

Supporting Information

Aryl Sulfonium Salts for Site-Selective Late-Stage Trifluoromethylation

*Fei Ye, Florian Berger, Hao Jia, Joseph Ford, Alan Wortman, Jonas Börgel, Christophe Genicot, and Tobias Ritter**

anie_201906672_sm_miscellaneous_information.pdf

TABLE OF CONTENTS

MATERIALS AND METHODS	9
EXPERIMENTAL DATA	10
Experimental procedures and compound characterization	10
General procedure of thianthrenation and trifluoromethylation	10
Gram scale synthesis of CF_3 -flurbiprofen methyl ester (2)	
Reaction optimization for trifluoromethylation	11
Table S1 Reaction condition optimization	11
Figure S1 Comparison of the trifluoromethylation of TT and TFT salts	12
Thianthrenation and trifluoromethylation of arenes	12
Flurbiprofen methyl ester-derived thianthrenium salt (1)	12
Trifluoromethyl flurbiprofen methyl ester (2)	13
1,1'-Biphenyl-derived thianthrenium salt (S1)	14
4-(Trifluoromethyl)-1,1'-biphenyl (3)	15
Benzylbromide-derived tetrafluorothianthrenium salt (S2)	15
1-(Bromomethyl)-4-(trifluoromethyl)benzene (4)	16
4-Methyl-N-phenylbenzenesulfonamide-derived tetrafluorothianthrenium salt (S3)	17
4-Methyl-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)	18
Clofibrate ethyl ester-derived thianthrenium salt (S4)	18
CF ₃ -clofibrate ethyl ester (6)	19
CF ₃ -amirodarone (7)	20
Bromobenzene-derived thianthrenium salt (S6)	21
1-Bromo-4-(trifluoromethyl)benzene (8)	22
p-(1-Adamantyl)toluene-derived thianthrenium salt (S7)	22
(3r,5r,7r)-1-(4-Methyl-3-(trifluoromethyl)phenyl)adamantane (9)	23
4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)	24
Fenofibrate-derived thianthrenium salt (S9)	25
C ₂ F ₅ -fenofibrate (11)	26
Methyl-O-methylpodocarpat-derived thianthrenium salt (S10)	26
CF ₃ -methyl-O-methylpodocarpat (12)	27
2,2,2-Trifluoro-N-phenylacetamide-derived thianthrenium salt (S11)	28
2,2,2-Trifluoro-N-(4-(trifluoromethyl)phenyl)acetamide (13)	29
3-Phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)	30
6-Methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)	30
6-Methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)	31
Gemfibrozil methyl ester-derived thianthrenium salt (S14)	32

CF ₃ -gemfibrozil methyl ester (16)	33
CF ₃ -boscalid (17)	34
4-(Difluoromethyl)-1,1'-biphenyl (18)	34
1,3,5-Trimethyl-2-(trifluoromethyl)benzene (19)	35
Benzyl benzoate-derived tetrafluorothianthrenium salt (S17)	36
4-(Trifluoromethyl)benzyl benzoate (20)	37
CF ₃ -pyriproxyfen (21)	37
CF ₃ -etofenprox (22)	38
4-(Perfluoroethyl)-1,1'-biphenyl (23)	
Methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)	40
Methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)	41
2-Fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)	41
2-Fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)	42
CF ₃ -bifonazole (26)	43
CF ₃ -indometacin methyl ester (27)	44
2-Methoxybenzaldehyde-derived thianthrenium salt (S24)	45
2-Methoxy-5-(trifluoromethyl)benzaldehyde (28)	46
Quinazolinedione-derived thianthrenium salt (S25)	46
6-Trifluoromethylquinazolinedione (29)	47
Xanthone-derived tetrafluorothianthrenium salt (S26)	48
CF ₃ -xanthone (30)	49
CF ₃ -salicin pentaacetate (31)	50
Benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)	50
CF ₃ -benzafibrate methyl ester (32)	52
MECHANISTIC STUDIES	52
Stern-Volmer luminescence quenching studies	52
Figure S2. Stern-Volmer plot of [CuCF ₃], tetrafluorothianthrene and S17	
TEMPO trapping experiment	54
Figure S3. ¹⁹ F NMR of resulting mixtures for transformation of S29 with TEMPO as additive	55
Side-product identification	55
Dimethyl 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(cyclopropane-1-carboxylate) (36)	55
Mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (37)	56
SPECTROSCOPIC DATA	
¹ H NMR of flurbiprofen methyl ester-derived thianthrenium salt (1)	
¹³ C NMR of flurbiprofen methyl ester-derived thianthrenium salt (1)	59

¹⁹ F NMR of flurbiprofen methyl ester-derived thianthrenium salt (1)	60
¹ H NMR of trifluoromethylflurbiprofen methylester (2)	60
¹³ C NMR of trifluoromethylflurbiprofen methylester (2)	62
¹⁹ F NMR of trifluoromethylflurbiprofen methylester (2)	63
¹ H NMR of 1,1'-biphenyl-derived thianthrenium salt (S1)	64
¹³ C NMR of 1,1'-biphenyl-derived thianthrenium salt (S1)	65
¹⁹ F NMR of 1,1'-biphenyl-derived thianthrenium salt (S1)	66
¹ H NMR of 4-(trifluoromethyl)-1,1'-biphenyl (3)	67
¹³ C NMR of 4-(trifluoromethyl)-1,1'-biphenyl (3)	68
¹⁹ F NMR of 4-(trifluoromethyl)-1,1'-biphenyl (3)	69
¹ H NMR of benzylbromide-derived tetrafluorothianthrenium salt (S2)	69
¹³ C NMR of benzylbromide-derived tetrafluorothianthrenium salt (S2)	71
¹⁹ F NMR of benzylbromide-derived tetrafluorothianthrenium salt (S2)	72
¹ H NMR of 1-(bromomethyl)-4-(trifluoromethyl)benzene (4)	73
¹³ C NMR of 1-(bromomethyl)-4-(trifluoromethyl)benzene (4)	74
¹⁹ F NMR of 1-(bromomethyl)-4-(trifluoromethyl)benzene (4)	75
¹ H NMR of 4-methyl- <i>N</i> -phenylbenzenesulfonamide-derived thianthrenium salt (S3)	76
¹³ C NMR of 4-methyl- <i>N</i> -phenylbenzenesulfonamide-derived thianthrenium salt (S3)	77
¹⁹ F NMR of 4-methyl- <i>N</i> -phenylbenzenesulfonamide-derived thianthrenium salt (S3)	78
¹ H NMR of 4-methyl- <i>N</i> -(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)	79
¹³ C NMR of 4-methyl- <i>N</i> -(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)	80
¹⁹ F NMR of of 4-methyl- <i>N</i> -(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)	81
¹ H NMR of clofibrate ethyl ester-derived thianthrenium salt (S4)	82
¹³ C NMR of clofibrate ethyl ester-derived thianthrenium salt (S4)	83
¹⁹ F NMR of clofibrate ethyl ester-derived thianthrenium salt (S4)	84
¹ H NMR of CF ₃ -clofibrate ethyl ester (6)	85
¹³ C NMR of CF ₃ -clofibrate ethyl ester (6)	86
¹⁹ F NMR of CF ₃ -clofibrate ethyl ester (6)	87
¹ H NMR of CF ₃ -amirodarone (7)	88

¹³ C NMR of CF ₃ -amirodarone (7)	89
19 F NMR of CF ₃ -amirodarone (7)	90
¹ H NMR of bromobenzene-derived tetrafluorothianthrenium salt (S6)	91
¹³ C NMR of bromobenzene-derived tetrafluorothianthrenium salt (S6)	92
¹⁹ F NMR of bromobenzene-derived tetrafluorothianthrenium salt (S6)	93
¹ H NMR of 1-bromo-4-(trifluoromethyl)benzene (8)	94
¹³ C NMR of 1-bromo-4-(trifluoromethyl)benzene (8)	95
¹⁹ F NMR of 1-bromo-4-(trifluoromethyl)benzene (8)	96
¹ H NMR of (3r,5r,7r)-1-(<i>p</i> -tolyl)adamantine-derived thianthrenium salt (S7)	96
¹³ C NMR of (3r,5r,7r)-1-(<i>p</i> -tolyl)adamantine-derived thianthrenium salt (S7)	
¹⁹ F NMR of (3r,5r,7r)-1-(<i>p</i> -tolyl)adamantine-derived thianthrenium salt (S7)	99
¹ H NMR of (3r,5r,7r)-1-(4-methyl-3-(trifluoromethyl)phenyl)adamantane (9)	
¹³ C NMR of (3r,5r,7r)-1-(4-methyl-3-(trifluoromethyl)phenyl)adamantane (9)	
¹⁹ F NMR of (3r,5r,7r)-1-(4-methyl-3-(trifluoromethyl)phenyl)adamantane (9)	
¹ H NMR of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)	
¹³ C NMR of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)	104
¹⁹ F NMR of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)	105
¹ H NMR of fenofibrate-derived thianthrenium salt (S9)	106
¹³ C NMR of fenofibrate-derived thianthrenium salt (S9)	107
¹⁹ F NMR of fenofibrate-derived thianthrenium salt (S9)	108
¹ H NMR of C_2F_5 -fenofibrate (11)	
¹³ C NMR of C_2F_5 -fenofibrate (11)	110
19 F NMR of C ₂ F ₅ -fenofibrate (11)	111
¹ H NMR of CF ₃ -methyl-O-methylpodocarpat-derived thianthrenium salt (S10)	112
¹³ C NMR of CF ₃ -methyl-O-methylpodocarpat-derived thianthrenium salt (S10)	113
¹⁹ F NMR of methyl-O-methylpodocarpat-derived thianthrenium salt (S10)	114
¹ H NMR of CF ₃ -methyl-O-methylpodocarpat (12)	115
¹³ C NMR of CF ₃ -methyl-O-methylpodocarpat (12)	116
¹⁹ F NMR of CF ₃ -methyl-O-methylpodocarpat (12)	

¹ H NMR of 2,2,2-trifluoro- <i>N</i> -phenylacetamide-derived thianthrenium salt (S11)	118
¹³ C NMR of 2,2,2-trifluoro- <i>N</i> -phenylacetamide-derived thianthrenium salt (S11)	119
¹⁹ F NMR of 2,2,2-trifluoro- <i>N</i> -phenylacetamide-derived thianthrenium salt (S11)	120
¹ H NMR of 2,2,2-trifluoro- <i>N</i> -(4-(trifluoromethyl)phenyl)acetamide (13)	121
¹³ C NMR of 2,2,2-trifluoro- <i>N</i> -(4-(trifluoromethyl)phenyl)acetamide (13)	122
¹⁹ F NMR of 2,2,2-trifluoro- <i>N</i> -(4-(trifluoromethyl)phenyl)acetamide (13)	123
¹ H NMR of 3-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)	124
¹³ C NMR of 3-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)	125
¹⁹ F NMR of 3-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)	126
¹ H NMR of 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)	127
¹³ C NMR of 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)	128
¹⁹ F NMR of 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)	129
¹ H NMR of 6-methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)	130
¹³ C NMR of 6-methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)	131
¹⁹ F NMR of 6-methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)	132
¹ H NMR of gemfibrozil methyl ester-derived thianthrenium salt (S14)	133
¹³ C NMR of gemfibrozil methyl ester-derived thianthrenium salt (S14)	134
¹⁹ F NMR of gemfibrozil methyl ester-derived thianthrenium salt (S14)	135
¹ H NMR of CF ₃ -gemfibrozil methyl ester (16)	136
¹³ C NMR of CF ₃ -gemfibrozil methyl ester (16)	137
¹⁹ F NMR of CF_3 -gemfibrozil methyl ester (16)	138
¹ H NMR of CF ₃ -boscalid (17)	139
¹³ C NMR of CF ₃ -boscalid (17)	140
¹⁹ F NMR of CF ₃ -boscalid (17)	141
¹ H NMR of 4-(difluoromethyl)-1,1'-biphenyl (18)	142
¹³ C NMR of 4-(difluoromethyl)-1,1'-biphenyl (18)	143
¹⁹ F NMR of 4-(difluoromethyl)-1,1'-biphenyl (18)	144
¹ H NMR of 1,3,5-trimethyl-2-(trifluoromethyl)benzene (19)	145
¹³ C NMR of 1,3,5-trimethyl-2-(trifluoromethyl)benzene (19)	146

¹⁹ F NMR of 1,3,5-trimethyl-2-(trifluoromethyl)benzene (19)	147
¹ H NMR of benzyl benzoate-derived tetrafluorothianthreunium salt (S17)	148
¹³ C NMR of benzyl benzoate-derived tetrafluorothianthreunium salt (S17)	149
¹⁹ F NMR of benzyl benzoate-derived tetrafluorothianthreunium salt (S17)	150
¹ H NMR of 4-(trifluoromethyl)benzyl benzoate (20)	151
¹³ C NMR of 4-(trifluoromethyl)benzyl benzoate (20)	152
¹⁹ F NMR of 4-(trifluoromethyl)benzyl benzoate (20)	153
¹ H NMR of CF ₃ -pyriproxyfen (21)	154
¹³ C NMR of CF ₃ -pyriproxyfen (21)	155
¹⁹ F NMR of CF ₃ -pyriproxyfen (21)	156
¹ H NMR of CF ₃ -etofenprox (22)	157
¹³ C NMR of CF ₃ -etofenprox (22)	158
¹⁹ F NMR of CF ₃ -etofenprox (22)	159
¹ H NMR of 4-(perfluoroethyl)-1,1'-biphenyl (23)	160
¹³ C NMR of 4-(perfluoroethyl)-1,1'-biphenyl (23)	161
¹⁹ F NMR of 4-(perfluoroethyl)-1,1'-biphenyl (23)	162
¹ H NMR of methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)	163
¹³ C NMR of methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)	164
¹⁹ F NMR of methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)	165
¹ H NMR of methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)	166
¹³ C NMR of methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)	167
¹⁹ F NMR of methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)	168
¹ H NMR of 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)	169
¹³ C NMR of 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)	170
¹⁹ F NMR of 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)	171
¹ H NMR of 2-fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)	172
¹³ C NMR of 2-fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)	173
¹⁹ F NMR of 2-fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)	174
¹ H NMR of CF ₃ -bifonazole (26)	175

¹³ C NMR of CF ₃ -bifonazole (26)	176
¹⁹ F NMR of CF_3 -bifonazole (26)	177
¹ H NMR of CF ₃ -indometacin methyl ester (27)	177
¹³ C NMR of CF ₃ -indometacin methyl ester (27)	179
¹⁹ F NMR of CF ₃ -indometacin methyl ester (27)	180
¹ H NMR of 2-methoxy-benzaldehyde-derived tetrafluorothianthrenium salt (S24)	181
¹³ C NMR of 2-methoxy-benzaldehyde-derived tetrafluorothianthrenium salt (S24)	182
¹⁹ F NMR of 2-methoxy-benzaldehyde-derived tetrafluorothianthrenium salt (S24)	183
¹ H NMR of 2-methoxy-5-(trifluoromethyl)benzaldehyde (28)	184
¹³ C NMR of 2-methoxy-5-(trifluoromethyl)benzaldehyde (28)	185
¹⁹ F NMR of 2-methoxy-5-(trifluoromethyl)benzaldehyde (28)	186
¹ H NMR of quinazolinedione-derived thianthrenium salt (S25)	187
¹³ C NMR of quinazolinedione-derived thianthrenium salt (S25)	188
¹⁹ F NMR of quinazolinedione-derived thianthrenium salt (S25)	189
¹ H NMR of 6-trifluoromethylquinazolinedione (29)	190
¹³ C NMR of 6-trifluoromethylquinazolinedione (29)	191
¹⁹ F NMR of 6-trifluoromethylquinazolinedione (29)	192
¹ H NMR of xanthone-derived tetrafluorothianthrenium salt (S26)	193
¹³ C NMR of xanthone-derived tetrafluorothianthrenium salt (S26)	194
¹⁹ F NMR of xanthone-derived tetrafluorothianthrenium salt (S26)	195
¹ H NMR of CF ₃ -xanthone (30)	196
¹³ C NMR of CF ₃ -xanthone (30)	197
¹⁹ F NMR of CF ₃ -xanthone (30)	198
¹ H NMR of CF ₃ -salicin pentaacetate (31)	199
¹³ C NMR of CF ₃ -salicin pentaacetate (31)	200
¹⁹ F NMR of CF ₃ -salicin pentaacetate (31)	201
¹ H NMR of benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)	202
¹³ C NMR of benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)	203
¹⁹ F NMR of benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)	204

¹ H NMR of CF ₃ -benzafibrate methyl ester (32)	205
¹³ C NMR of CF ₃ -benzafibrate methyl ester (32)	206
¹⁹ F NMR of CF ₃ -benzafibrate methyl ester (32)	207
¹ H NMR of dimethyl 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(cyclopropane-1-carboxylate) (36)	208
¹³ C NMR of dimethyl 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(cyclopropane-1-carboxylate) (36)	209
¹ H NMR of mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (36)	210
¹³ C NMR of mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (37)	211
¹⁹ F NMR of mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (37)	212
REFERENCES	213

MATERIALS AND METHODS

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). High-resolution mass spectra were obtained using *Q Exactive Plus* from *Thermo*. Concentration under reduced pressure was performed by rotary evaporation at 25–40 °C at an appropriate pressure. Purified compounds were further dried under vacuum ($10^{-6} - 10^{-3}$ bar). Yields refer to purified and spectroscopically pure compounds, unless otherwise stated. A LED Kessil[®] A160WE was used as the light source.

Solvents

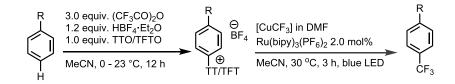
Acetonitrile and *N*,*N*-dimethylformamide were purchased from *Sigma-Aldrich* and used as received. Anhydrous solvents were obtained from Phoenix Solvent Drying Systems. All deuterated solvents were purchased from Euriso-Top®.

Chromatography

Thin-layer chromatography (TLC) was performed using EMD TLC silica gel 60 F_{254} plates pre-coated with 250 µm thickness silica gel 60 F_{254} and visualized by fluorescence quenching under UV light. Flash column chromatography was performed using silica gel (40–63 µm particle size) purchased from Geduran®. Preparatory high-performance liquid chromatographic separation was executed on a Shimadzu Prominence Preparative HPLC system with an YMC-Triart C18 HPLC column.

Spectroscopy and Instruments

NMR spectra were recorded on a Bruker *Ascend*TM 500 spectrometer operating at 500 MHz, 471 MHz, and 126 MHz, for ¹H, ¹⁹F, and ¹³C acquisitions, respectively. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H NMR: CDCl₃, δ 7.26; CD₂Cl₂, δ 5.32; CD₃CN, δ 1.94; (CD₃)₂SO, δ 2.50; CD₃OD, δ 3.31; (CD₃)₂CO, δ 2.05. For ¹³C NMR: CDCl₃, δ 77.16; CD₂Cl₂, δ 53.84; CD₃CN, δ 1.32, 118.26; (CD₃)₂SO, δ 39.52; CD₃OD, δ 49.00; (CD₃)₂CO, δ 29.84. ¹⁹F NMR spectra were referenced using a unified chemical shift scale based on the ¹H resonance of tetramethylsilane (1% (v/v) solution in the respective solvent). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling constants in Hz; integration.

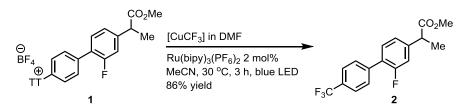

Starting materials

All substrates and materials were used as received from commercial suppliers, unless otherwise stated. Compounds **S5**, **S8**, **S12**, **S15**, **S16**, **S18**, **S19**, **S22**, **S23**, **S27**, **S29**, thianthrene-*S*-oxide (TTO) and tetrafluorothianthrene-*S*-oxide (TFTO) were prepared according to our previous report.¹

EXPERIMENTAL DATA

Experimental procedures and compound characterization

General procedure of thianthrenation and trifluoromethylation



Under an ambient atmosphere, a 20-ml glass vial was charged with arene (5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford the thianthrenium salt.

Under nitrogen atmosphere, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv.) and CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) were then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a septum-cap. The reaction mixture was stirred at 23 °C. After 30 mins, a solution of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and (tetrafluoro)thianthrenium salts (0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was added into the reaction mixture with a 2 mL syringe. The vial was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexanes to afford the trifluoromethylated product.

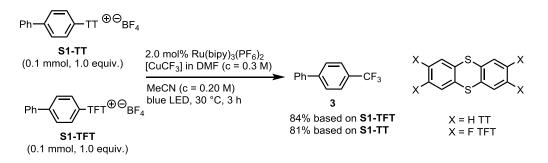
Note: The reaction is air sensitive. Schlenk techniques were used to avoid air. For simplicity, in our own research, we have opted to execute the transformation for most compounds by using a glovebox. Control experiments showed that yields were within error of measurement if the reaction was carried out using a glovebox or not.


Gram scale synthesis of CF₃-flurbiprofen methyl ester (2)

Under Ar atmosphere, a 50-mL Schlenk flask equipped with a magnetic stir bar was charged with CuSCN (729 mg, 6.00 mmol, 1.50 equiv), CsF (1.21 g, 8.00 mmol, 2.00 equiv). DMF (20 mL, c = 0.30 M) and TMSCF₃ (887 μ L, 853 mg, 6.00 mmol, 1.50 equiv) was then added into the flask at 23 °C, leading to a yellow suspension. The flask was sealed with a screwed cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (69 mg, 80 μ mol, 2.0 mol%) and flurbiprofen-derived thianthrenium salt **1** (2.24 g, 4.00 mmol, 1.00 equiv) in MeCN (20 mL, c = 0.20 M) was then added into the reaction under Ar atmosphere with a 20 mL syringe. The flask was sealed with the same screw cap, and was placed 5 cm away from a 34 W blue LED. The reaction mixture was diluted with DCM (20 mL). The resulting solution was filtered through a short pad of silica using DCM (50 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **2** (1.12 g, 86%) as a colorless solid.

Reaction optimization for trifluoromethylation

Table S1 Reaction condition optimization



change of reaction conditions	yield of 3 ^b
none ^a	84%
no Ru(bipy) ₃ (PF ₆) ₂	< 1%
no light	< 1%
CuSCN, CsF and TMSCF $_3$ were added directly into the reaction mixture	< 5%

Cul instead of CuSCN	65%
$Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ instead of Ru(bipy) ₃ (PF ₆) ₂	43%
CuSCN, CsF and TMSCF ₃ were added as 1:1:1 ratio	56%

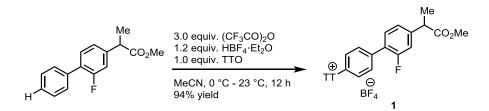

^aCuSCN (0.15 mmol), CsF (0.15 mmol) and TMSCF₃ (0.15 mmol) were mixed in DMF at 23 °C, after stirring for 30 mins, a MeCN solution of **S1** and Ru(bipy)₃(PF₆)₂ was added. ^bYield based on silica gel column chromatography separation.

Figure S1 Comparison of the trifluoromethylation of TT and TFT salts

Thianthrenation and trifluoromethylation of arenes

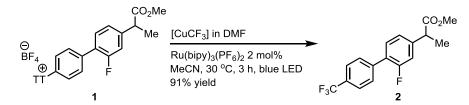
Flurbiprofen methyl ester-derived thianthrenium salt (1)

Under an ambient atmosphere, a 20-ml glass vial was charged with flurbiprofen methyl ester (1.29 g, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.2 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed in *vacuo* to

afford 1 (2.63 g, 94%) as a colorless powder.

 $R_f = 0.35$ (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, DMSO-d₆, 23 °C, δ): 8.62 (dd, *J* = 7.9, 1.4 Hz, 2H), 8.09 (d, *J* = 7.1 Hz, 2H), 7.94 (td, *J* = 7.7, 1.5 Hz, 2H), 7.88 (td, *J* = 7.7, 1.4 Hz, 2H), 7.72 (dd, *J* = 8.7, 1.6 Hz, 2H), 7.47 (t, *J* = 8.2 Hz, 1H), 7.35 - 7.30 (m, 2H), 7.30 - 7.19 (m, 2H), 3.90 (q, *J* = 7.1 Hz, 1H), 3.60 (s, 3H) ppm.

¹³C NMR (126 MHz, DMSO-d₆, 23 °C, δ): 173.6, 158.8 (d, J = 247.4 Hz), 144.0 (d, J = 7.9 Hz), 139.0, 135.7, 135.4, 134.8, 130.9 (d, J = 3.1 Hz), 130.6 (d, J = 3.0 Hz), 130.3, 129.6, 128.4, 124.6 (d, J = 12.8 Hz), 124.3, 124.2 (d, J = 16.0 Hz), 119.1, 115.4 (d, J = 23.0 Hz), 52.0, 43.8, 18.3 ppm.

¹⁹**F NMR** (471 MHz, DMSO-d₆, 23 °C, δ): –117.8 (t, J = 10.0 Hz), –148.2 (brs), –148.3 (brs) ppm.

HRMS-ESI(m/z) calc'd for C₂₈H₂₂F₁O₂S₂ [M-BF₄]⁺, 473.10398; found, 473.10441; deviation: -0.9 ppm.

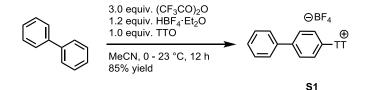
Trifluoromethyl flurbiprofen methyl ester (2)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and flurbiprofen methyl esterderived thianthrenium salt **1** (168 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **2** (89.0 mg, 91%) as a colorless solid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/20, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.76–7.56 (m, 4H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.17 (dd, *J* = 14.6, 10.1 Hz, 2H), 3.78 (q, *J* = 7.2 Hz, 1H), 3.71 (s, 3H), 1.55 (d, *J* = 7.2 Hz, 3H) ppm.


¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 174.4, 158.9 (d, *J* = 249.7 Hz), 143.1 (d, *J* = 7.8 Hz), 139.2, 130.8

(d, *J* = 3.7 Hz), 129.9 (q, *J* = 32.6 Hz), 129.4 (d, *J* = 3.2 Hz), 126.6 (d, *J* = 13.5 Hz), 125.5 (q, *J* = 3.9 Hz), 124.3 (q, *J* = 271.9 Hz, CF₃), 123.9 (d, *J* = 3.5 Hz), 115.6 (d, *J* = 23.4 Hz), 52.4, 45.1, 18.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.6, –117.3 (t, *J* = 9.4 Hz) ppm.

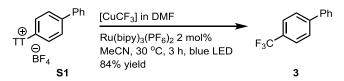
HRMS-EI(m/z) calc'd for $C_{17}H_{14}O_2F_4$ [M]⁺, 326.09244; found, 326.09277; deviation: -1.0 ppm.

1,1'-Biphenyl-derived thianthrenium salt (S1)

Under an ambient atmosphere, a 20-ml glass vial was charged with 1,1'-biphenyl (770 mg, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S1** (1.94 g, 85%) as a colorless powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, DMSO-*d*₆, 23 °C, δ): 8.65 (dd, *J* = 7.9, 1.3 Hz, 2H), 8.13 (dd, *J* = 7.9, 1.3 Hz, 2H), 7.99 (td, *J* = 7.7, 1.4 Hz, 2H), 7.94–7.88 (m, 4H), 7.70–7.68 (m, 2H), 7.53–7.50 (m, 2H), 7.48–7.47 (m, 1H), 7.34–7.33 (m, 2H) ppm.

¹³C NMR (126 MHz, CD₃CN, 23 °C, δ): 144.7, 137.1, 135.8, 134.3, 134.2, 129.9, 129.1, 128.3, 128.1, 128.0, 127.7, 126.4, 121.5, 117.7 ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 ^oC, δ): –152.4 (brs), –152.5 (brs) ppm.

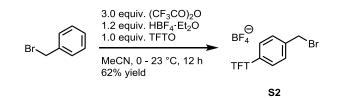
HRMS-ESI (m/z) calculated for C₂₄H₁₇S₂⁺ [M-BF₄]⁺, 369.07662; found, 369.07674; deviation: -0.3 ppm.

4-(Trifluoromethyl)-1,1'-biphenyl (3)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 1,1'-biphenyl-derived thianthrenium salts **S1** (136 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **3** (55.9 mg, 84%) as a colorless liquid.

 $R_f = 0.45$ (hexanes).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.78–7.70 (m, 4H), 7.65 (dd, *J* = 7.4, 1.8 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.3 Hz, 1H) ppm

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 144.9, 139.9, 129.5 (q, *J* = 31.5 Hz), 129.1, 128.3, 127.5, 127.4, 125.8 (q, *J* = 3.8 Hz), 124.5 (q, *J* = 272.2 Hz, CF₃) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.3 ppm.

HRMS-ESI(m/z) calc'd for $C_{13}H_9F_3[M+H]^+$, 222.06509; found, 222.06516; deviation: -0.3 ppm.

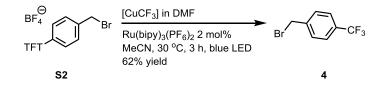
Benzylbromide-derived tetrafluorothianthrenium salt (S2)

Under an ambient atmosphere, a 20-ml glass vial was charged with benzyl bromide (510 mg, 3.00 mmol, 1.00 equiv) and MeCN (6.0 ml, c = 0.50 M). After cooling to 0 °C, HBF₄·OEt₂ (0.49 mL, 0.58 g, 3.6 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.26 mL, 1.86 g,

9.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S2** (1.01 g, 62%) as a light yellow powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.47 (dd, *J* = 9.2, 7.2 Hz, 2H), 7.96 (dd, *J* = 9.9, 7.0 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.22 (d, *J* = 8.7 Hz, 2H), 4.55 (s, 2H) ppm.

¹³**C** NMR (125 MHz, CDCl₃, 23 °C, δ): 154.8 (dd, J = 262.0, 13.2 Hz), 151.6 (dd, J = 255.6, 13.6 Hz), 145.3, 135.3 (dd, J = 8.6, 4.1 Hz), 132.0, 129.8, 125.8 (dd, J = 22.3, 2.5 Hz), 123.3, 121.2 (d, J = 21.7 Hz), 115.2 (dd, J = 7.3, 3.6 Hz), 32.1 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): -125.2 (ddd, *J* = 20.8, 10.1, 7.3 Hz), -133.7 (ddd, *J* = 20.7, 9.4, 7.0 Hz), -150.5 (brs), -150.6 (brs) ppm.

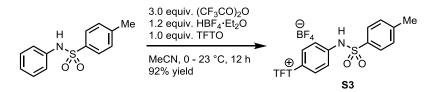
HRMS-ESI (m/z) calc'd for C₁₉H₁₀Br₁F₄S₂ [M-BF₄]⁺, 456.93381; found, 456.93335; deviation: 1.0 ppm.

1-(Bromomethyl)-4-(trifluoromethyl)benzene (4)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 µL, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 µmol, 2.0 mol%) and benzylbromide-derived tetrafluorothianthrenium salts **S2** (164 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **4** (44.2 mg, 62%) as a colorless liquid.

 $R_f = 0.55$ (hexanes).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.64 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 4.53 (s, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 141.8, 130.62 (q, *J* = 32.7 Hz), 129.5, 125.9 (q, *J* = 4.0 Hz), 124.1 (q, *J* = 272.5 Hz), 31.9 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.7 ppm.

HRMS-EI(m/z) calc'd for C₈H₆Br₁F₃ [M]⁺, 237.95996; found, 237.95999; deviation: –0.1 ppm.

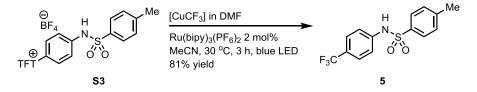
4-Methyl-N-phenylbenzenesulfonamide-derived tetrafluorothianthrenium salt (S3)

Under an ambient atmosphere, a 20-ml glass vial was charged with 4-methyl-*N*-phenylbenzenesulfonamide (1.24 g, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (1.51 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S3** (2.86 g, 92%) as a pale yellow powder.

 $R_f = 0.30$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 8.71 (brs, 1H), 8.33 (dd, *J* = 9.0, 2.0 Hz, 2H), 7.92 (dd, *J* = 10.0, 2.0 Hz, 2H), 7.69–7.66 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.21–7.19 (m, 2H), 7.11–7.08 (m, 2H), 2.36 (s, 3H) ppm.


¹³**C NMR** (126 MHz, CD₃CN, 23 °C, δ): 155.3 (dd, J = 261.7, 13.2 Hz), 152.1 (dd, J = 255.6, 13.4 Hz), 146.6, 144.2, 137.4, 135.6 (dd, J = 8.5, 4.0 Hz), 131.6, 131.5, 128.7, 125.8 (dd, J = 22.1, 2.4 Hz), 121.7 (d, J = 21.9 Hz), 121.3, 117.2, 116.1 (dd, J = 7.2, 3.4 Hz), 22.2 ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 °C, δ): -125.5 (ddd, J = 20.8, 10.2, 7.3 Hz), -133.8 (ddd, J = 20.8, 9.2,

7.3 Hz), -151.0 (brs), -151.1 (brs) ppm

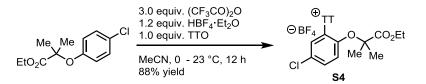
HRMS-ESI (m/z) calculated for $C_{25}H_{16}F_4N_1O_2S_3$ [M-BF₄]⁺, 534.02739; found, 534.02667; deviation: 1.3 ppm.

4-Methyl-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 4-methyl-*N*-phenylbenzenesulfonamide-derived tetrafluorothianthrenium salts **S3** (0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:10 (v/v)) to afford **5** (76.5 mg, 81%) as a colorless solid.

 $R_f = 0.35$ (EtOAc/hexanes, 1/5, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.03 (s, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.13 (dd, *J* = 8.4, 4.5 Hz, 4H), 2.25 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 144.7, 140.2, 135.7, 130.1, 127.4, 126.7 (q, *J* = 3.8 Hz), 126.3 (q, *J* = 32.8 Hz), 124.0 (q, *J* = 272.2 Hz, CF₃), 119.6, 21.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.2 ppm.

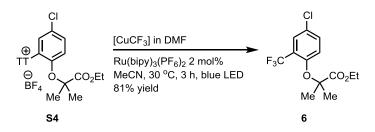
HRMS-EI(m/z) calc'd for $C_{14}H_{12}N_1O_2S_1F_3$ [M]⁺, 315.05354; found, 315.05399; deviation: -1.4 ppm.

Clofibrate ethyl ester-derived thianthrenium salt (S4)

Under an ambient atmosphere, a 20-ml glass vial was charged with methyl gemfibrozil (1.21 g, 5.00 mmol, 1.00 equiv.) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.15 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.2 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 2 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated NaHCO₃ solution. After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S4** (2.38 g, 88%) as a white powder.

 $R_f = 0.35$ (DCM/MeOH, 1/15, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, DMSO- d_6 , 23 °C, δ) δ 8.40 (dd, J = 7.8, 1.5 Hz, 2H), 8.10 (dd, J = 7.8, 1.5 Hz, 2H), 7.89 (dtd, J = 23.2, 7.5, 1.5 Hz, 4H), 7.68 (dd, J = 9.0, 2.6 Hz, 1H), 6.92 (d, J = 9.0 Hz, 1H), 6.64 (d, J = 2.6 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 1.63 (s, 6H), 1.05 (t, J = 7.1 Hz, 3H) ppm.

¹³**C NMR** (126 MHz, DMSO-*d*₆, 23 °C, δ): 171.8, 152.9, 136.6, 136.3, 135.4, 135.1, 131.0, 130.0, 129.5, 125.8, 119.3, 118.3, 112.4, 82.5, 62.3, 25.2, 14.2 ppm.

¹⁹F NMR (471 MHz, DMSO-*d*₆, 23 °C, δ): –148.2 (brs), –148.3 (brs) ppm.

HRMS-ESI (m/z) calculated for C₂₄H₂₂O₃S₂Cl₁⁺ [M-BF₄]⁺, 457.06934; found, 457.06917; deviation: 0.4 ppm.

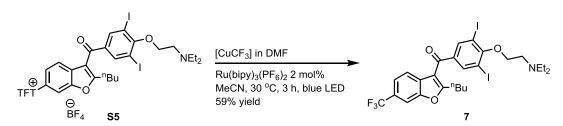
CF₃-clofibrate ethyl ester (6)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and clofibrate ethyl ester-derived thianthrenium salt **S4** (163 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm

away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 $^{\circ}$ C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:100 (v/v)) to afford **6** (75.3 mg, 81%) as a colorless solid.

 $R_f = 0.40$ (EtOAc/hexanes, 1/14, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.53 (d, *J* = 2.7 Hz, 1H), 7.33 (dd, *J* = 8.9, 2.7 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.60 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 173.8, 152.7, 132.4, 127.5 (q, *J* = 5.4 Hz), 126.5, 123.1 (q, *J* = 31.0 Hz), 122.8 (d, *J* = 272.9 Hz, CF₃), 119.1, 80.7, 61.8, 25.1, 14.1 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.5 ppm.

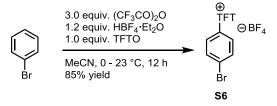
HRMS-ESI(m/z) calc'd for $C_{13}H_{15}O_{3}CI_{1}F_{3}$ [M+H]⁺, 311.06563; found, 311.06561; deviation: 0.1 ppm.

CF₃-amirodarone (7)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (18.2 mg, 0.150 mmol, 1.50 equiv), CsF (31.1 mg, 0.200 mmol, 2.00 equiv). DMF (0.50 mL, c = 0.30 M) and TMSCF₃ (22.1 µL, 31.2 mg, 0.150 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (1.7 mg, 2.0 µmol, 2.0 mol%) and amirodarone-derived tetrafluorothianthrenium salts **S5** (102 mg, 0.100 mmol, 1.00 equiv) in MeCN (0.50 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with DCM/MeOH (200:1 to 50:1 + 1% Et₃N, v/v/v) to afford **7** with impurities. Further purification of **7** by HPLC (YMC-Actus Triart C18 (30×150 mm: 5 µm), CH₃CN/NH₄HCO₃ (20 mM) = 95:5, flow rate = 42.5 mL/min, 25 °C, retention time; 17.3 min) provided **7** (42 mg, 59%) as a pale yellow solid.

R_f = 0.29 (DCM/MeOH 20:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.20–8.19 (m, 2H), 7.78 (s, 1H), 7.52–7.51 (m, 2H), 4.27–4.26 (m, 2H), 3.35 (brs, 2H), 3.03-3.01 (m, 4H), 2.87 (t, J = 7.6 Hz, 2H), 1.80–1.75 (m, 3H), 1.39–1.33 (m, 4H), 0.92 (t, J = 7.2 Hz, 6H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 187.2, 168.7, 161.4, 152.9, 140.8, 138.3, 129.6, 127.3 (q, *J* = 32.9 Hz), 124.3 (q, *J* = 272.0 Hz, CF₃), 121.6, 121.0 (q, *J* = 3.8 Hz), 115.9, 109.0 (q, *J* = 4.4 Hz), 91.1, 51.6, 47.9, 30.1, 29.8, 28.5, 22.7, 13.8, 10.9 ppm

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –61.3 ppm.

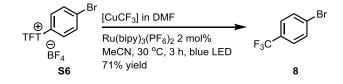
HRMS-ESI(m/z) calc'd for C₂₆H₂₉F₃N₁O₃ [M+H]⁺, 714.01835; found, 714.01849; deviation: -0.2 ppm.

Bromobenzene-derived thianthrenium salt (S6)

Under an ambient atmosphere, a 20-ml glass vial was charged with bromobenzene (780 mg, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (1.51 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S6** (2.15 g, 85%) as a colorless powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (600 MHz, CD₂Cl₂, 23 °C, δ): 8.58 (dd, J = 8.4, 7.1 Hz, 2H), 7.77 (dd, J = 9.1, 6.7 Hz, 2H), 7.67 (d, J = 9.1 Hz, 2H), 7.08 (d, J = 9.1 Hz, 2H) ppm.

¹³**C NMR** (151 MHz, CD₂Cl₂, 23 °C, δ): 154.5 (dd, J = 266.1, 13.1 Hz), 151.4 (dd, J = 260.5, 13.4 Hz), 134.5, 134.4 (dd, J = 8.0, 4.2 Hz), 129.7, 129.4, 125.5 (dd, J = 21.8, 2.6 Hz), 122.0, 120.3 (d, J = 21.3 Hz), 114.7 (dd, J = 6.8, 3.6 Hz) ppm.

¹⁹**F NMR** (376 MHz, CD₂Cl₂, 23 °C, δ): -121.7 (d, *J* = 20.7 Hz), -129.6 (d, *J* = 20.8 Hz), -149.3 (brs), - 149.4 (brs) ppm.

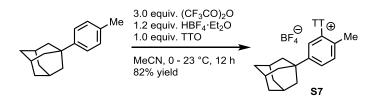
HRMS-ESI (m/z) calculated for $C_{18}H_8Br_1F_4S_2^+$ [M-BF₄]⁺, 442.91816; found, 442.91846; deviation: -0.7 ppm.

1-Bromo-4-(trifluoromethyl)benzene (8)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and bromobenzene-derived (tetrafluoro)thianthrenium salts **S6** (165 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **8** (47.7 mg, 71%) as a colorless liquid.

 $R_f = 0.55$ (hexanes).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.63 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H) ppm

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 132.2, 129.7 (q, *J* = 32.8 Hz), 127.1 (q, *J* = 3.8 Hz), 126.6, 125.1 (q, *J* = 272.2 Hz, CF₃) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.8 ppm.

HRMS-EI(m/z) calc'd for C₇H₄Br₁F₃ [M]⁺, 223.94431; found, 223.94457; deviation: -1.2 ppm.

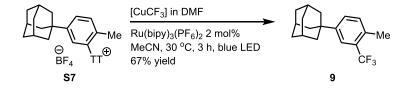
p-(1-Adamantyl)toluene-derived thianthrenium salt (S7)

Under an ambient atmosphere, a 20-ml glass vial was charged with p-(1-adamantyl)toluene (339 mg, 1.50

mmol, 1.00 equiv) and MeCN (3.0 ml, c = 0.50 M). After cooling to 0 °C, HBF₄·OEt₂ (0.25 mL, 0.29 g, 1.8 mmol, 1.2 equiv) and thianthrene-S-oxide (348 mg, 1.50 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.63 mL, 0.93 g, 4.5 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S7** (650 mg, 82%) as a colorless powder.

R*t* = 0.35 (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.38 (d, *J* = 7.9 Hz, 2H), 7.86 (d, *J* = 7.9 Hz, 2H), 7.80 (t, *J* = 7.7 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 6.71 (s, 1H), 2.63 (s, 3H), 1.97 (s, 3H), 1.69–1.67 (m, 3H), 1.60–1.53 (m, 9H) ppm.

¹³**C NMR** (125 MHz, CDCl₃, 23 °C, δ): 151.0, 137.2, 134.9, 134.8, 133.8, 130.9, 130.3, 130.2, 125.4, 120.7, 118.0, 77.4, 42.6, 36.3, 36.1, 28.5, 19.8 ppm.

¹⁹F NMR (471 MHz, CDCl₃, 23 °C, δ):–151.5 (brs), –151.6 (brs) ppm.

HRMS-ESI (m/z) calc'd for C₂₉H₂₉S₂ [M-BF₄]⁺, 441.17052; found, 441.17061; deviation: -0.2 ppm.

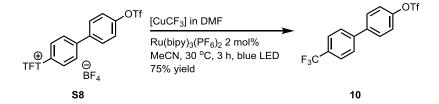
(3r,5r,7r)-1-(4-Methyl-3-(trifluoromethyl)phenyl)adamantane (9)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 4-adamantyl-toluene-derived thianthrenium salts **S7** (159 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was

collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **9** (59.1 mg, 67%) as a colorless solid.

$R_f = 0.65$ (hexanes).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.62 (s, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.30–7.23 (m, 1H), 2.49 (s, 3H), 2.15 (s, 3H), 1.94 (s, 6H), 1.82 (q, *J* = 12.5 Hz, 6H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 149.1, 133.5, 131.7, 128.4 (q, *J* = 29.2 Hz), 128.1, 124.9 (q, *J* = 273.7 Hz, CF₃), 122.3 (q, *J* = 5.7 Hz), 43.1, 36.7, 36.0, 28.9, 18.8 (q, *J* = 2.4 Hz) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –61.3 ppm.

HRMS-CI(m/z) calc'd for C₁₈H₂₁F₃ [M]⁺, 294.15899; found, 294.15921; deviation: -0.8 ppm.

