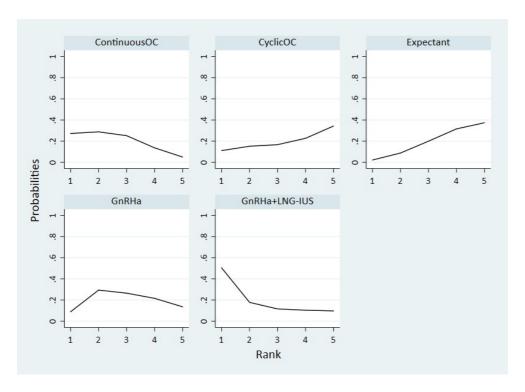
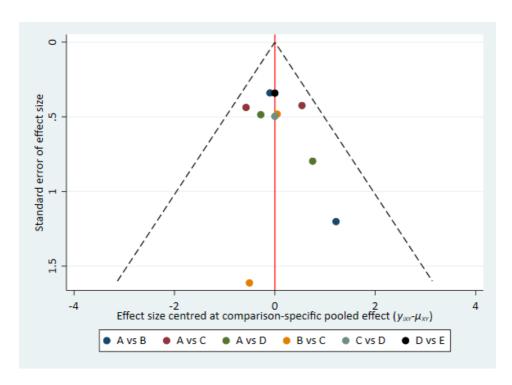
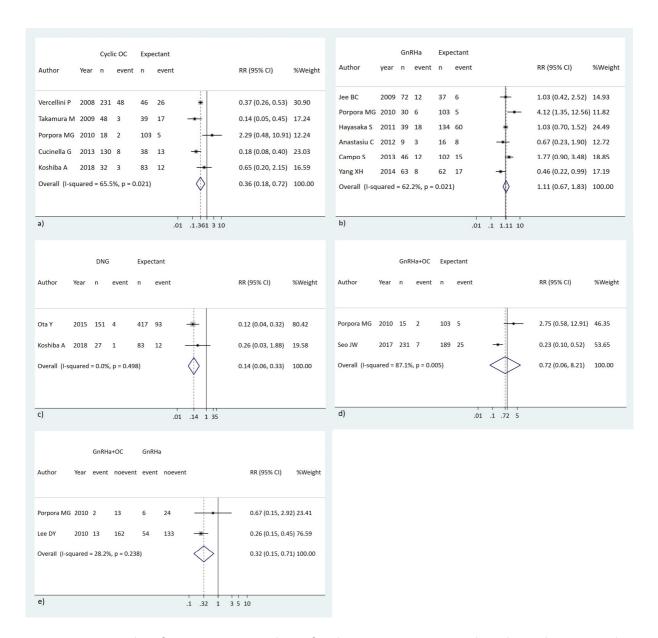


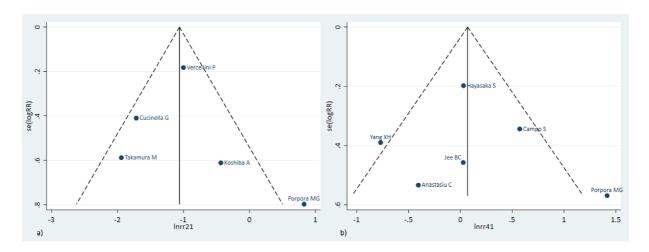
Figure S1. Risk of bias assessments for RCTs; a) Summary by domain b) Risk of bias for each included study and domain.


Figure S2. Forest plot of pairwise meta-analysis of endometrioma recurrence based on RCT network; a) Cyclic OC vs. expectant, b) Continuous OC vs. expectant, c) GnRHa vs. expectant, d) Continuous OC vs. cyclic OC.


Figure S3. Network map of RCTs comparing among hormonal treatments for prevention of endometrioma recurrence; Numbers above edge are number of studies and included subjects in the corresponding comparison.

