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Diseases and Injuries Methods 
Overview 
The general approach to estimating causes of death and disease incidence and prevalence for GBD 2019 
is the same as for GBD 2017 (3, 4). Here, we provide an overview of the methods, with an emphasis on 
the main methodology changes since GBD 2017. 

For each iteration of GBD, the estimates for the whole time series are updated on the basis of addition 
of new data and change in methods where appropriate. Thus, the GBD 2019 results supersede those 
from previous rounds of GBD. 

Geographical units, age groups, time periods, and cause levels 
GBD 2019 estimated each epidemiological quantity of interest—incidence, prevalence, mortality, years 
lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs)—for 23 age 
groups; males, females, and both sexes combined; and 204 countries and territories that were grouped 
into 21 regions and seven super-regions. For GBD 2019, nine countries and territories (Cook Islands, 
Monaco, San Marino, Nauru, Niue, Palau, Saint Kitts and Nevis, Tokelau, and Tuvalu) were added, such 
that the GBD location hierarchy now includes all WHO member states. GBD 2019 includes subnational 
analyses for Italy, Nigeria, Pakistan, the Philippines, and Poland, and 16 countries previously estimated 
at subnational levels (Brazil, China, Ethiopia, India, Indonesia, Iran, Japan, Kenya, Mexico, New Zealand, 
Norway, Russia, South Africa, Sweden, the UK, and the USA). All subnational analyses are at the first 
level of administrative organisation within each country except for New Zealand (by Māori ethnicity), 
Sweden (by Stockholm and non-Stockholm), the UK (by local government authorities), and the 
Philippines (by province). At the most detailed spatial resolution, we generated estimates for 990 
locations. The GBD diseases and injuries analytical framework generated estimates for every year from 
1990 to 2019. 

Diseases and injuries were organised into a levelled cause hierarchy from the three broadest causes of 
death and disability at Level 1 to the most specific causes at Level 4. Within the three Level 1 causes—
communicable, maternal, neonatal, and nutritional diseases; non-communicable diseases; and injuries—
there are 22 Level 2 causes, 174 Level 3 causes, and 301 Level 4 causes (including 131 level 3 causes that 
are not further disaggregated at Level 4). 364 total causes are non-fatal and 286 are fatal.  

Data 
The GBD estimation process is based on identifying multiple relevant data sources for each disease or 
injury including censuses, household surveys, civil registration and vital statistics, disease registries, 
health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. 
Each of these types of data are identified from systematic review of published studies, searches of 
government and international organisation websites, published reports, primary data sources such as 
the Demographic and Health Surveys, and contributions of datasets by GBD collaborators. 86,249 
sources were used in this analysis, including 19,354 sources reporting deaths, 31,499 reporting 
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incidence, 19,773 reporting prevalence, and 26,631 reporting other metrics. Each newly identified and 
obtained data source is given a unique identifier by a team of librarians and included in the Global 
Health Data Exchange (GHDx; http://ghdx.healthdata.org/). The GHDx makes publicly available the 
metadata for each source included in GBD as well as the data, where allowed by the data provider. 
Readers can use the GHDx source (http://ghdx.healthdata.org/gbd-2019/data-input-sources) tool to 
identify which sources were used for estimating any disease or injury outcome in any given location. 

Data processing 
A crucial step in the GBD analytical process is correcting for known bias by redistributing deaths from 
unspecified codes to more specific disease categories, and by adjusting data with alternative case 
definitions or measurement methods to the reference method. We highlight several major changes in 
data processing that in some cases have affected GBD results. 