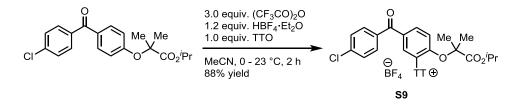
4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 4-trifluoromethanesulfonylbiphen-derived tetrafluorothianthrenium salts **S8** (203 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:200 (v/v)) to afford **10** (83.2 mg, 75%) as a colorless solid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/100, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.64 (d, *J* = 8.1 Hz, 2H), 7.59 (s, 2H), 7.57 (s, 2H), 7.31 (d, *J* = 8.7 Hz, 2H) ppm.


¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 149.7, 142.9, 140.4, 130.4 (q, *J* = 32.8 Hz), 129.3, 127.7, 126.1

(q, J = 3.8 Hz), 124.2 (q, J = 272.2 Hz, CF₃), 122.1, 118.9 (q, J = 321 Hz, SO₂CF₃) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.6, –72.8 ppm.

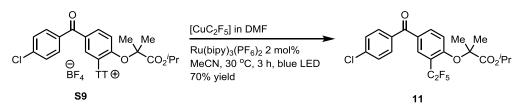
HRMS-EI(m/z) calc'd for C₁₄H₈O₃S₁F₆ [M]⁺, 370.00929; found, 370.00965; deviation: -1.0 ppm.

Fenofibrate-derived thianthrenium salt (S9)

Under an ambient atmosphere, a 20-ml glass vial was charged with fenofibrate (721 mg, 2.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 0.40 M). After cooling to 0 °C, HBF₄·OEt₂ (0.33 mL, 0.39 g, 2.4 mmol, 1.2 equiv) and thianthrene-S-oxide (464 mg, 2.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.84 mL, 1.3 g, 6.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 2 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and aqueous K₂CO₃ solution (10% w/w, 10 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S9** (1.17 g, 88%) as a colorless powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 8.26 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.99 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.94 (dd, *J* = 8.5, 2.0 Hz, 2H), 7.84 (td, *J* = 7.7, 1.4 Hz, 2H), 7.78 (td, *J* = 7.7, 1.4 Hz, 2H), 7.65–7.42 (m, 4H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 5.06–4.83 (m, 1H), 1.74 (s, 6H), 1.03 (d, *J* = 6.2 Hz, 6H) ppm.

¹³C NMR (126 MHz, CD₃CN, 23 °C, δ): 193.3, 172.4, 159.3, 140.0, 138.7, 138.2, 136.9, 136.7, 136.5, 133.9, 132.5, 132.2, 131.7, 131.5, 130.3, 118.5, 111.2, 85.0, 71.6, 26.2, 22.2 ppm. one carbon missing because of overlap.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 °C, δ): –151.7 (brs), –151.8 (brs) ppm.

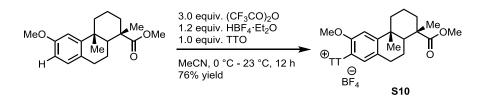
HRMS-ESI(m/z) calc'd for C₃₂H₂₈Cl₁O₄S₂⁺ [M-BF₄]⁺, 575.11120; found, 575.11205; deviation: -1.5 ppm.

C₂F₅-fenofibrate (11)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSC₂F₅ (78.6 μ L, 86.5 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and fenofibrate-derived thianthrenium salt **S9** (199 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo,* and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **11** (100 mg, 70%) as a colorless solid.

 $R_f = 0.40$ (EtOAc/hexanes, 1/10, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.01 (d, J = 2.3 Hz, 1H), 7.87 (dd, J = 8.7, 2.3 Hz, 1H), 7.67 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.8 Hz, 1H), 5.04 (hept, J = 6.2 Hz, 1H), 1.67 (s, 6H), 1.16 (s, 3H), 1.15 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 193.0, 172.5, 158.3 (t, *J* = 2.5 Hz), 139.0, 135.7, 134.8, 131.8 (t, *J* = 8.7 Hz), 131.2, 129.6, 128.9, 119.3 (tq, *J* = 38.7, 287.2 Hz, CF₂), 118.4 (t, *J* = 22.7 Hz), 115.8, 113.3 (qt, *J* = 256.0, 40.0 Hz, CF₃), 80.8, 69.7, 25.2, 21.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): 83.2, 111.8 ppm.

HRMS-ESI(m/z) calc'd for C₂₂H₂₁O₄F₅Cl₁ [M+H]⁺, 479.10430; found, 479.10358; deviation: 1.5 ppm.

Methyl-O-methylpodocarpat-derived thianthrenium salt (S10)

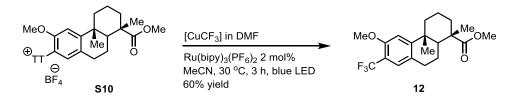
Under an ambient atmosphere, a 20-ml glass vial was charged with methyl-O-methylpodocarpat (453 mg,

S27

1.50 mmol, 1.00 equiv) and MeCN (3.0 ml, c = 0.5 M). After cooling to 0 °C, HBF₄·OEt₂ (0.25 mL, 0.29 g, 1.8 mmol, 1.2 equiv) and thianthrene-S-oxide (348 g, 1.50 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.63 mL, 0.96 g, 4.5 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed in vacuo to afford **S10** (680 mg, 76%) as a colorless powder.

R*t* = 0.35 (MeOH/DCM, 1/15, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.25–8.22 (m, 2H), 7.85–7.81 (m, 2H), 7.80–7.75 (m, 2H), 7.73– 7.70 (m, 2H), 6.91 (s, 1H), 6.21 (s, 1H), 3.90 (s, 3H), 3.60 (s, 3H), 2.63–2.54 (m, 2H), 2.21–2.15 (m, 1H), 2.14–2.05 (m, 2H), 1.93–1.80 (m, 2H), 1.59–1.55 (m, 1H), 1.38–1.36 (m, 1H), 1.33–1.26 (m, 1H), 1.21–1.18 (m, 3H), 1.02–0.94 (m, 4H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 177.3, 157.1, 155.9, 137.1, 137.0, 134.7, 134.64, 134.61, 134.57, 130.4, 130.3, 130.1, 130.0, 129.9, 129.1, 117.2, 116.9, 110.8, 105.4, 56.7, 51.6, 51.3, 43.8, 39.3, 39.0, 37.1, 31.2, 28.3, 22.7, 20.3, 19.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –152.6 (brs), –152.7 (brs) ppm.

HRMS-ESI(m/z) calc'd for C₃₁H₃₃O₃S₂ [M-BF₄]⁺, 517.18656; found, 517.18660; deviation: -0.1 ppm.

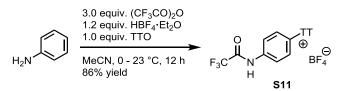
CF₃-methyl-O-methylpodocarpat (12)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (36.5 mg, 0.300 mmol, 1.50 equiv), CsF (61.1 mg, 0.400 mmol, 2.00 equiv). DMF (1.0 mL, c = 0.30 M) and TMSCF₃ (44.3 µL, 44.8 mg, 0.300 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (3.4 mg, 4.0 µmol, 2.0 mol%) and methyl-*O*-methylpodocarpat-derived thianthrenium salt **S10** (121 mg, 0.200 mmol, 1.00 equiv) in MeCN (1.0 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was

placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **12** (44.2 mg, 60%) as a colorless solid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/20, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.22 (s, 1H), 6.86 (s, 1H), 3.85 (s, 1H), 3.67 (s, 1H), 2.88–2.84 (m, 1H), 2.76–2.71 (m, 1H), 2.31–2.18 (m, 3H), 2.04–1.93 (m, 2H), 1.68–1.63 (m, 1H), 1.53–1.50 (m, 1H), 1.44–1.38 (m, 1H), 1.28 (s, 3H), 1.12–1.04 (m, 4H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 177.8, 155.5, 153.4, 127.8 (q, *J* = 5.2 Hz), 127.3, 123.9 (q, *J* = 271.8 Hz, CF₃), 116.5 (q, *J* = 30.6 Hz), 109.3, 56.0, 52.6, 51.5, 44.1, 39.5, 39.1, 37.6, 31.2, 28.6, 22.9, 21.0, 20.0 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.0 ppm.

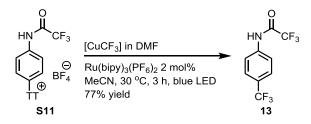
HRMS-ESI(m/z) calc'd for C₂₀H₂₅O₃F₃Na₁ [M+Na]⁺, 393.16480; found, 393.16443; deviation: 1.0 ppm.

2,2,2-Trifluoro-N-phenylacetamide-derived thianthrenium salt (S11)

Under an ambient atmosphere, a 20-ml glass vial was charged with aniline (465 mg, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S11** (2.11 g, 86%) as a pale yellow powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, DMSO- d_6 , 23 °C, δ): 11.64 (brs, 1H), 8.56 (dd, J = 8.0, 1.4 Hz, 2H), 8.07 (dd, J = 7.9, 1.3 Hz, 2H), 7.93 (td, J = 7.7, 1.4 Hz, 2H), 7.86 (td, J = 7.7, 1.3 Hz, 2H), 7.81 (d, J = 9.2 Hz, 2H), 7.28 (d, J = 9.2 Hz, 2H) ppm.

¹³**C NMR** (126 MHz, DMSO-*d*₆, 23 °C, δ): 155.0 (q, *J* = 37.4 Hz), 140.8, 135.5, 135.3, 134.8, 130.3, 129.6, 129.3, 122.4, 119.9, 119.5, 115.5 (q, *J* = 288.7 Hz) ppm.

¹⁹**F NMR** (471 MHz, DMSO-*d*₆, 23 °C, δ): –73.9 (s), –148.2 (brs), –148.3 (brs) ppm.

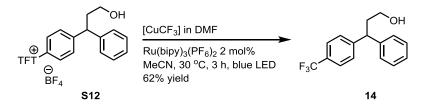
HRMS-ESI (m/z) calculated for $C_{20}H_{13}F_3N_1O_1S_2^+$ [M-BF₄]⁺, 404.03852; found, 404.03881; deviation: -0.7 ppm.

2,2,2-Trifluoro-N-(4-(trifluoromethyl)phenyl)acetamide (13)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 µL, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 µmol, 2.0 mol%) and trifluoroactylaniline-derived (tetrafluoro)thianthrenium salts **S11** (147 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:30 (v/v)) to afford **13** (59.4 mg, 77%) as a colorless solid.

 $R_f = 0.35$ (EtOAc/hexanes, 1/10, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, (CD₃)₂CO, 23 °C, δ): 10.58 (s, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H) ppm.

¹³**C NMR** (126 MHz, (CD₃)₂CO, 23 °C, δ): 155.9 (q, *J* =36.5), 140.7, 127.5 (q, *J* =32.8 Hz), 126.9 (q, *J* =3.8 Hz), 124.9 (q, *J* =270.9 Hz, CF₃), 121.5, 121.5, 116.5 (q, *J* =288.5 Hz, CF₃) ppm.

¹⁹**F NMR** (471 MHz, (CD₃)₂CO, 23 °C, δ): –63.0, –76.3 ppm.

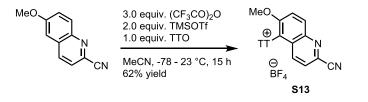
HRMS-EI(m/z) calc'd for C₉H₅N₁O₁F₆ [M]⁺, 257.02699; found, 257.02724; deviation: –1.0 ppm.

3-Phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 µL, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 µmol, 2.0 mol%) and 3,3-diphenyl-propanol-derived (tetrafluoro)thianthrenium salts **S12** (176 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:00 (v/v)) to afford **14** (52.1 mg, 62%) as a colorless liquid.

 $\mathbf{R}_{f} = 0.25$ (EtOAc in hexanes = 20%).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.55 (d, *J* = 8.3 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.24–7.21 (m, 3H), 4.24 (t, *J* = 7.9 Hz, 1H), 3.69–3.27 (m, 2H), 2.42–2.23 (m, 2H), 1.59 (s, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 148.8, 143.5, 129.2 (q, *J* = 33.1 Hz), 128.9, 128.7 (q, *J* = 32.4 Hz), 128.3, 128.0, 126.8, 125.6 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 271.7 Hz, CF₃), 77.4, 60.7, 47.1, 38.0 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.4 ppm.

HRMS-ESI(m/z) calc'd for C₁₆H₁₄F₃O₁ [M-H]⁺, 279.10023; found, 279.10026; deviation: –0.1 ppm.

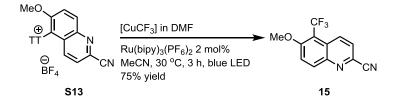
6-Methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)

Under Ar atmosphere, a 20-ml glass vial was charged with 6-methoxyquinoline-2-carbonitrile (368 mg, 2.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to $-78 \text{ }^{\circ}\text{C}$, TMSOTf (0.72 mL, 0.89 g,

4.0 mmol, 2.0 equiv) and thianthrene-S-oxide (464 mg, 2.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.85 mL, 1.3 g, 6.0 mmol, 3.0 equiv) was added in one portion at -78 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 15 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S13** (598 mg, 62%) as a colorless powder.

 $R_f = 0.35$ (MeOH in DCM = 7%).

NMR Spectroscopy:


¹H NMR (500 MHz, DMSO-*d*₆, 23 °C, δ): 9.39 (dd, *J* = 9.6, 0.9 Hz, 1H), 9.22 (dd, *J* = 8.9, 0.9 Hz, 1H),
8.69 (d, *J* = 9.7 Hz, 1H), 8.60–8.49 (m, 3H), 8.31 (td, *J* = 7.7, 1.2 Hz, 2H), 8.06 (ddd, *J* = 8.6, 7.4, 1.3 Hz,
2H), 7.84 (dd, *J* = 8.2, 1.2 Hz, 2H), 4.47 (s, 3H) ppm.

¹³**C NMR** (126 MHz, DMSO-*d*₆, 23 °C, δ): 163.8, 144.1, 141.6, 134.9, 133.3, 132.5, 131.5, 131.3, 130.26, 130.1, 128.8, 126.7, 123.6, 121.4, 117.6, 96.9, 58.8 ppm.

¹⁹**F NMR** (471 MHz, DMSO-*d*₆, 23 °C, δ): –151.2 (brs), –151.3 (brs) ppm.

HRMS-ESI(m/z) calc'd for C₂₃H₁₅N₂O₁S₂⁺[M-BF₄]⁺, 399.06203; found, 399.06226; deviation: –0.6 ppm.

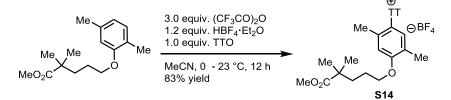
6-Methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt **S13** (146 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate

was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:100 (v/v)) to afford **15** (48.4 mg, 75%) as a yellow solid.

 $R_f = 0.25$ (EtOAc/hexanes, 1/20, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.65 (d, *J* = 9.0 Hz, 1H), 8.32 (d, *J* = 9.5 Hz, 1H), 7.70 (dd, *J* = 18.6, 9.3 Hz, 2H), 4.10 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 159.1, 143.5, 136.5, 133.6 (q, J = 6.3 Hz), 131.8, 127.3, 124.8, 124.5 (q, J = 277.2 Hz, CF₃), 118.7, 117.3, 110.4 (q, J = 30.2 Hz), 57.3 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –52.9 ppm.

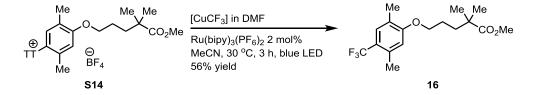
HRMS-EI(m/z) calc'd for C₁₂H₇N₂O₁F₃ [M]⁺, 252.05050; found, 252.05062; deviation: -0.5 ppm.

Gemfibrozil methyl ester-derived thianthrenium salt (S14)

Under an ambient atmosphere, a 20-ml glass vial was charged with methyl gemfibrozil (792 mg, 3.00 mmol, 1.00 equiv.) and MeCN (5.0 ml, c = 0.60 M). After cooling to 0 °C, HBF₄·OEt₂ (0.49 mL, 0.58 g, 3.6 mmol, 1.2 equiv) and thianthrene-S-oxide (696 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.3 mL, 1.9 g, 9.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 2 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated NaHCO₃ solution. After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S14** (1.41 g, 83%) as a colorless powder.

 $R_f = 0.30$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD₂Cl₂, 298 K, δ): 7.92 (d, *J* = 7.9 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.79 (t, *J* = 7.6 Hz, 2H), 7.69 (t, *J* = 7.7 Hz, 2H), 6.94 (d, *J* = 9.4 Hz, 2H), 4.03 (t, *J* = 6.0 Hz, 2H), 3.63 (s, 3H), 2.69 (s, 3H), 2.12 (s, 3H), 1.79–1.73 (m, 2H), 1.72–1.65 (m, 2H), 1.19 (s, 6H) ppm.

¹³C NMR (126 MHz, CD₂Cl₂, 298 K, δ): 178.4, 163.2, 143.1, 136.0, 134.6, 132.5, 132.2, 131.2, 130.7, 129.3, 122.0, 115.8, 108.6, 69.6, 52.1, 42.4, 37.2, 25.4, 25.3, 20.9, 16.3 ppm.

¹⁹**F NMR** (471 MHz, CD₂Cl₂, 298 K, δ): –151.3 (brs), –151.4 (brs) ppm.

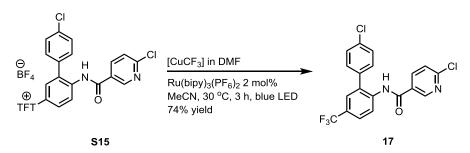
HRMS-ESI (m/z) calculated for C₂₈H₃₁O₃S₂⁺ [M-BF₄]⁺, 479.17091; found, 479.17119; deviation: –0.6 ppm.

CF₃-gemfibrozil methyl ester (16)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and gemfibrozil methyl esterderived thianthrenium salt **S14** (170 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated in vacuo, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **16** (55.8 mg, 56%) as a colorless solid.

 $R_f = 0.35$ (EtOAc/hexanes, 1/15, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.34 (s, 1H), 6.64 (s, 1H), 3.96 (t, *J* = 5.8 Hz, 2H), 3.67 (s, 3H), 2.42 (d, *J* = 2.1 Hz, 3H), 2.19 (s, 3H), 1.82–1.63 (m, 4H), 1.22 (s, 6H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 178.4, 159.2, 135.8, 128.2 (q, *J* = 5.5 Hz), 125.1 (q, *J* = 272.3 Hz, CF₃), 124.0, 120.5 (q, *J* = 30.3 Hz), 113.9, 68.2, 51.9, 42.2, 37.1, 25.3, 25.2, 19.5 (q, *J* = 1.8 Hz), 15.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –60.0 ppm.

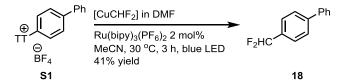
HRMS-ESI(m/z) calc'd for C₁₇H₂₃F₃O₃Na₁ [M+Na]⁺, 355.14915; found, 355.14921; deviation: -0.2 ppm.

CF₃-boscalid (17)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (46.0 mg, 0.375 mmol, 1.50 equiv), CsF (76.1 mg, 0.500 mmol, 2.00 equiv). DMF (1.25 mL, c = 0.300 M) and TMSCF₃ (57.2 µL, 53.3 mg, 0.375 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (4.3 mg, 5.0 µmol, 2.0 mol%) and boscalid-derived tetrafluorothianthrenium salts **S15** (179 mg, 0.250 mmol, 1.00 equiv) in MeCN (1.25 mL, c = 0.200 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:5 (v/v)) to afford **17** (61.1 mg, 74%) as an off-white solid.

 $R_f = 0.25$ (EtOAc/hexanes, 1/3, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.67 (d, *J* = 8.7 Hz, 1H), 8.45 (dd, *J* = 4.7, 2.0 Hz, 1H), 8.40 (s, 1H), 8.18 (dd, *J* = 7.7, 2.0 Hz, 1H), 7.74–7.67 (m, 1H), 7.52 (s, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.42–7.32 (m, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 162.6, 151.8, 146.6, 140.6, 137.7, 135.4, 134.8, 132.0, 130.9, 130.6, 129.8, 127.3 (q, *J* = 4.3 Hz), 126.9 (q, *J* = 33.0 Hz), 126.1 (q, *J* = 2.6 Hz), 123.9 (q, *J* = 272.1 Hz, CF₃), 123.1, 121.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.2 ppm.

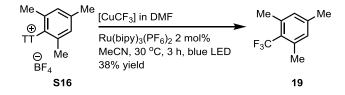
HRMS-ESI(m/z) calc'd for $C_{19}H_{10}Cl_2F_3N_2O_1$ [M-H]⁺, 409.01278; found, 409.01280; deviation < 0.1 ppm.

4-(Difluoromethyl)-1,1'-biphenyl (18)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₂H (61.4 µL, 55.9 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 µmol, 2.0 mol%) and biphen-derived thianthrenium salts **S1** (136 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **18** (25.1 mg, 41%) as a colorless solid.

 $R_f = 0.35$ (hexanes).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.70 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 8.2 Hz, 4H), 7.49 (t, J = 7.7 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 6.72 (t, J = 56.5 Hz, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 143.8 (t, J = 2.5 Hz), 140.3, 133.3 (t, J = 22.7 Hz), 129.1, 128.0, 127.6, 127.4, 126.2 (t, J = 6.3 Hz), 114.9 (t, J = 239.4 Hz, CF₂H) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –110.3 (d, *J* = 56.5 Hz) ppm.

HRMS-EI(m/z) calc'd for C₁₃H₁₀F₂ [M]⁺, 204.07451; found, 204.07430; deviation: 1.0 ppm.

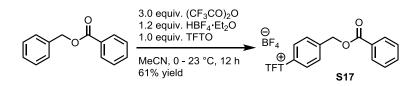
1,3,5-Trimethyl-2-(trifluoromethyl)benzene (19)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and mesitylene-derived thianthrenium salts **S16** (96.8 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and

concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **19** (21.4 mg, 38%) as a colorless liquid.

 $R_f = 0.65$ (hexanes).

NMR Spectroscopy:


¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.89 (s, 2H), 2.44 (s, 6H), 2.29 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 141.0, 137.4, 131.0, 126.3 (q, *J* = 276.0 Hz, CF₃), 124.9 (q, *J* = 27.7 Hz), 21.5 (q, *J* = 3.8 Hz), 21.0 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –53.7 ppm.

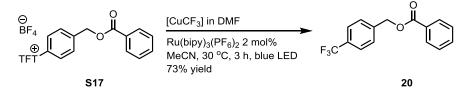
HRMS-EI(m/z) calc'd for C₁₀H₁₁F₃ [M]⁺, 188.08074; found, 188.08093; deviation: –1.0 ppm.

Benzyl benzoate-derived tetrafluorothianthrenium salt (S17)

Under an ambient atmosphere, a 20-ml glass vial was charged with benzyl benzoate (636 mg, 3.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.50 mL, 0.59 g, 3.6 mmol, 1.2 equiv) and tetrafluorothianthrene-S-oxide (912 mg, 3.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (1.3 mL, 1.8 g, 9.0 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S17** (1.05 g, 61%) as a colorless powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 8.48–8.45 (m, 2H), 7.98–7.93 (m, 4H), 7.62–7.58 (m, 3H), 7.63 (t, J = 8.0 Hz, 3H), 7.26 (d, J = 8.5 Hz, 2H), 5.36 (s, 2H) ppm.

¹³**C NMR** (126 MHz, CD₃CN, 23 °C, δ): 166.8, 154.9 (dd, *J* = 262.1, 13.9 Hz), 151.6 (dd, *J* = 254.5, 12.6 Hz), 143.6, 135.3 (dd, *J* = 8.8, 5.0 Hz), 134.5, 130.6, 130.4, 130.3, 129.7, 129.6, 125.7 (dd, *J* = 22.7, 2.5 Hz), 123.1, 121.2 (d, *J* = 21.4 Hz), 115.2 (dd, *J* = 7.4, 3.8 Hz), 65.9 ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 °C, δ): –125.2 (ddd, *J* = 20.8, 10.2, 7.3 Hz), –133.6 (ddd, *J* = 20.8, 9.2, 7.2 Hz), –150.7 (brs), –150.8 (brs) ppm.

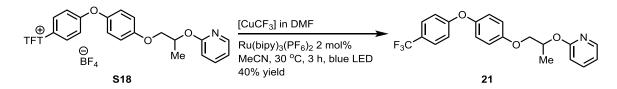
HRMS-ESI(m/z) calc'd for C₂₆H₁₅F₄O₂S₂⁺ [M-BF₄]⁺, 499.04441; found, 499.04421; deviation: 0.4 ppm.

4-(Trifluoromethyl)benzyl benzoate (20)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and benzyl benzoate-derived tetrafluorothianthrenium salt **S17** (176 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:100 (v/v)) to afford **20** (61.3 mg, 73%) as a colorless solid.

 $R_f = 0.35$ (EtOAc/hexanes, 1/50, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.10 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.62–7.53 (m, 3H), 7.46 (t, *J* = 7.6 Hz, 2H), 5.43 (s, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 166.3, 140.2, 133.4, 130.5 (q, J = 31.5 Hz), 129.9, 129.8, 128.6, 128.2, 125.7 (q, J = 3.8 Hz), 124.2 (q, J = 272.2 Hz, CF₃), 65.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.6 ppm.

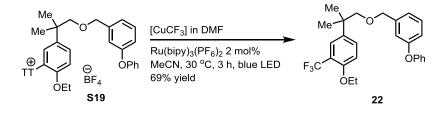
HRMS-EI(m/z) calc'd for C₁₅H₁₁O₂F₃ [M]⁺, 280.07057; found, 280.07081; deviation: –0.9 ppm.

CF₃-pyriproxyfen (21)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and pyriproxyfen-derived tetrafluorothianthrenium salts **S18** (208 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:200 (v/v)) to afford **21** (46.7 mg, 40%) as a colorless solid.

 $R_f = 0.25$ (EtOAc/hexanes, 1/30, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.16 (d, *J* = 5.2 Hz, 1H), 7.60–7.55 (m, 1H), 7.54 (d, *J* = 8.6 Hz, 2H), 7.01–6.95 (m, 6H), 6.87 (dd, *J* = 7.0, 5.1 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.65 – 5.69 (m, 1H), 4.22 (dd, *J* = 9.8, 5.3 Hz, 1H), 4.10 (dd, *J* = 9.9, 4.9 Hz, 1H), 1.50 (d, *J* = 6.4 Hz, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 163.3, 161.6, 156.1, 148.9, 146.9, 138.9, 127.1 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 271.3 Hz, CF₃), 124.3 (q, *J* = 32.6 Hz), 121.6, 117.0, 116.1, 111.8, 71.2, 69.4, 17.1 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –61.6 ppm.

HRMS-ESI(m/z) calc'd for C₂₁H₁₉F₃N₁O₃ [M]⁺, 390.13115; found, 390.13106; deviation: 0.2 ppm.

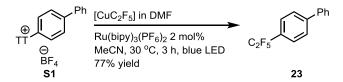
CF₃-etofenprox (22)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 µL, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 µmol, 2.0 mol%) and etofenprox-derived thianthrenium salt **S19** (204 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30

°C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:200 (v/v)) to afford **22** (91.9 mg, 69%) as a colorless solid.

 $R_f = 0.25$ (EtOAc/hexanes, 1/100, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.59 (s, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.14 (t, *J* = 7.0 Hz, 1H), 7.05 (d, *J* = 8.3 Hz, 2H), 7.01 (d, *J* = 7.5 Hz, 1H), 6.97–6.90 (m, 3H), 4.48 (s, 2H), 4.11 (q, *J* = 7.0 Hz, 2H), 3.45 (s, 2H), 1.45 (t, *J* = 7.0 Hz, 3H), 1.35 (s, 6H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 157.5, 157.3, 155.1, 140.9, 139.2, 131.0, 129.9, 124.8 (q, J = 5.3 Hz), 124.1 (q, J = 272.4 Hz, CF₃), 123.4, 122.1, 119.1, 118.5 (q, J = 30.1 Hz), 117.9, 117.7, 112.8, 80.0, 72.9, 64.6, 38.7, 26.2, 14.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.0 ppm.

HRMS-ESI(m/z) calc'd for C₂₆H₂₇F₃O₃Na₁ [M+Na]⁺, 467.18045; found, 467.18011; deviation: 0.7 ppm.

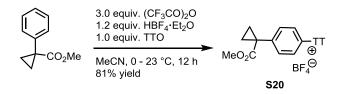
4-(Perfluoroethyl)-1,1'-biphenyl (23)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSC₂F₅ (78.6 μ L, 86.5 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and biphen-derived thianthrenium salts **S1** (136 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with hexanes to afford **23** (62.8 mg, 77%) as a colorless liquid.

 $R_f = 0.55$ (hexanes).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.71 (q, J = 8.3 Hz, 4H), 7.65–7.58 (m, 2H), 7.50 (t, J = 7.5 Hz,


2H), 7.45 – 7.40 (m, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 145.0, 139.8, 129.1, 128.4, 127.6, 127.5 (q, *J* = 25.2 Hz), 127.4, 127.1 (t, *J* = 6.9 Hz), 119.3 (tq, *J* = 39.1, 286.0 Hz, CF₂), 113.7 (qt, *J* = 39.0, 260.8 Hz, CF₃) ppm.

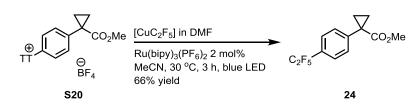
¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –84.7, –114.7 ppm.

HRMS-EI(m/z) calc'd for C₁₄H₉F₅[M]⁺, 272.06244; found, 272.06221; deviation: 0.9 ppm.

Methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)

Under an ambient atmosphere, a 20-ml glass vial was charged with methyl 1-phenylcyclopropane-1carboxylate (352 mg, 2.00 mmol, 1.00 equiv) and MeCN (10 ml, c = 0.20 M). After cooling to 0 °C, HBF₄·OEt₂ (0.33 mL, 388 mg, 2.40 mmol, 1.20 equiv) and thianthrene-*S*-oxide (464 mg, 2.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.84 mL, 1.24 g, 6.00 mmol, 3.00 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed in vacuo to afford **S20** (774 mg, 81%) as a colorless powder.

 $R_f = 0.50$ (DCM/MeOH, 15:1, v/v).


NMR Spectroscopy:

¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 8.38 (dd, J = 7.9, 1.4 Hz, 2H), 7.96 (dd, J = 7.9, 1.5 Hz, 2H), 7.89 (td, J = 7.7, 1.4 Hz, 2H), 7.82 (td, J = 7.7, 1.4 Hz, 2H), 7.55–7.42 (m, 2H), 7.19–7.04 (m, 2H), 3.52 (s, 3H), 1.54 (q, J = 4.2 Hz, 2H), 1.14 (q, J = 4.2 Hz, 2H) ppm.

¹³**C NMR** (125 MHz, CD₃CN, 23 °C, δ): 174.2, 146.4, 137.5, 136.1, 136.0, 133.6, 131.6, 130.9, 128.6, 123.2, 119.3, 52.9, 29.2, 17.1 ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 °C, δ):–151.4 (brs), –151.5 (brs) ppm.

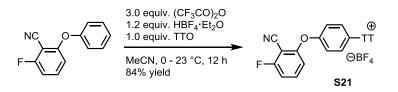
HRMS-ESI (m/z) calc'd for C₂₃H₁₉O₂S₂ [M-BF₄]⁺, 391.08210; found, 391.08214; deviation: -0.1 ppm.

Methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSC₂F₅ (78.6 μ L, 86.5 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salts **S20** (143 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:100 (v/v)) to afford **24** (58.2 mg, 66%) as a colorless liquid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/30, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.53 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 3.65 (s, 3H), 1.64 (q, *J* = 4.0 Hz, 2H), 1.23 (q, *J* = 4.0 Hz, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 174.4, 143.8, 131.0, 127.7 (t, *J* = 24.0 Hz), 126.5 (t, *J* = 6.3 Hz), 119.3 (tq, *J* = 285.8, 39.4 Hz, CF₂), 113.5 (qt, *J* = 250.7, 39.1 Hz, CF₃), 52.6, 29.0, 16.8 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –84.7, –114.6 ppm.

HRMS-ESI(m/z) calc'd for C₁₃H₁₁O₂F₅Na₁ [M+Na]⁺, 317.05714; found, 317.06710; deviation: 0.1 ppm.

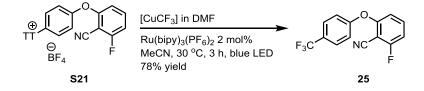
2-Fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)

Under an ambient atmosphere, a 20-ml glass vial was charged with 2-fluoro-6-phenoxybenzonitrile (1.06 g, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and thianthrene-S-oxide (1.16 g, 5.00 mmol, 1.00 equiv) was added to the vial while

stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S21** (2.16 g, 84%) as a pale yellow powder.

 $R_f = 0.30$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD_2CI_2 , 23 °C, δ): 8.46 (dd, J = 7.8, 1.5 Hz, 2H), 7.93 (dd, J = 7.9, 1.5 Hz, 2H), 7.87 (td, J = 7.7, 1.4 Hz, 2H), 7.81 (td, J = 7.7, 1.5 Hz, 2H), 7.58 (td, J = 8.5, 6.4 Hz, 1H), 7.25 (d, J = 9.1 Hz, 1H), 7.15 (d, J = 9.0 Hz, 1H), 7.06 (t, J = 8.5 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H) ppm.

¹³C NMR (126 MHz, CD₂Cl₂, 23 °C, δ): 164.0 (d, J = 260.4 Hz), 159.3, 157.8 (d, J = 3.6 Hz), 136.8, 135.9 (d, J = 10.2 Hz), 135.3, 134.8, 130.7, 130.6, 130.3, 120.8, 118.7, 118.5, 114.7 (d, J = 3.6 Hz), 112.1 (d, J = 19.4 Hz), 110.4, 95.2 (d, J = 18.0 Hz) ppm.

¹⁹**F NMR** (471 MHz, CD₂Cl₂, 23 °C, δ): –104.6 (m), –151.2 (brs), –151.3 (brs) ppm

HRMS-ESI (m/z) calculated for $C_{25}H_{15}F_1N_1O_1S_2^+$ [M-BF₄]⁺, 428.05736; found, 428.05762; deviation: -0.6 ppm.

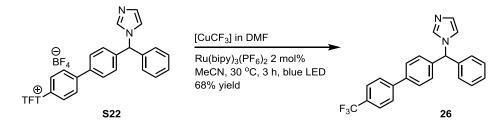
2-Fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt **S21** (155 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The

filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **25** (65.8 mg, 78%) as a pale vellow solid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/20, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.69 (d, J = 8.6 Hz, 2H), 7.51 (td, J = 8.5, 6.3 Hz, 1H), 7.20 (d, J = 8.5 Hz, 2H), 6.98 (t, J = 8.3 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 164.2 (d, J = 260.6 Hz, CF), 159.6 (d, J = 3.8 Hz), 157.6, 135.3 (d, J = 10.1 Hz), 127.8 (q, J = 3.8 Hz), 123.9 (q, J = 272.2 Hz, CF₃), 120.0, 113.2 (d, J = 2.5 Hz), 111.2, 111.0, 110.8, 94.8 (d, J = 18.9 Hz) ppm

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.2, –115.5 (brs) ppm.

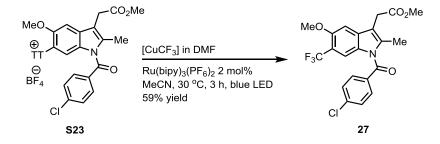
HRMS-ESI(m/z) calc'd for C₁₄H₇F₄N₁O₁Na₁ [M+Na]⁺, 304.03560; found, 304.03547; deviation: 0.4 ppm.

CF₃-bifonazole (26)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (36.4 mg, 0.300 mmol, 1.50 equiv), CsF (61.1 mg, 0.400 mmol, 2.00 equiv). DMF (1.0 mL, c = 0.30 M) and TMSCF₃ (44.2 µL, 42.6 mg, 0.300 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (3.4 mg, 4.0 µmol, 2.0 mol%) and bifonazole-derived tetrafluorothianthrenium salts **S22** (136 mg, 0.200 mmol, 1.00 equiv) in MeCN (1.0 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:4 (v/v)) to afford **26** with impurities. Further purification of **26** by HPLC (YMC-Actus Triart C18 (30×150 mm: 5 µm), MeOH/TFA in water (1/1000, v/v) = 65:35, flow rate = 42.5 mL/min, 25 °C, retention time; 5.5 min) provided **26** as a pale yellow solid. (51.6 mg, 68%, with little CF₃-bifonazole-TFA salt) as a colorless solid.

 $R_f = 0.35$ (EtOAc/hexanes, 1/2, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD₃OD, 23 °C, δ): 7.75 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.38–7.32 (m, 3H), 7.24–7.17 (m, 6H), 6.91 (s, 1H), 3.32–3.25 (m, 1H) ppm.

¹³**C NMR** (126 MHz, CD₃OD, 23 °C, δ): 145.2, 141.0, 140.2, 139.9, 130.6 (q, *J* = 32.3 Hz), 130.1, 129.9, 129.8, 129.3, 128.8, 128.6, 126.8 (q, *J* = 3.9 Hz), 125.7 (q, *J* = 271.5 Hz, CF₃), 66.3 ppm.

¹⁹**F NMR** (471 MHz, CD₃OD, 23 °C, δ): –63.8, –76.8.

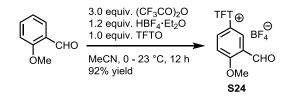
HRMS-ESI(m/z) calc'd for C₂₃H₁₈N₂F₃ [M+H]⁺, 379.14166; found, 379.14148; deviation: 0.5 ppm.

CF₃-indometacin methyl ester (27)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (46.0 mg, 0.375 mmol, 1.50 equiv), CsF (76.1 mg, 0.500 mmol, 2.00 equiv). DMF (1.25 mL, c = 0.300 M) and TMSCF₃ (57.2 µL, 53.3 mg, 0.375 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (4.3 mg, 5.0 µmol, 2.0 mol%) and indometacin methyl esterderived thianthrenium salts **S23** (170 mg, 0.250 mmol, 1.00 equiv) in MeCN (1.25 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:5 (v/v)) to afford **27** (65.0 mg, 59%) as an off-white solid.

 $R_f = 0.20$ (EtOAc/hexanes, 1/10, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.64 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.36 (s, 1H), 7.05 (s, 1H), 3.94 (s, 3H), 3.71 (s, 3H), 3.68 (s, 2H), 2.34 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 171.0, 168.0, 154.0, 139.8, 138.1, 133.3, 133.0, 131.1, 129.3, 129.2, 123.9 (q, J = 272.0 Hz, CF₃), 114.7 (q, J = 30.8 Hz), 113.2 (q, J = 6.2 Hz), 112.2, 100.8, 56.3, 52.3, 30.1, 13.6 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –61.6 ppm.

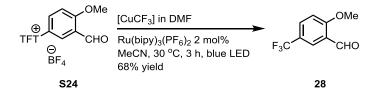
HRMS-ESI(m/z) calc'd for C₂₁H₁₇Cl₁F₃N₁O₄Na₁ [M+Na]⁺, 462.06904; found, 462.06836; deviation: 1.5 ppm.

2-Methoxybenzaldehyde-derived thianthrenium salt (S24)

Under an ambient atmosphere, a 20-ml glass vial was charged with methyl 2-methoxybenzaldehyde (1.36 g, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and tetrafluorothianthrene-*S*-oxide (1.51 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S24** (2.35 g, 92%) as a colorless powder.

 $R_f = 0.35$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 10.26 (s, 1H), 8.39 (dd, *J* = 9.2, 7.2 Hz, 2H), 7.97 (dd, *J* = 10.0, 7.1 Hz, 2H), 7.60 (d, *J* = 2.9 Hz, 1H), 7.47 (dd, *J* = 9.2, 2.9 Hz, 1H), 7.27 (d, *J* = 9.2 Hz, 1H), 3.98 (s, 3H) ppm.

¹³**C** NMR (125 MHz, CD₃CN, 23 °C, δ): 188.3, 166.0, 154.8 (dd, J = 262.0, 13.2 Hz), 151.6 (dd, J = 255.6, 13.7 Hz), 136.6, 135.0 (dd, J = 8.6, 3.9 Hz), 130.0, 127.0, 125.3 (dd, J = 21.9, 2.3 Hz), 121.2 (d, J = 21.9 Hz), 116.3, 115.8 (dd, J = 7.2, 3.5 Hz), 114.2, 57.9 ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 °C, δ): -76.0 (brs), -125.3 (ddd, J = 20.5, 9.9, 7.1 Hz), -133.5 (ddd, J = 20.8, 9.4, 7.2 Hz), -151.5 (brs), -151.6 (brs) ppm.

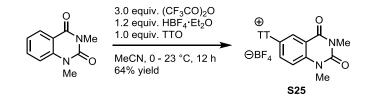
HRMS-ESI (m/z) calc'd for C₂₀H₁₁F₄O₂S₂ [M-BF₄]⁺, 423.01311; found, 423.01349; deviation: -0.9 ppm.

2-Methoxy-5-(trifluoromethyl)benzaldehyde (28)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and 2-methoxybenzaldehyde-derived tetrafluorothianthrenium salts **S24** (153 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **28** (41.6 mg, 68%) as a colorless liquid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/20, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 10.46 (s, 1H), 8.10 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.10 (d, *J* = 6.5 Hz, 1H), 4.00 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 188.6, 163.8, 132.6 (q, *J* = 3.8 Hz), 126.2 (q, *J* = 5.0 Hz), 124.7, 123.4 (q, *J* = 34.0 Hz), 123.9 (q, *J* = 272.2 Hz, CF₃), 112.2, 56.2 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.4 ppm.

HRMS-EI(m/z) calc'd for C₉H₇O₂F₃ [M]⁺, 204.03927; found, 204.03956; deviation: -1.4 ppm.

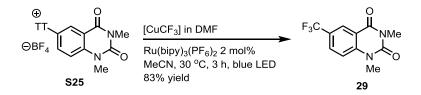
Quinazolinedione-derived thianthrenium salt (S25)

Under an ambient atmosphere, a 20-ml glass vial was charged with quinazolinedione (171 mg, 0.900 mmol, 1.00 equiv) and MeCN (3.0 ml, c = 0.30 M). After cooling to 0 °C, HBF₄·OEt₂ (0.15 mL, 0.18 g, 1.1 mmol, 1.2 equiv) and thianthrene-S-oxide (208 mg, 0.900 mmol, 1.00 equiv) was added to the vial while stirring the

mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (0.38 mL, 0.56 g, 2.7 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **S25** (284 mg, 64%) as a white powder.

 $R_f = 0.30$ (DCM/MeOH, 15:1, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.53 (dd, *J* = 8.0, 1.1 Hz, 2H), 7.97–7.81 (m, 4H), 7.81–7.74 (m, 2H), 7.72 (d, *J* = 2.6 Hz, 1H), 7.65 (dt, *J* = 9.1, 1.7 Hz, 1H), 7.43 (d, *J* = 9.2 Hz, 1H), 3.50 (s, 3H), 3.32 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 160.0, 150.4, 143.5, 136.5, 135.4, 135.3, 134.6, 130.6, 130.5, 128.4, 118.4, 117.4, 117.3, 116.3, 31.4, 28.9 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 ^oC, δ):–151.4 (brs), –151.5 (brs) ppm

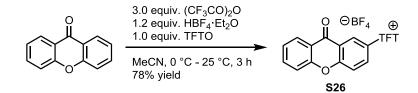
HRMS-ESI (m/z) calculated for C₂₂H₁₇N₂O₂S₂⁺ [M-BF₄]⁺, 405.07260; found, 405.07187; deviation: –1.8 ppm.

6-Trifluoromethylquinazolinedione (29)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (36.4 mg, 0.300 mmol, 1.50 equiv), CsF (61.1 mg, 0.400 mmol, 2.00 equiv). DMF (1.0 mL, c = 0.30 M) and TMSCF₃ (44.2 μ L, 42.8 mg, 0.300 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (3.4 mg, 4.0 μ mol, 2.0 mol%) and quinazolinedione-derived thianthrenium salt **S25** (98.4 mg, 0.200 mmol, 1.00 equiv) in MeCN (1.0 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with DCM/ethyl acetate (1:50 (v/v)) to afford **29** (42.8mg, 83%) as colorless solid.

$R_f = 0.35$ (DCM/EtOAc, 1/30, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.46 (s, 1H), 7.86 (d, *J* = 8.9 Hz, 1H), 7.31 (d, *J* = 2.2 Hz, 1H), 3.62 (s, 3H), 3.47 (s, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 161.0, 151.0, 142.7, 131.6 (q, J = 3.2 Hz), 126.7 (q, J = 3.9 Hz), 125.4 (q, J = 34.0 Hz), 123.6 (q, J = 271.8 Hz, CF₃), 115.5, 114.3, 31.1, 28.8 ppm

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.2 ppm.