		Direct comparisons in the network								
		AvsB	AvsC	AvsD	BvsC	CvsD	DvsE			
	Mixed estimates									
	AvsB	48.4	13.0	8.5	21.6	8.5				
v	AvsC	20.4	25.7	16.8	20.4	16.8				
mate	AvsD	10.3	13.1	42.9	1013	23.4				
is esti	BvsC	24.3	14.7	9.6	41.8	9.6				
nalys	CvsD	10.8	13.7	24.6	1018	40.0				
meta-a	DvsE						100.0			
Network meta-analysis estimates	Indirect estimates									
2	AvsE	6.2	7.9	25.8	6.2	14.1	39.9			
	BvsD	26.7	0:5	26.1	23.1	23.6				
	BvsE	17.8	0.3	17.5	15.4	15.8	33.2			
	CvsE	616	8.8	14.9	6.6	24.3	39.2			
ntire netwo	rk	16.6	8.9	19.5	15.2	18.4	21.4			
ncluded stud	lies	2	2	2	2	1	1			


Figure S4. Network contribution plot of RCTs for endometrioma recurrence outcome; Values are percentages; A, expectant; B, Cyclic OC; C, Continuous OC; D, GnRHa; E, GnRHa+LNG-IUS.


Figure S5. Rankograms for hormonal network of RCTs showing the probability for each regimen being at a particular order in lowering endometrioma recurrence.

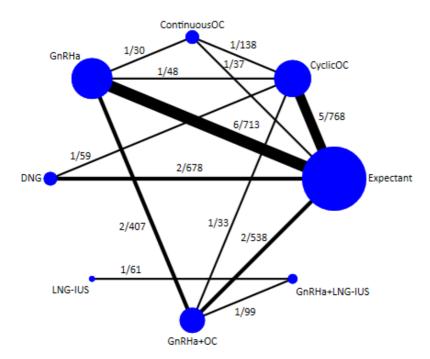
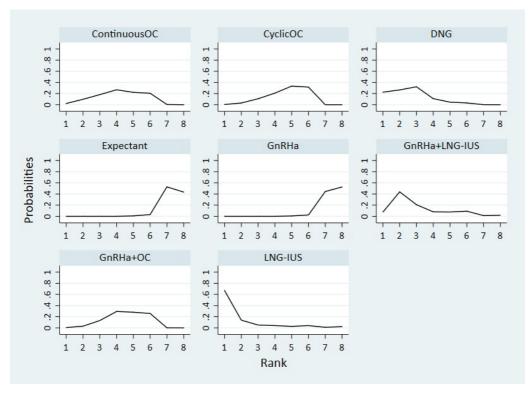
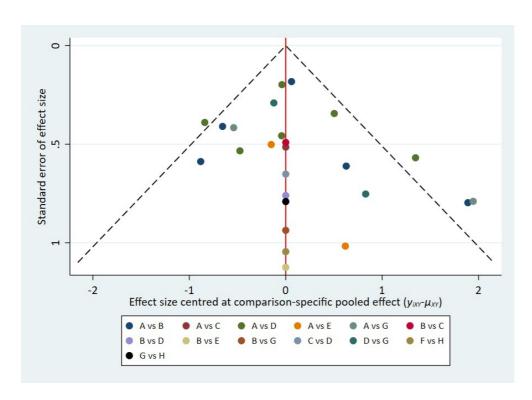

Figure S6. Comparison-adjusted funnel plot for network meta-analysis of RCTs on endometrioma recurrence outcome; A, expectant; B, Cyclic OC; C, Continuous OC; D, GnRHa; E, GnRHa+LNG-IUS.

Figure S7. Forest plot of pairwise meta-analysis of endometrioma recurrence based on cohort network; a) Cyclic OC vs. expectant, b) GnRHa vs. expectant, c) DNG vs. expectant, d) GnRHa+OC vs. expectant, e) GnRHa+OC vs. GnRHa.


Figure S8. Funnel plot of cyclic OC vs. expectant (a); and GnRHa vs. expectant (b) for endometrioma recurrence based on cohort data.


Figure S9. Network map of cohorts comparing among hormonal treatments for prevention of endometrioma recurrence; Numbers above edge are number of studies and included subjects in the corresponding comparison.

