SUPPORTING INFORMATION

THE FUSED LEAVES1-ADHERENT1 REGULATORY MODULE IS REQUIRED FOR MAIZE CUTICLE DEVELOPMENT AND ORGAN SEPARATION

Xue Liu, Richard Bourgault, Mary Galli, Josh Strable, Zongliang Chen, Fan Feng, Jiaqiang Dong, Isabel Molina, Andrea Gallavotti

Article acceptance date: 22 July, 2020.

Figure S1. Phenotypic characterization of *ad1* alleles.

(a) The tassel phenotype of A619, *rel2-ref* and *rel2-ref;ad1-224* original M2 family. (b) The tassel phenotype of wild type sibling and *ad1-ref* mutants. (c) The seedling phenotype of wild type sibling and *ad1-ref* mutants. (d) The original *ad1-9.2121* allele in *ra1-63.3359* Mo17 background. (e) The *ad1-9.2121* allele in BC3(B73). (f) Mature ear phenotype of *ad1-9.2121* mutants. No visible defects is observed. (g) Tassel spikelets of wild type and *ad1-224* mutants. Scale bars, 1 cm. (h) Images of glumes in wild type and *ad1-224* mutant tassels. Scale bars, 0.1 cm. (i) Quantification of the glume length of wild type and *ad1-224* mutants (n≥20). Error bars show SD; **p<0.001. (j) SEM image showing the second leaf (Lf2) fused to the surface of first leaf (Lf1) along the edge in *ad1-224* mutants. (k) SEM showing a macrohair fused to epidermal cells in *ad1-224* mutants. Scale bars in J and K, 100µm. (I) SEM images of immature ears in wild type and *ad1-ref*. The glume of adjacent spikelets are fused in *ad1-ref* mutants. Right image is higher magnification of the area framed in left panel. Scale bars, 500µm. Arrows point to regions of fusion events.

(a) Sequence of the insertion in the *ad1-ref* allele at position +947. In red, partial coding sequence. (b) Quantitative RT-PCR of *AD1* in different maize tissues. The y axis shows the fold change relative to embryo expression levels. Error bars show SD, n=3. (c) *In situ* hybridizations of *AD1* sense control probe in embryo (left panel) and tassel (right panel). Scale bar, 200 μm. (d) RNA-seq expression levels of *KCS* genes in different tissues, from Stelpflug et al. 2016. (e) Confocal images of YFP-AD1 shows co-localization with the ER marker mCHERRY-CNX1 in *N. benthamiana* leaf epidermal cells. Scale bars, 50μm.

Figure S3. Neighbor-joining phylogenetic tree of maize (GRMZM) and Arabidopsis (AT) KCS family proteins. Numbers represent reliability levels based on 1000 boostrap replications.

Figure S4. Cuticular wax analysis in *ad1-ref* mutants.

(a) Total wax coverage and amount of each wax class in *ad1-ref* mutants and wild type leaves. The inset shows the less abundant wax classes at a different scale to more clearly visualize significant differences. (b-g) Concentration of individual components in each wax class. primary alcohol (b), fatty acid (c), aldehyde (d), alkane (e), wax ester (f) and alicyclic (g). Means of 4 replicates and SD are reported. *p<0.05; **p<0.01, Student's test. (h) SEM images of epicuticular wax crystals on the third leaves in A619, *ad1-224*, WT-sibling and *ad1-ref* samples used for the analysis. Scale bars, 5µm.

(a) SEM images of epicuticular wax crystals on the third leaves in wild type and *fdl1-Mu*. Scale bars, 5 μ m. (b) Water loss assays. Error bars show SD, n=3. (c) Chlorophyll leaching assays. Error bars show SD, n=3. (d,e) mRNA *in situ* hybridizations using *FDL1* sense control (d) and antisense probes (e). Expression pattern in embryo (d) and tassel (e); the right image is a higher magnification of the area framed in the left panel. Scale bars, 200 μ m.

Figure S6. Double *ad1-ref;fdl1-Mu* mutant analysis.