HRMS-CI(m/z) calc'd for C₁₁H₁₀F₃N₂O₂[M]⁺, 259.06882; found, 259.06889; deviation: 0.3 ppm.

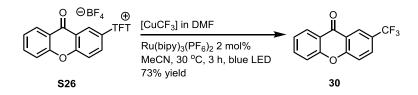
Xanthone-derived tetrafluorothianthrenium salt (S26)

Under ambient atmosphere, a 20 mL borosilicate vial was charged with xanthone (392 mg, 2.00 mmol, 1.00 equiv.), tetrafluorothianthrene-*S*-oxide (628 mg, 2.00 mmol, 1.00 equiv.) and dry MeCN (2.0 mL, c = 0.25 M). After cooling to 0 °C, trifluoroacetic anhydride (840 μ L, 1.27 g, 6.00 mmol, 3.00 equiv.) addition at 0 °C in one portion, followed by HBF₄·OEt₂ (348 μ L, 2.40 mmol, 1.20 equiv.) was added in one portion at 0 °C. The vial was sealed with a screw-cap, and the mixture was stirred at 0 °C for 1 h, followed by warming the reaction mixture to 25 °C over a period of 1 h. After stirring at 25 °C for 1 h further, the reaction mixture was concentrated under reduced pressure, and diluted with 10 mL CH₂Cl₂. The CH₂Cl₂ solution was poured onto a saturated aqueous NaHCO₃ solution (ca. 10 mL). The mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH₂Cl₂ (2 × ca. 10 mL). The combined CH₂Cl₂ solution was washed with aqueous NaBF₄ solution (2 × ca. 10 mL, 5 % w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH₂Cl₂/*i*·PrOH (50:1, v/v). The product was dissolved in 2 mL CH₂Cl₂, and precipitated with 10 mL Et₂O. The suspension was decanted, and the solid was dried in vacuo to afford **S26** (890 mg, 78 %) as a colorless solid.

 $R_f = 0.35 (CH_2CI_2/MeOH, 15:1, v/v).$

NMR Spectroscopy:

¹**H NMR** (500 MHz, DMSO-*d*₆, 23 °C, δ): 8.93 (dd, J = 9.7, 7.3 Hz, 2H), 8.44 (dd, J = 10.2, 7.2 Hz, 2H), 8.20 (d, J = 2.7 Hz, 1H), 8.16 (dd, J = 8.0, 1.7 Hz, 1H), 7.93 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 7.83 (d, J = 9.2 Hz, 1H), 7.73–7.69 (m, 2H), 7.54 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H) ppm.


¹³C NMR (126 MHz, DMSO-*d*₆, 23 °C, δ): 174.7, 157.5, 155.4, 152.7 (dd, *J* = 260.2, 13.0 Hz), 149.3 (dd,

J = 253.3, 13.4 Hz), 136.5, 134.3, 133.3 (dd, *J* = 8.7, 3.4 Hz), 127.8, 126.1, 125.4 (d, *J* = 22.2 Hz), 125.4, 122.0, 121.0, 120.8, 119.9 (d, *J* = 21.8 Hz), 119.7, 118.4, 115.8 (dd, *J* = 7.5, 3.0 Hz) ppm.

¹⁹**F NMR** (471 MHz, DMSO-*d*₆, 23 °C, δ): -125.4 (dt, J = 23.6, 8.7 Hz), -133.9 (dt, J = 23.1, 8.6 Hz)), - 148.2 (brs), -148.3 (brs) ppm.

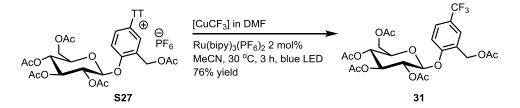
HRMS-ESI (m/z) calculated for $C_{25}H_{11}F_4O_2S_2^+$ [M-BF₄]⁺, 483.01311; found, 483.01344; deviation: -0.7 ppm.

CF₃-xanthone (30)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and xanthone-derived tetrafluorothianthrenium salt **S26** (171 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:100 (v/v)) to afford **30** (57.5 mg, 73%) as a colorless solid.

 $R_f = 0.35$ (EtOAc/hexanes, 1/30, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 8.59 (s, 1H), 8.30 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.90 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.74 (ddd, *J* = 8.6, 7.1, 1.8 Hz, 1H), 7.57 (d, *J* = 8.7 Hz, 1H), 7.53–7.46 (m, 1H), 7.45–7.36 (m, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 176.2, 157.8, 156.1, 135.6, 131.1 (q, *J* = 3.4 Hz), 126.9, 126.5 (q, *J* = 33.8 Hz), 124.9 (q, *J* = 4.0 Hz), 123.7 (q, *J* = 267.1 Hz, CF₃), 121.7, 121.6, 119.2, 118.2 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.1 ppm.

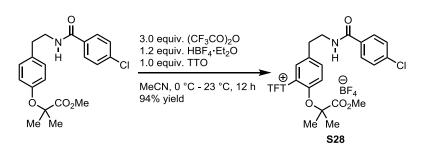
HRMS-CI(m/z) calc'd for $C_{14}H_8O_2F_3$ [M+H]⁺, 265.04709; found, 265.04710; deviation < 0.1 ppm.

CF₃-salicin pentaacetate (31)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and salicin pentaacetate-derived thianthrenium salt **S27** (257 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo,* and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:3 (v/v)) to afford **31** (128 mg, 76%) as a colorless solid.

 $R_f = 0.45$ (EtOAc/hexanes, 1/3, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.60 (s, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 5.35–5.28 (m, 2H), 5.21–5.12 (m, 3H), 5.04 (d, *J* = 13.5 Hz, 1H), 4.27 (dd, *J* = 12.3, 5.3 Hz, 1H), 4.19 (dd, *J* = 12.3, 2.2 Hz, 1H), 3.92–3.88 (m, 1H), 2.12 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 23 °C, δ): 170.6, 170.6, 170.3, 169.5, 169.4, 156.6, 127.1, 126.6 (q, *J* = 3.8 Hz), 126.4 (q, *J* = 3.8 Hz), 125.8 (q, *J* = 33.2 Hz), 124.0 (q, *J* = 271.7 Hz, CF₃), 115.3, 98.9, 72.5, 72.4, 71.0, 68.3, 61.9, 60.4, 21.0, 20.8, 20.7 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –62.0 ppm.

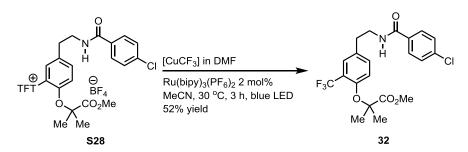
HRMS-ESI(m/z) calc'd for C₂₄H₂₇F₃O₁₂Na₁ [M+Na]⁺, 587.13468; found, 587.13464; deviation: 0.1 ppm.

Benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)

Under an ambient atmosphere, a 20-ml glass vial was charged with benzafibrate methyl ester (1.75 g, 5.00 mmol, 1.00 equiv) and MeCN (5.0 ml, c = 1.0 M). After cooling to 0 °C, HBF₄·OEt₂ (0.82 mL, 0.97 g, 6.0 mmol, 1.2 equiv) and tetrafluorothianthrene-*S*-oxide (1.51 g, 5.00 mmol, 1.00 equiv) was added to the vial while stirring the mixture, leading to a suspension. Subsequently, trifluoroacetic anhydride (2.1 mL, 3.1 g, 15 mmol, 3.0 equiv) was added in one portion at 0 °C, resulting in a color change to deep purple. Subsequently, the reaction mixture was allowed to reach 23 °C and stirred for 12 h. The solution was diluted with DCM (5 mL) and poured onto a mixture of DCM (30 mL) and saturated aqueous NaHCO₃ solution (20 mL). After stirring for 5 min at 23 °C, the mixture was poured into a separating funnel, and the layers were separated. The DCM layer was washed with aqueous NaBF₄ solution (10% w/w, 4 × ca. 20 mL). The DCM layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with DCM/MeOH (30:1 (v/v)), then the solvent was removed *in vacuo* to afford **\$28** (3.52 g, 94%) as a colorless powder.

 $R_f = 0.30$ (MeOH/DCM, 1/14, v/v).

NMR Spectroscopy:


¹**H NMR** (500 MHz, CD₃CN, 23 °C, δ): 8.14 (dd, J = 9.5, 7.5 Hz, 2H), 7.83 (dd, J = 10.0, 7.0 Hz, 4H), 7.65–7.63 (m, 2H), 7.50 (dd, J = 8.5, 2.0 Hz, 2H), 7.43–7.41 (m, 2H), 7.16 (t, J = 5.5 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 2.0 Hz, 1H), 3.67 (s, 3H), 3.47 (q, J = 6.5 Hz, 2H), 2.80 (t, J = 6.5 Hz, 2H), 1.64 (s, 6H) ppm.

¹³C NMR (126 MHz, CD₃CN, 23 °C, δ): 173.3, 166.7, 154.2 (dd, J = 262.1, 12.6 Hz), 153.7, 151.3 (dd, J = 254.5, 13.8 Hz), 138.0, 137.8, 135.6, 135.1 (dd, J = 8.8, 5.0 Hz), 134.1, 132.1, 129.7, 129.5, 124.4 (dd, J = 22.7, 2.5 Hz), 121.1 (d, J = 21.4 Hz), 118.9, 115.3 (dd, J = 7.4, 3.8 Hz), 108.7, 83.5, 53.7, 41.2, 34.7, 25.6 ppm.

¹⁹**F NMR** (471 MHz, CD₃CN, 23 °C, δ): -123.7 (ddd, J = 20.5, 9.9, 7.1 Hz), -131.8 (ddd, J = 20.8, 9.8, 7.2 Hz), -150.4 (brs), -150.5 (brs) ppm.

HRMS-ESI(m/z) calc'd for $C_{32}H_{25}CI_1N_1F_4O_4S_2^+[M-BF_4]^+$, 662.08442; found, 662.08480; deviation: -0.6 ppm.

CF₃-benzafibrate methyl ester (32)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and benzafibrate methyl esterderived tetrafluorothianthrenium salts **S28** (225 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:5 (v/v)) to afford **32** (69.1 mg, 52%) as a colorless solid.

 $R_f = 0.25$ (EtOAc/hexanes, 1/4, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.62 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 2.3 Hz, 1H), 7.39–7.35 (m, 2H), 7.23 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 6.22 (br, 1H), 3.78 (s, 3H), 3.63 (t, *J* = 6.6 Hz, 2H), 2.89 (t, *J* = 7.0 Hz, 2H), 1.60 (s, 6H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 174.8, 166.7, 152.6, 137.9, 133.0, 132.9, 132.0, 129.0, 128.4, 127.6 (q, J = 5.2 Hz), 123.5 (q, J = 272.5 Hz, CF₃), 121.9 (q, J = 30.4 Hz), 118.1, 80.2, 77.4, 52.8, 41.3, 34.8, 25.2 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 23 °C, δ): –61.9 ppm.

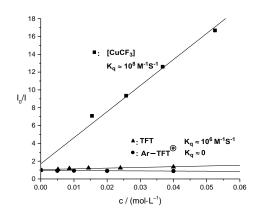
HRMS-ESI(m/z) calc'd for $C_{21}H_{21}CI_1F_3N_1O_4Na_1$ [M+Na]⁺, 466.10034; found, 466.10009; deviation: 0.5 ppm.

MECHANISTIC STUDIES

Stern-Volmer luminescence quenching studies

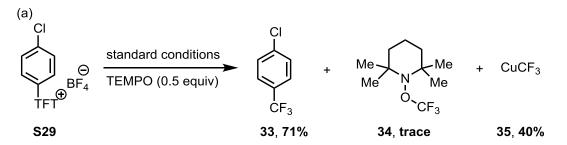
Visible light luminescence intensities were recorded using an Edinburgh Instruments FS5 spectrofluorometer. All luminescence measurements were recorded using a screw-top quartz cuvette (Hellma fluorescence quartz cuvette, 10 x 10 mm, 3.5 mL). Solutions of $Ru(bipy)_3(PF_6)_2$, benzyl benzoate-derived tetrafluorothianthrenium tetrafluoroborate **S17**, were prepared in a mixture of DMF/MeCN (v/v: 1:1), solution of [CuCF₃] was prepared in DMF in a nitrogen-filled glovebox, and then was diluted with MeCN to make DMF/MeCN (v/v: 1:1) solution for measurement. The solutions were transferred to the screw-top cuvette inside the glovebox, the cuvette was sealed, and then brought out of the glovebox for visible light luminescence measurements.

In a typical procedure, **S17** (0.467 g, 0.800 mmol) was dissolved and diluted to a final volume of 10 mL (c = 0.080 M arylthianthrenium salt) with a stock solution of $Ru(bipy)_3(PF_6)_2$


in DMF/MeCN (v/v: 1:1) (c = 50 μ M). Serial dilution of this 0.08 M arylthianthrenium salt solution was carried out by dilution of 7 mL of the 0.080 M arylthianthrenium salt solution to 10 mL (0.056 M) with the 50 μ M stock solution of Ru(bipy)₃(PF₆)₂. All subsequent solutions were prepared by dilution of 7 mL of the preceding solution to a final volume of 10 mL. The final solution with a concentration of 0.011 M was prepared by dilution of 3 mL of the 0.016 M arylthianthrenium salt solution to a final volume of 5 mL. All solutions were excited at 450 nm and the emission was measured from 500 to 800 nm.

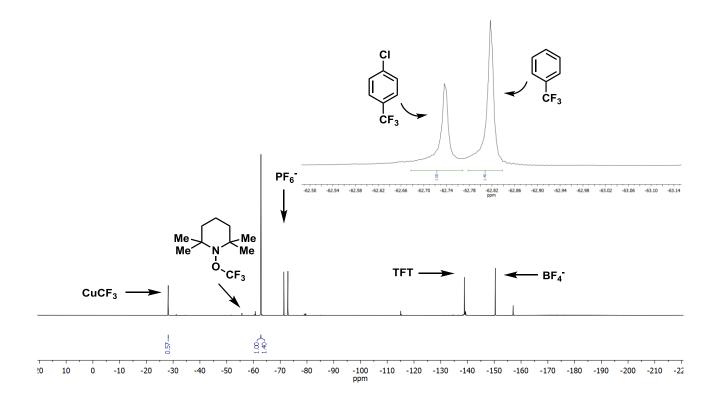
Quenching was analyzed by plotting I₀/I according to the Stern-Volmer relationship:

 $I_0/I = k_q T_0[Q] + 1$


where I_0 represents the integral of the luminescence over the range of 500 to 800 nm in the absence of a quencher, I is the integral of luminescence over the range of 500 to 800 nm in the presence of a quencher, k_q represents the quenching rate constant, [Q] is the concentration of a given quencher, and τ_0 is the excited state lifetime of the emissive photocatalyst in the absence of quencher. The excited state lifetime of Ru(bipy)₃(PF₆)₂ in MeCN is 1100 ns.

Note: As we performed the experiment in a DMF/MeCN mixture, the lifetime of $Ru(bipy)_3(PF_6)_2$ was used approximately to calculate quenching rate constant.

Figure S2. Stern-Volmer plot of [CuCF₃], tetrafluorothianthrene and S17


TEMPO trapping experiment

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (18.2 mg, 0.150 mmol, 0.500 equiv), CsF (31.1 mg, 0.200 mmol, 2.00 equiv). DMF (0.50 mL, c = 0.30 M) and TMSCF₃ (22.1 μ L, 21.3 mg, 0.150 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (1.7 mg, 2.0 μ mol, 2.0 mol%), TEMPO (X equiv) and chlorobenzene-derived tetrafluorothianthrenium salts **S29** (48.7 mg, 0.100 mmol, 1.00 equiv) in MeCN (0.50 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then benzotrifluoride (12.3 μ L, 14.6 mg, 0.100 mmol, 1.00 equiv) was added into the reaction as an internal standard. The reaction mixture was diluted with CDCl₃, and the yield was determined by ¹⁹F NMR integration relative to the internal standard (71% yield, standard: δ –62.8 ppm, **33**: δ , –62.7, **34**: δ –55.8,² Figure **S3**). The identity of the product was further confirmed by HRMS analysis.


HRMS-EI(m/z) calc'd for C₇H₄Cl₁F₃ [M]⁺, 179.99481; found, 179.99499; deviation: -1.0 ppm.

Side-product identification

Dimethyl 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(cyclopropane-1-carboxylate) (36)

In an anhydrous, N2-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 μ L, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 μ mol, 2.0 mol%) and methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salts **S9** (143 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was

diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo*, and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **36** (14.7 mg, 14%) as a colorless solid.

 \mathbf{R} = 0.45 (EtOAc/hexanes, 1/9, v/v).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.53 (d, *J* = 8.2 Hz, 4H), 7.40 (d, *J* = 8.3 Hz, 4H), 3.65 (s, 6H), 1.64 (q, *J* = 4.0 Hz, 4H), 1.23 (q, *J* = 4.0 Hz, 4H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 175.2, 139.8, 138.7, 131.0, 127.0, 52.6, 28.8, 16.9 ppm.

HRMS-ESI(m/z) calc'd for C₂₂H₂₂O₄Na₁ [M+Na]⁺,373.14103; found,373.14137; deviation: -0.9 ppm.

Mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (37)

In an anhydrous, N₂-filled glovebox, a 4-mL borosilicate vial equipped with a magnetic stir bar was charged with CuSCN (54.7 mg, 0.450 mmol, 1.50 equiv), CsF (91.1 mg, 0.600 mmol, 2.00 equiv). DMF (1.5 mL, c = 0.30 M) and TMSCF₃ (66.5 µL, 64.0 mg, 0.450 mmol, 1.50 equiv) was then added into the vial at 23 °C, leading to a yellow suspension. The vial was sealed with a Teflon cap. The reaction mixture was stirred at 23 °C. After 30 mins, a mixture of Ru(bipy)₃(PF₆)₂ (5.2 mg, 6.0 µmol, 2.0 mol%) and mesitylene-derived thianthrenium salts **S8** (96.8 mg, 0.300 mmol, 1.00 equiv) in MeCN (1.5 mL, c = 0.20 M) was then added into the reaction with a 2 mL syringe. The vial was sealed with the same Teflon cap again, and was placed 5 cm away from a 34 W blue LED. The reaction was irradiated with the blue LED for 3 hours at approximately 30 °C with the use of a cooling fan. Then the reaction mixture was diluted with DCM (1.0 mL). The resulting solution was filtered through a short pad of silica using DCM (10 mL) as eluent. The filtrate was collected and concentrated *in vacuo,* and the residue was then purified by flash column chromatography on silica gel, eluting with ethyl acetate/hexane (1:60 (v/v)) to afford **37** (53.3 mg, 44%) as a colorless solid.

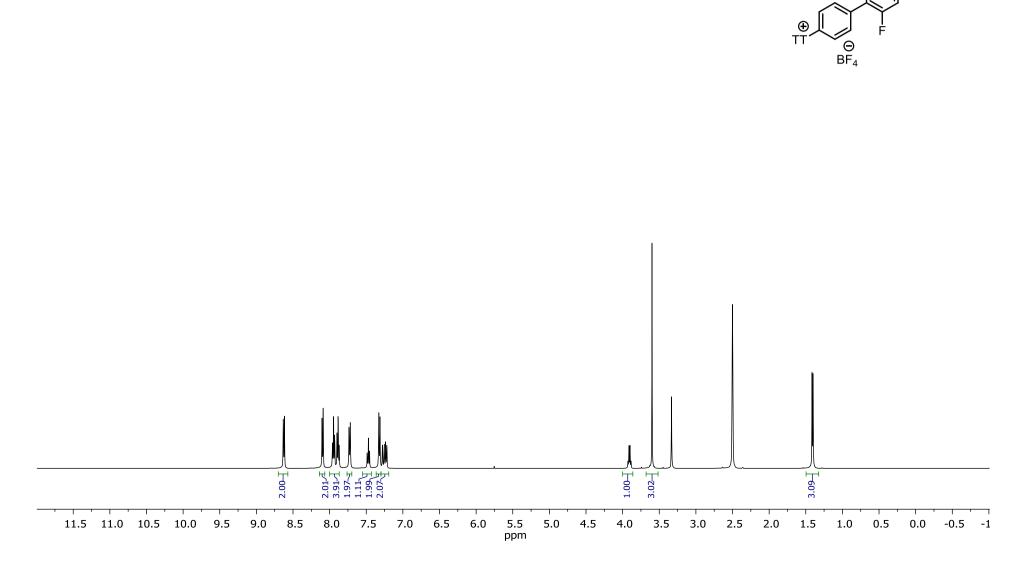
 $R_f = 0.35$ (hexanes).

NMR Spectroscopy:

¹**H NMR** (500 MHz, CDCl₃, 23 °C, δ): 7.60 (d, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.18–7.13 (m, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 7.01–6.84 (m, 4H), 6.37 (d, *J* = 8.3 Hz, 1H), 2.24 (s, 3H), 2.19 (s, 6H) ppm.

¹³C NMR (126 MHz, CDCl₃, 23 °C, δ): 144.9, 144.1, 139.8, 137.0, 136.7, 132.0, 130.1, 129.6, 129.5,

128.4 (q, J = 30.8 Hz), 128.1, 126.9 (q, J = 5.6 Hz), 126.5, 125.6, 125.2, 124.8, 124.1 (q, J = 274.7 Hz, CF₃), 21.5, 21.3 ppm.

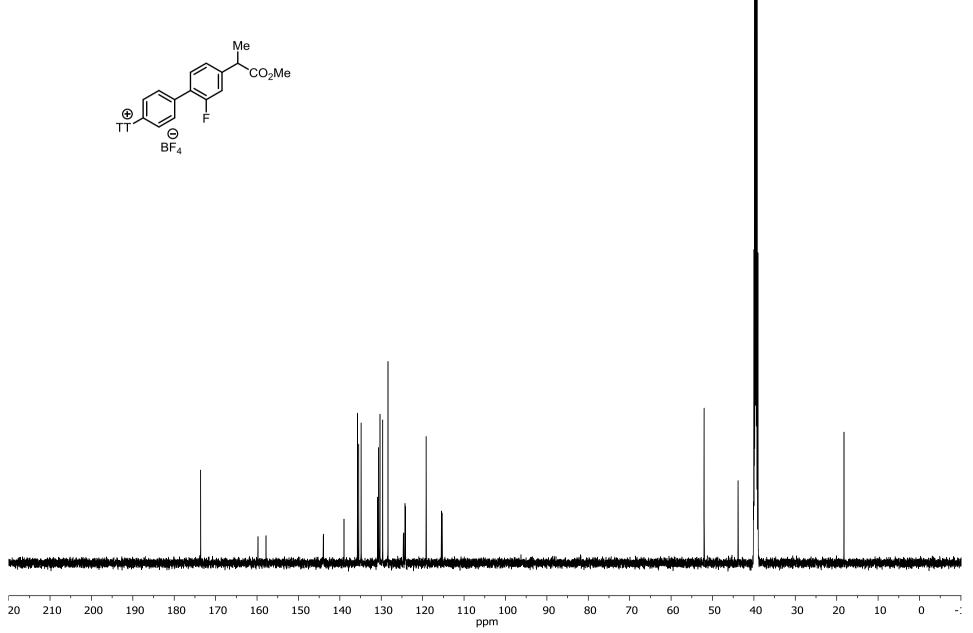

 $^{19}\textbf{F}$ NMR (471 MHz, CDCl_3, 23 °C, $\delta):$ –61.3 ppm.

HRMS-El(m/z) calc'd for $C_{22}H_{19}F_3S_2$ [M]⁺, 404.08803; found, 404.08761; deviation: 1.0 ppm.

SPECTROSCOPIC DATA

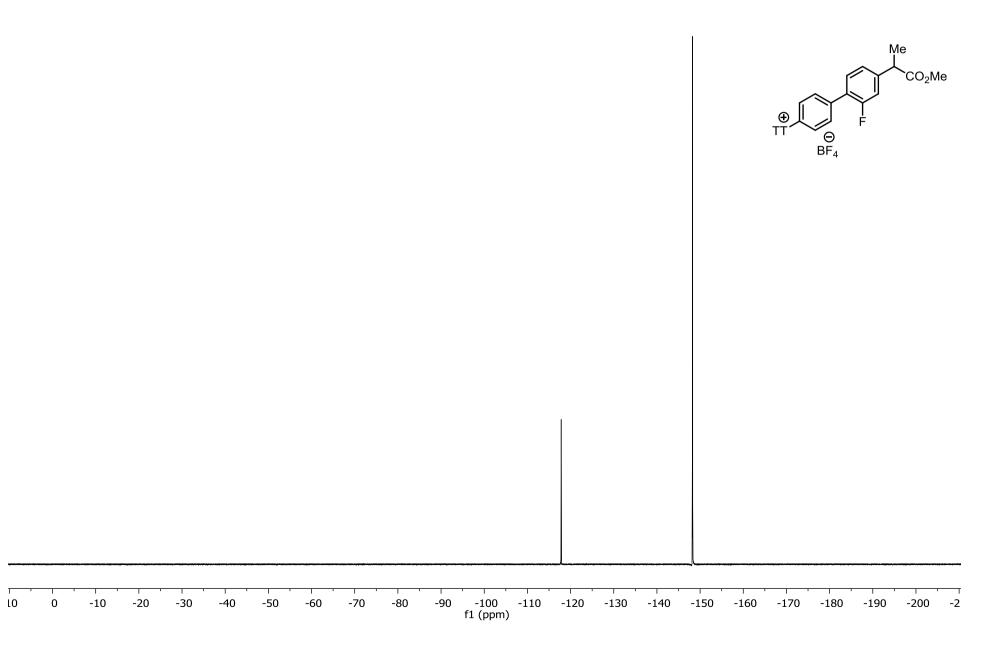
¹H NMR of flurbiprofen methyl ester-derived thianthrenium salt (1)

DMSO-d₆, 23 °C

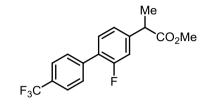


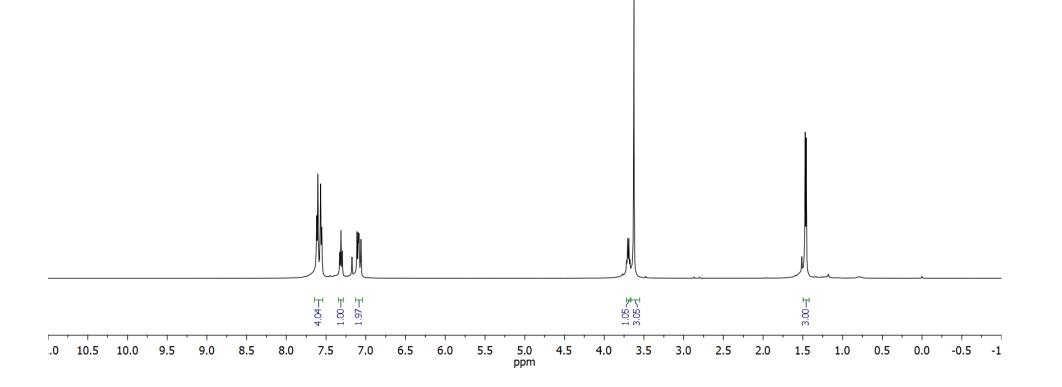
CO₂Me

Мe

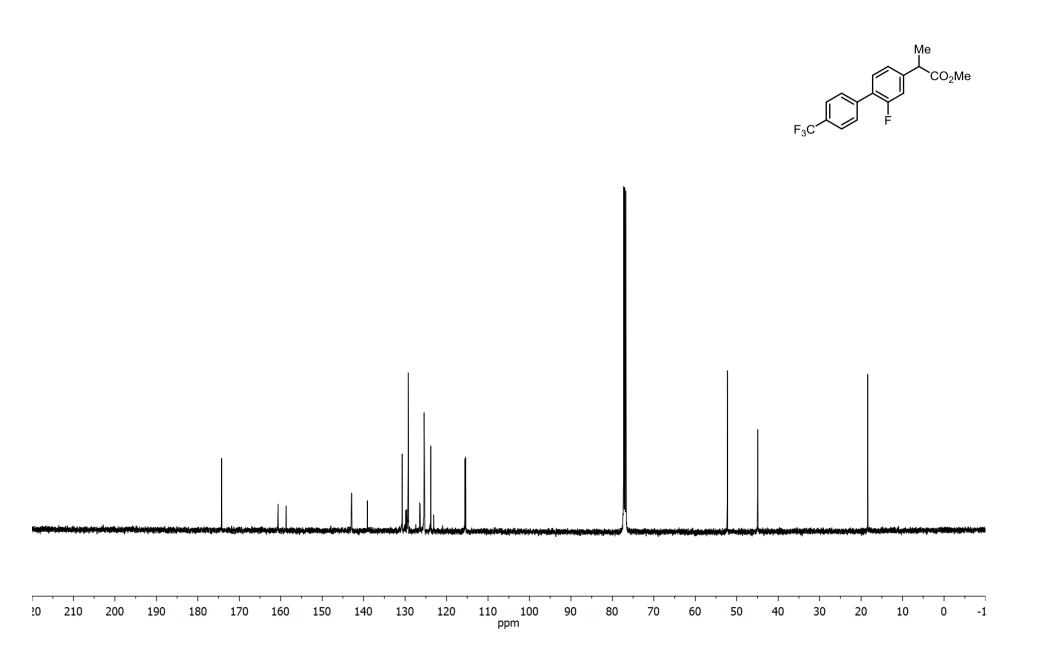

¹³C NMR of flurbiprofen methyl ester-derived thianthrenium salt (1)

DMSO-d₆, 23 °C

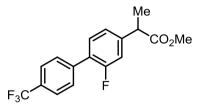


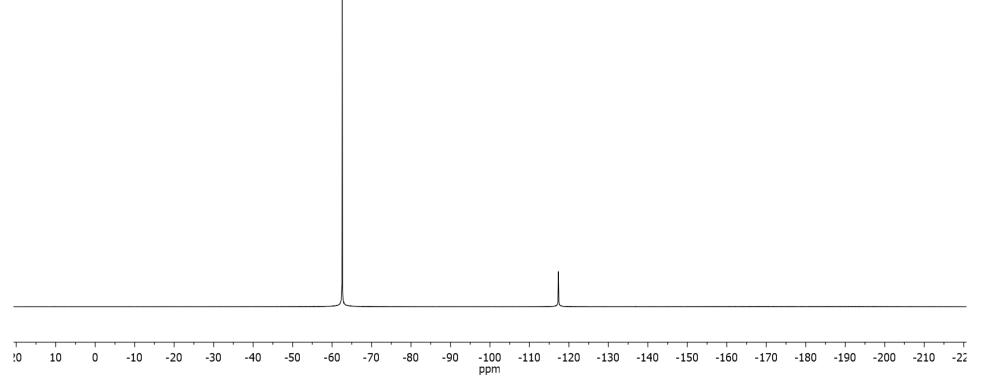

¹⁹F NMR of flurbiprofen methyl ester-derived thianthrenium salt (1)

DMSO-d₆, 23 °C



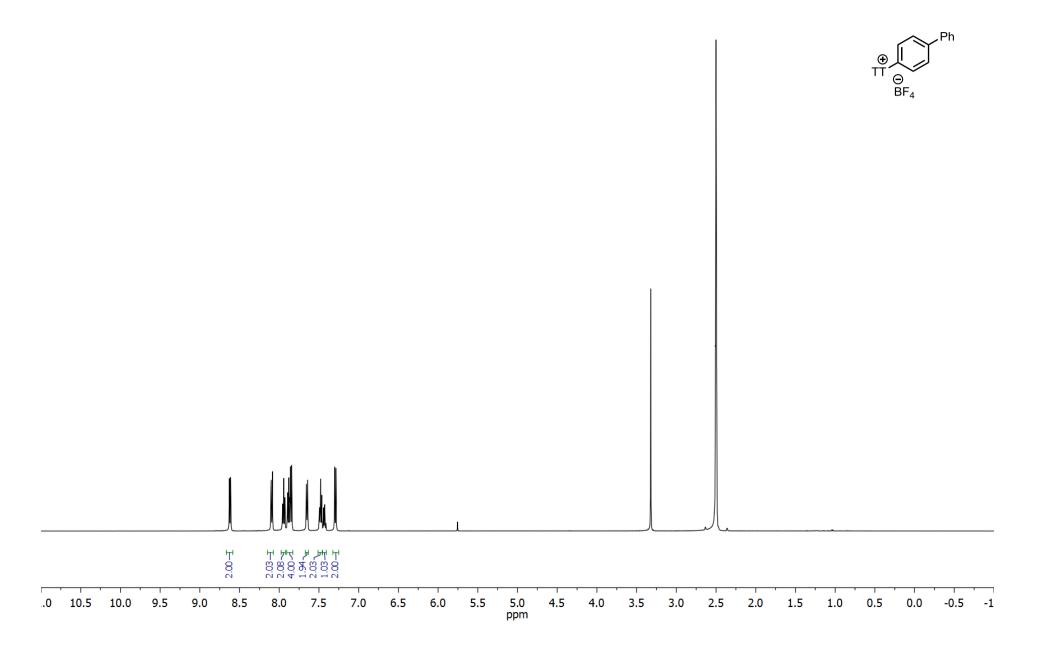
¹H NMR of trifluoromethylflurbiprofen methylester (2)




¹³C NMR of trifluoromethylflurbiprofen methylester (2)

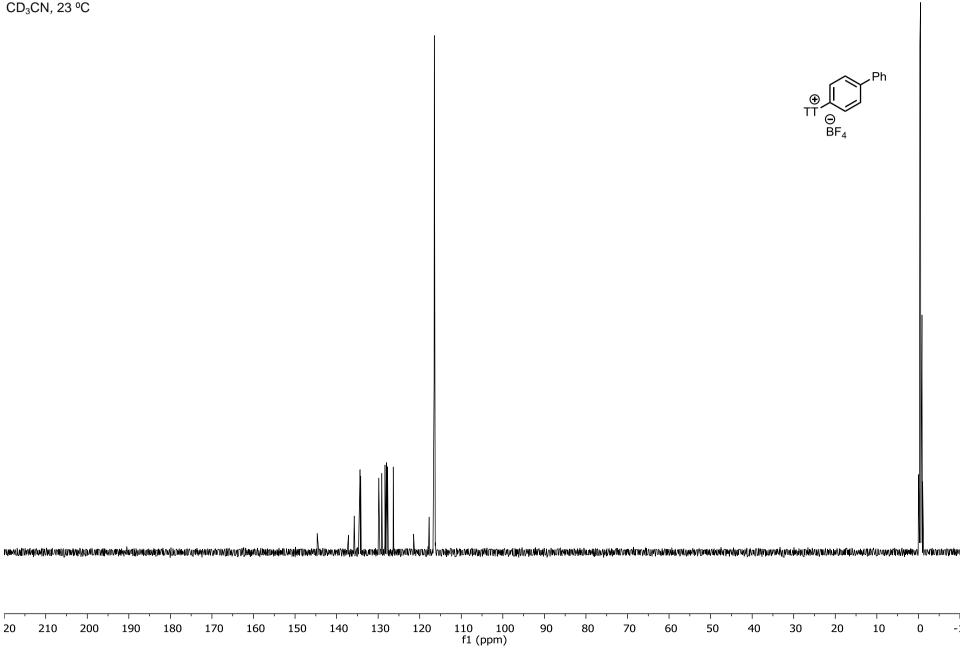
¹⁹F NMR of trifluoromethylflurbiprofen methylester (2)

CDCl₃, 23 °C

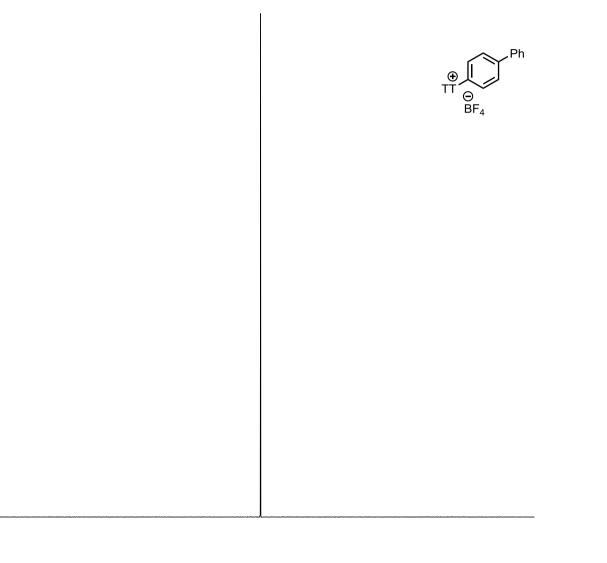


S63

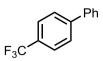
¹H NMR of 1,1'-biphenyl-derived thianthrenium salt (S1)


DMSO-*d*₆, 23 °C

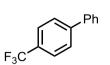
¹³C NMR of 1,1'-biphenyl-derived thianthrenium salt (S1)

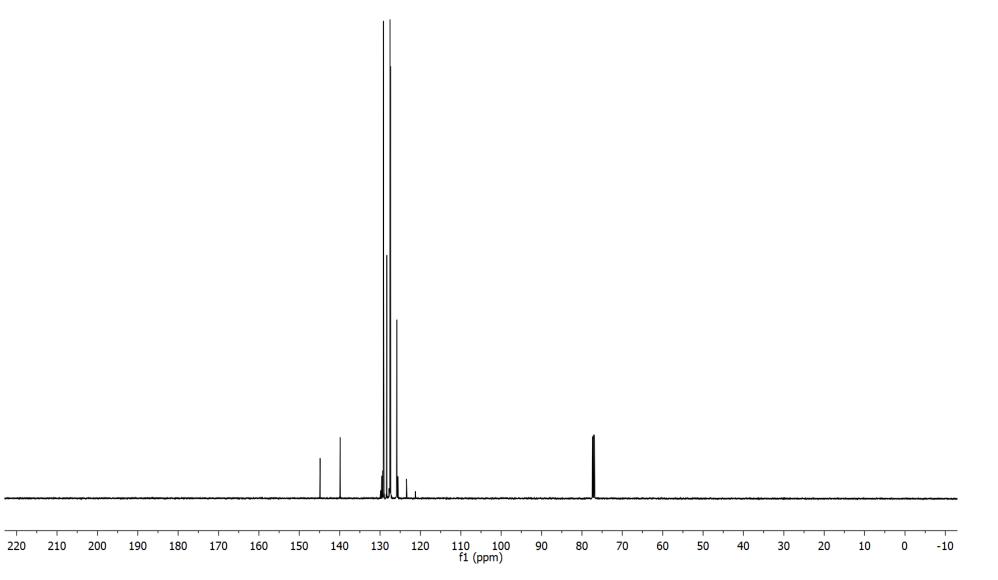

CD₃CN, 23 °C

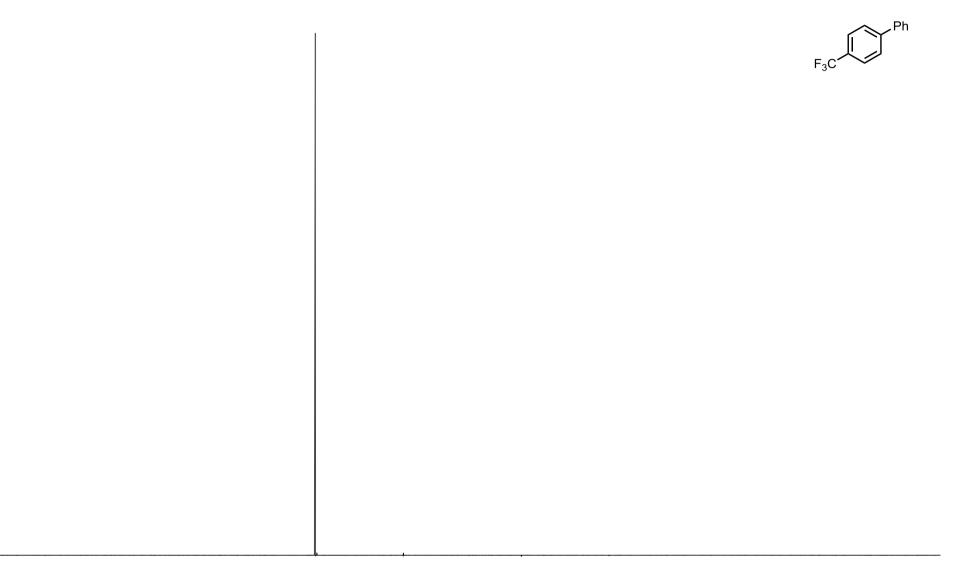
20


¹⁹F NMR of 1,1'-biphenyl-derived thianthrenium salt (S1)

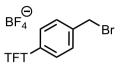
CD₃CN, 23 °C

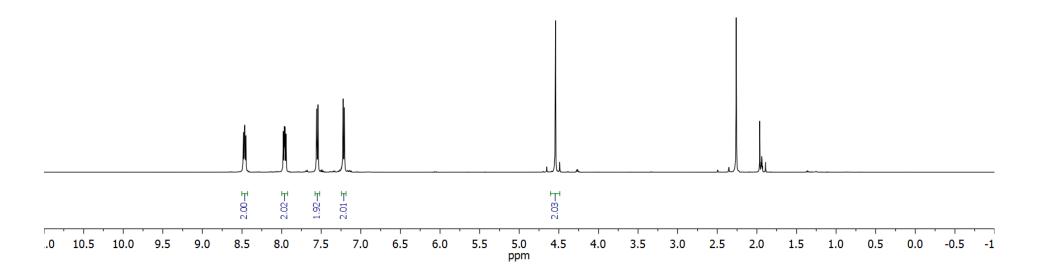

T -100 -110 -120 -130 -140 -150 -160 f1 (ppm) 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -170 -180 -190 -200 -210 -22 0

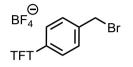

¹H NMR of 4-(trifluoromethyl)-1,1'-biphenyl (3)

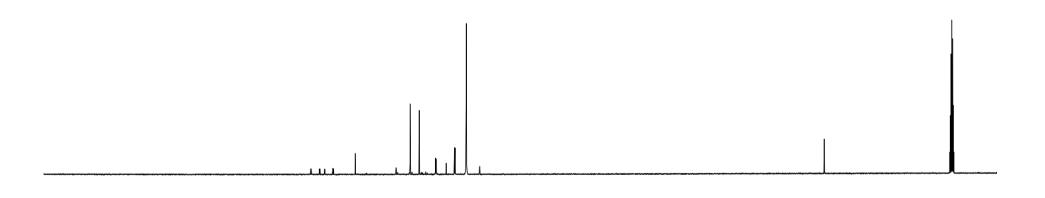


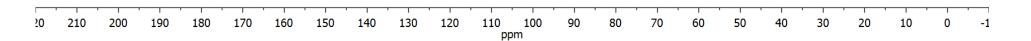
¹³C NMR of 4-(trifluoromethyl)-1,1'-biphenyl (3)



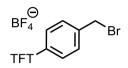

¹⁹F NMR of 4-(trifluoromethyl)-1,1'-biphenyl (3)

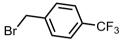

Т	· · ·	· · ·	· · ·	· · ·				· .	· · ·	· · ·	· · ·		· · ·	· · ·	· · ·	· .	· · ·	· · ·		· · ·	· · · ·		1	<u>г</u>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm		-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

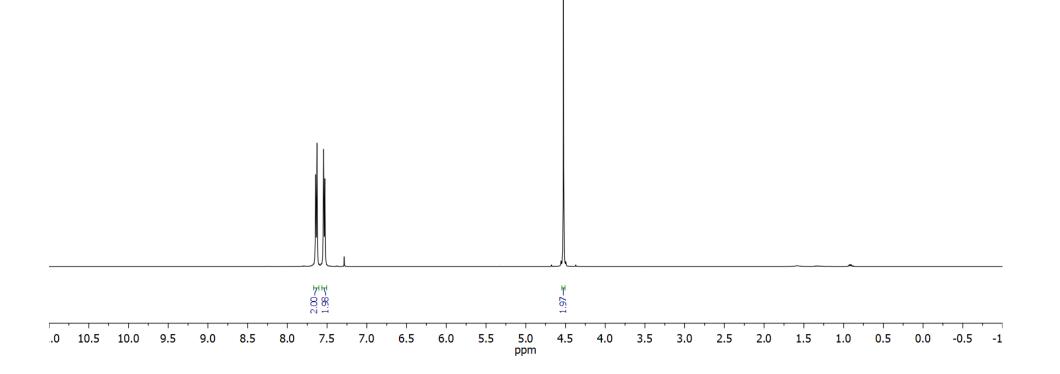

¹H NMR of benzylbromide-derived tetrafluorothianthrenium salt (S2)

