	1 '	1 1	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											pp	m											

¹H NMR of 5-oxetan-3-yloxy boscalid (47)

T

¹³C NMR of 5-oxetan-3-yloxy boscalid (47)

¹H NMR of 4-(cyclohexylthio)-1,1'-biphenyl (48)

¹³C NMR of 4-(cyclohexylthio)-1,1'-biphenyl (48)

-:

¹⁹F NMR of 4-fluoro-1,1'-biphenyl (49-TT)

· · ·			'	· ·	· · · ·		· · · ·	1		1	· · · ·		1	· · · ·	· · · ·	1 1	- I I	1		·	- I - I	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-2
											ppm											

¹H NMR of cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)

Г

ppm

¹⁹F NMR of cyclohexyl(4'-fluoro-[1,1'-biphenyl]-4-yl)sulfane (49)

CDCl₃, 25 °C

S264

¹H NMR of phenylthio-etofenprox (51)

¹H NMR of ArTEMPO product (52)

REFERENCES

1. F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho, N. Frank, T. Ritter, Nature 2019, 567, 223–228.

2. M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712–5719.