(a) SEM images of epicuticular wax crystals on the third leaves in wild type, *ad1-ref*, *fdl1-Mu* and *ad1-ref;fdl1-Mu*. Scale bars, 5µm. (b) Water loss assays of dark-acclimated plants. Error bars show SD, n=3. (c) Chlorophyll leaching assays. Extracted chlorophyll contents at individual time points were expressed as percentages of that at 24 h after initial immersion. Error bars show SD, n=3. (d) Mature leaf fusion defects in single and double *ad1 fdl1* mutant adult plants. (e) Phenotype of single and double mutant plants exposed to drought stress.

Figure S7. FDL1 DNA binding analysis.

(a) Distribution of FDL1 peaks within gene features. (b) Comparison of DAP-seq identified motifs for ZmMYB94 and AtMYB94 and AtMYB96 (O'Malley et al., 2015). ZmMYB94 and AtMYB94 show highly similar motifs with minor nucleotide variants. (c) Alignment of *AD1* 5'UTR region from maize reference genome inbred line B73 and two additional inbred lines, Mo17 and W22. Region containing CCAACC motifs (highlighted in green; numbered) are conserved across inbreds. (d) EMSA showing GST-FDL1 directly binds to the promoter of *AD1*. Mutation of three of the four CCAACC motifs shown in (c) abolishes the interaction. Competition with unlabeled probe shows specificity of interaction. (e) Comparison of *AD1* and selected KCS genes expression levels between wild type and *fdl1-Mu*. The maize *UBIQUITIN* gene was used as reference. Values are means \pm SD (n=3). *p<0.001, Student's two-tail t-test.

a CUTICULAR WAX BIOSYNTHESIS RELATED GENES

Figure S8. Genome browser screenshots of FDL1 binding.

(a) Genome browser screenshots showing location of FDL1 binding events in several *KCS* and other cuticular wax related biosynthesis genes. Screenshots showing FDL1 binding in cutin biosynthesis related genes (b), cuticular transporters (c), genes related to fatty acid biosynthesis and regulation (d), genes encoding cell wall modifying enzymes (e), a gene regulating phospholipid biosynthesis (f), and genes involved in drought or desiccation tolerance (g). In all panels, 200bp peak regions are shown as green intensity bars under the green FDL1 binding peaks. A negative control sample (affinity tag only) is shown as a gray colored peak track under the green FDL1 peak track.

Figure S9. Analysis of *FDL1* expression and binding targets.

(a) *FDL1/ZmMYB94* and closely related *MYB* transcription factors are expressed in many tissues throughout development. *ZmMYB162* is directly bound by FDL1 and up-regulated in *fdl1-Mu* coleoptiles. *ZmMYB83* and *ZmMYB123* are directly bound by FDL1 in DAP-seq. Tissue specific RNA-seq data from Stelpflug et al. (b) Differentially expressed genes in *fdl1-Mu* mutant coleoptiles related to phenylpropanoid metabolism. Genes that were directly bound by FDL1 in DAP-seq are shown in bold.