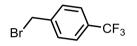


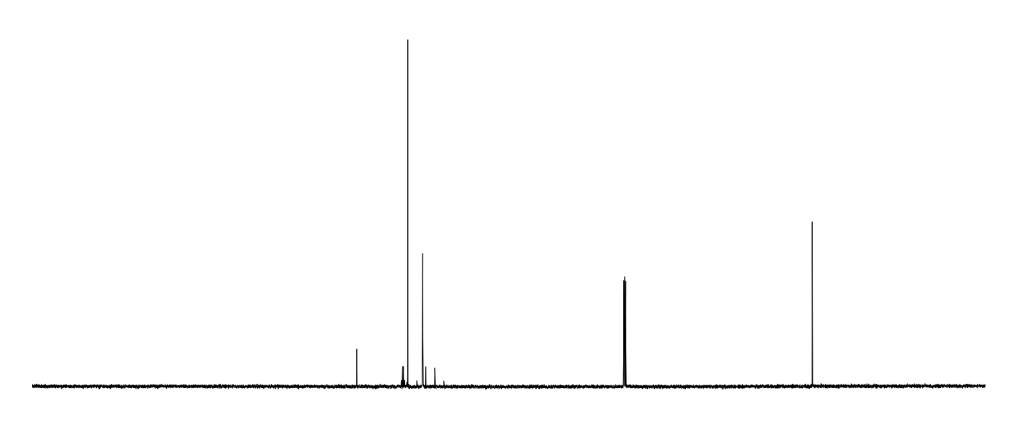
¹³C NMR of benzylbromide-derived tetrafluorothianthrenium salt (S2)

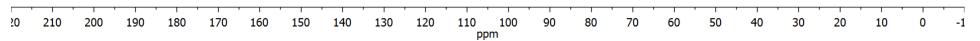


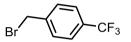

¹⁹F NMR of benzylbromide-derived tetrafluorothianthrenium salt (S2)

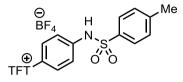

CD₃CN, 23 ºC

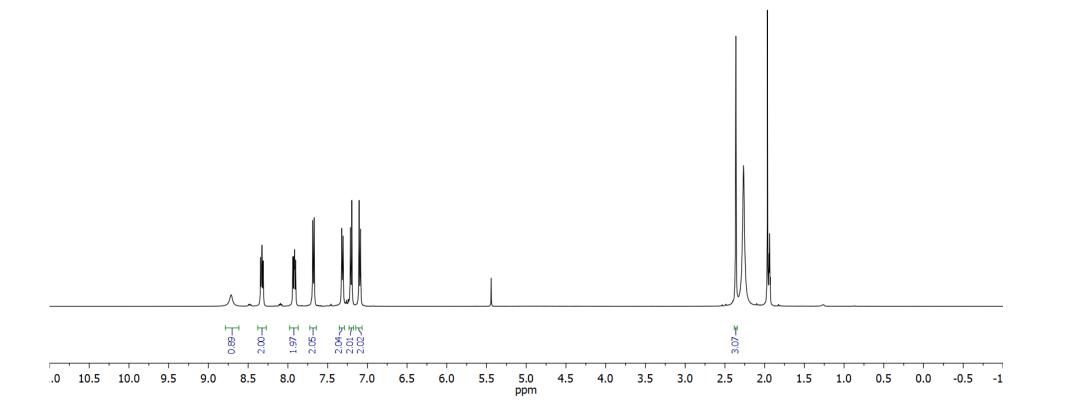

	· · ·								'						'	'				'	· · ·		· · · ·	· · · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												


¹H NMR of 1-(bromomethyl)-4-(trifluoromethyl)benzene (4)



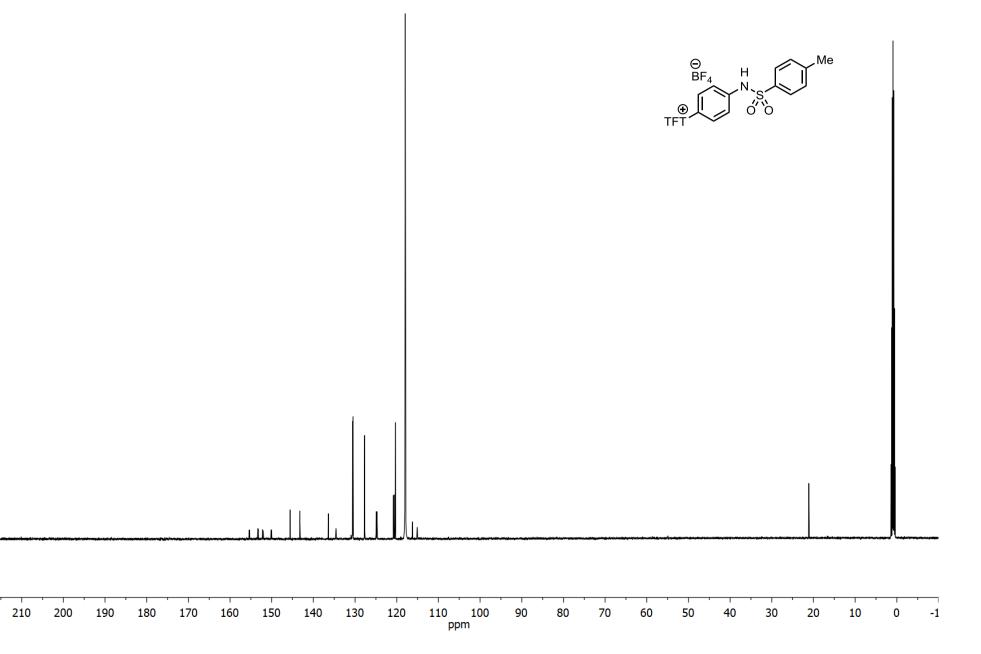

¹³C NMR of 1-(bromomethyl)-4-(trifluoromethyl)benzene (4)



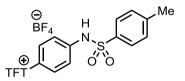

¹⁹F NMR of 1-(bromomethyl)-4-(trifluoromethyl)benzene (4)

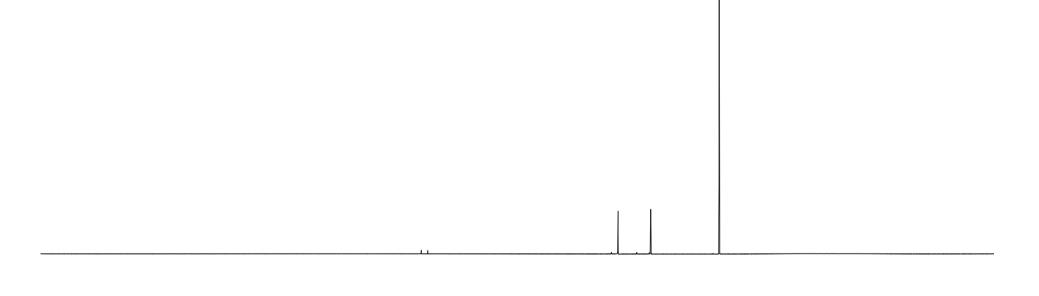
Т	· · · ·	1	· · ·	· · ·	· · · ·	· · ·	· · ·	· · ·	· · · ·	· · ·	· · ·		· · ·	· · ·	· · ·	· · ·	· · · ·	· · ·		· · ·	· · ·	· · · ·	· · ·	т т
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

¹H NMR of 4-methyl-*N*-phenylbenzenesulfonamide-derived thianthrenium salt (S3)

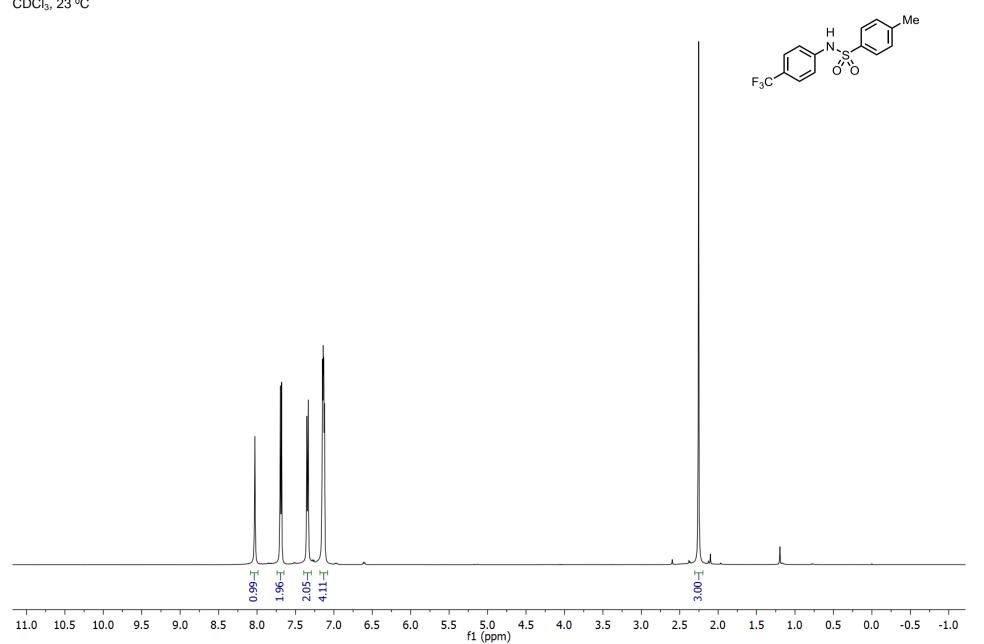


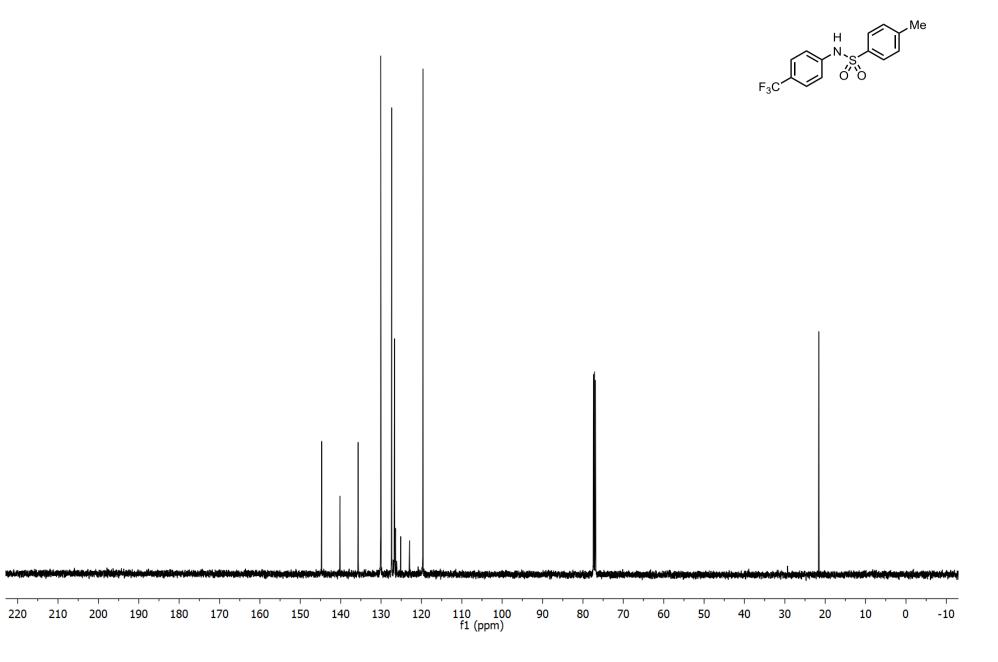
¹³C NMR of 4-methyl-*N*-phenylbenzenesulfonamide-derived thianthrenium salt (S3)


CD₃CN, 23 °C

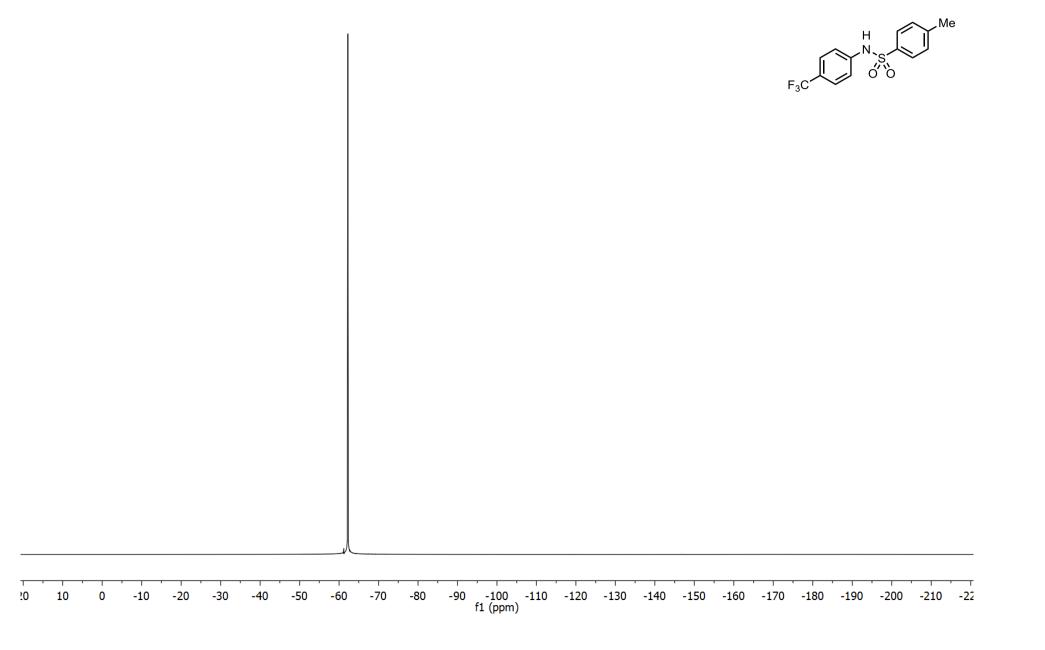

20

¹⁹F NMR of 4-methyl-*N*-phenylbenzenesulfonamide-derived thianthrenium salt (S3)


CD₃CN, 23 °C

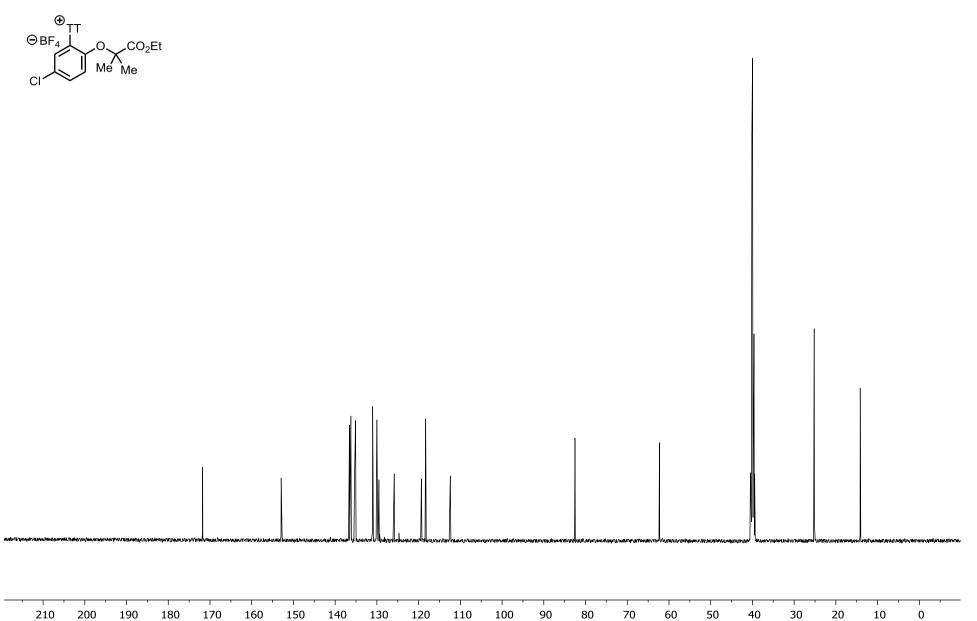


-100 ppm 20 10 -10 -20 -30 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 0 -40 -50 -60 -70


¹H NMR of 4-methyl-*N*-(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)

¹³C NMR of 4-methyl-*N*-(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)

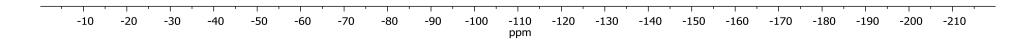
¹⁹F NMR of of 4-methyl-*N*-(4-(trifluoromethyl)phenyl)benzenesulfonamide (5)


¹H NMR of clofibrate ethyl ester-derived thianthrenium salt (S4)

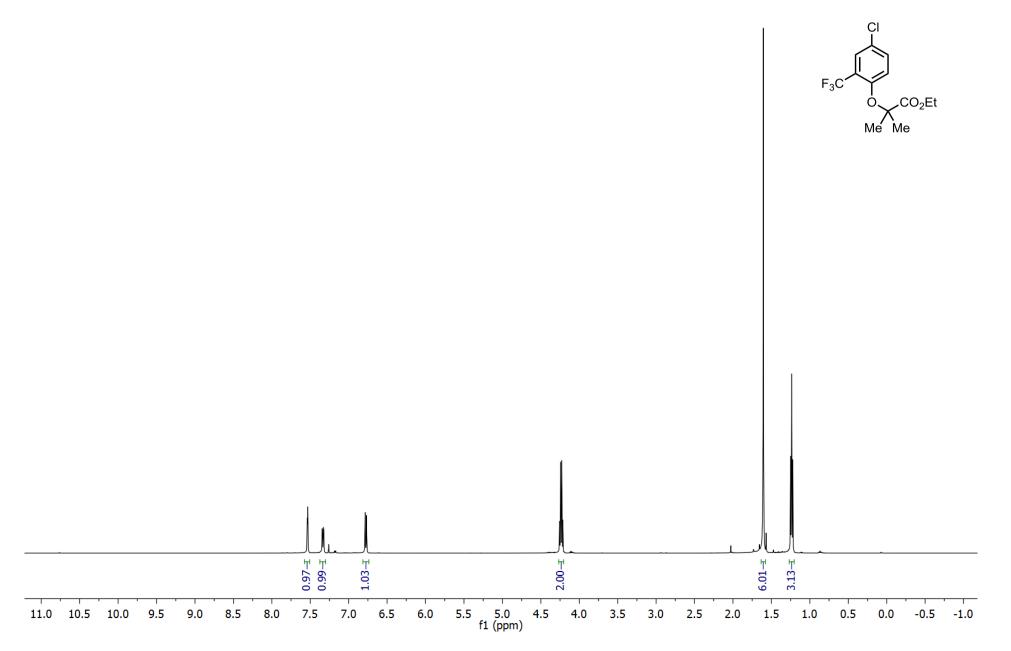
DMSO-*d*₆, 23 °C

¹³C NMR of clofibrate ethyl ester-derived thianthrenium salt (S4)

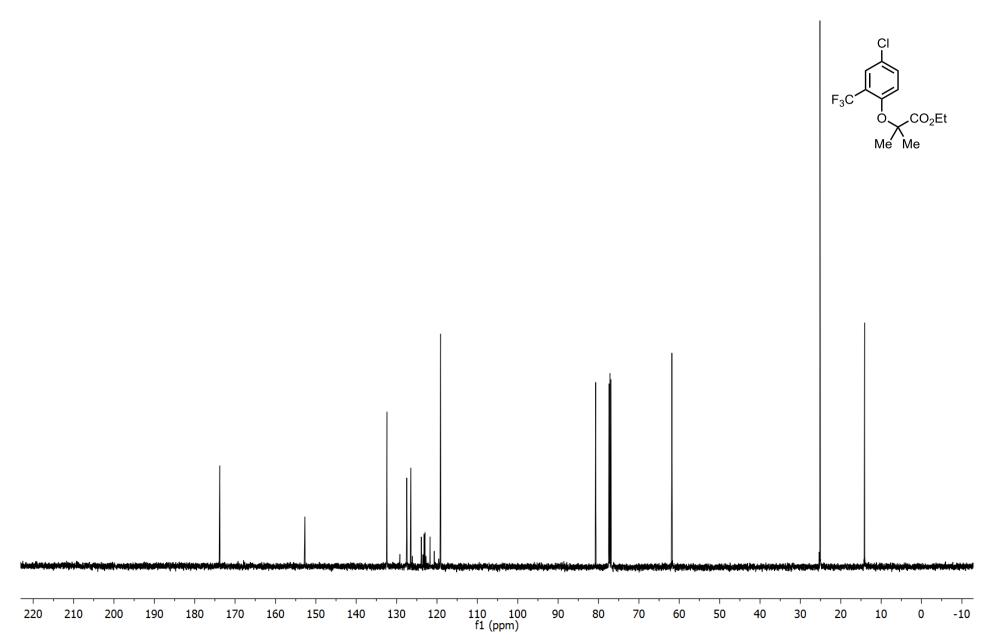
DMSO-*d*₆, 23 °C

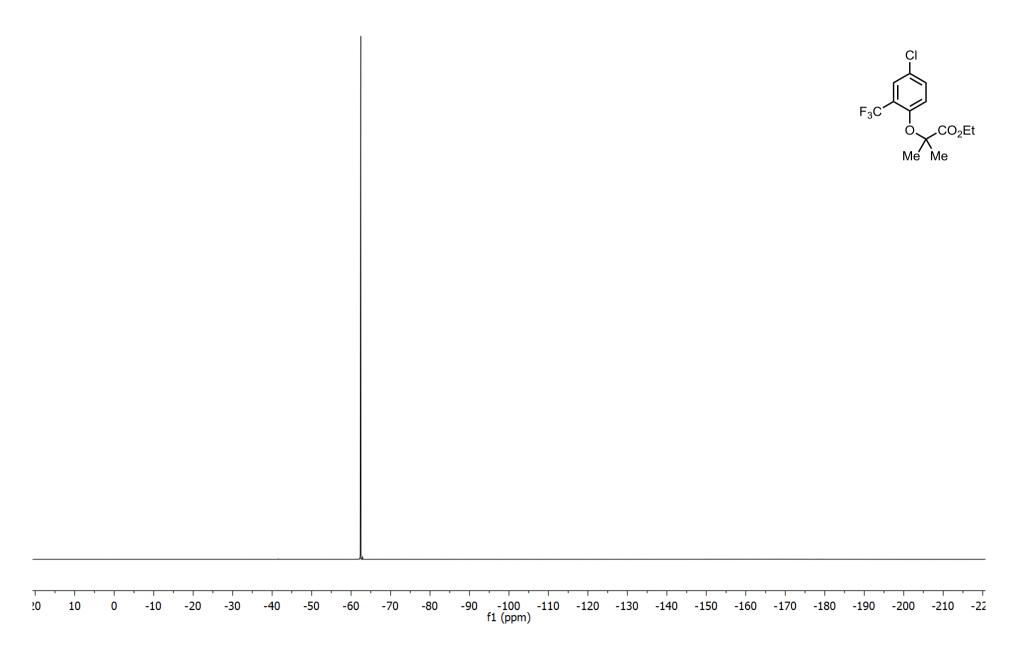


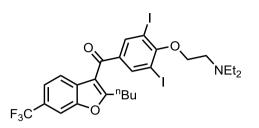
ppm

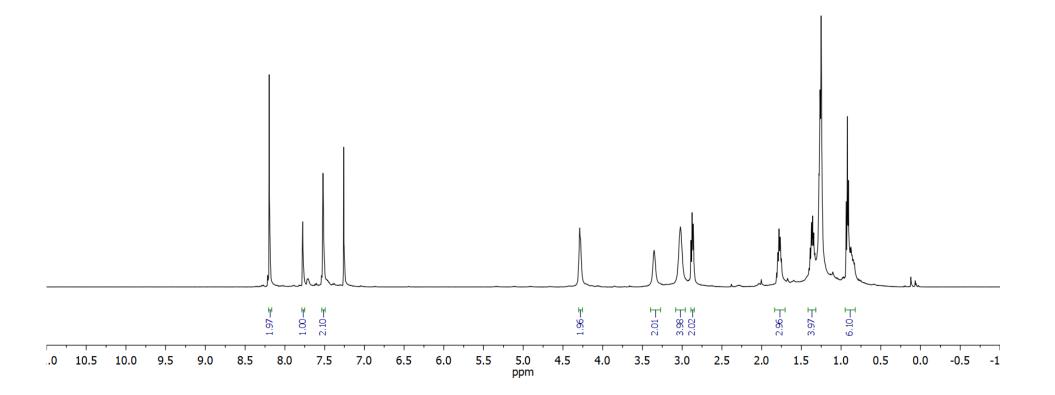

¹⁹F NMR of clofibrate ethyl ester-derived thianthrenium salt (S4)

DMSO-*d*₆, 23 °C

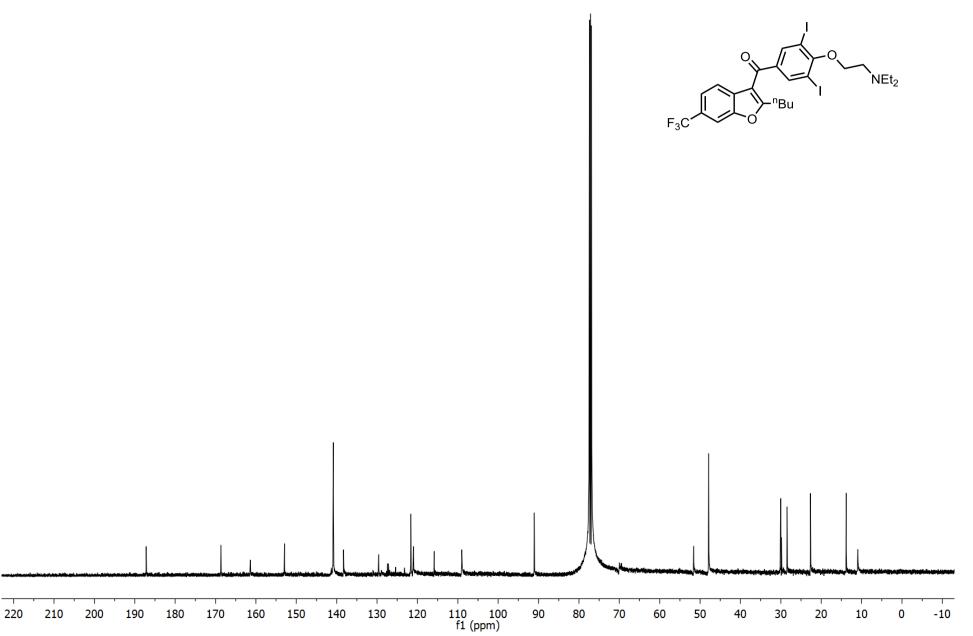

 \odot ΘBF_4 .CO₂Et Mé Me


¹H NMR of CF₃-clofibrate ethyl ester (6)

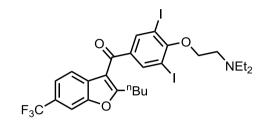

¹³C NMR of CF₃-clofibrate ethyl ester (6)



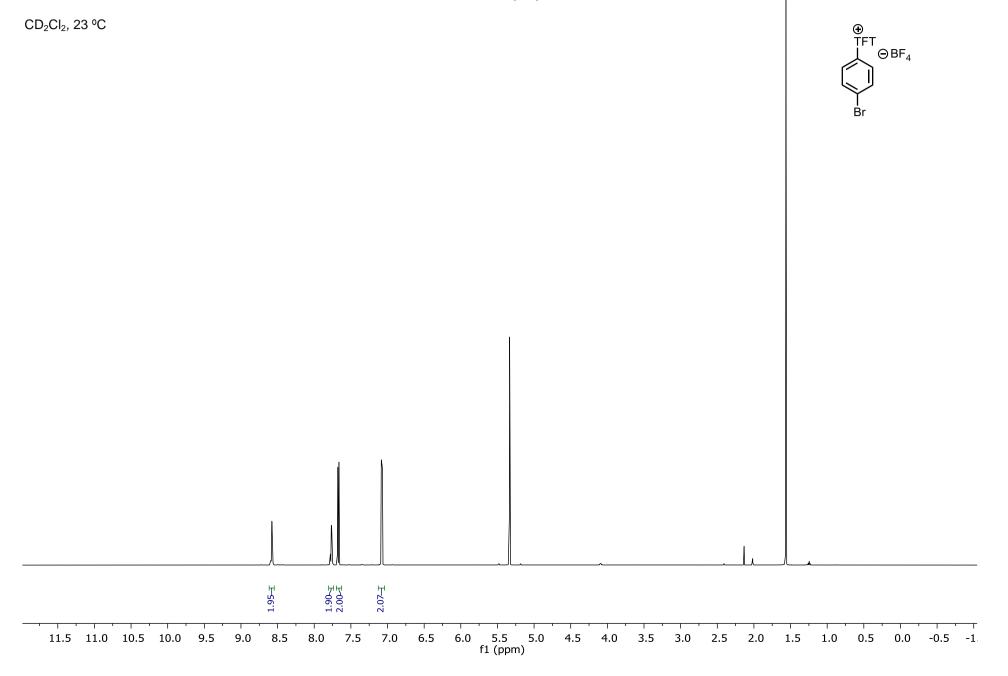
¹⁹F NMR of CF₃-clofibrate ethyl ester (6)



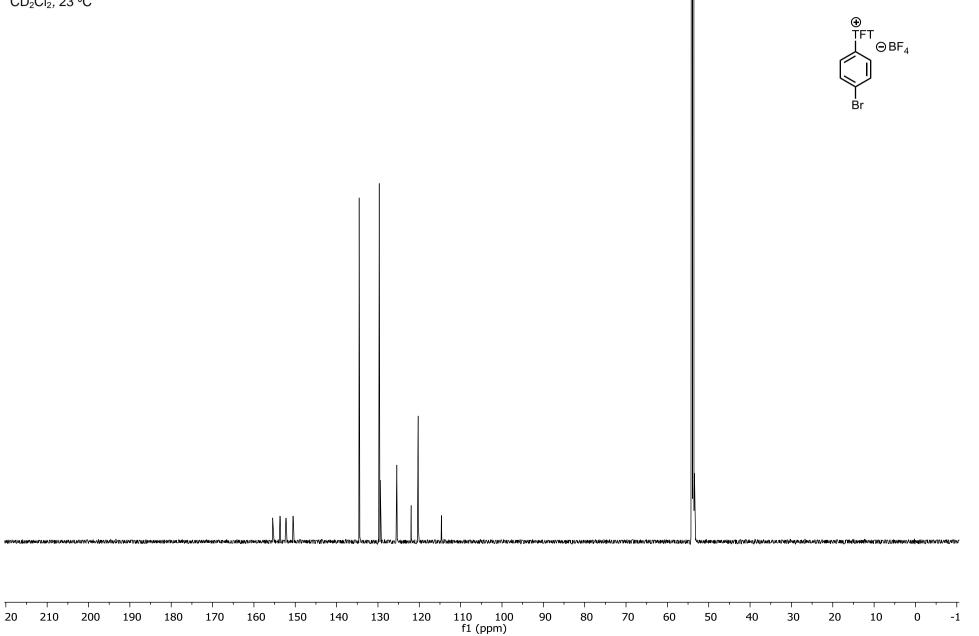
¹H NMR of CF₃-amirodarone (7)



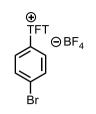
¹³C NMR of CF₃-amirodarone (7)


¹⁹F NMR of CF₃-amirodarone (7)

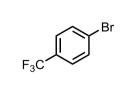
 L

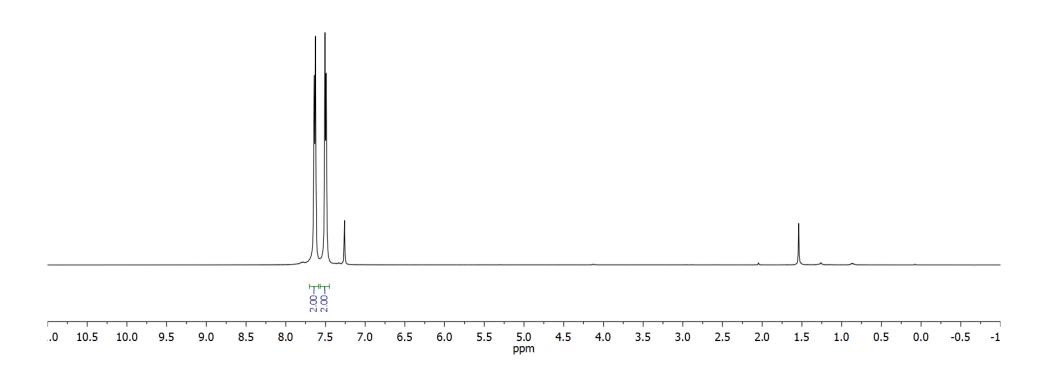

Т		1		· · · ·	· · ·	· · ·		· · ·	· · · ·	· · ·	· · ·	· · ·	· · ·		· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·		T
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

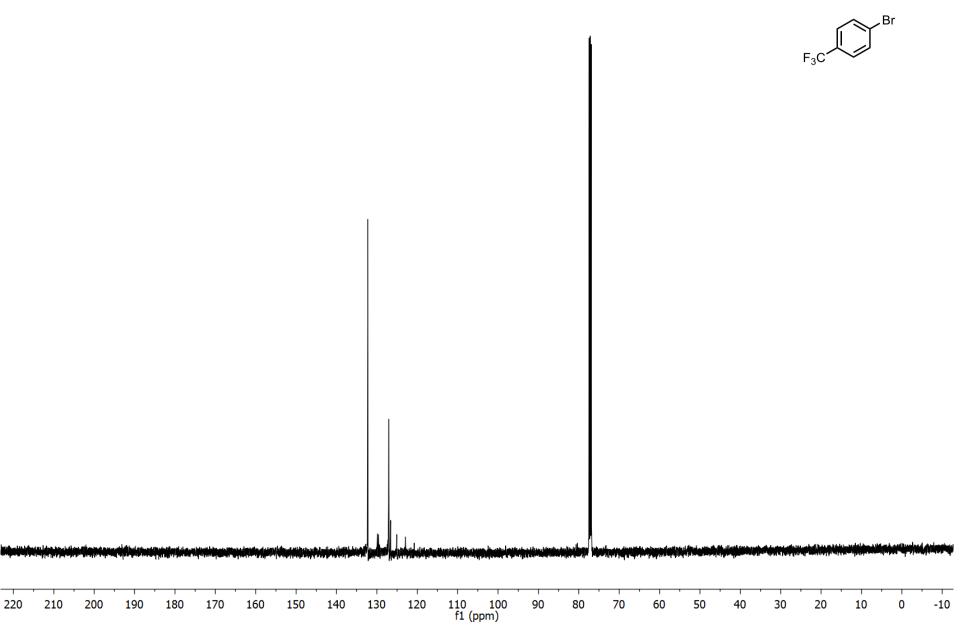
¹H NMR of bromobenzene-derived tetrafluorothianthrenium salt (S6)


¹³C NMR of bromobenzene-derived tetrafluorothianthrenium salt (S6)

CD₂Cl₂, 23 °C

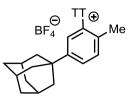

¹⁹F NMR of bromobenzene-derived tetrafluorothianthrenium salt (S6)

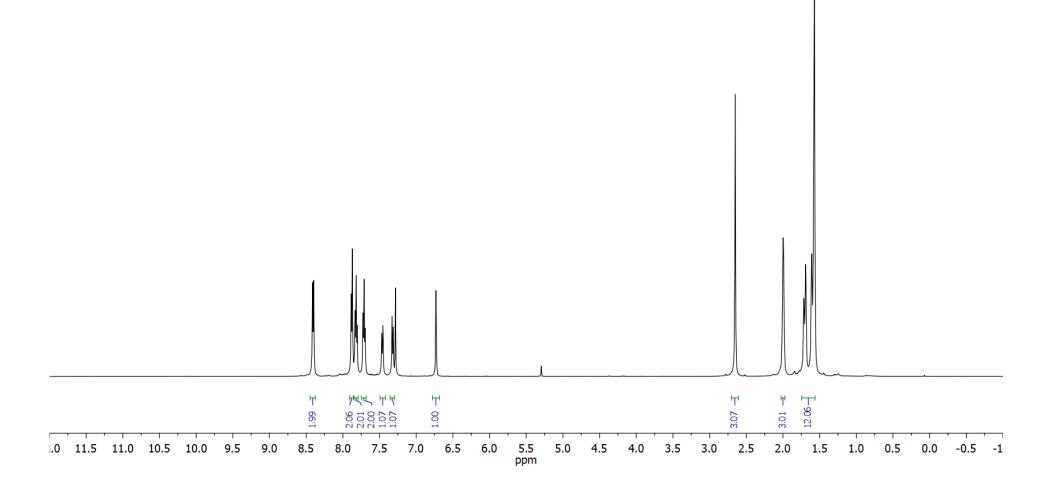

CD₂Cl₂, 23 °C

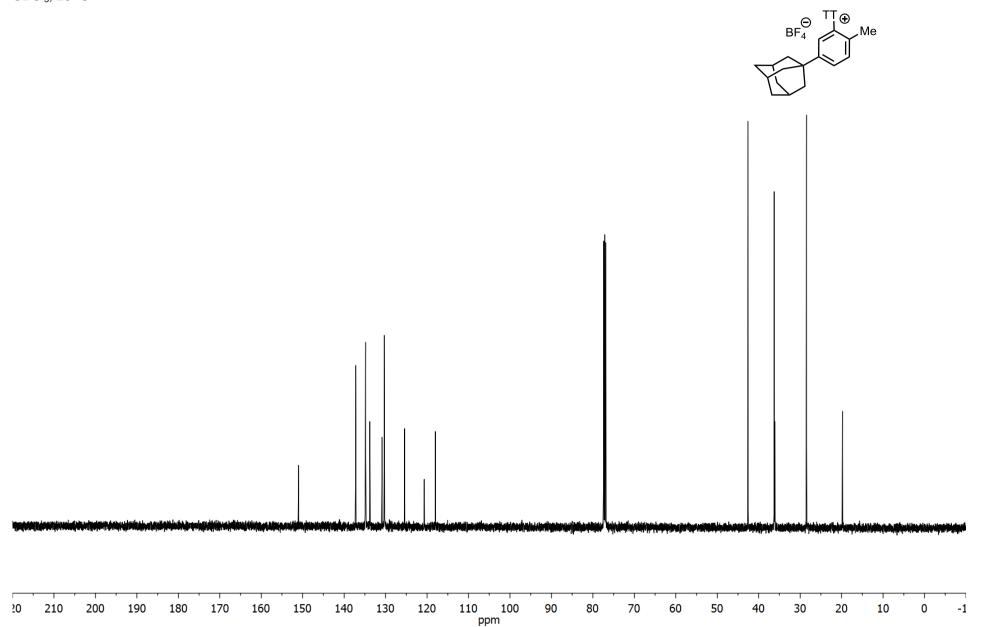

	· ·	- I - I	1 1	_		' '		'			· · ·				·				·	· · · ·
-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)														-190	-200	-210	-2			

¹H NMR of 1-bromo-4-(trifluoromethyl)benzene (8)

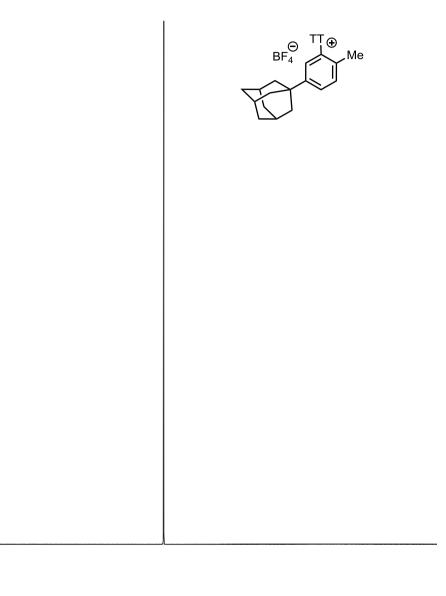
¹³C NMR of 1-bromo-4-(trifluoromethyl)benzene (8)


¹⁹F NMR of 1-bromo-4-(trifluoromethyl)benzene (8)

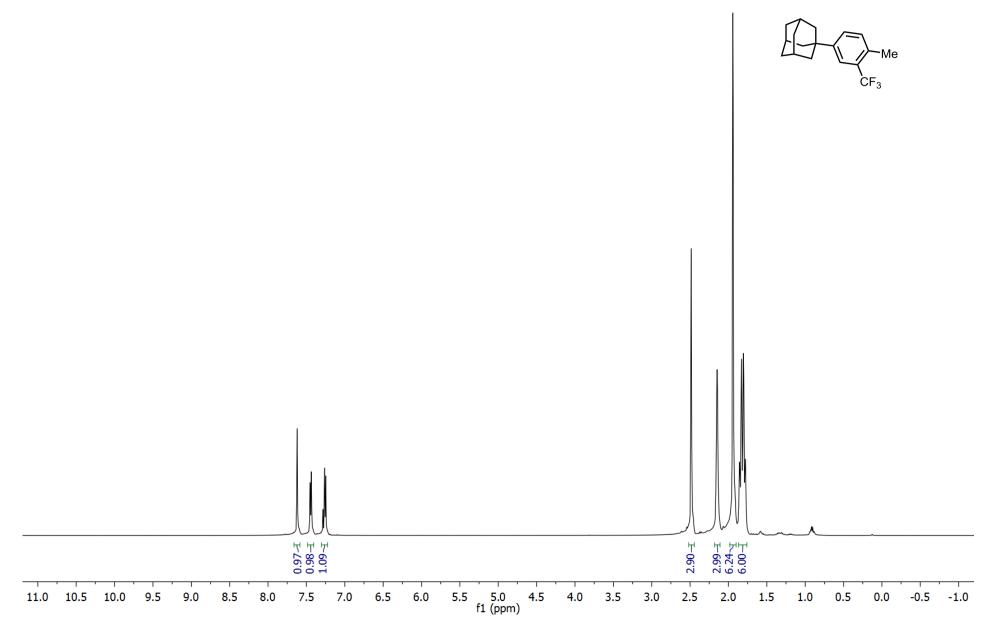

CDCl₃, 23 °C


20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

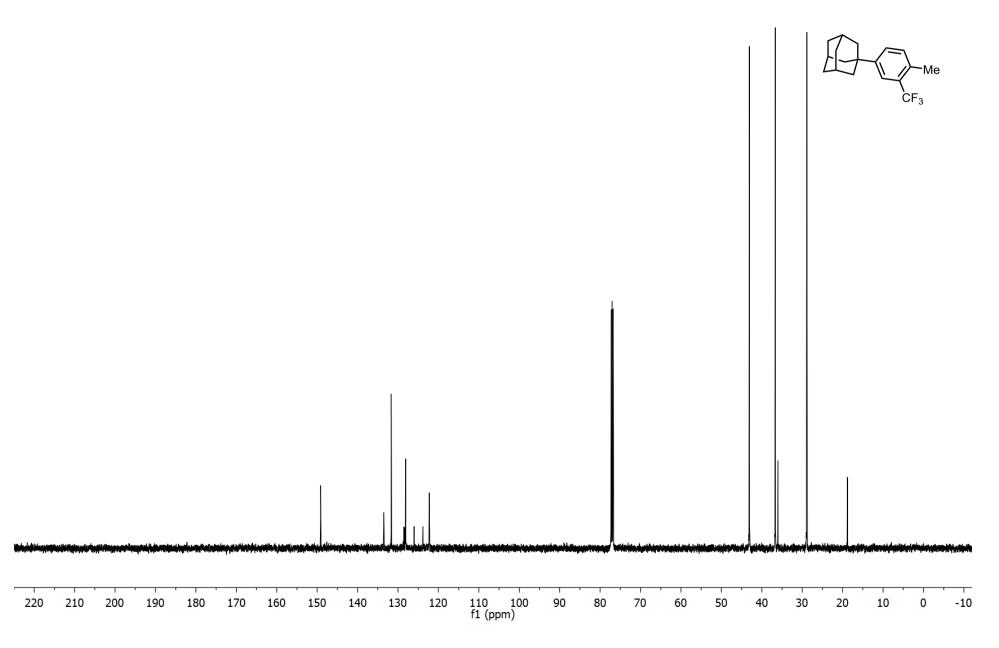
¹H NMR of (3r,5r,7r)-1-(*p*-tolyl)adamantine-derived thianthrenium salt (S7)