		Direct comparisons in the network											
	AvsB	AvsC	AvsD	AvsE	AvsG	BvsC	BvsD	BvsE	BvsG	CvsD	DvsG	FvsH	GvsH
Mixed estimates								153.15			36/3.1		
AvsB	67.2	0.1	7.2	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
AvsC	0.2	51.6		4.0	1:0	8.5	8.6	4.0	4.9	0:4	400		
AvsD	319	4.5	64.0		202	0:1	6.2	0:4	3:1	9.2	5.8	-	0:8
AvsE	0:5	413	1.2	74.5	0:1	307	1:6	11111	0:9	1:2	0-8		0:1
AvsG	2⊎1	4.8	30.9	0.6	518	2.2	1.9	0:6	8.3	5.1	37.8		0:4
BvsC	5.4	8.1	0.4	312	0:4	48.2	8.3	3:12	4.7	12.9	4.2		1:0
BvsD	0:2	16.6	34.9	29	0:7	16.9	1113	2.9	611	0:5	619		
BvsE	1.7	15.2	4.4	39.5	0:5	13.2	507	9.2	3.3	4.2	2.8		0:3
BvsG	5.0	11.7	21 5	2.0	400	11.7	7.6	2.0	1014		29.0		1.5
CvsD	17.0	0:6	38.8	1:6	1:5	19.7	0:4	1:6		14.0			3:3
DvsG	0:3	3v1	11.9	0.6	6.0	315	208	0:6	9.5	0:8	61.0		0:1
BysG CVsD CVsG FvsH GvsH ——— Indirect estimates AvsF AvsH BysF BysH CvsE		1										100.0	1
GvsH	67.2	0:1	7.12	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
	_												
Indirect estimates													
AvsF		0:1	7.2	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
AvsH		0:1	7.2	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
BvsF		0:1	7.2	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
BvsH	67.2	0:1	7.2	0.3	0:3	316	0:1	0:3		7.5	0:3		13.1
CvsE		0:6	1:4	40.4	0:2	18.4	318	4.8	2.2	7.8	200		301
CvsF	67.2	0:1	7.2	0.3	0:3	316	0:1	0:3		7.5	0:3		13.1
CvsG	200000000000000000000000000000000000000	1:1	20.4	1:3	319	15.0	1:1	1:3	4.6	9.0	28.4		203
CvsH	67.2	0:1	7.2	0.3	0:3	3.6	0:1	0:3		7.5	0:3		13.1
DvsE	150011000	0:1	34.2	40.0	1:1	201	413	6.2	202	4.4	343		0:4
DvsF		0:1	7.2	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
DvsH		0:1	7.2	0:3	0:3	316	0:1	0:3	-	7.5	0:3		13.1
EvsF	67.2	0:1	7.2	0.3	0:3	316	0:1	0:3		7.5	0:3		13.1
EvsG		1:5	20.8	30.5	316		210	5.0	6.1	3:0	25.8		0:2
EvsH		0:1	7.12	0.3	0:3	316	0:1	0:3		7.5	0:3		13.1
FvsG	67.2	0:1	7.2	0:3	0:3	316	0:1	0:3		7.5	0:3		13.1
Entire network	27.0	5.12	15.5	10.7	1:5	8.5	21/8	214	3:0	5.9	9.9	2113	518
Included studies	5	1	6	2	2	1	1	1	1	1	2	1	1

Figure S10. Network contribution plot of cohorts for endometrioma recurrence outcome; Values are percentages; A, expectant; B, Cyclic OC; C, Continuous OC; D, GnRHa; E, DNG; F, LNG-IUS; G, GnRHa+OC; H, GnRHa+LNG-IUS.

Figure S11. Rankograms for hormonal network of cohorts showing the probability for each regimen being at a particular order in lowering endometrioma recurrence.

Figure S12. Comparison-adjusted funnel plot for the network meta-analysis of cohorts for endometrioma recurrence outcome; A, expectant; B, Cyclic OC; C, Continuous OC; D, GnRHa; E, DNG; F, LNG-US; G, GnRHa+OC; H, GnRHa+LNG-IUS.