PRIMERS	SEQUENCE 5'-3'	PURPOSE
	For: TGTCAGTCATGGATGCTGGATTACG	dCAPS Kpnl -
ad1-224	Rev: CATGAAGGTGCGCTTGTTGCCCGGGTA	genotyping
ad1-ref	For: TGTCAGTCATGGATGCTGGATTACG	genotyping
	Rev: CTCAGCTAGCATTGTTGTGCTCACC	
fdl1-Mu	For: GAGTACACGAGCAATCCGCAA	genotyping
	Rev: CGCCAGGTTGATGTCCGTCT	
UBI-RT	For: GAGTGCCCCAACGCCGAGTG	Real-time PCR
	Rev: CTACGCCTGCTGGTTGTAGACGTA	
AD1-RT	For: TCTCCAACCCATTCATGGACAA	Real-time PCR
	Rev: TTGAGACGTTGAGTTGAGCAGCT	
ZmKCS10-RT	For: ATGGACGCCTAGCACGTACCT	Real-time PCR
	Rev: GGTGAAGTGCAGCACTGCACT	
ZmKCS8-RT	For: GAGACCACCTACAAGTTCGCTGA	Real-time PCR
	Rev: GCTGATGATGAGAAATCAATCATGT	
ZmKCS3-RT	For: GGAGGACTGCATCGACCAGTA	Real-time PCR
	Rev: TCGTTAACCCATCCGAACTTGT	
AD1-antisense-Probe	For: GAATTCGGCCGTCAAGGCCACCCTAGCTGCTCAACTCAA	In situ
	Rev: AGTCGACGGCCCATGAGGCCCAGGACGACACTGACTGATTGACT	
FDL1-antisense-Probe	For: GAATTCGGCCGTCAAGGCCAGTGTCCAATCGATCAAGCTCAA	In situ
	Rev: AGTCGACGGCCCATGAGGCCACTTGCACAAGGGGATCTACGTA	
AD1-sense-Probe	For:	In situ
	AGTGAATTCGGTAATACGACTCACTATAGGGCTCCCTAGCTGCTCAACTCAAC	
	Rev: AGTCGACGGCCCATGAGGCCCAGGACGACACTGACTGATTGACT	
FDL1-sense-Probe	For:	In situ
	AGTGAATTCGGTAATACGACTCACTATAGGGCTGTGTCCAATCGATCAAGCTC	
	Rev: AGTCGACGGCCCATGAGGCCACTTGCACAAGGGGATCTACGTA	
AD1-EMSA-Probe	For: GACCCATGTCCATGATGTGGTAT	EMSAs
	Rev: CCAAATAGCTCTAATAGTGACTA	
AD1-Pro-mut1	For: TTCAAGTCCCCATTTTTTTTTTTTGGTGGCACCGGCCGCACAC	EMSAs
	Rev: AAAAAAAATGGGGACTTGAAAAAAAAAAGCGAGAGAGAGA	
AD1-Pro-mut2	For: CCCTTTTTTTTTTTTCTGAACCCCGCTCTAATAAATCTTCCT	EMSAs
	Rev: GGTTCAGAAAAAAAAAAAAGGGAGGAGGGGGGGGGGGGG	
pGreenII- <i>AD1</i> Pro	For: TCGAGGTCGACGGTATCGATCCACACAATCGAGCACGACAT	Transient
	Rev: CGGCCGCTCTAGAACTAGTGCGCAAGCTAGTATAAGTAACA	Transcription
		Assay
pRI101- <i>MYB94</i>	For: AAGTTCTTCACTGTTGATACATGGTGAGGCCGCCGTGCTG	Transient
	Rev: AGTTGTTGATTCAGAATTCGCTAGAAGGGGTAATCCATGG	Transcription
	1	Assay

Table S1. List of primers used in this study.