¹³C NMR of (3r,5r,7r)-1-(*p*-tolyl)adamantine-derived thianthrenium salt (S7)

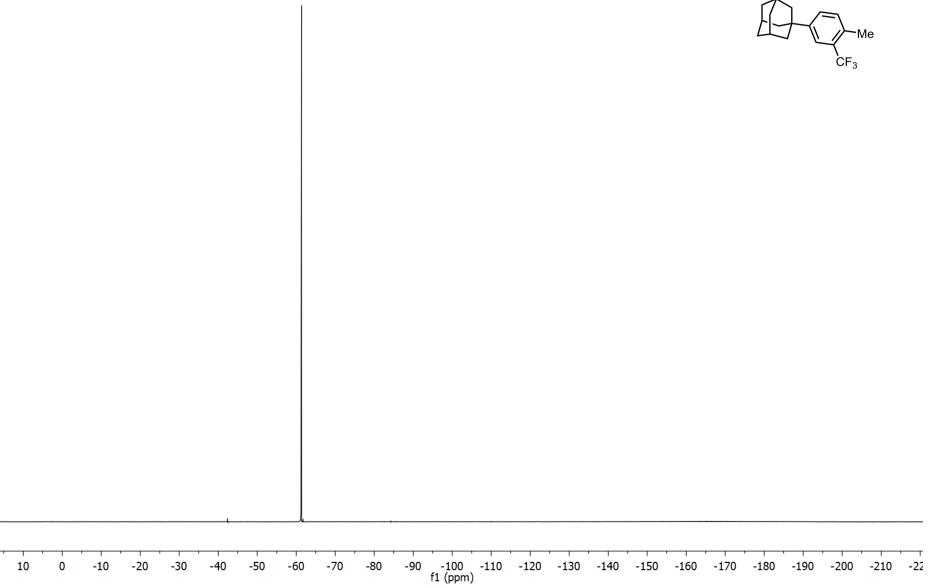


¹⁹F NMR of (3r,5r,7r)-1-(*p*-tolyl)adamantine-derived thianthrenium salt (S7)



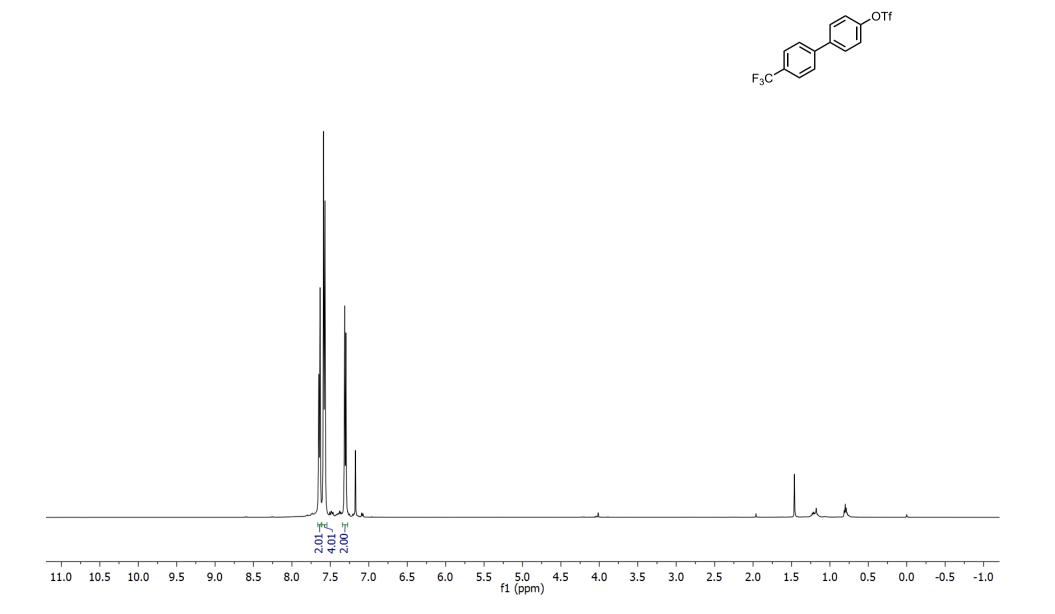
1									· · ·											· · ·		'			·
20	10	C)	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

¹H NMR of (3r,5r,7r)-1-(4-methyl-3-(trifluoromethyl)phenyl)adamantane (9)


¹³C NMR of (3r,5r,7r)-1-(4-methyl-3-(trifluoromethyl)phenyl)adamantane (9)

¹⁹F NMR of (3r,5r,7r)-1-(4-methyl-3-(trifluoromethyl)phenyl)adamantane (9)

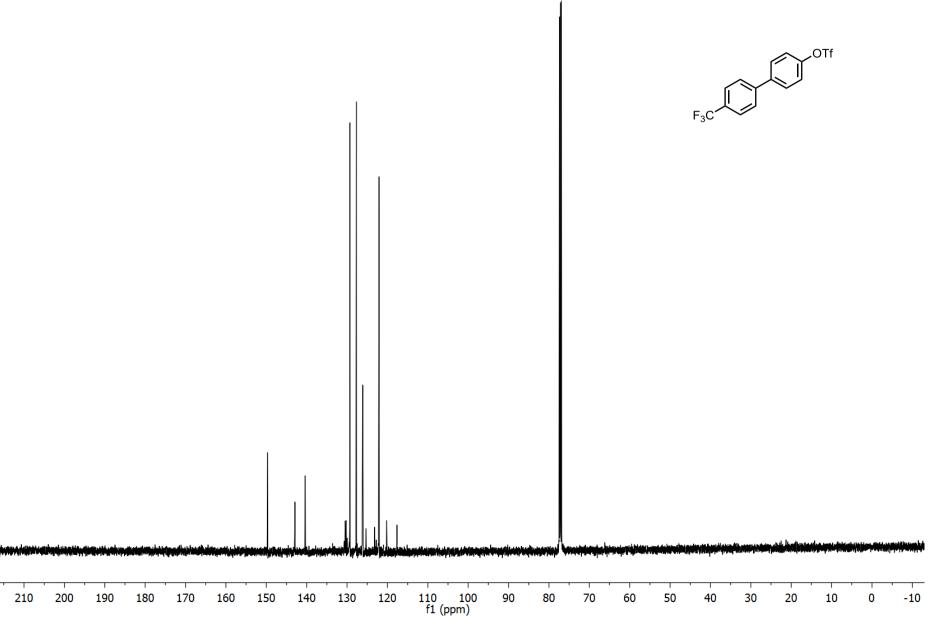
CDCl₃, 23 °C


Т

20 -10 -20 -30 -40 -50 -60 -90 10 0 -70 -80

¹H NMR of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)

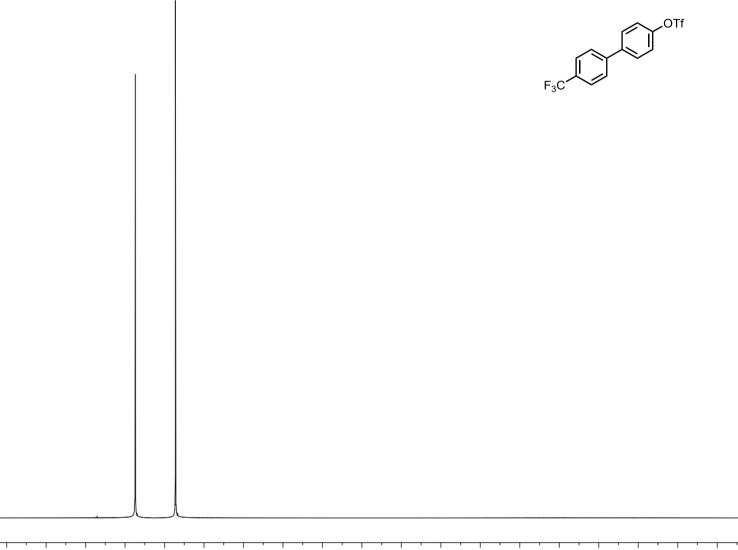
CDCl₃, 23 °C



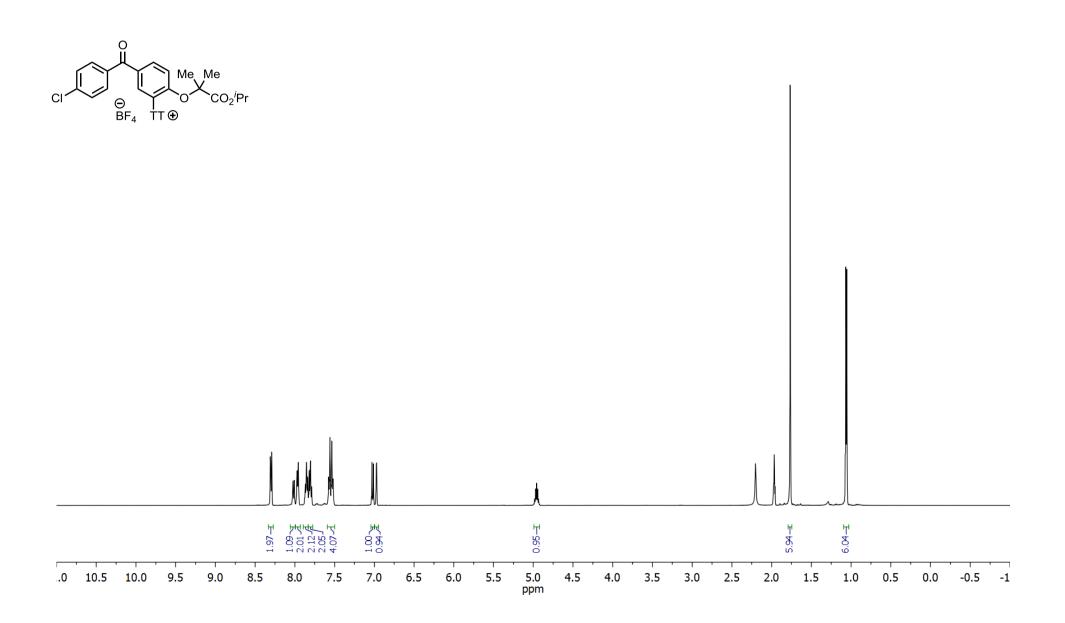
.OTf

¹³C NMR of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)

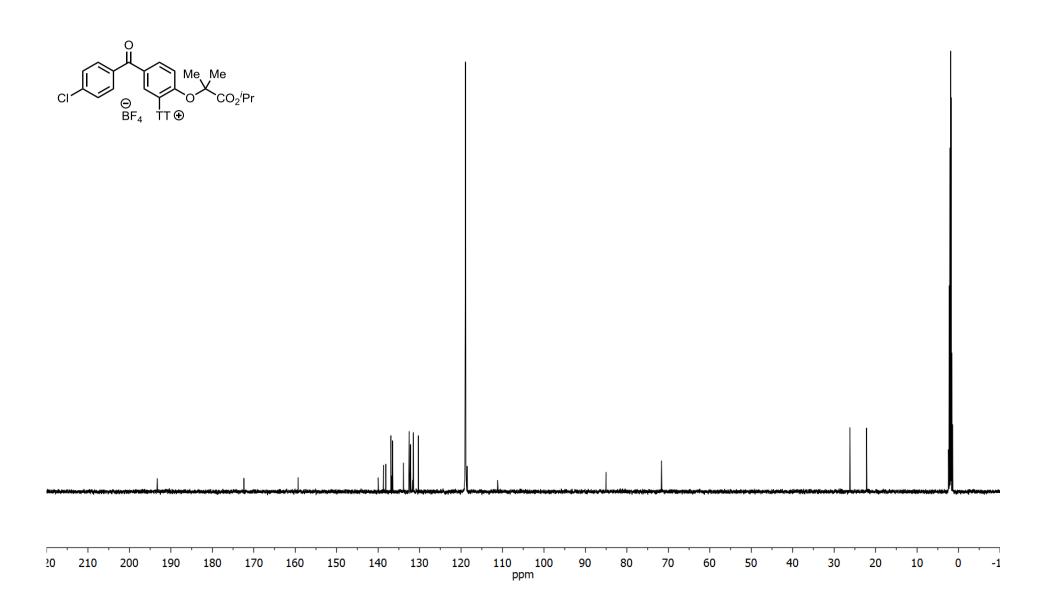
CDCl₃, 23 °C


220

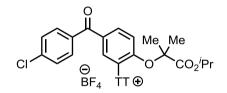
¹⁹F NMR of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (10)


CDCl₃, 23 °C

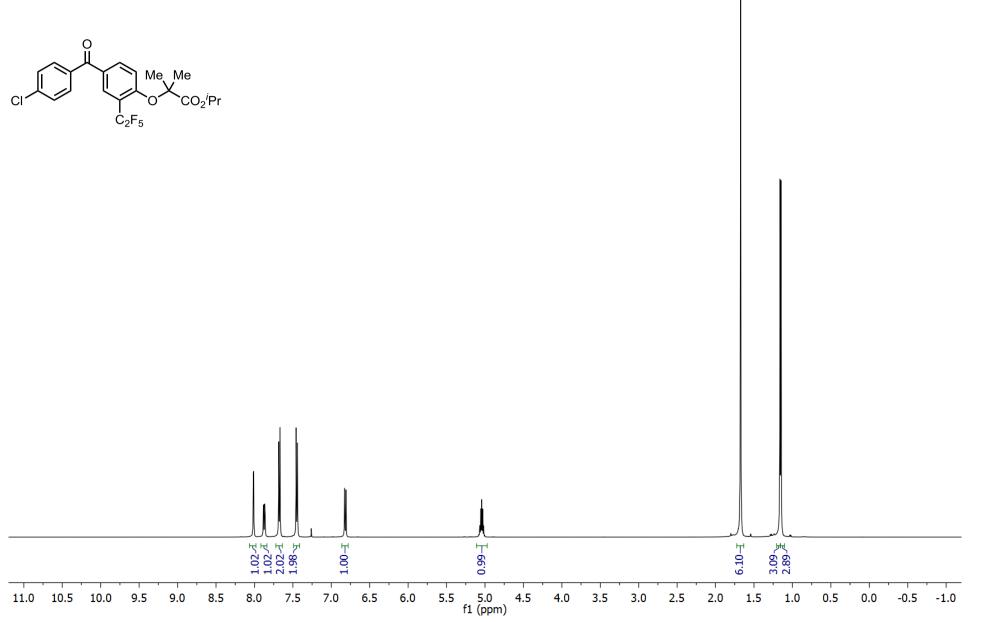
T



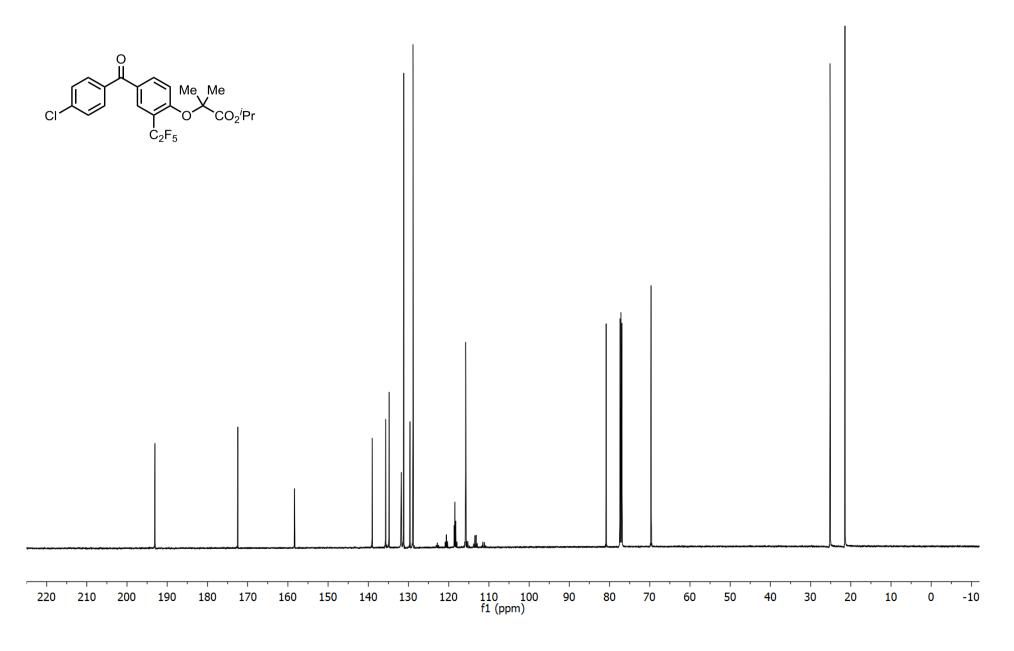
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)


¹H NMR of fenofibrate-derived thianthrenium salt (S9)

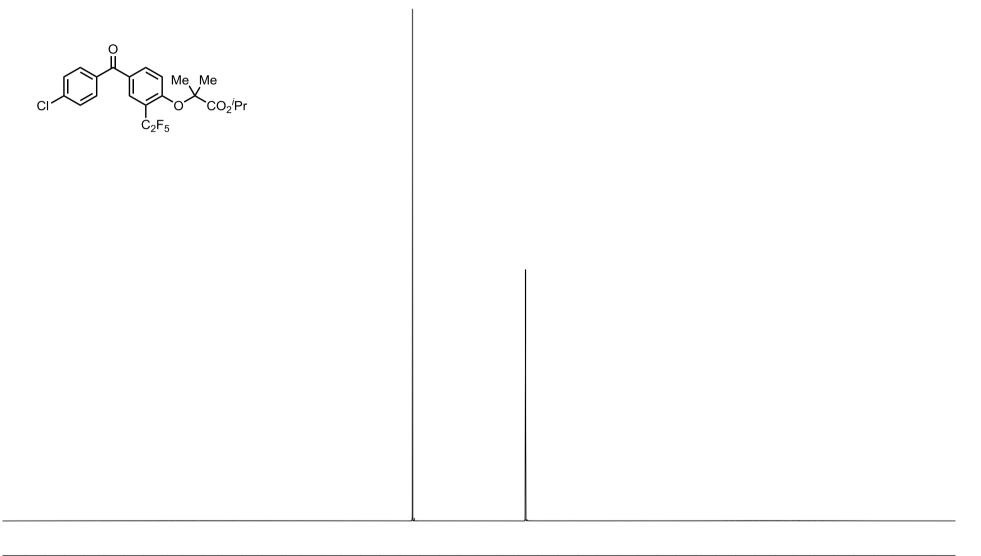
¹³C NMR of fenofibrate-derived thianthrenium salt (S9)



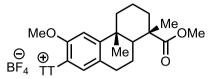
¹⁹F NMR of fenofibrate-derived thianthrenium salt (S9)

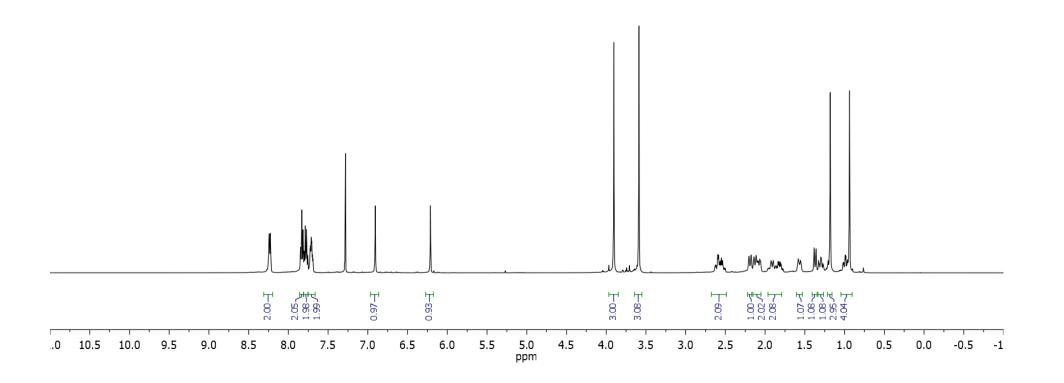


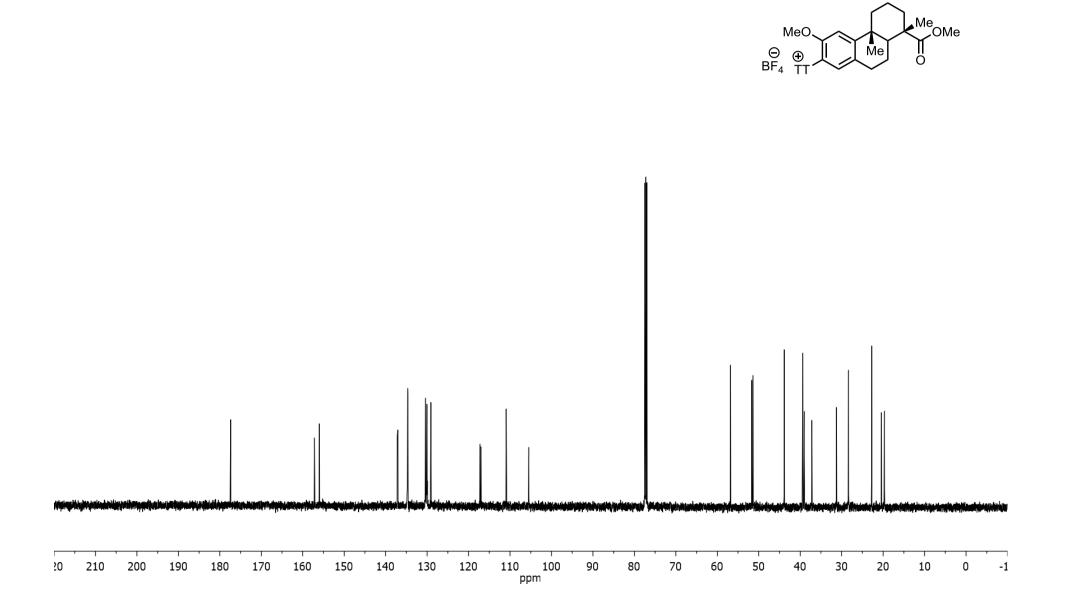
Т			' '	· · ·	· · ·	' '	· · ·	' '	' '	·	· · ·		· · ·	· · ·	· · ·	' '		· · ·	· · ·	' '	' '		· · ·	· · · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22


¹H NMR of C₂F₅-fenofibrate (11)

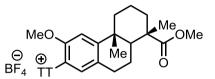
¹³C NMR of C₂F₅-fenofibrate (11)



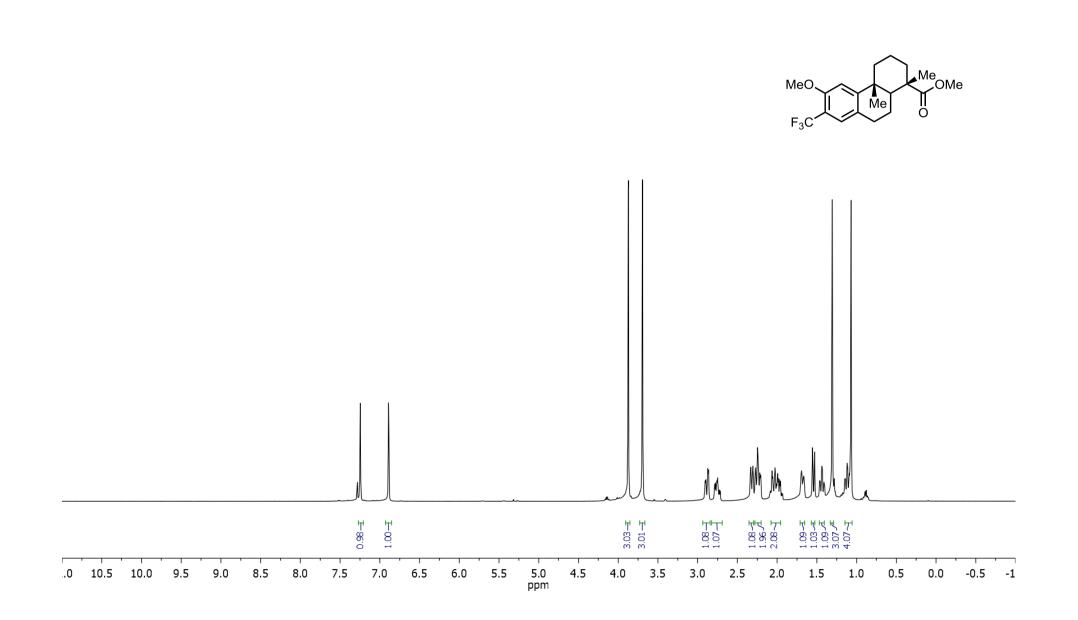

¹⁹F NMR of C₂F₅-fenofibrate (11)


				'	'	'		'		' '	'				' '				'	'			' '	· · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												f1 (ppm))											

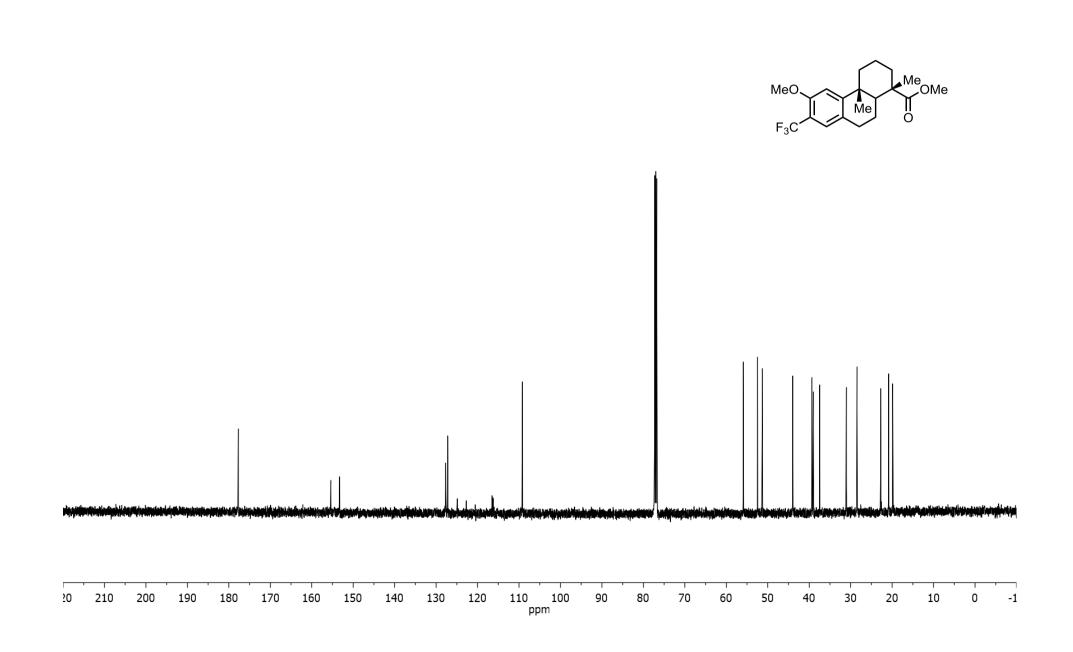
¹H NMR of CF₃-methyl-*O*-methylpodocarpat-derived thianthrenium salt (S10)



¹³C NMR of CF₃-methyl-*O*-methylpodocarpat-derived thianthrenium salt (S10)



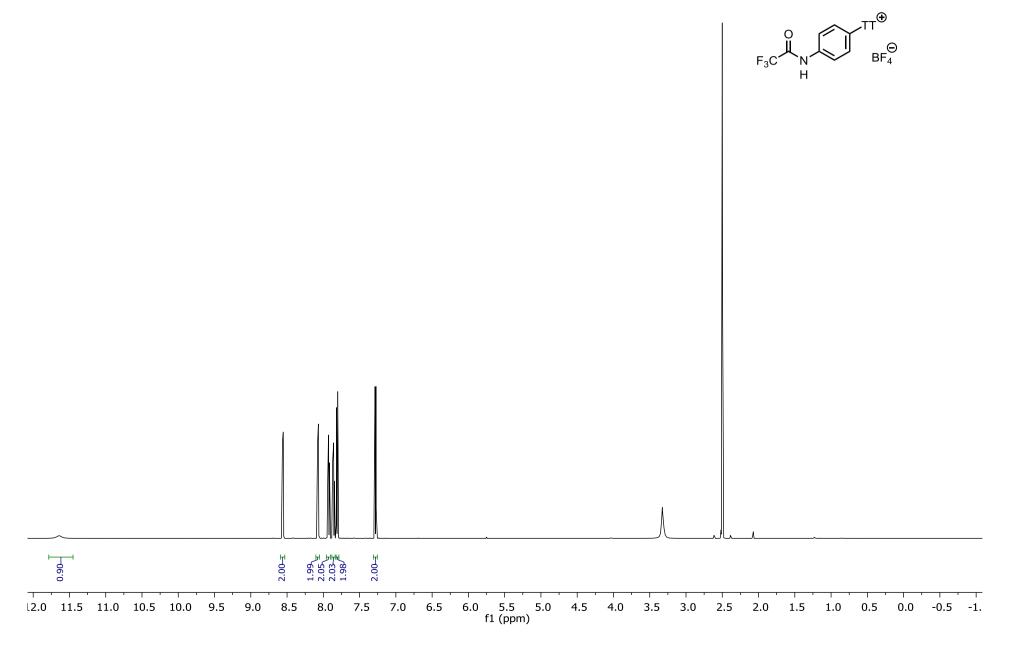
¹⁹F NMR of methyl-*O*-methylpodocarpat-derived thianthrenium salt (S10)



1		1											'			'				' '	'	' '		- T
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

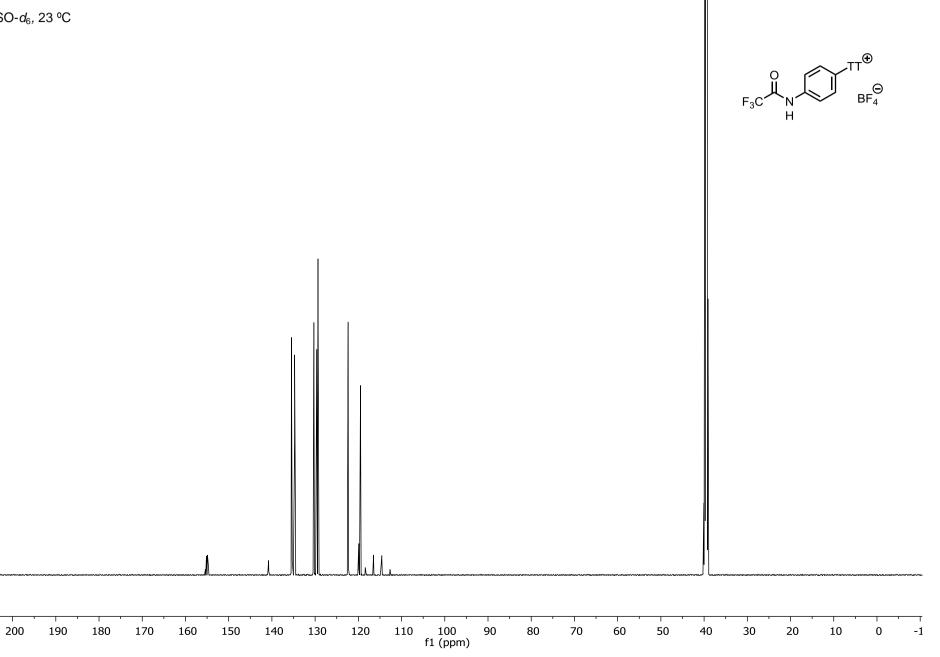

¹H NMR of CF₃-methyl-*O*-methylpodocarpat (12)

¹³C NMR of CF₃-methyl-*O*-methylpodocarpat (12)

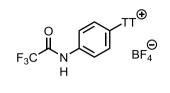


¹⁹F NMR of CF₃-methyl-*O*-methylpodocarpat (12)

	· · ·			· · ·	· · ·		· · ·	· ·			· · ·	· · ·				· I							· · ·	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												


¹H NMR of 2,2,2-trifluoro-*N*-phenylacetamide-derived thianthrenium salt (S11)

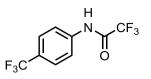
¹³C NMR of 2,2,2-trifluoro-*N*-phenylacetamide-derived thianthrenium salt (S11)

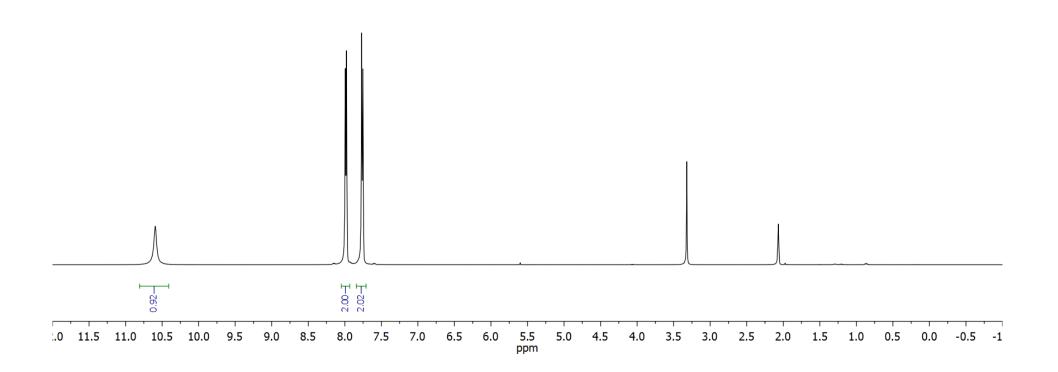

DMSO-*d*₆, 23 °C

.10

¹⁹F NMR of 2,2,2-trifluoro-*N*-phenylacetamide-derived thianthrenium salt (S11)

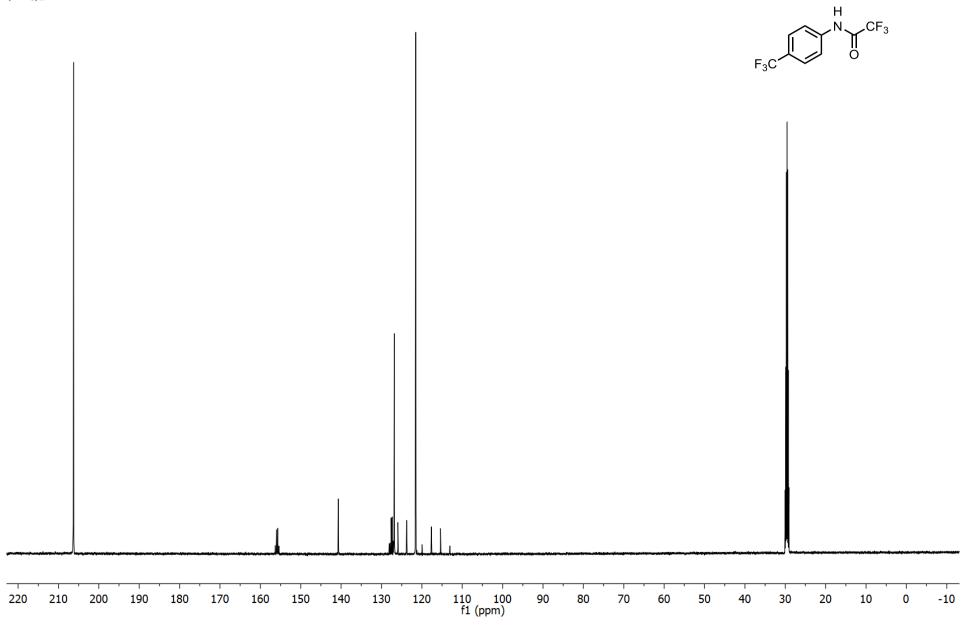
DMSO-*d*₆, 23 °C





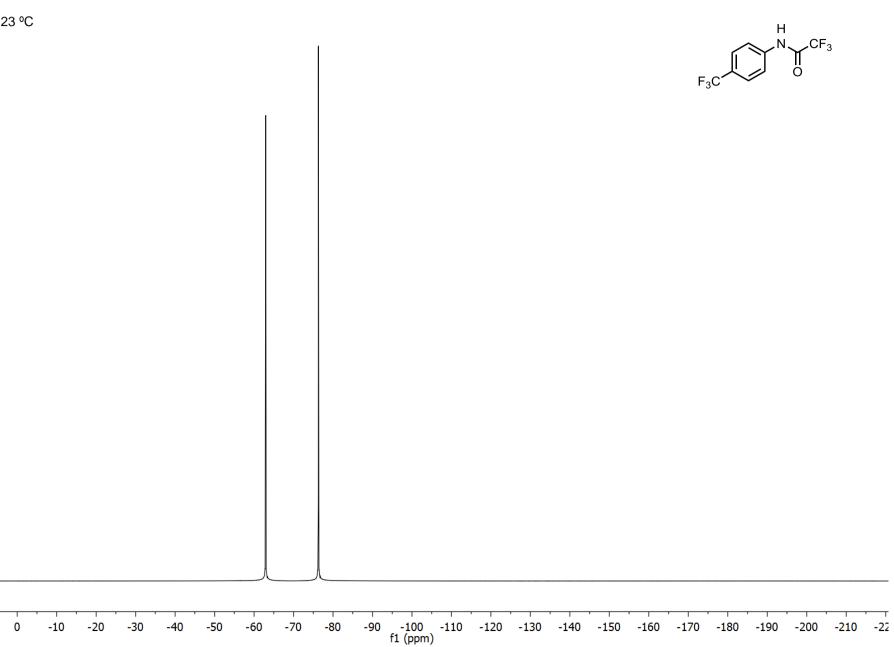
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2; f1 (ppm)

¹H NMR of 2,2,2-trifluoro-*N*-(4-(trifluoromethyl)phenyl)acetamide (13)

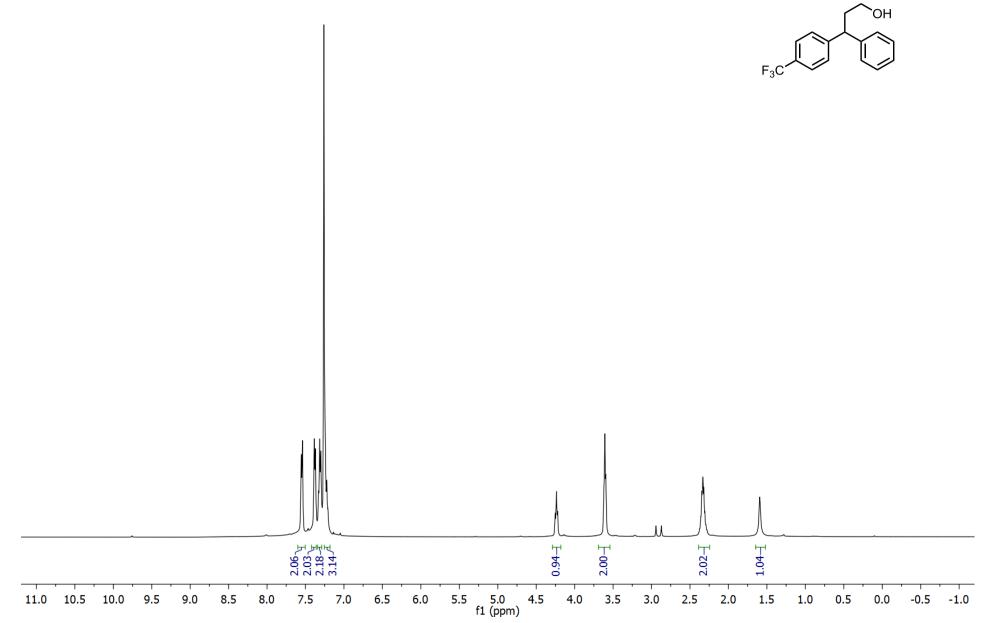

(CD₃)₂CO, 23 °C

¹³C NMR of 2,2,2-trifluoro-*N*-(4-(trifluoromethyl)phenyl)acetamide (13)

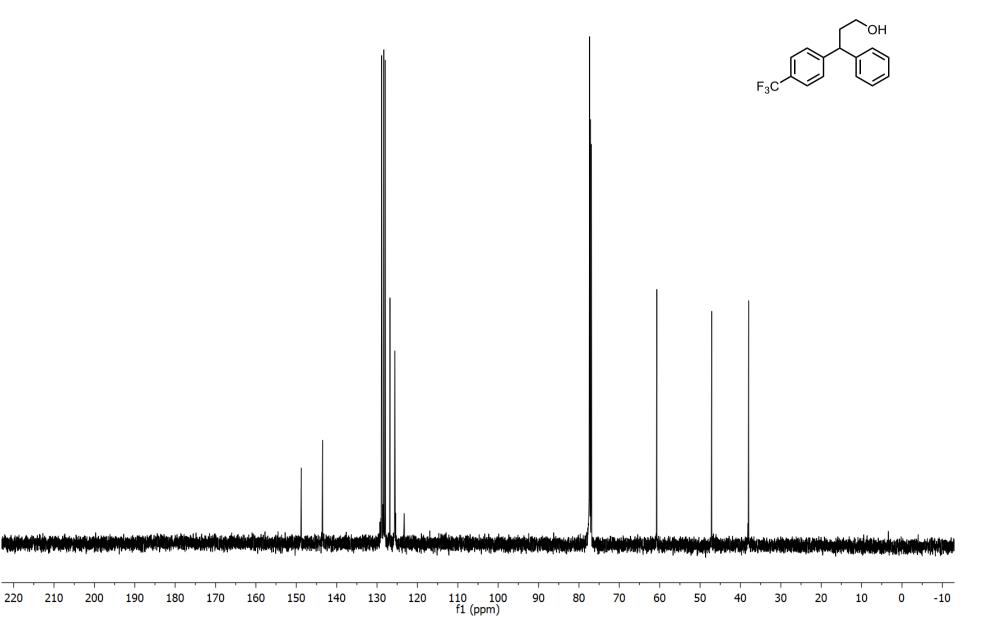
(CD₃)₂CO, 23 °C



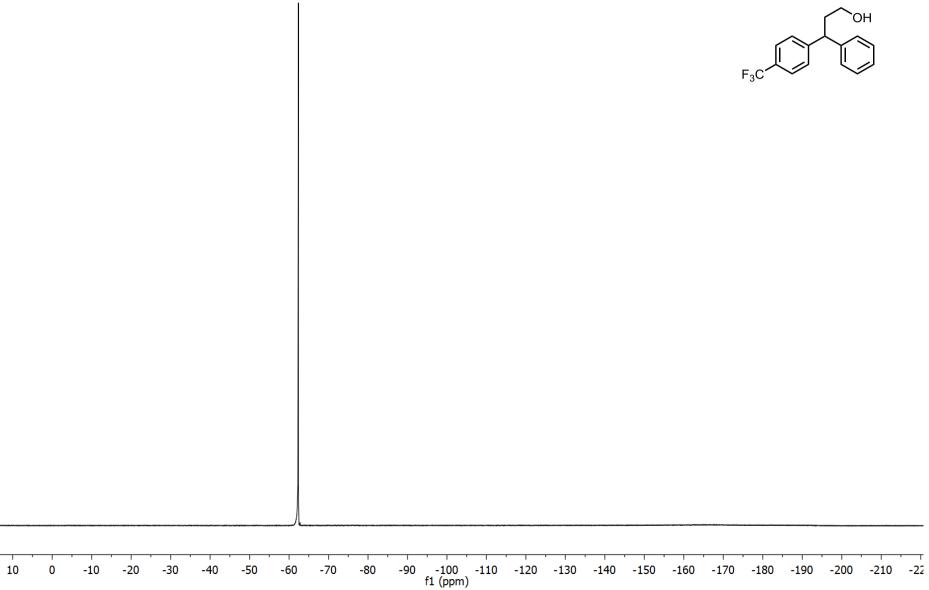
¹⁹F NMR of 2,2,2-trifluoro-*N*-(4-(trifluoromethyl)phenyl)acetamide (13)

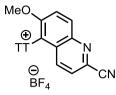

(CD₃)₂CO, 23 °C

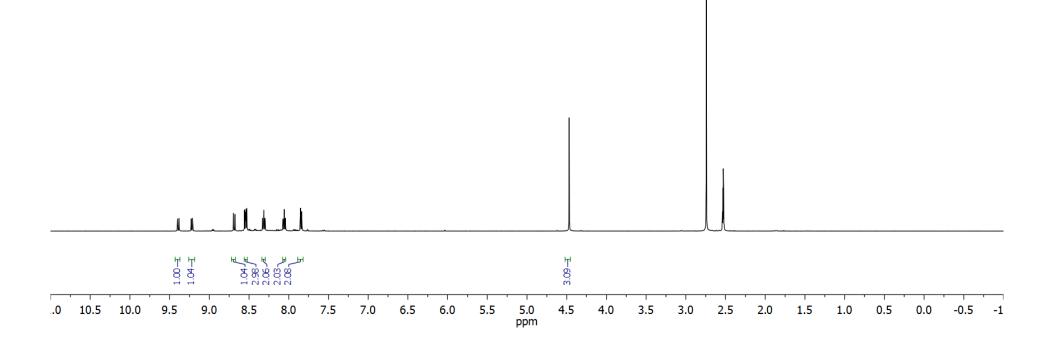
20


10

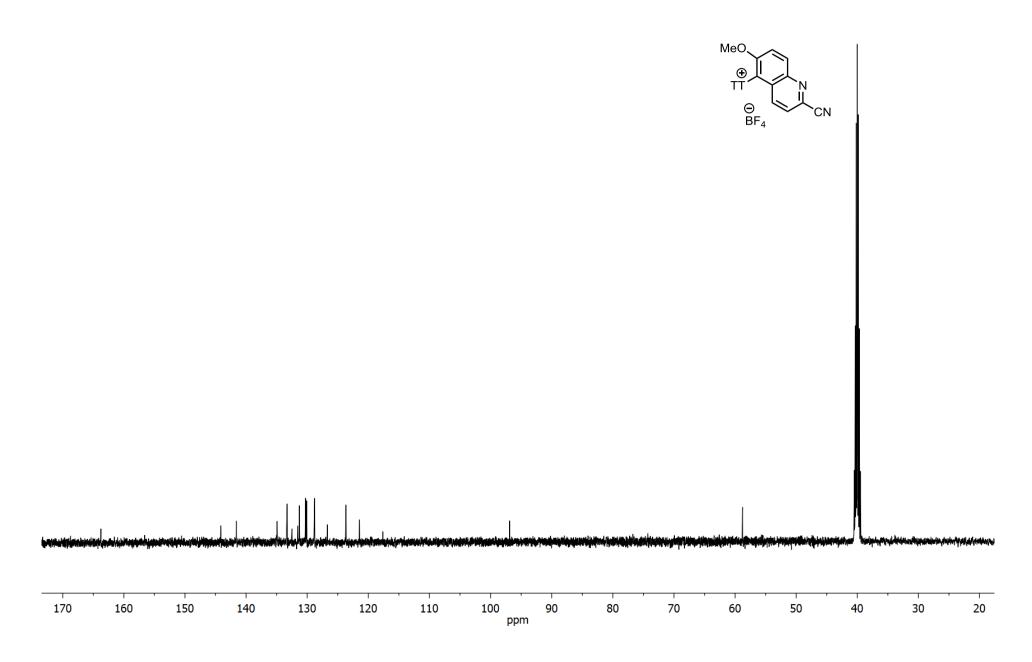
¹H NMR of 3-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)


¹³C NMR of 3-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)

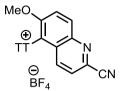

¹⁹F NMR of 3-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol (14)


CDCl₃, 23 °C

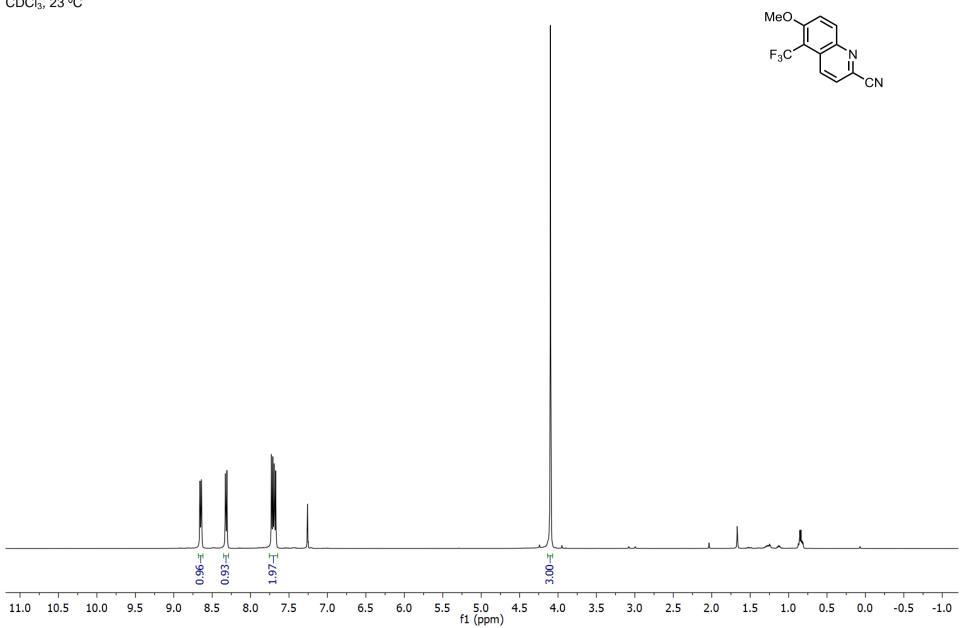
20



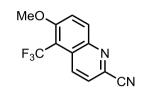
¹H NMR of 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)

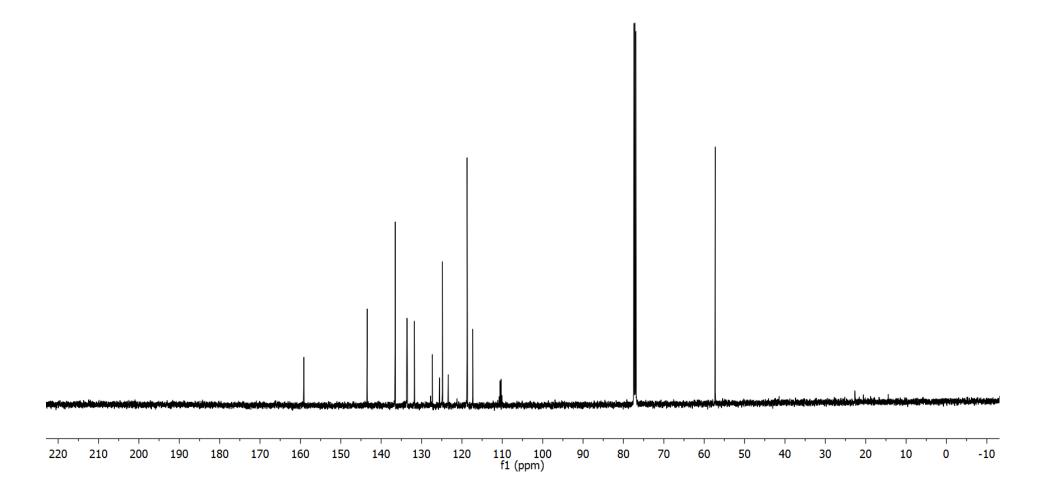


¹³C NMR of 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)

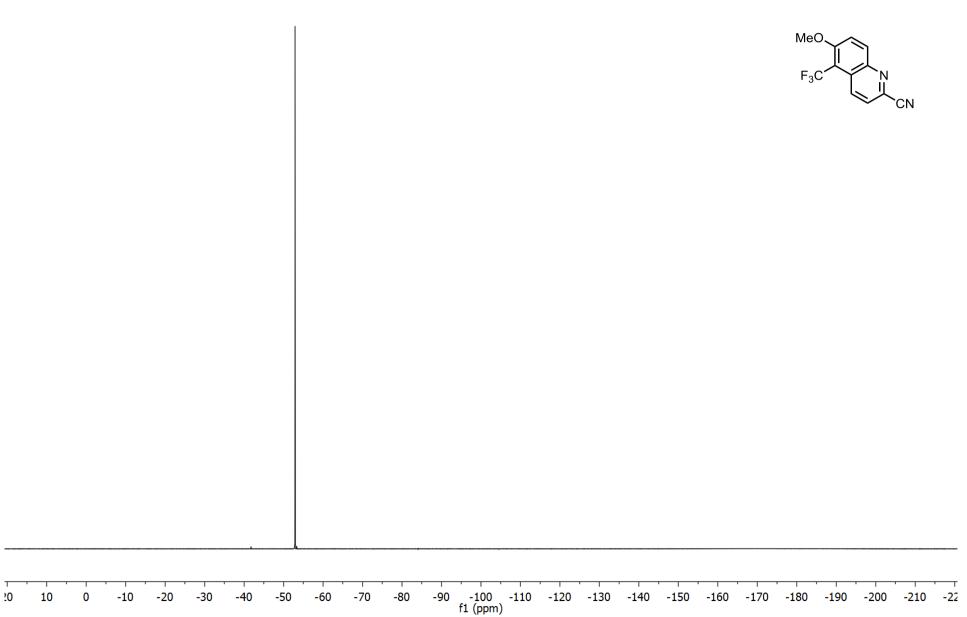


¹⁹F NMR of 6-methoxy-quinoline-2-carbonitrile-derived thianthrenium salt (S13)

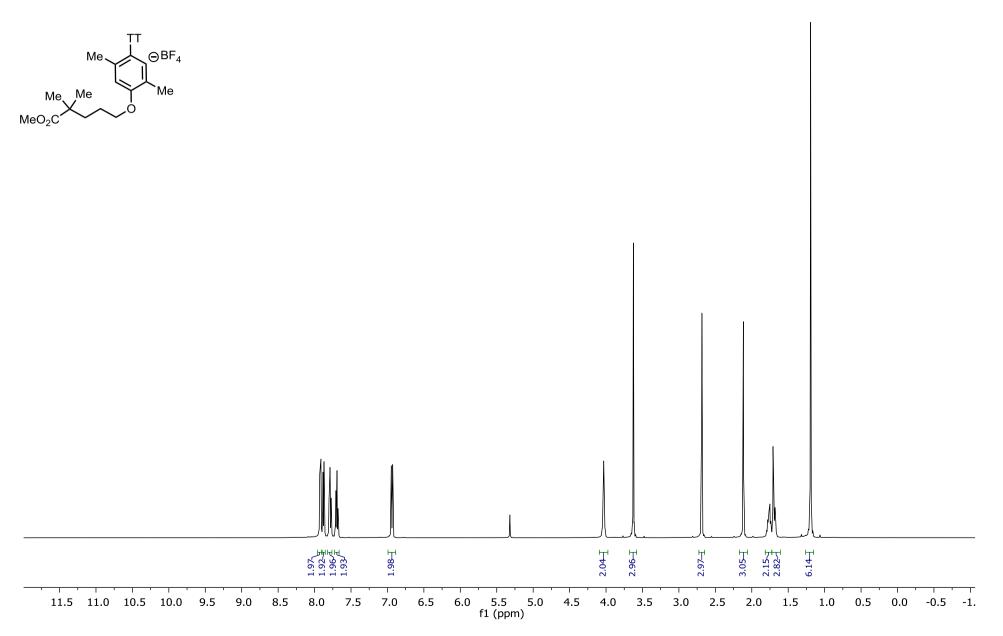



Т			1	· · ·	· · · ·		· · · ·		· · · ·	· · ·	·	· · ·	· · ·	· · · ·	· · · ·	· · · ·	· · · ·	· · · ·	· · ·	· · ·	· · ·		<u> </u>	· · · · · ·	T
20)	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 ppm	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

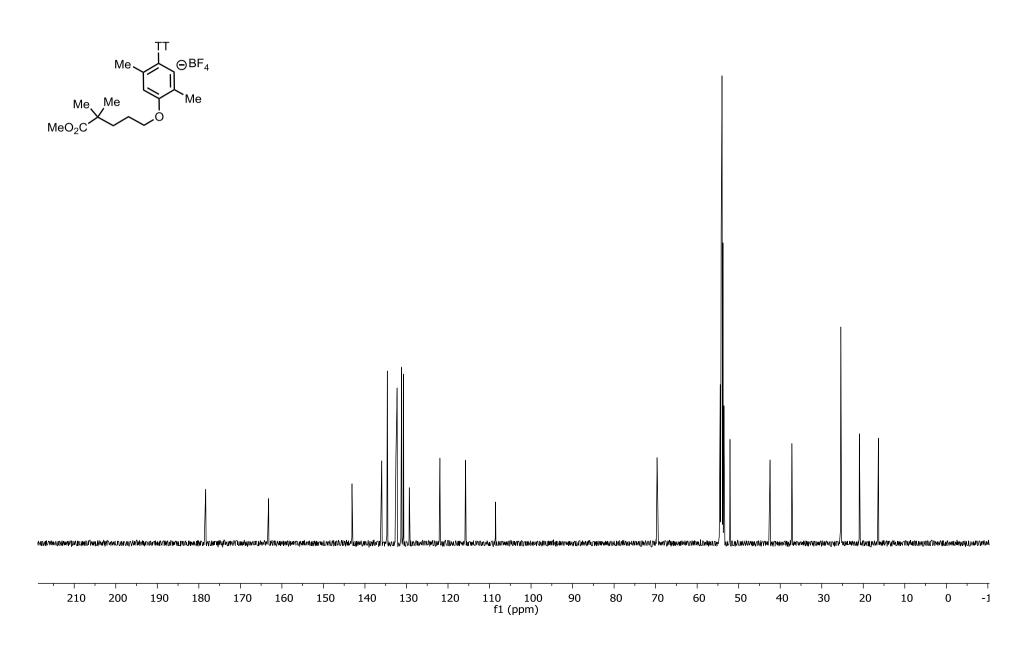
¹H NMR of 6-methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)



¹³C NMR of 6-methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)

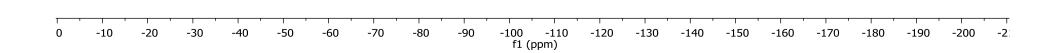


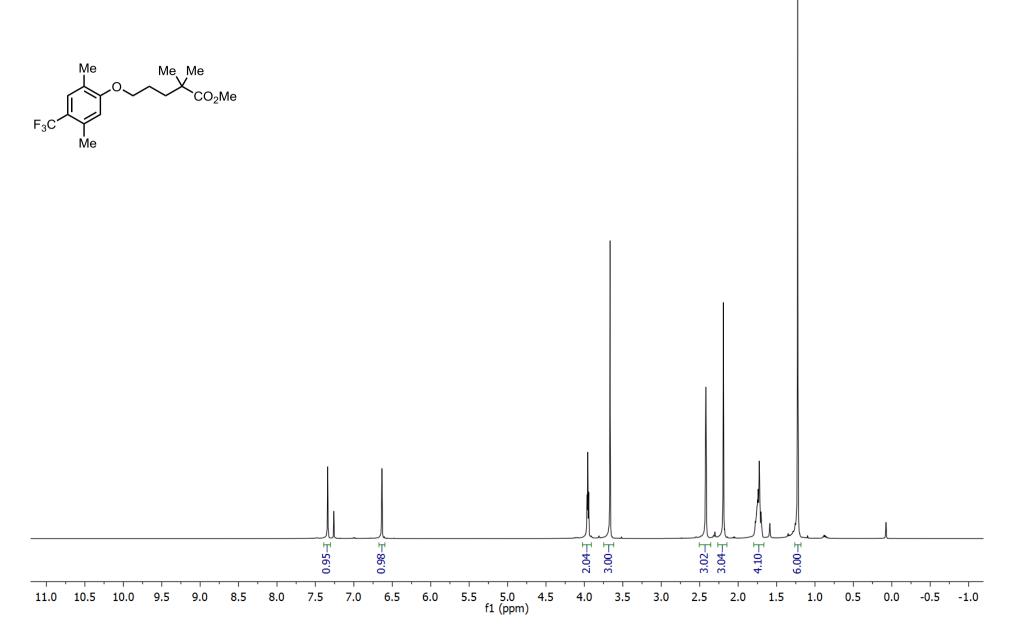
¹⁹F NMR of 6-methoxy-5-(trifluoromethyl)quinoline-2-carbonitrile (15)


¹H NMR of gemfibrozil methyl ester-derived thianthrenium salt (S14)

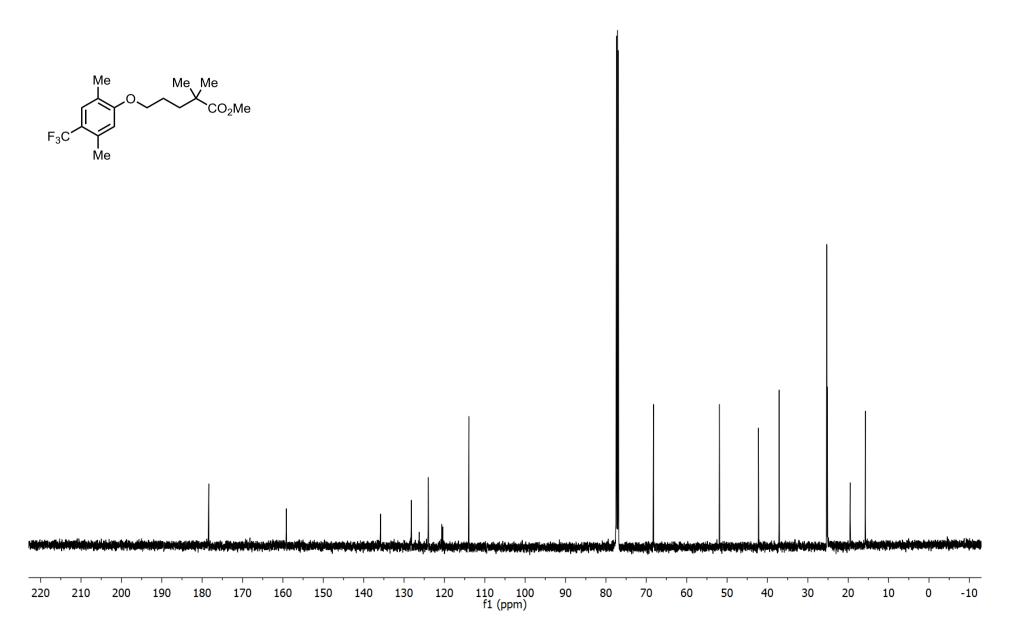
CD₂Cl₂, 23 °C

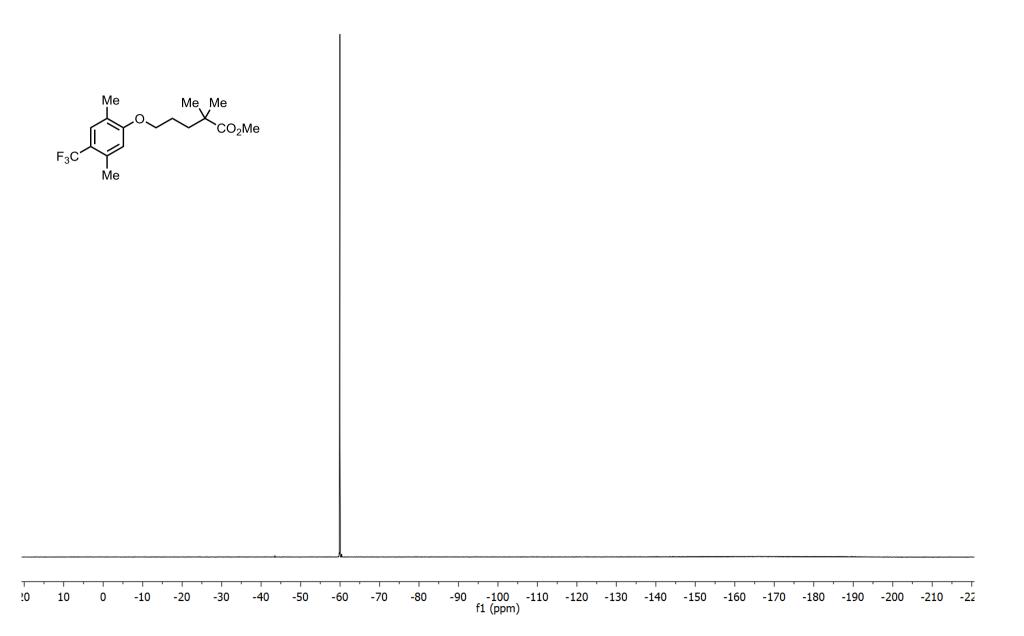
¹³C NMR of gemfibrozil methyl ester-derived thianthrenium salt (S14)

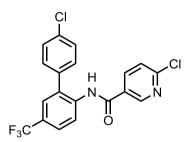

CD₂Cl₂, 23 °C

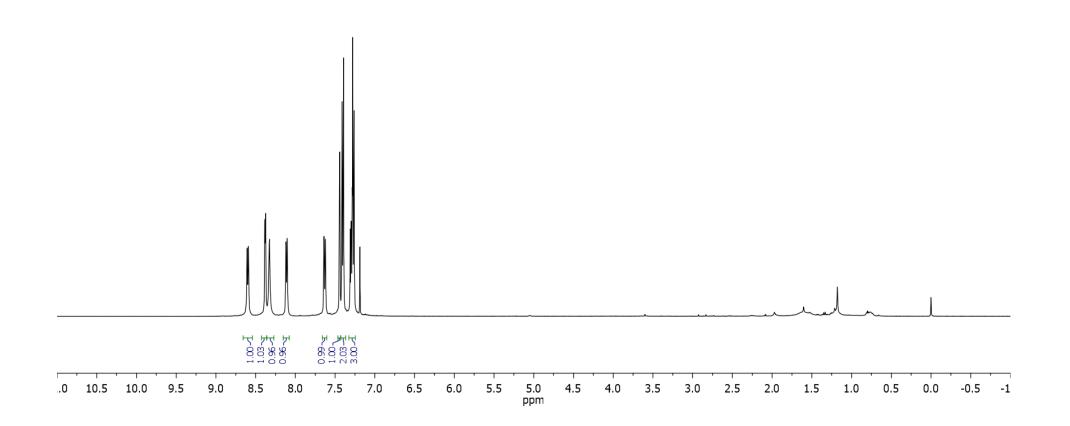

¹⁹F NMR of gemfibrozil methyl ester-derived thianthrenium salt (S14)

CD₂Cl₂, 23 °C

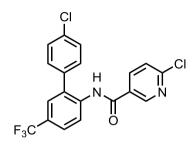

 ΘBF_4 Me Me MeO₂C Me

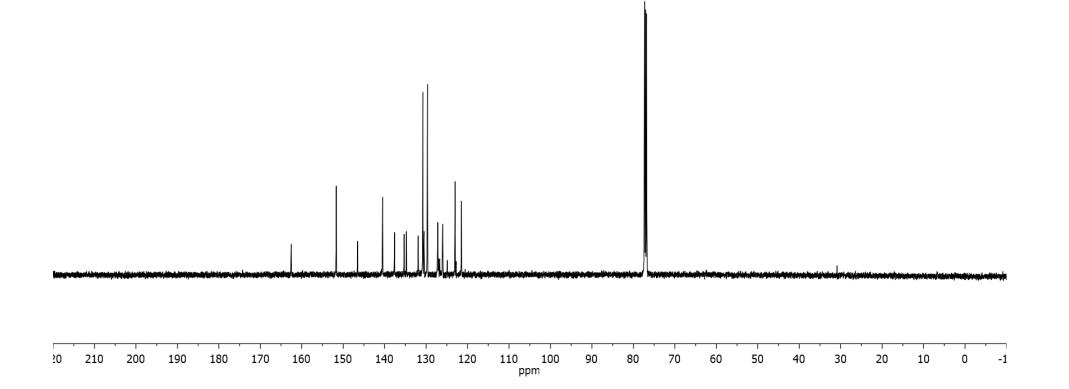

¹H NMR of CF₃-gemfibrozil methyl ester (16)

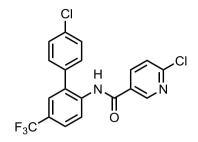

¹³C NMR of CF₃-gemfibrozil methyl ester (16)



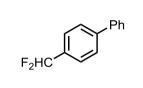
¹⁹F NMR of CF₃-gemfibrozil methyl ester (16)

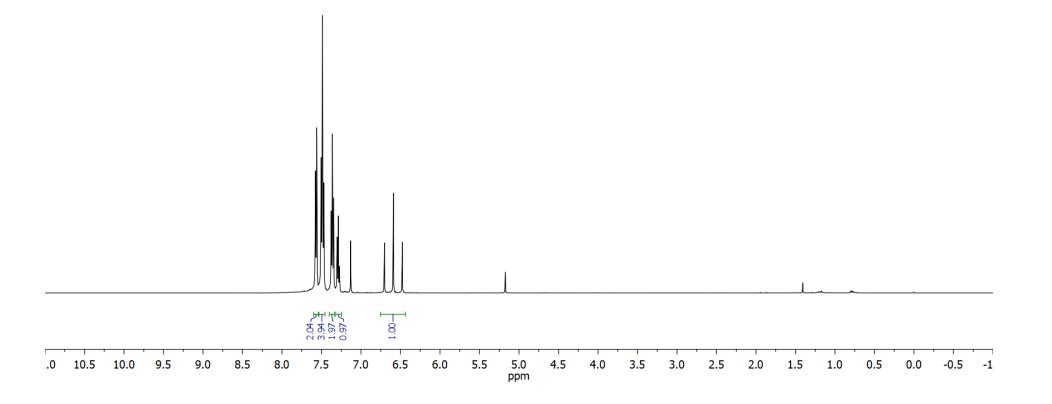


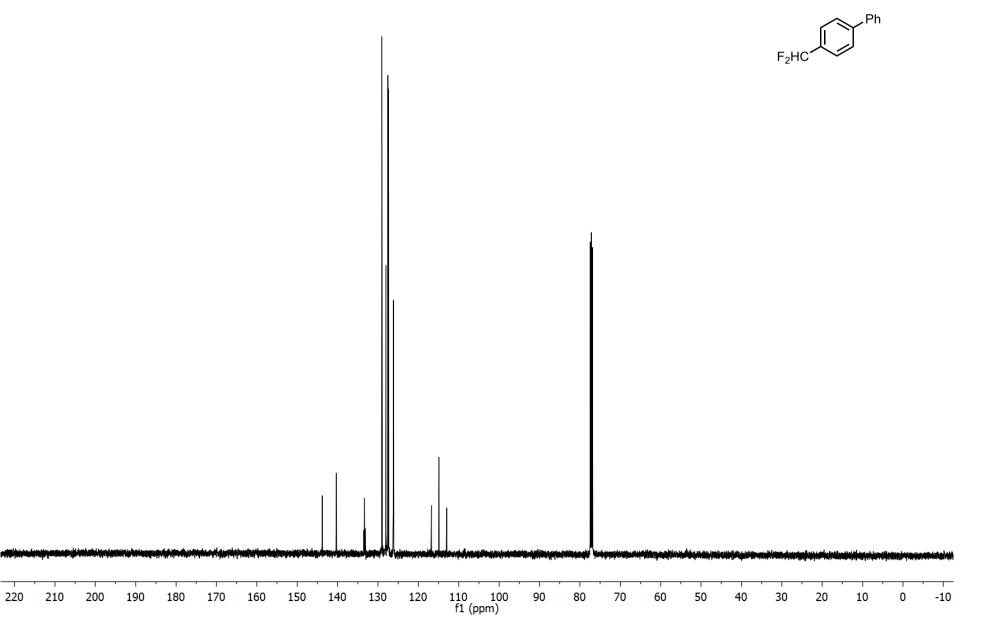

¹H NMR of CF₃-boscalid (17)



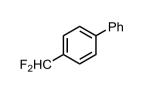
¹³C NMR of CF₃-boscalid (17)



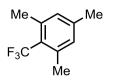

¹⁹F NMR of CF₃-boscalid (17)

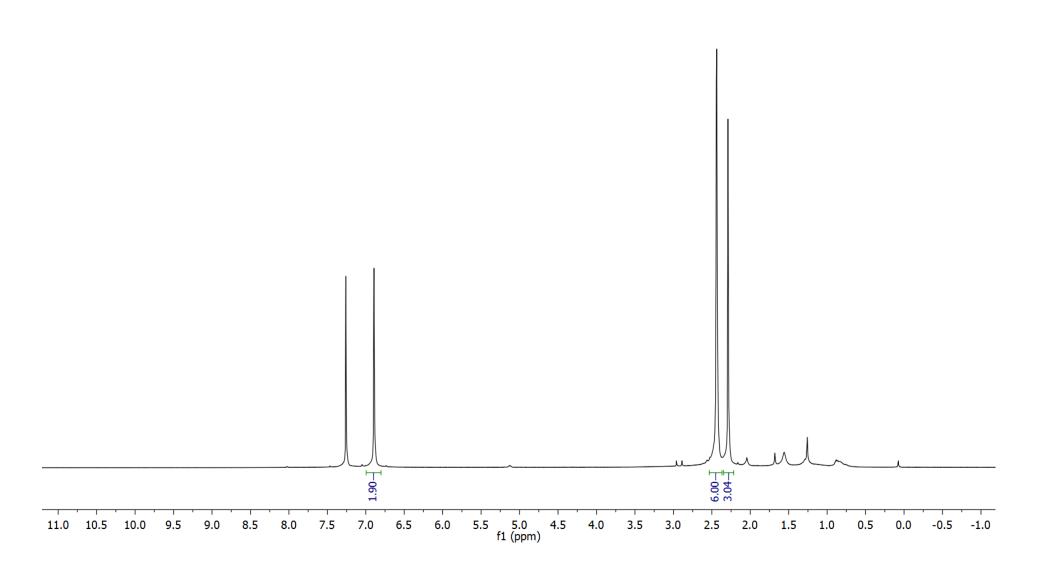

	· · ·	· · ·			· · ·		· · ·	· I	· I														· · ·	· · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

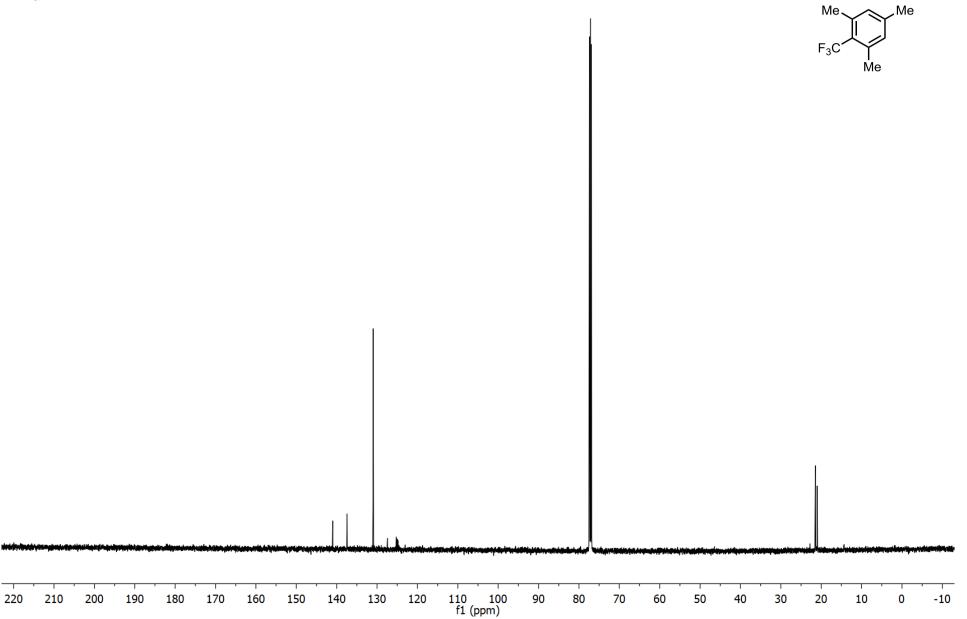
¹H NMR of 4-(difluoromethyl)-1,1'-biphenyl (18)



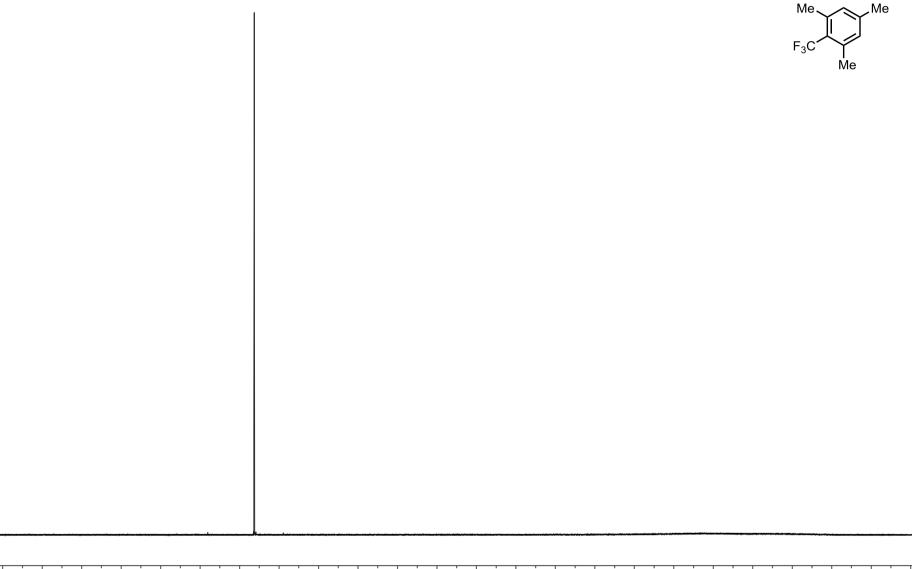
¹³C NMR of 4-(difluoromethyl)-1,1'-biphenyl (18)



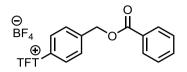

¹⁹F NMR of 4-(difluoromethyl)-1,1'-biphenyl (18)

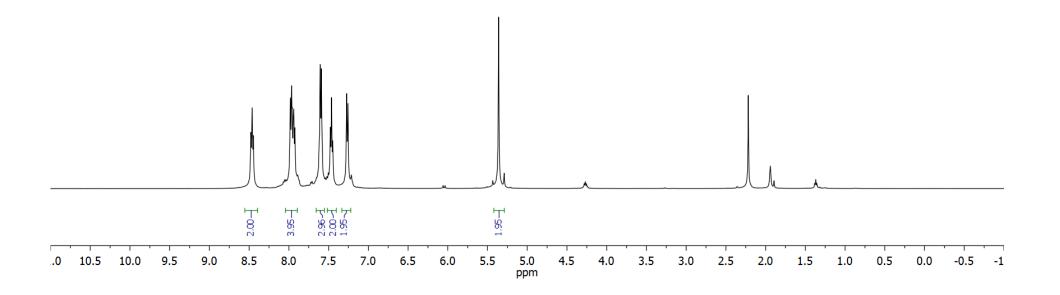

T		1	· · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· .	' '	· · ·	· · ·	· · ·	· · ·	· · ·	' '	· · ·	· · ·	· · ·	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

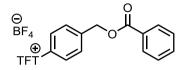
¹H NMR of 1,3,5-trimethyl-2-(trifluoromethyl)benzene (19)

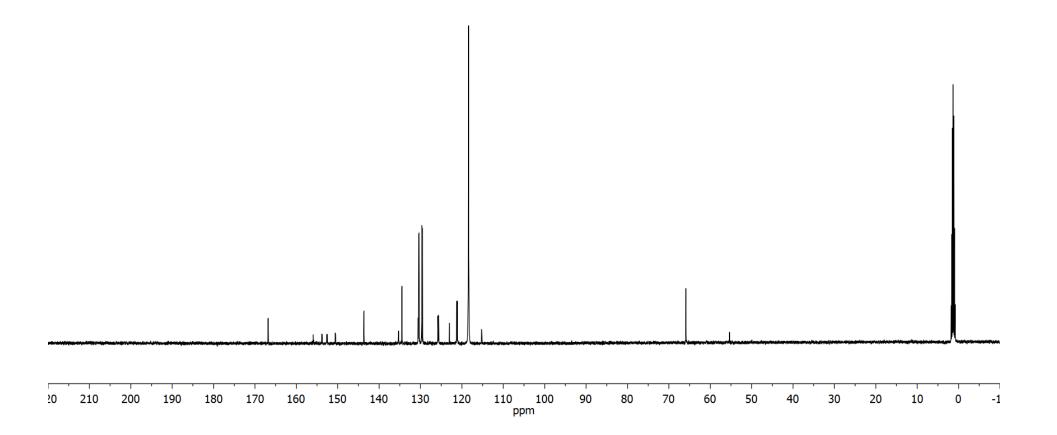


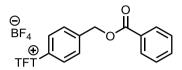
¹³C NMR of 1,3,5-trimethyl-2-(trifluoromethyl)benzene (19)

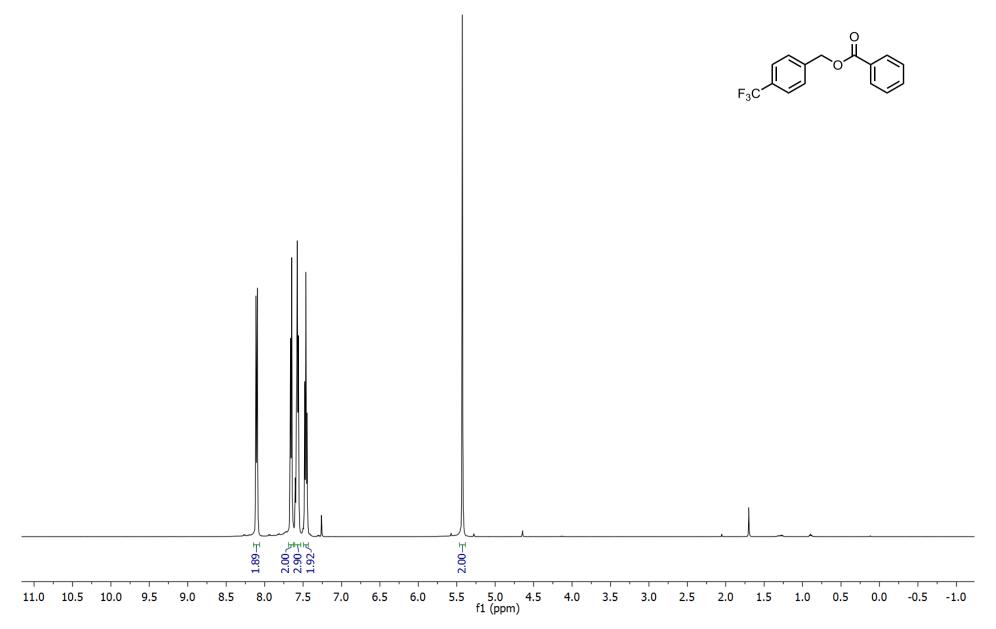



¹⁹F NMR of 1,3,5-trimethyl-2-(trifluoromethyl)benzene (19)

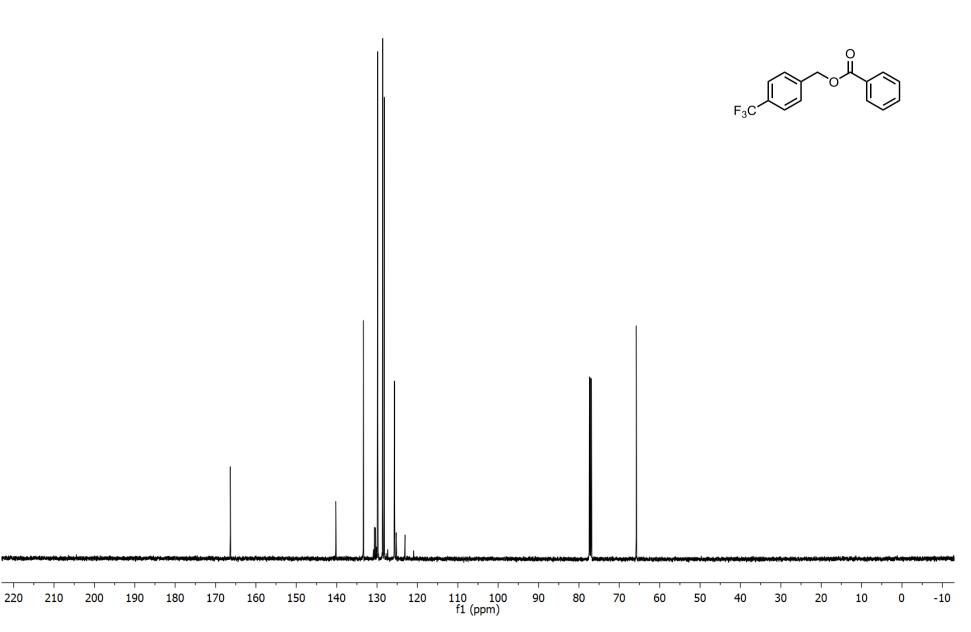

						· ·	· ·			· ·	· ·	· ·	· ·			· I				· · ·		· I		
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												f1 (ppm)											


¹H NMR of benzyl benzoate-derived tetrafluorothianthreunium salt (S17)

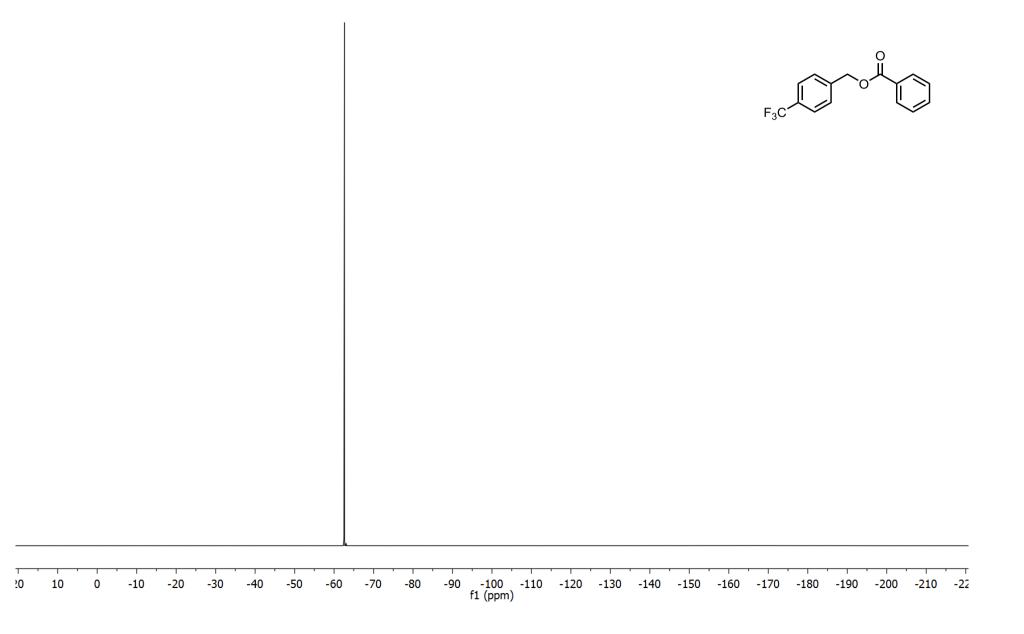

¹³C NMR of benzyl benzoate-derived tetrafluorothianthreunium salt (S17)

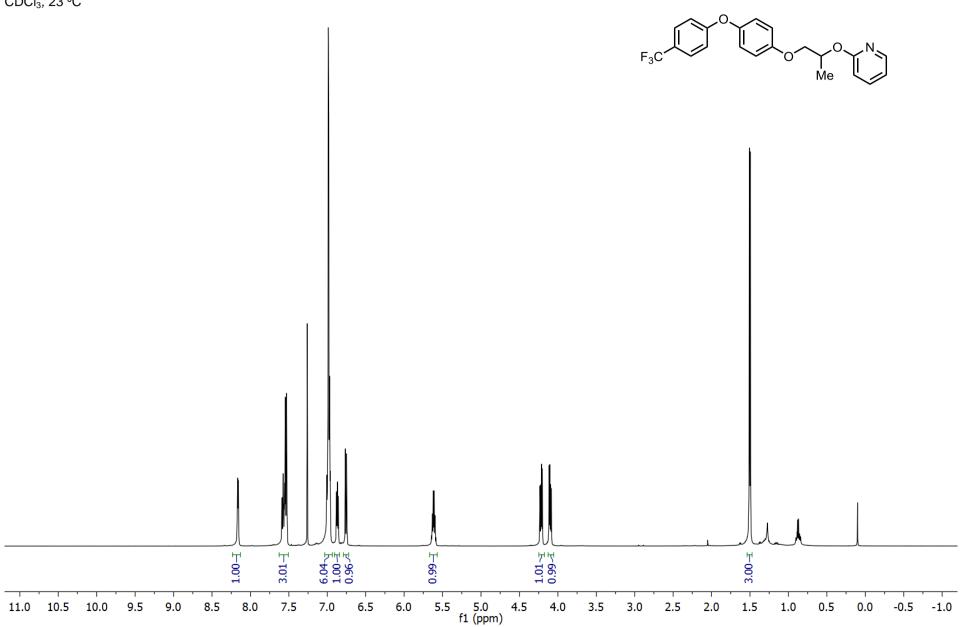

¹⁹F NMR of benzyl benzoate-derived tetrafluorothianthreunium salt (S17)