ZmName	genelD	peak location	peak distance from TSS	Peak Signal Value	log2FC in fdl1- Mu coleoptiles	Arabidopsis homolog	description			
Cuticular wax and fatty acid elongation										
ADHERENT1, KCS19	GRMZM2G167438	Promoter (<=1kb)	0	33	#N/A	KCS12,KCS19	3-ketoacyl-CoA synthase			
ZmKCS3	GRMZM5G894016	5' UTR	643	47	#N/A	KCS12,KCS3	3-ketoacyl-CoA synthase			
ZmKCS4	GRMZM2G393897	Downstream (2- 3kb)	5130	44	#N/A	KCS4	3-ketoacyl-CoA synthase			
ZmKCS5	AC233893.1_FG003	Promoter (2-3kb)	-2617	28	#N/A	CER6,CUT1,G2,KCS6,POP1	3-ketoacyl-CoA synthase			
		Exon	330	33.2						
ZmKCS26	GRMZM2G075140	Promoter (<=1kb)	0	30	-0.554471	KCS2	3-ketoacyl-CoA synthase			
GLOSSY8A	AC205703.4_FG006	Promoter (<=1kb)	-627	40	#N/A	ATKCR1,KCR1,YBR159	beta-ketoacyl reductase			
GLOSSY26	GRMZM2G481843	Promoter (<=1kb)	0	35.8	-0.396167	CER10,ECR,TSC13	3-oxo-5-alpha-steroid 4-dehydrogenase family protein			
GLOSSY2	GRMZM2G098239	Promoter (<=1kb)	0	34	#N/A	CER2,VC-2,VC2	HXXXD-type acyl-transferase family protein			
ZmCER3	GRMZM2G029912	Intron	214	35	-0.524724	CER3,FLP1,WAX2,YRE	Fatty acid hydroxylase superfamily			
GLOSSY6	GRMZM2G139786	Promoter (1-2kb)	-1851	39	-0.518466	AT1G09310	Protein of unknown function, DUF538			
Cutin										
ZmBDG	GRMZM2G030636	5' UTR	122	44	-1.12516	BDG1,BODYGUARD	alpha/beta-Hydrolases superfamily protein			
		Promoter (<=1kb)	0	97			Zm			
ZmGPAT3	GRMZM2G064590	Promoter (<=1kb)	0	37	#N/A	ATGPAT5,ATGPAT6	glycerol-3-phosphate acyltransferase			
ZmGPAT1	GRMZM2G124042	Promoter (<=1kb)	-805	35	#N/A	GPAT6	glycerol-3-phosphate acyltransferase 6			
Wax and cuti	n transport									
ABCG11-2	GRMZM2G177314	Promoter (2-3kb)	-2639	31	-0.432011	ABCG11.COF1.DSO.WBC11	white-brown complex homolog protein 11			
ABCG11-5	GRMZM2G096952	Promoter (6-7kb)	-6563	50	#N/A	ABCG11 COE1 DSO WBC11	white-brown complex homolog protein 11			
Fatty Acid sv	nthesis		0000	00			white brown complex nemolog protein Th			
ZmHAD	GRMZM2G055667	Promoter (<=1kh)	-773	176	-0 354572	HAD	Thioesterase superfamily protein			
TEo related to	fatty anid/auticle	formation	-113	170	-0.334372	IIAD	The sterase superianily protein			
FREE WOR		Promation	0	26	0.626044	All 5 OHO1 FAAK ASAAL 1 ATWOR	AINTECHMENTA INC. E EDER TE			
EREB85,WRI1	GRMZM2G124524	Promoter (<=1kb)	0	36	0.626041	AILS, CHO1, EMK, ASML1, ATWRIT	AINTEGUMENTA-IKe 5, EREB TF			
EREBZU, WRIZ	GRMZM2G174834	Promoter (<=1kb)	-115	31	#N/A	AIL5,CHO1,EMK,ASML1,ATWRIT	AINTEGUMENTA-IIKe 5, EREB TF			
EREB143	GRMZM2G141219	Promoter (<=1kb)	-110	24.6	#N/A	ASML1,ATWRI1,ADAP	protein, EREB TF			
ZmNFXL2	GRMZM2G139369	Promoter (1-2kb)	-1881	68	#N/A	ATNFXL2	sequence-specific DNA binding transcription factor			
Phospholipid	Synthesis									
ZmPSS1	GRMZM2G039385	Promoter (2-3kb)	-2572	141.2	#N/A	AT1G71150	phosphatidyl serine synthase family protein			
Vesicle trafficking and secretory pathway										
SEC14	GRMZM2G704053*	Promoter (3-4kb)	-3358	31	0.435357	AT1G75170	Sec14p-like phosphatidylinositol transfer family protein			
ZmSYP121	GRMZM2G414540	Promoter (<=1kb)	-20	74	NA	PEN1.SYP121. AT3G11820	syntaxin of plants 121			
Signaling										
ZmGSO1	GRMZM2G313643	Promoter (<=1kb)	0	32	0.540328	GSO1,SGN3, AT4G20140	LRR receptor-like serine/threonine- protein kinase GSO1			
ZmGSO1	GRMZM2G172429	NA	NA	NA	-0.92111	GSO1,SGN3, AT4G20140	LRR receptor-like serine/threonine- protein kinase GSO1			

Table S2. List of genes involved in cuticle formation directly bound by FDL1 in DAP-seq.

REFERENCES

- O'Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. 2016. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. *Cell* **165**(5): 1280-1292.
- Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, de Leon N, Kaeppler SM. 2016. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. *Plant Genome* 9(1); doi.org/10.3835/plantgenome2015.04.0025.