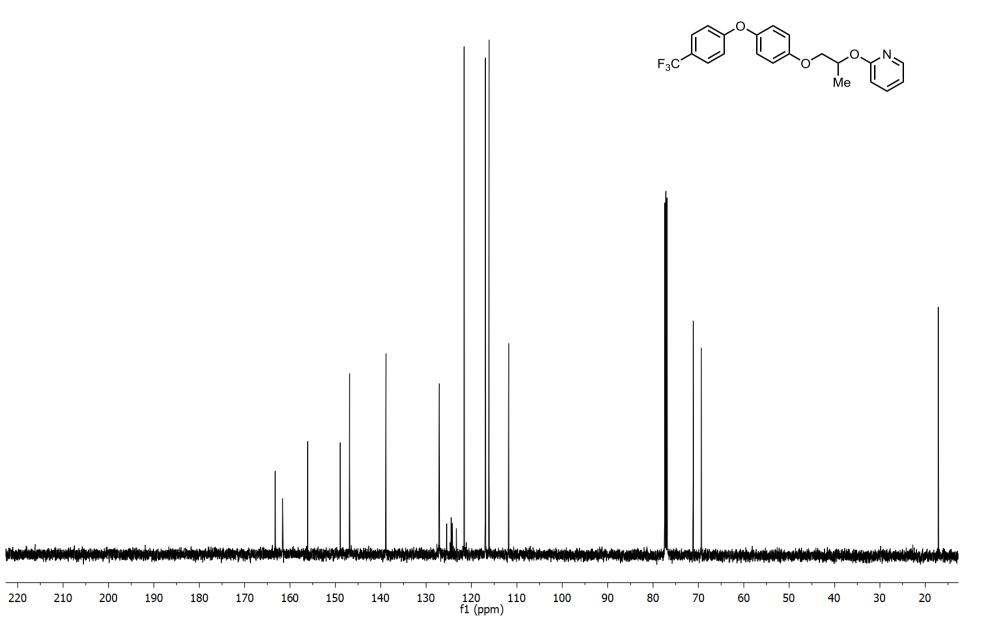
CD₃CN, 23 ºC



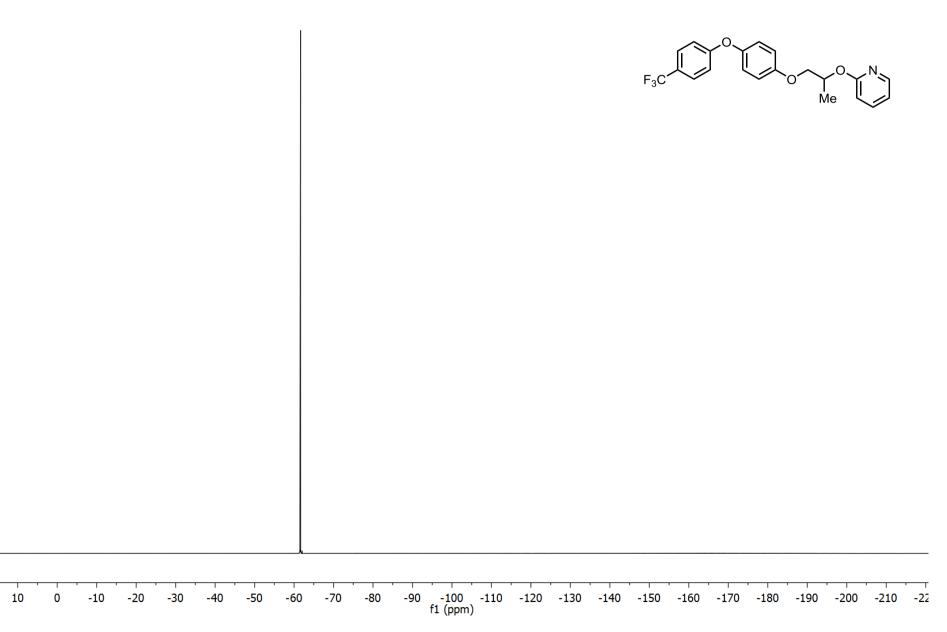
1		1							· · ·							· ·			'					
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

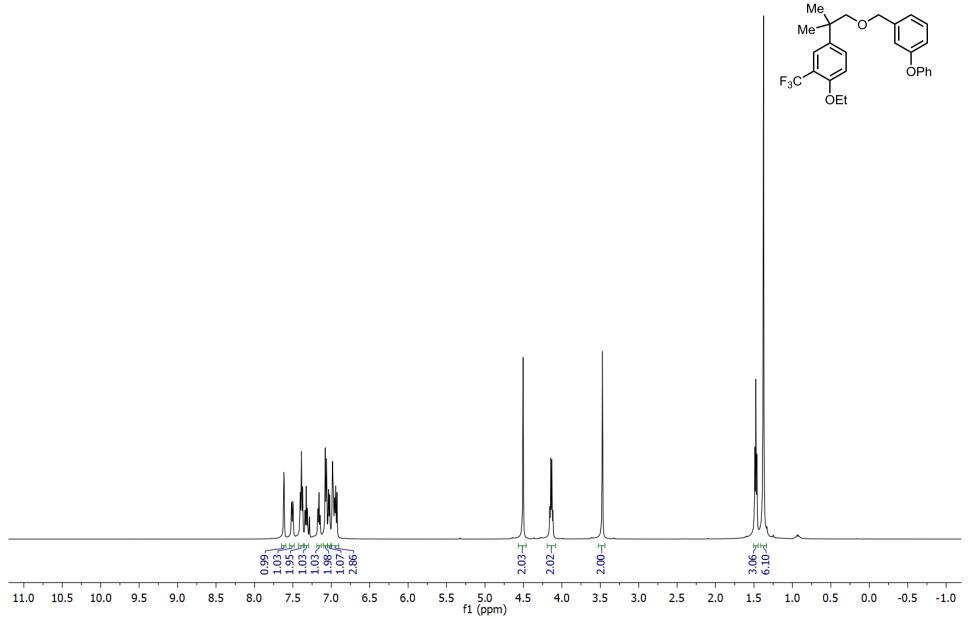

¹H NMR of 4-(trifluoromethyl)benzyl benzoate (20)


¹³C NMR of 4-(trifluoromethyl)benzyl benzoate (20)

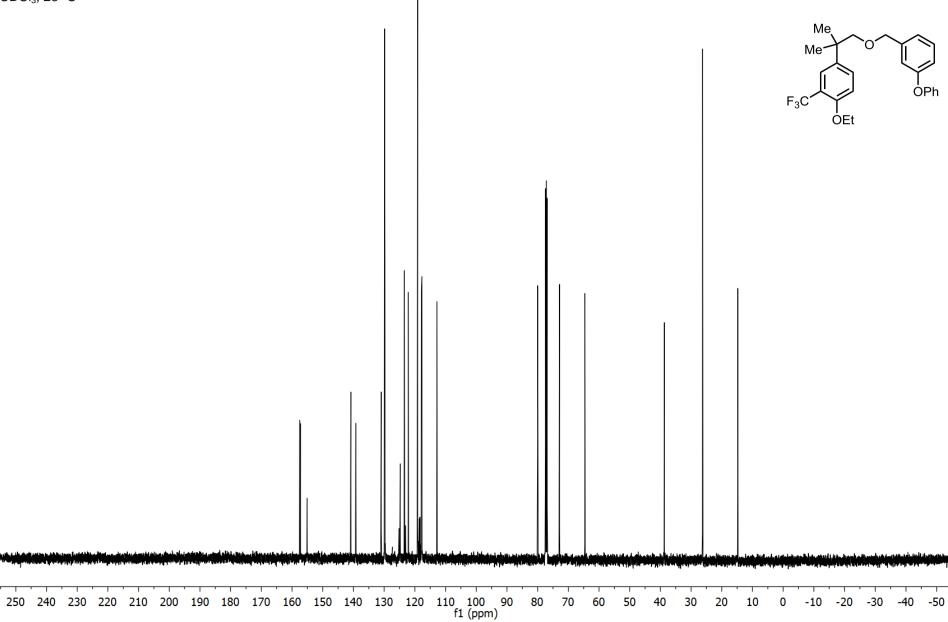

¹⁹F NMR of 4-(trifluoromethyl)benzyl benzoate (20)

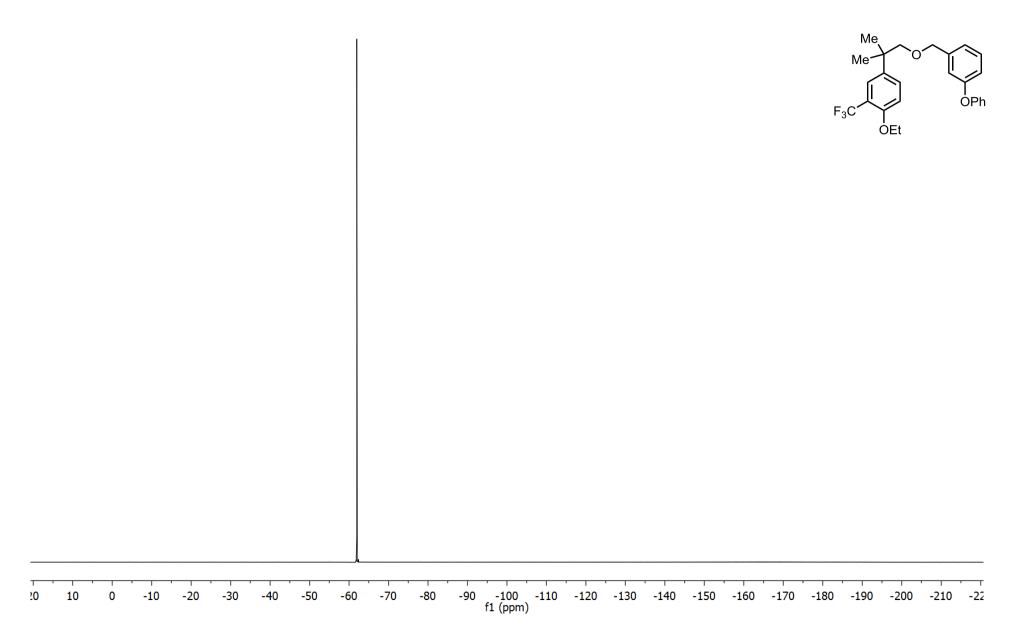
¹H NMR of CF₃-pyriproxyfen (21)

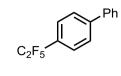

¹³C NMR of CF₃-pyriproxyfen (21)

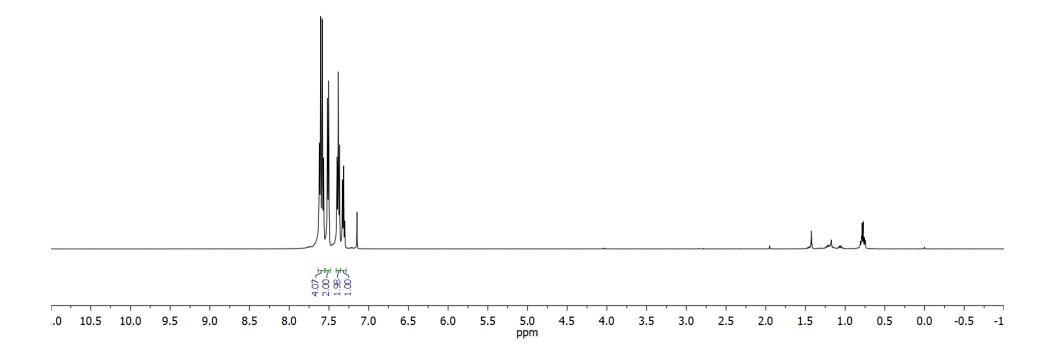

¹⁹F NMR of CF₃-pyriproxyfen (21)

CDCl₃, 23 °C

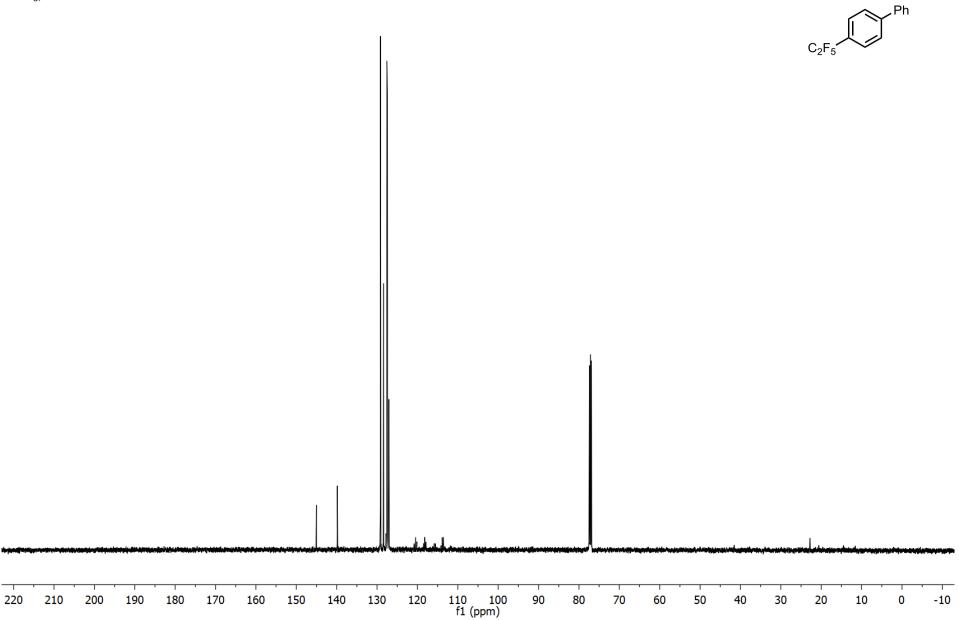

20


¹H NMR of CF₃-etofenprox (22)


¹³C NMR of CF₃-etofenprox (22)

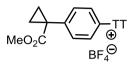


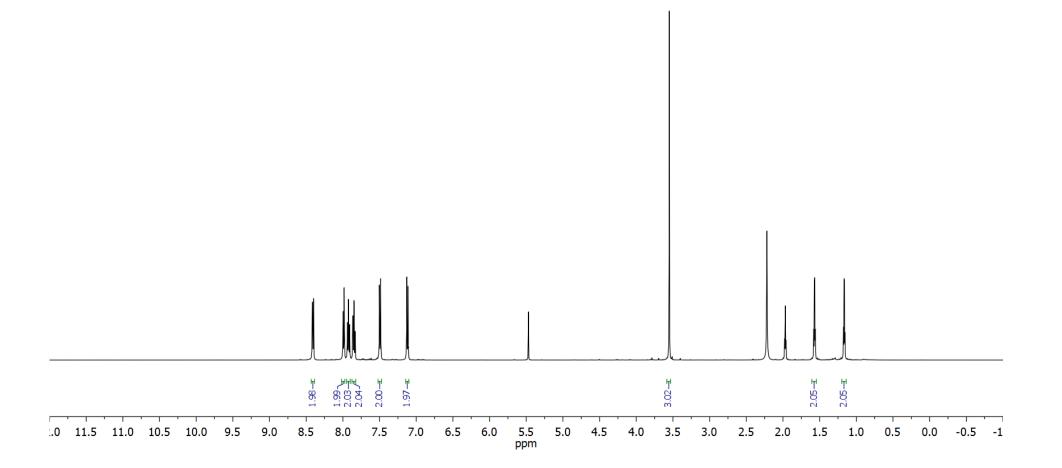
¹⁹F NMR of CF₃-etofenprox (22)

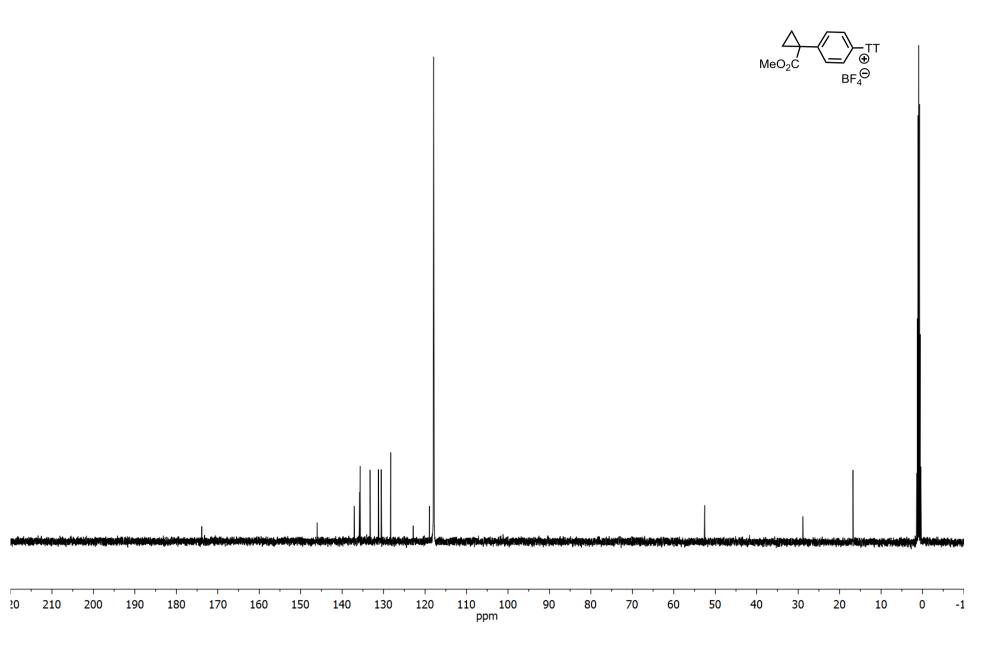


¹H NMR of 4-(perfluoroethyl)-1,1'-biphenyl (23)

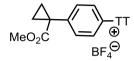
¹³C NMR of 4-(perfluoroethyl)-1,1'-biphenyl (23)



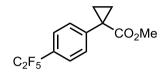

¹⁹F NMR of 4-(perfluoroethyl)-1,1'-biphenyl (23)

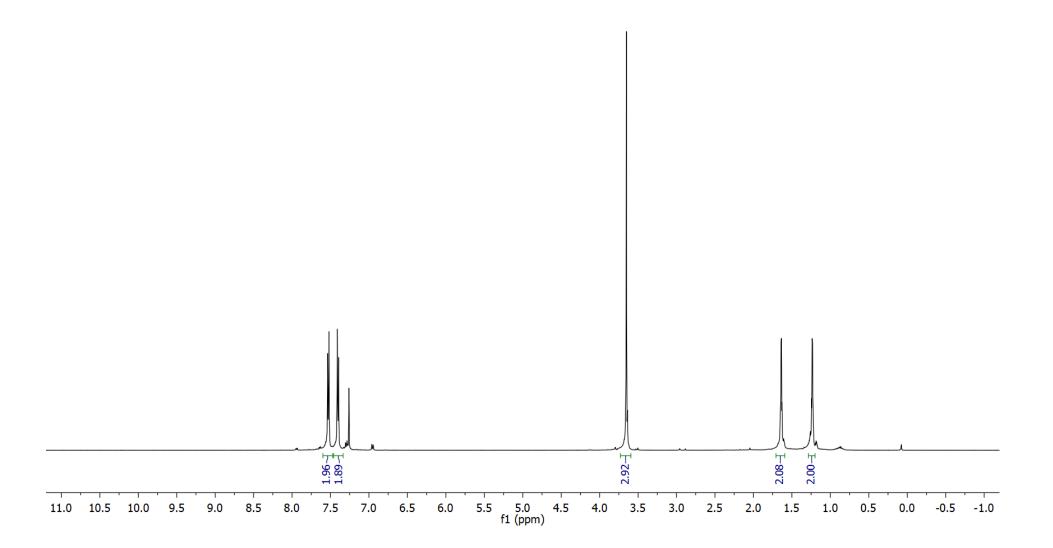

	' '	' '		'				'	'		'		'	'							'	'	'	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												f1 (ppm												

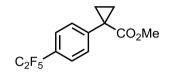
¹H NMR of methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)

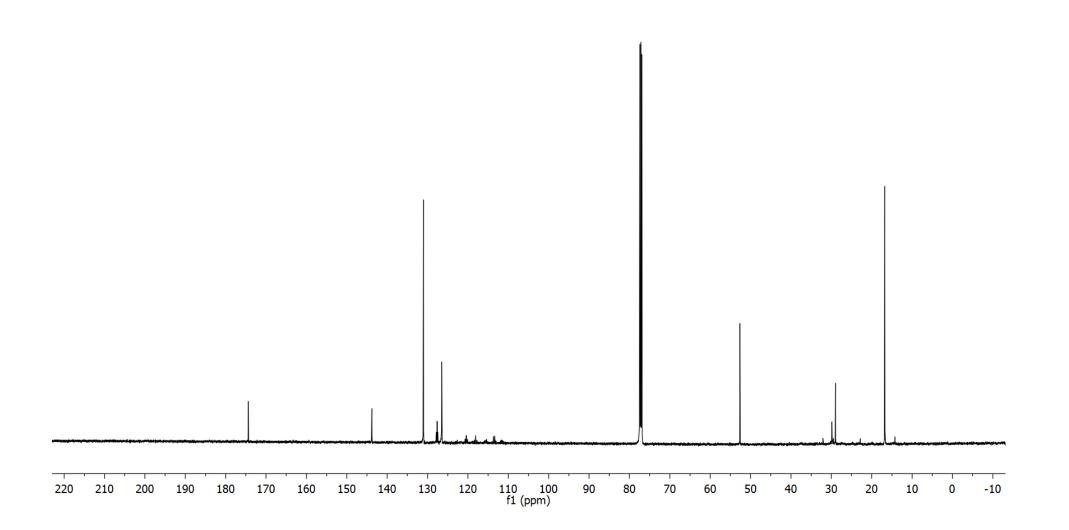


¹³C NMR of methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)


¹⁹F NMR of methyl 1-phenylcyclopropane-1-carboxylate-derived thianthrenium salt (S20)


CD₃CN, 23 ºC


																				, _ ,				
													· I										· 1	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

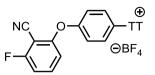

¹H NMR of methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)

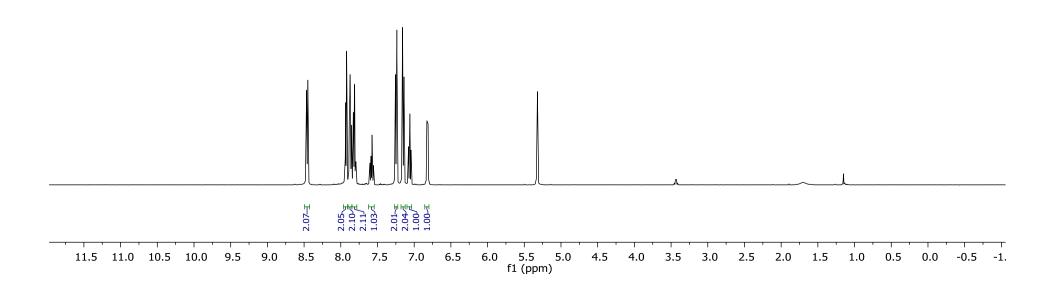
¹³C NMR of methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)


¹⁹F NMR of methyl 1-(4-(perfluoroethyl)phenyl)cyclopropane-1-carboxylate (24)

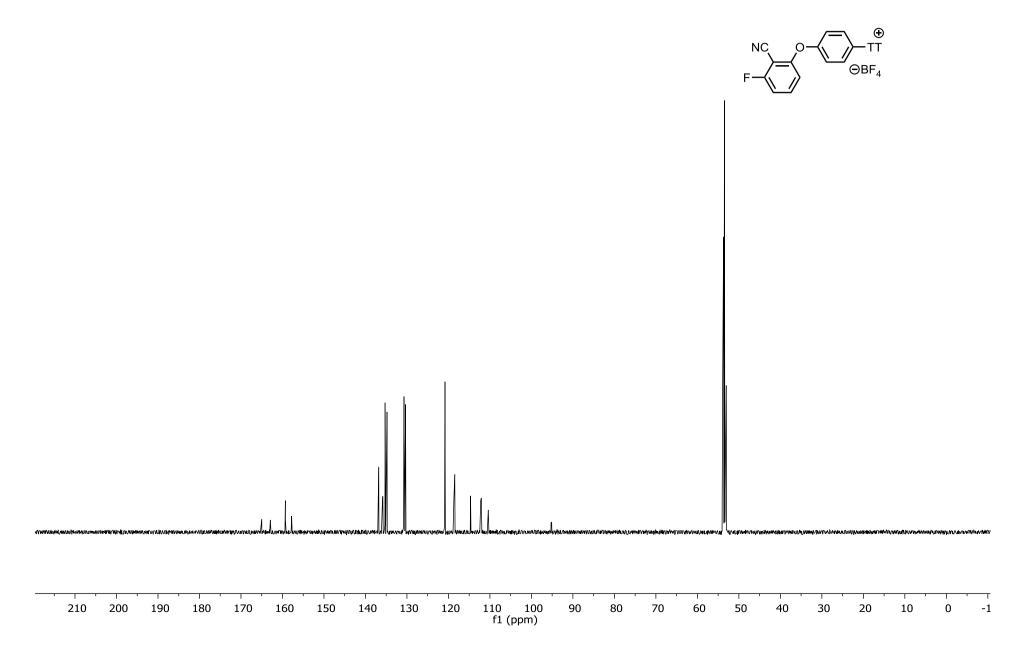
CDCl₃, 23 °C

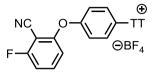
20

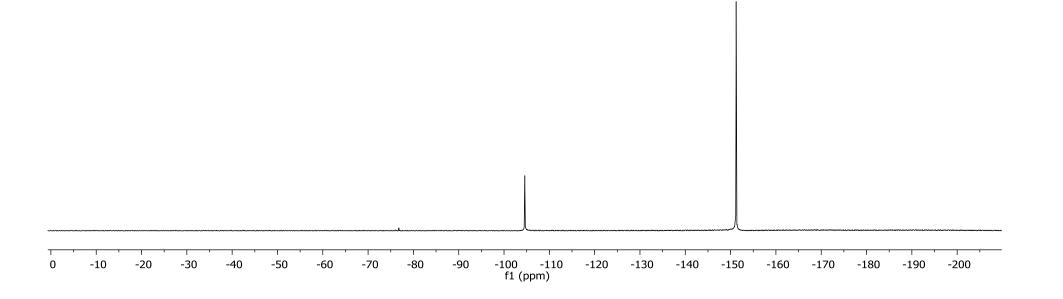

10

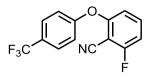

0

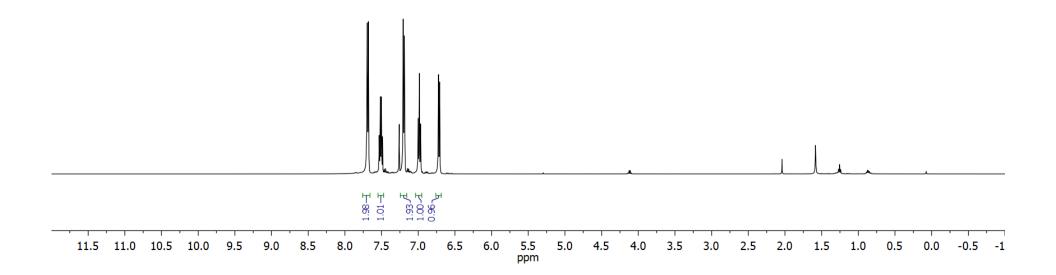
¹H NMR of 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)


CD₂Cl₂, 23 °C

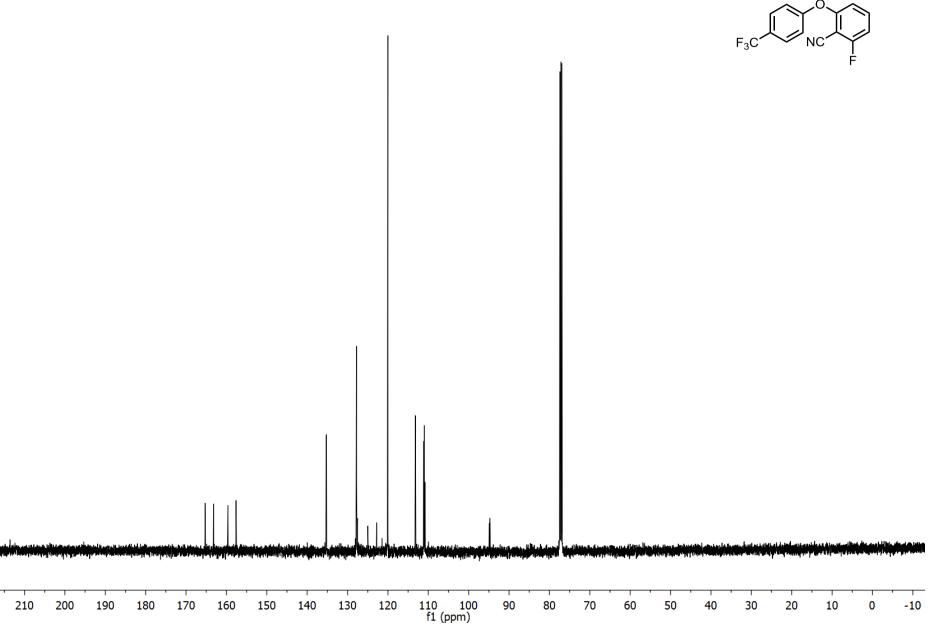

¹³C NMR of 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)


CD₂Cl₂, 23 °C


¹⁹F NMR of 2-fluoro-6-phenoxybenzonitrile-derived thianthrenium salt (S21)

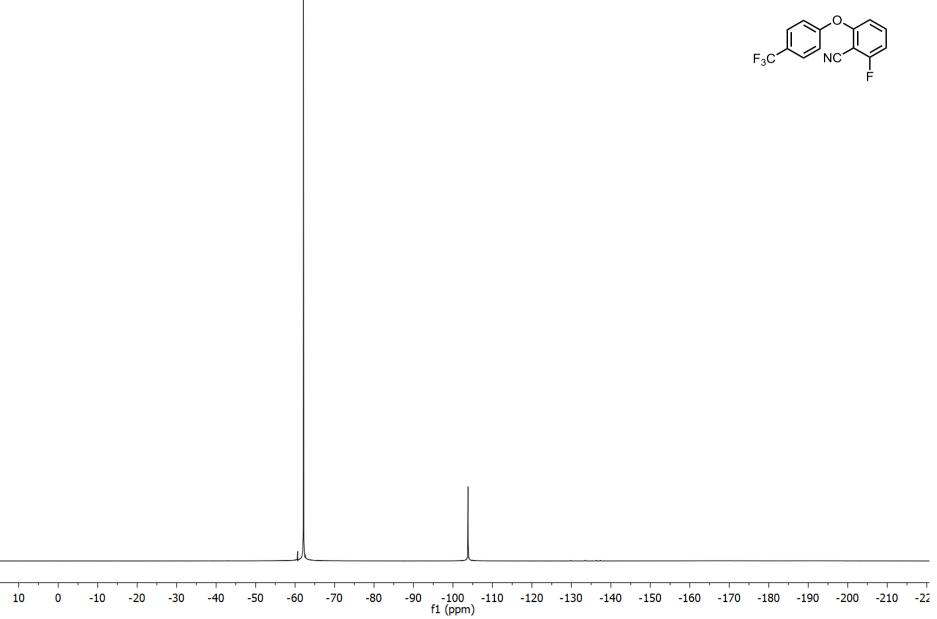

CD₂Cl₂, 23 °C

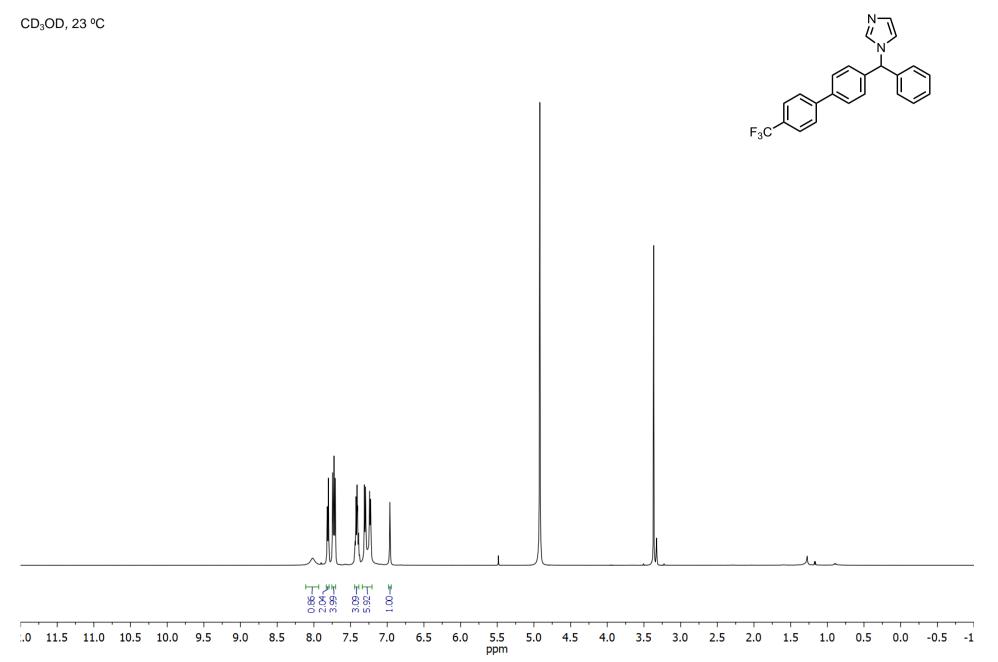
¹H NMR of 2-fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)



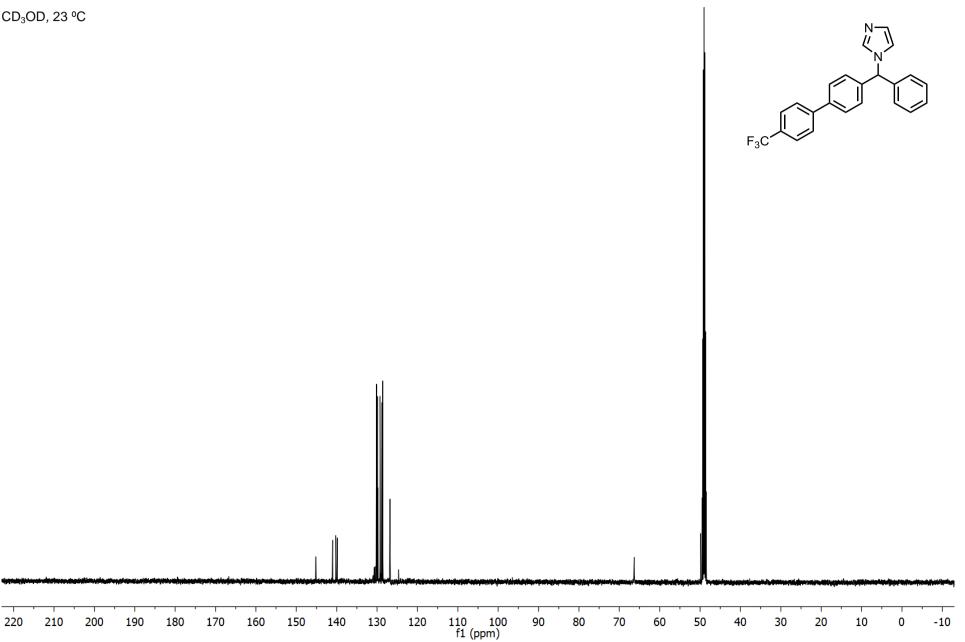
¹³C NMR of 2-fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)

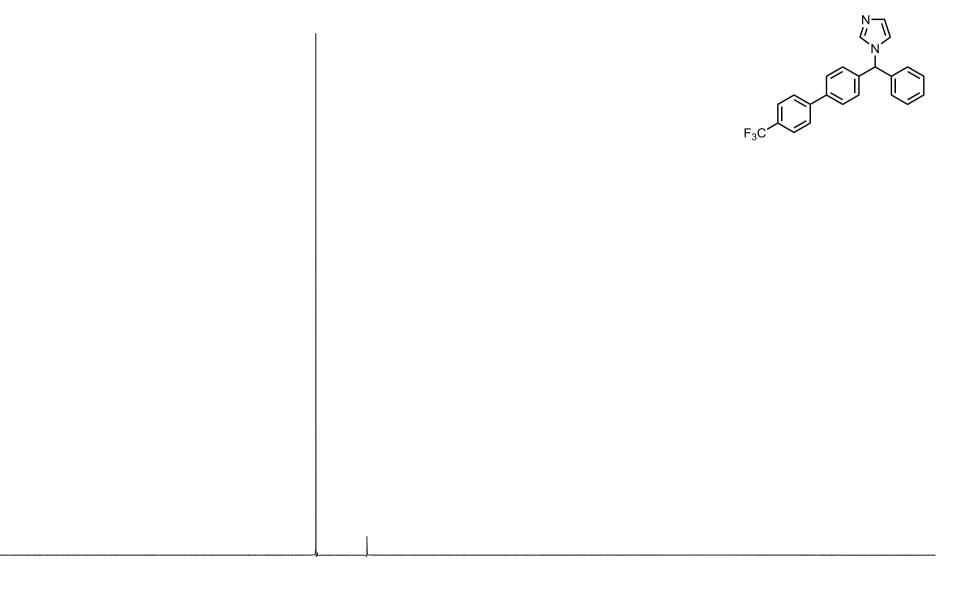
CDCl₃, 23 °C

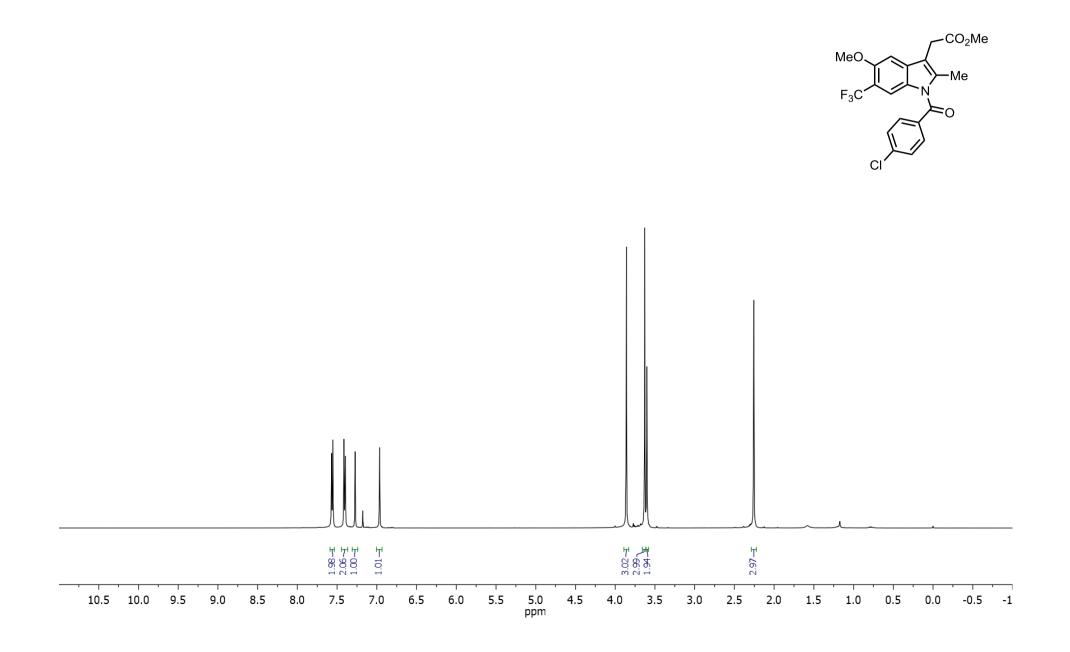

220


¹⁹F NMR of 2-fluoro-6-(4-(trifluoromethyl)phenoxy)benzonitrile (25)

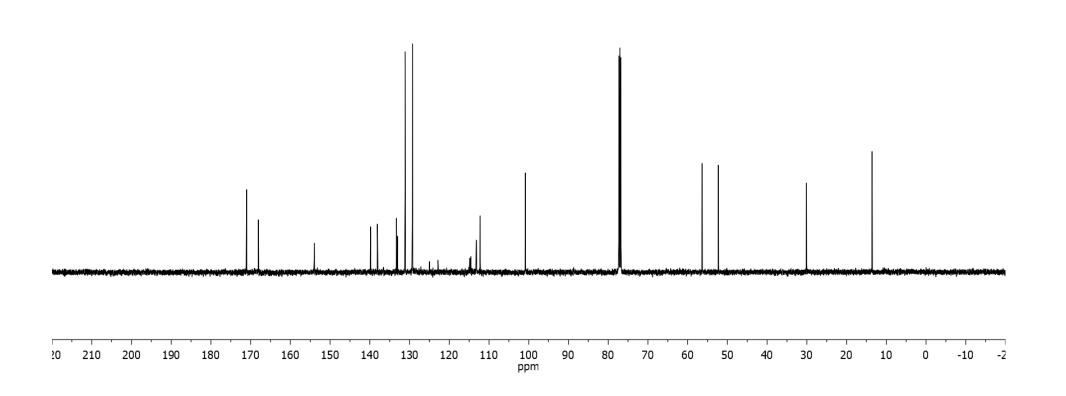
CDCl₃, 23 °C


20


¹H NMR of CF₃-bifonazole (26)


¹³C NMR of CF₃-bifonazole (26)

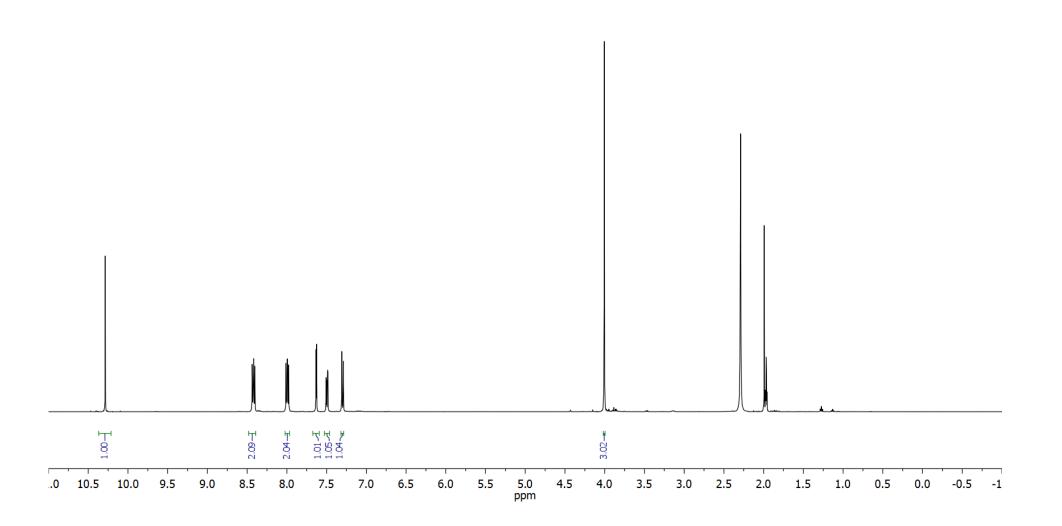
¹⁹F NMR of CF₃-bifonazole (26)



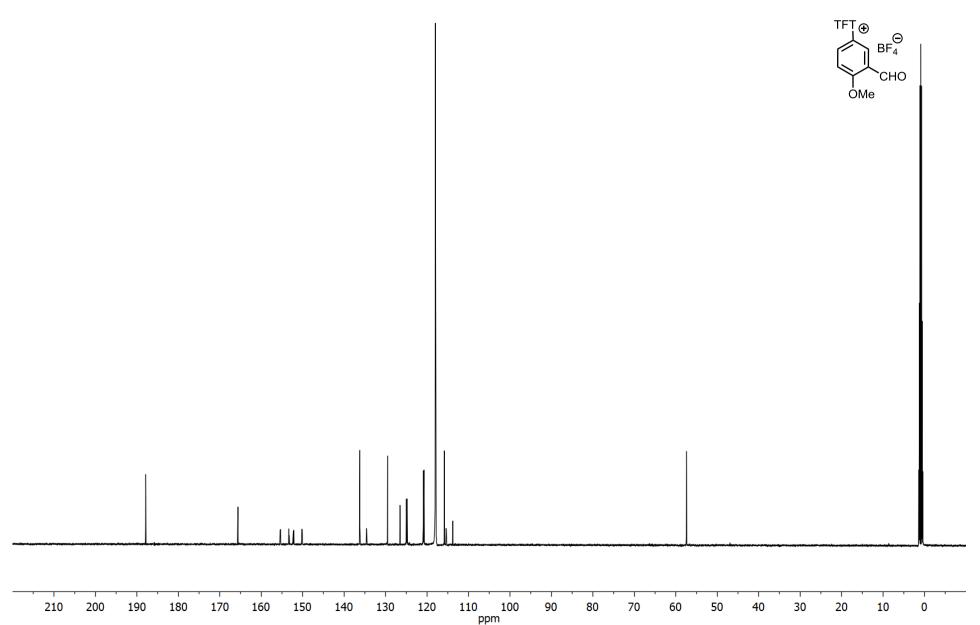
¹H NMR of CF₃-indometacin methyl ester (27)



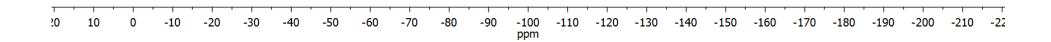
¹³C NMR of CF₃-indometacin methyl ester (27)



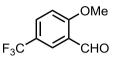
¹⁹F NMR of CF₃-indometacin methyl ester (27)

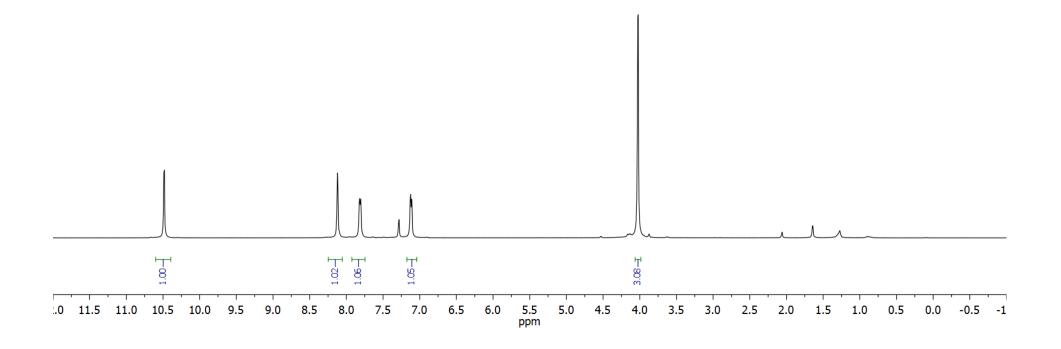


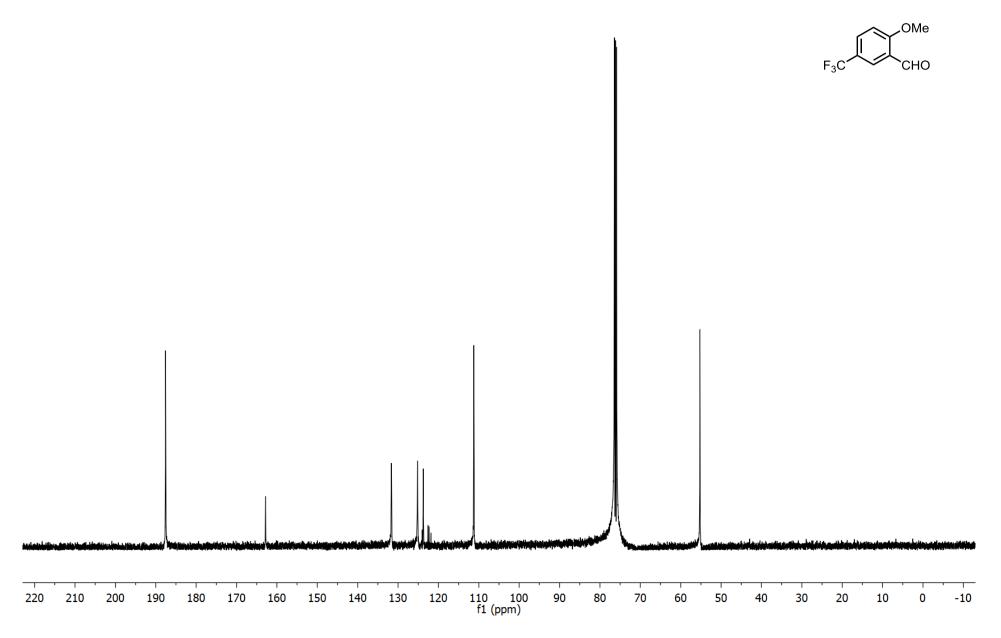
¹H NMR of 2-methoxy-benzaldehyde-derived tetrafluorothianthrenium salt (S24)



¹³C NMR of 2-methoxy-benzaldehyde-derived tetrafluorothianthrenium salt (S24)

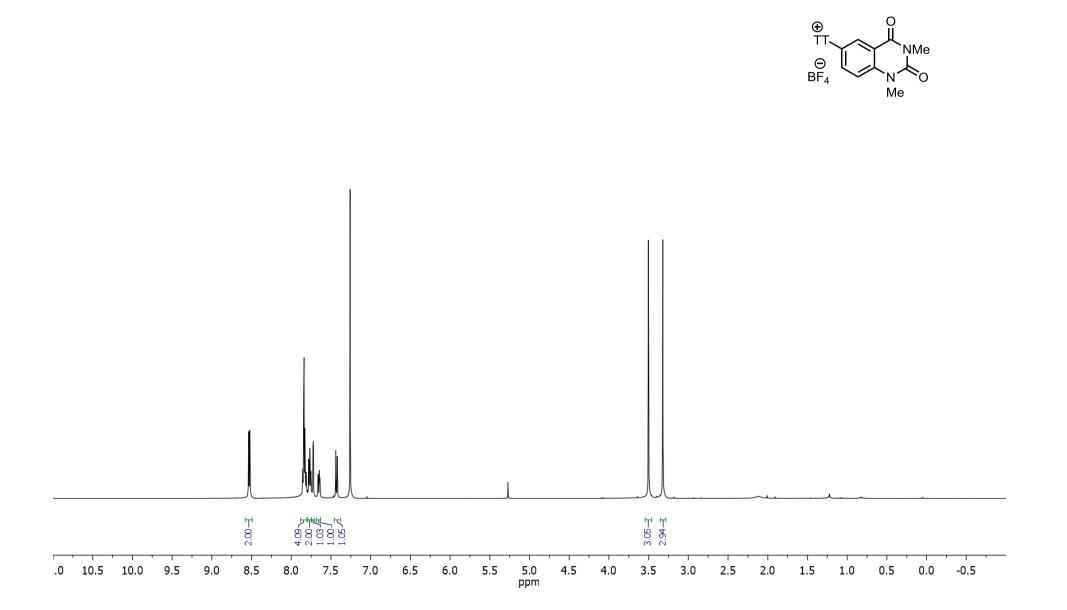



¹⁹F NMR of 2-methoxy-benzaldehyde-derived tetrafluorothianthrenium salt (S24)



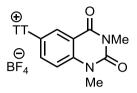
¹H NMR of 2-methoxy-5-(trifluoromethyl)benzaldehyde (28)

¹³C NMR of 2-methoxy-5-(trifluoromethyl)benzaldehyde (28)

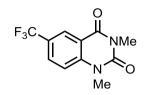

¹⁹F NMR of 2-methoxy-5-(trifluoromethyl)benzaldehyde (28)

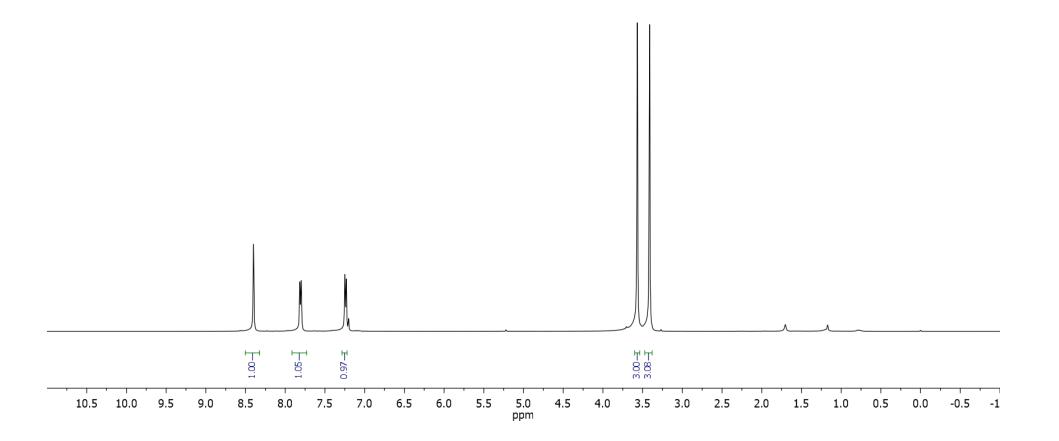
CDCI₃, 23 °C

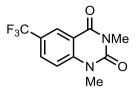
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

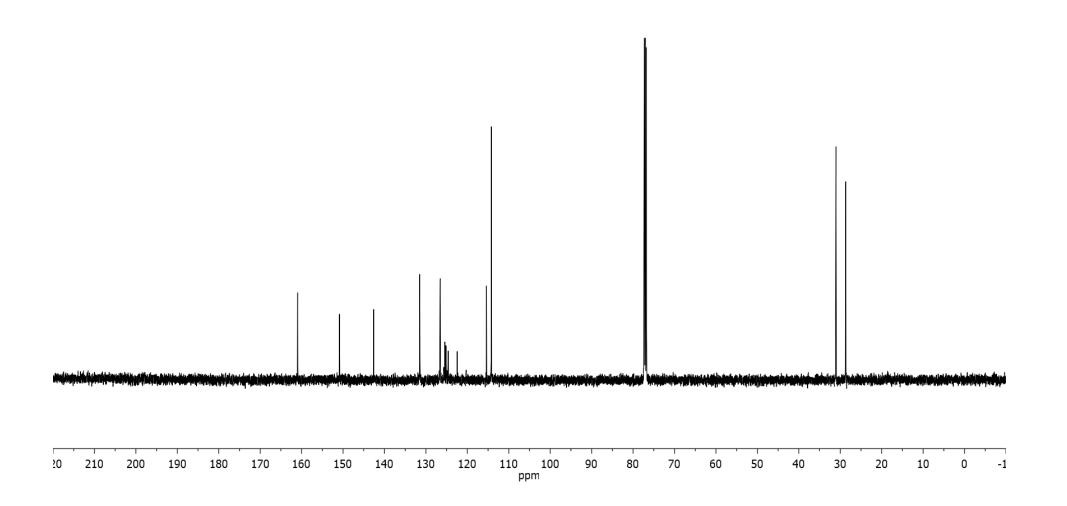

¹H NMR of quinazolinedione-derived thianthrenium salt (S25)

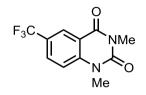
¹³C NMR of quinazolinedione-derived thianthrenium salt (S25)

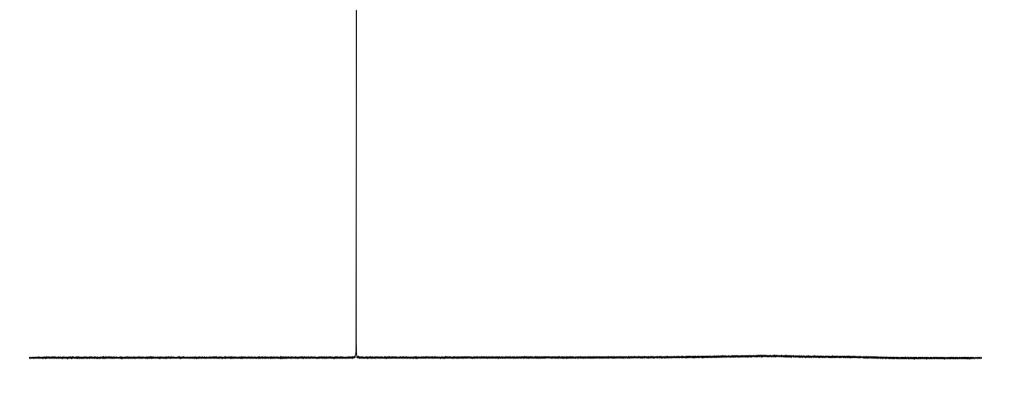



¹⁹F NMR of quinazolinedione-derived thianthrenium salt (S25)

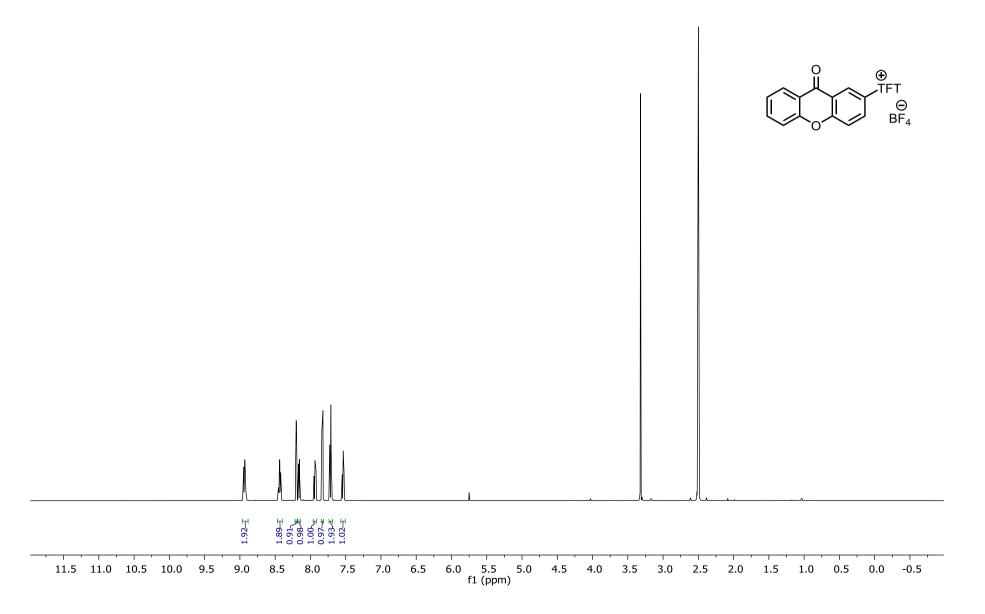

Т	· · ·		· · ·	· · · ·		· · ·		· .	· · ·	· · ·	· · ·	·	· .	· I	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·			· · · ·	- T
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												


¹H NMR of 6-trifluoromethylquinazolinedione (29)

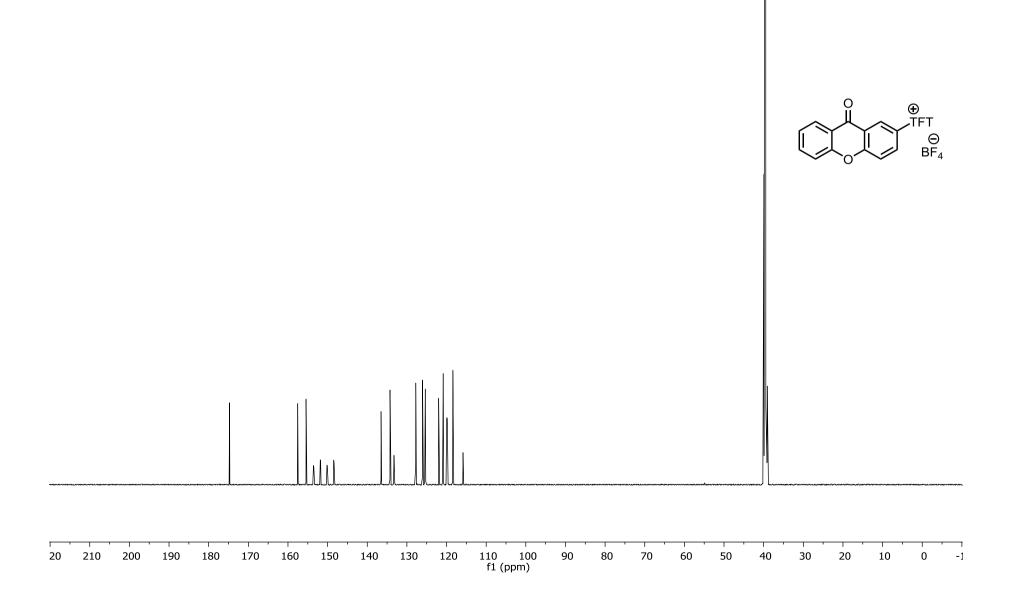



¹³C NMR of 6-trifluoromethylquinazolinedione (29)

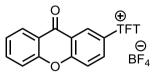
¹⁹F NMR of 6-trifluoromethylquinazolinedione (29)



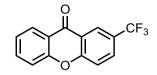
		' '	' '			·		' '	'	'	'		'			'				'	'		' '	· · · ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90		-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22
												ppm												

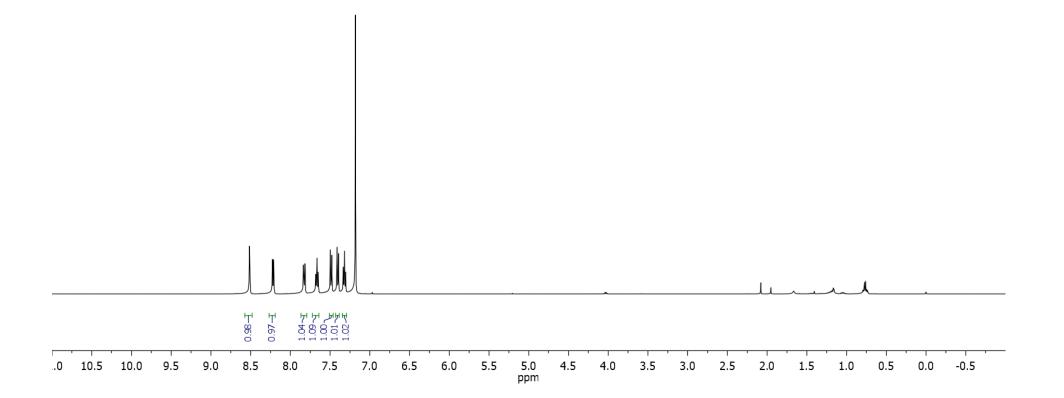

¹H NMR of xanthone-derived tetrafluorothianthrenium salt (S26)

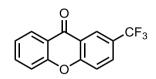
DMSO-*d*₆, 23 °C

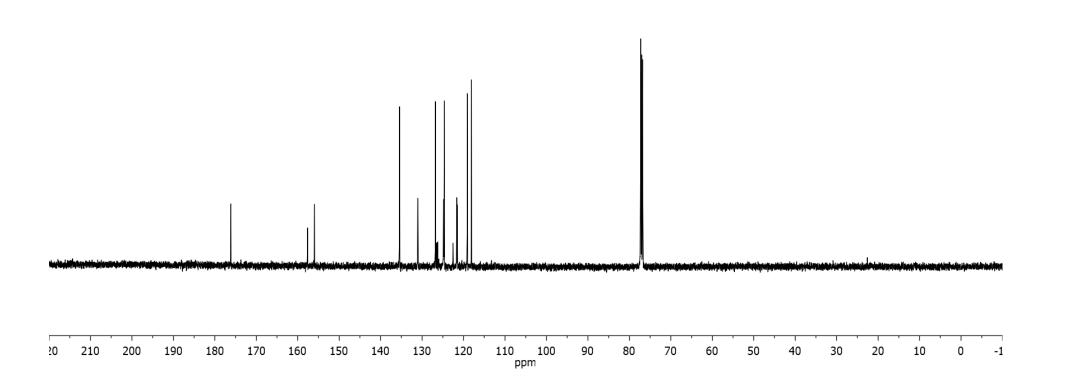

¹³C NMR of xanthone-derived tetrafluorothianthrenium salt (S26)

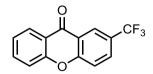
DMSO-*d*₆, 23 °C


¹⁹F NMR of xanthone-derived tetrafluorothianthrenium salt (S26)

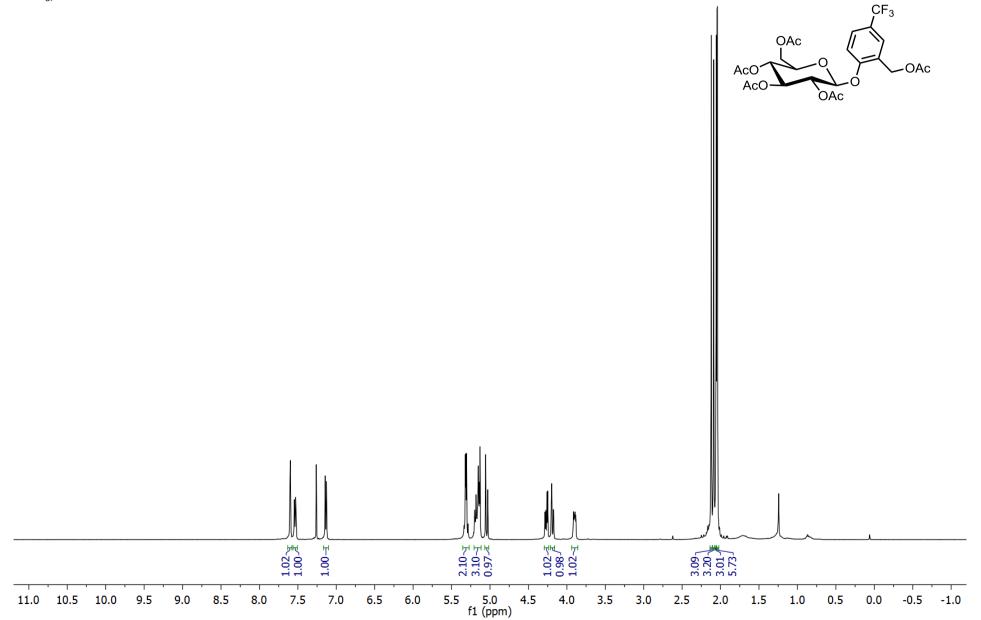

DMSO-*d*₆, 23 °C


0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)	-150 -160 -170 -180 -190 -200 -2

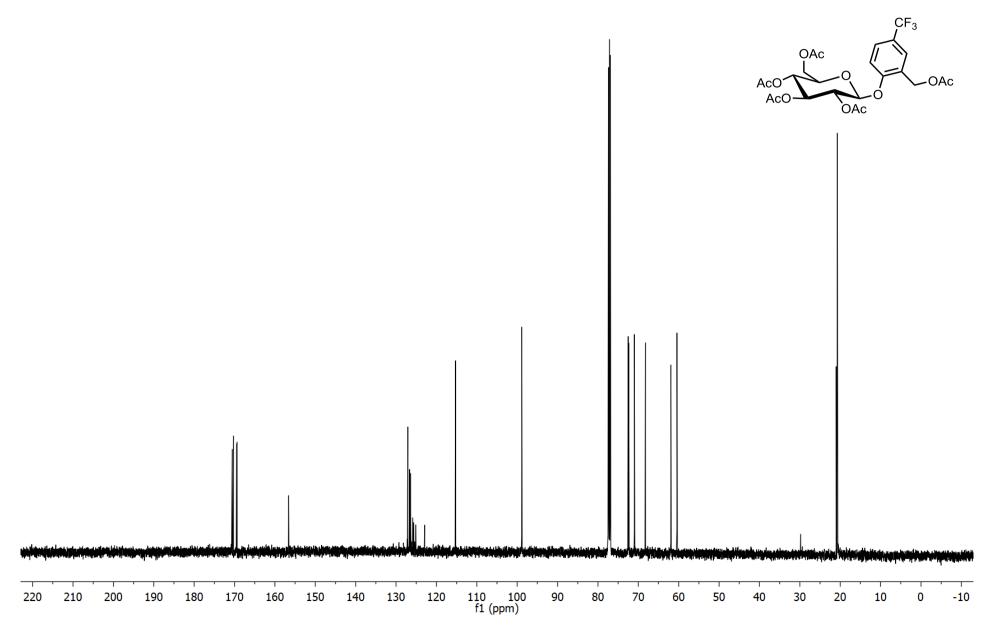

¹H NMR of CF₃-xanthone (30)



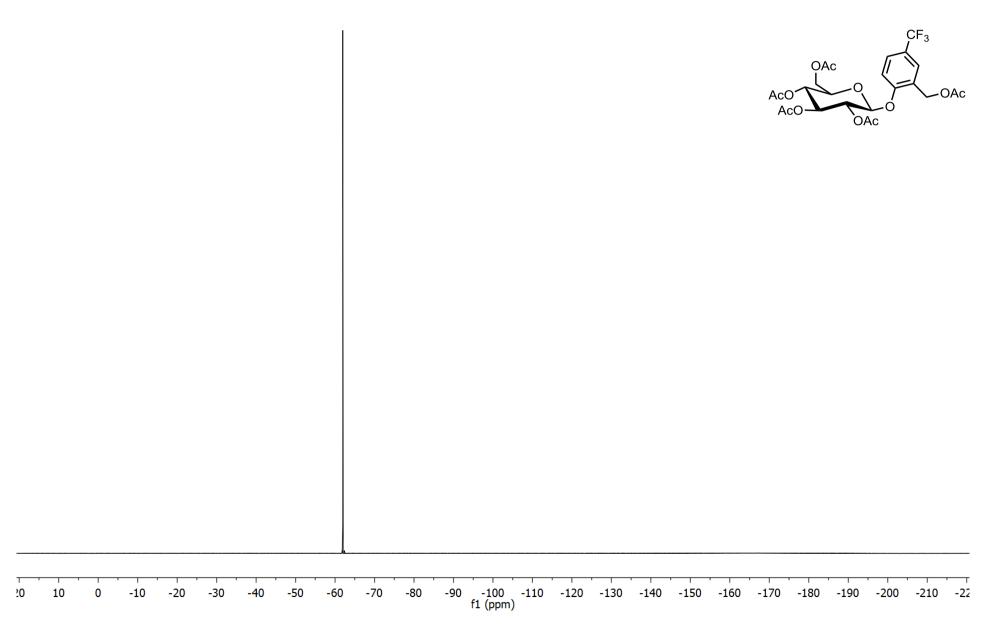
¹³C NMR of CF₃-xanthone (30)

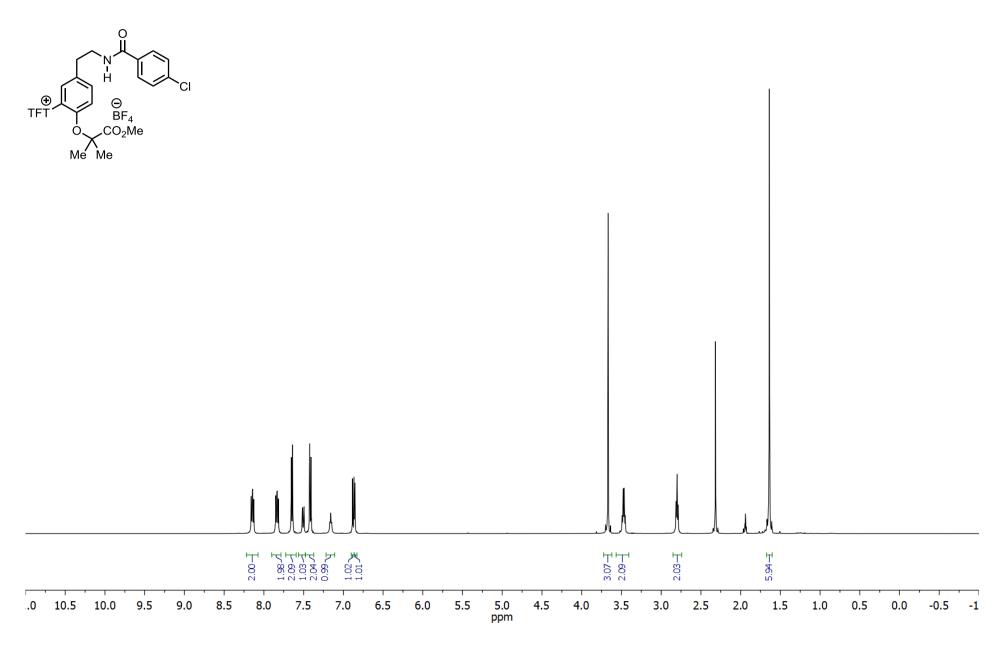


¹⁹F NMR of CF₃-xanthone (30)

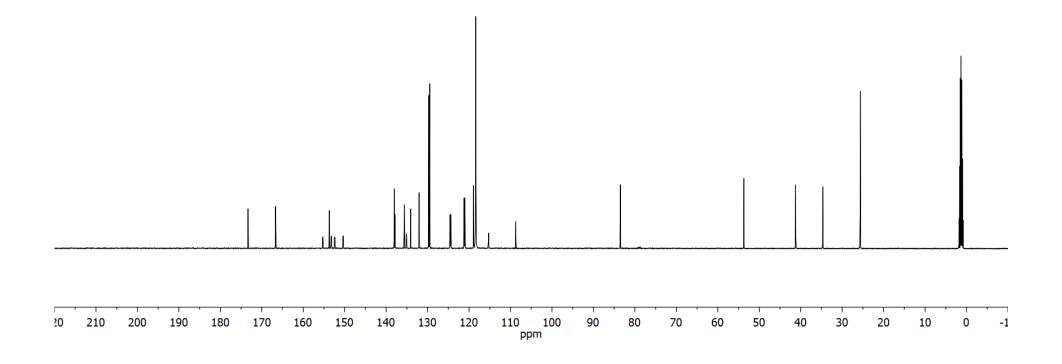


 ,,,,,,


¹H NMR of CF₃-salicin pentaacetate (31)


¹³C NMR of CF₃-salicin pentaacetate (31)

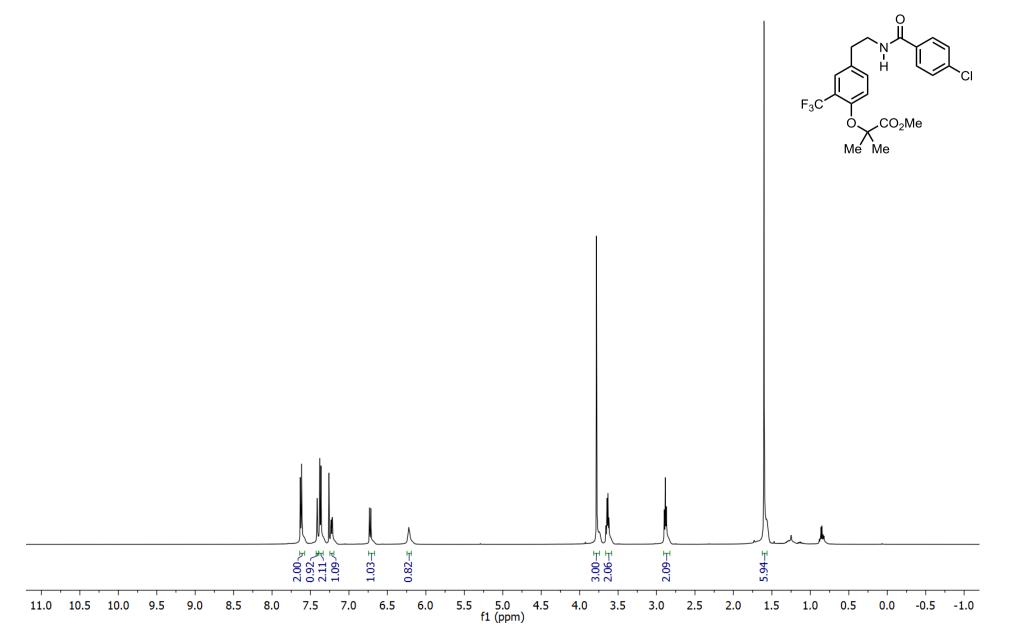
¹⁹F NMR of CF₃-salicin pentaacetate (31)



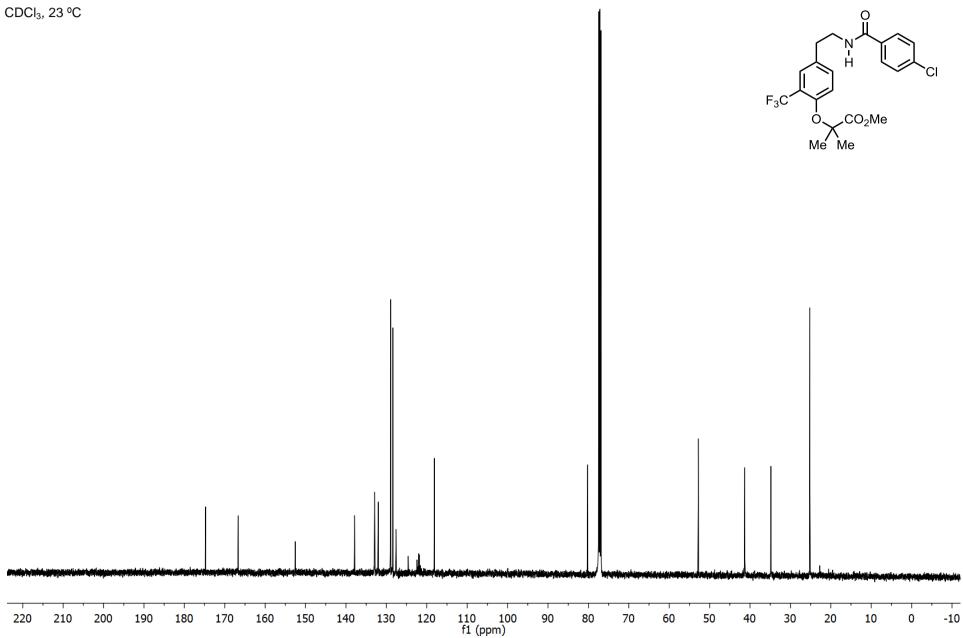
¹H NMR of benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)

¹³C NMR of benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)

 $_{\rm BF_4}^{\Theta}$ TF CO₂Me Me Me


¹⁹F NMR of benzafibrate methyl ester-derived tetrafluorothianthrenium salt (S28)

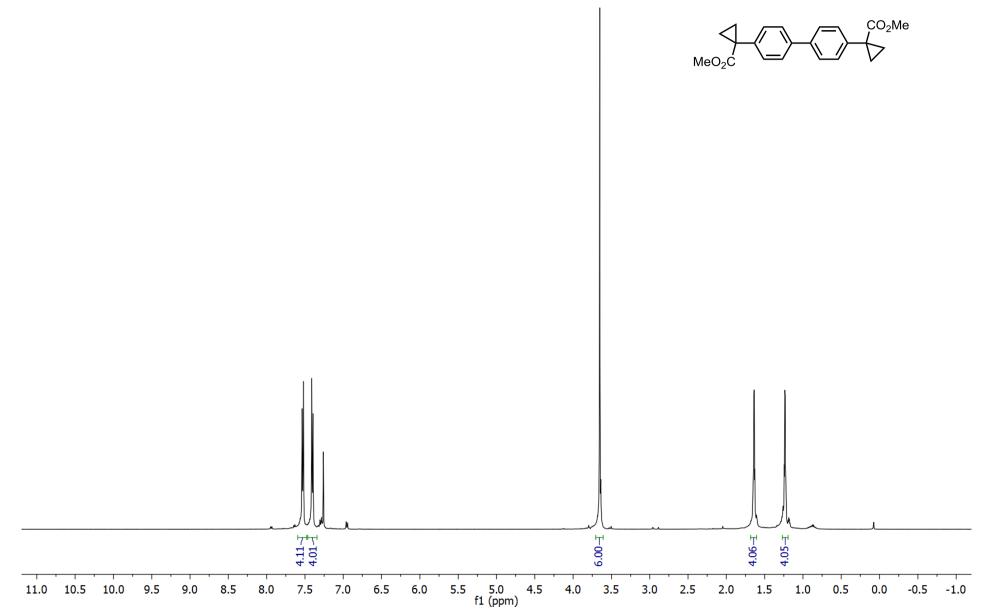
CD₃CN, 23 °C


0 $_{\mathsf{BF}_4}^{\Theta}$ TF O₂Me Me Me

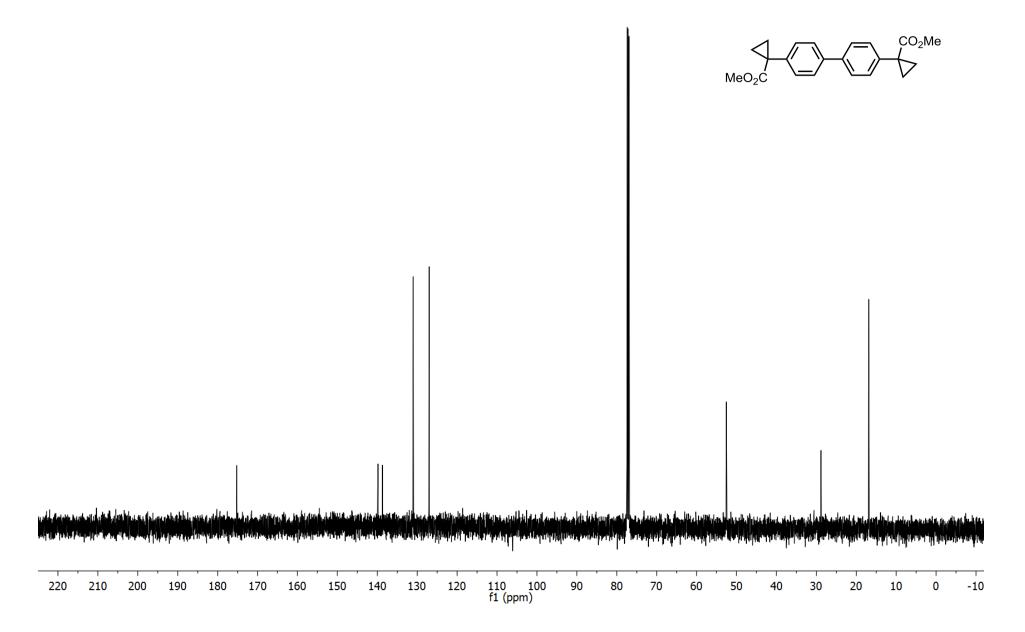
Т -100 ppm 10 -10 -20 -50 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 20 0 -30 -40 -60 -70

¹H NMR of CF₃-benzafibrate methyl ester (32)

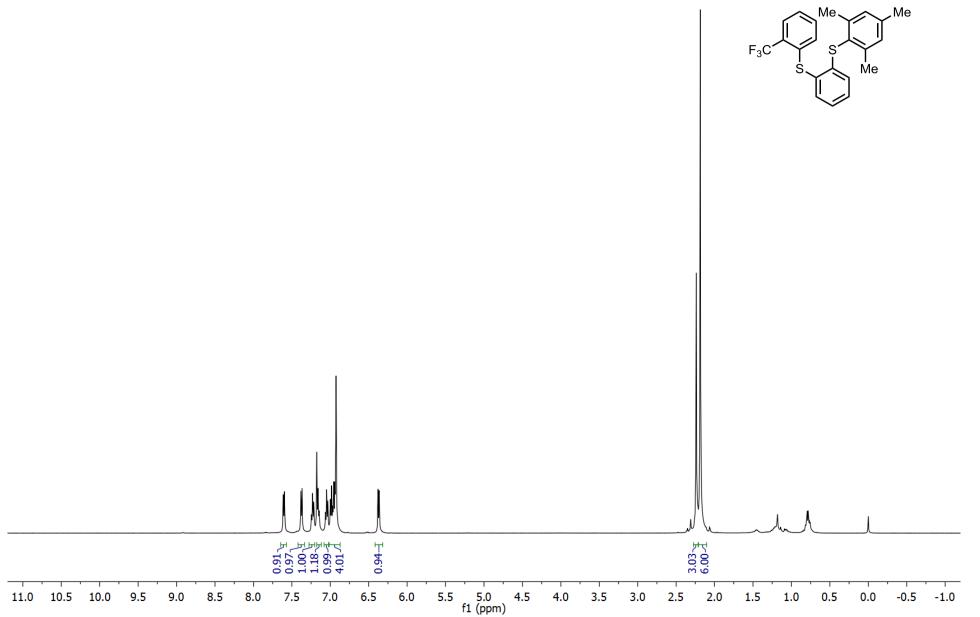
¹³C NMR of CF₃-benzafibrate methyl ester (32)

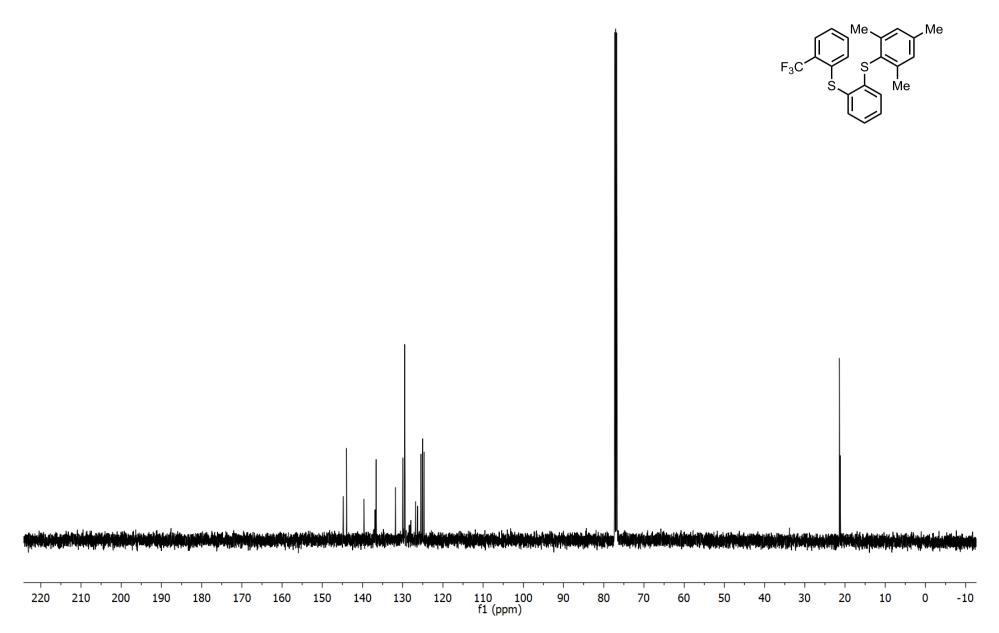


¹⁹F NMR of CF₃-benzafibrate methyl ester (32)

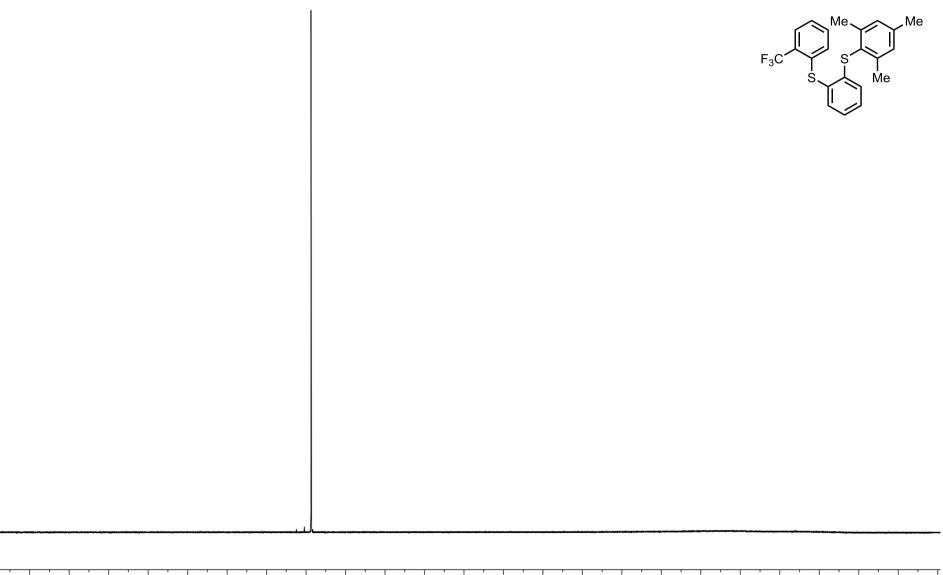


20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)


¹H NMR of dimethyl 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(cyclopropane-1-carboxylate) (36)


¹³C NMR of dimethyl 1,1'-([1,1'-biphenyl]-4,4'-diyl)bis(cyclopropane-1-carboxylate) (36)

¹H NMR of mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (36)



¹³C NMR of mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (37)

¹⁹F NMR of mesityl(2-((2-(trifluoromethyl)phenyl)thio)phenyl)sulfane (37)

CDCl₃, 23 °C

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

REFERENCES

1. F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho, N. Frank, T. Ritter, *Nature* **2019**, *567*, 223–228.

2. J. J. Dai, C. Fang, B. Xiao, J. Yi, J. Xu, Z-J. Liu, X. Lu, L. Liu, Y. Fu, *J. Am. Chem. Soc.* **2013**, *135*, 8436-8439.