Cause of death redistribution 
Vital registration with medical certification of cause of death is a crucial resource for the GBD cause of 
death analysis in many countries. Cause of death data obtained using various revisions of the 
International Classification of Diseases and Injuries (ICD) (7) were mapped to the GBD cause list. Many 
deaths, however, are assigned to causes that cannot be the underlying cause of death (eg, 
cardiopulmonary failure) or are inadequately specified (eg, injury from undetermined intent). These 
deaths were reassigned to the most probable underlying causes of death as part of the data processing 
for GBD. Redistribution algorithms can be divided into three categories: proportionate redistribution, 
fixed proportion redistribution based on published studies or expert judgment, or statistical algorithms. 
For GBD 2019, data for 116 million deaths attributed to multiple causes were analysed to produce more 
empirical redistribution algorithms for sepsis (8), heart failure, pulmonary embolism, acute kidney 
injury, hepatic failure, acute respiratory failure, pneumonitis, and five intermediate causes 
(hydrocephalus, toxic encephalopathy, compression of brain, encephalopathy, and cerebral oedema) in 
the central nervous system. To redistribute unspecified injuries, we used a method similar to that of 
intermediate cause redistribution, using the pattern of the nature of injury codes in the causal chain 
where the ICD codes X59 (“exposure to unspecified factor”) and Y34 (“unspecified event, undetermined 
intent”) and GBD injury causes were the underlying cause of death. These new algorithms led to 
important changes in the causes to which these intermediate outcomes were redistributed. Additionally, 
data on deaths from diabetes and stroke lack the detail on subtype in many countries; we ran 
regressions on vital registration data with at least 50% of deaths coded specifically to type 1 or 2 
diabetes and ischaemic, haemorrhagic, or subarachnoid stroke to predict deaths by these subtypes 
when these were coded to unspecified diabetes or stroke. 

Correcting for non-reference case definitions or measurement methods 
In previous cycles of GBD, data reported using alternative case definitions or measurement methods 
were corrected to the reference definition or measurement method primarily as part of the Bayesian 
meta-regression models. For example, in DisMod-MR, the population data were simultaneously 
modelled as a function of country covariates for variation in true rates and as a function of indicator 
variables capturing alternative measurement methods. To enhance transparency and to standardise and 
improve methods in GBD 2019, we estimated correction factors for alternative case definitions or 
measurement methods using network meta-regression, including only data where two methods were 
assessed in the same location–time period or in the exact same population. This included validation 



28 
 

studies where two methods had been compared in populations that were not necessarily random 
samples of the general population.  

Clinical informatics 
Clinical informatics data include inpatient admissions, outpatient (including general practitioner) visits, 
and health insurance claims. Several data processing steps were undertaken. Inpatient hospital data 
with a single diagnosis only were adjusted to account for non-primary diagnoses as well as outpatient 
care. For each GBD cause that used clinical data, ratios of non-primary to primary diagnosis rates were 
extracted from claims in the USA, Taiwan (province of China), New Zealand, and the Philippines, as well 
as USA Healthcare Cost and Utilization Project inpatient data. Ratios of outpatient to inpatient care for 
each cause were extracted from claims data from the USA and Taiwan (province of China). The log of the 
ratios for each cause were modelled by age and sex using MR-BRT (Meta-Regression-Bayesian 
Regularised Trimmed), the Bayesian meta-regression tool. To account for the incomplete health-care 
access in populations where not every person with a disease or injury would be accounted for in 
administrative clinical records, we transformed the adjusted admission rates using a scalar derived from 
the Healthcare Access and Quality Index (9). We used this approach to produce adjusted, standardised 
clinical data inputs.  

Modelling 
For most diseases and injuries, processed data are modelled using standardised tools to generate 
estimates of each quantity of interest by age, sex, location, and year. There are three main standardised 
tools: Cause of Death Ensemble model (CODEm), spatiotemporal Gaussian process regression (ST-GPR), 
and DisMod-MR. Previous publications (3, 4, 10)  provide more details on these general GBD methods. 
Briefly, CODEm is a highly systematised tool to analyse cause of death data using an ensemble of 
different modelling methods for rates or cause fractions with varying choices of covariates that perform 
best with out-of-sample predictive validity testing. DisMod-MR is a Bayesian meta-regression tool that 
allows evaluation of all available data on incidence, prevalence, remission, and mortality for a disease, 
enforcing consistency between epidemiological parameters. ST-GPR is a set of regression methods that 
borrow strength between locations and over time for single metrics of interest, such as risk factor 
exposure or mortality rates. In addition, for select diseases, particularly for rarer outcomes, alternative 
modelling strategies have been developed.  

In GBD 2019, we designated a set of standard locations that included all countries and territories as well 
as the subnational locations for Brazil, China, India, and the USA. Coefficients of covariates in the three 
main modelling tools were estimated for these standard locations only—ie, we ignored data from 
subnational locations other than for Brazil, China, India, and the USA. Using this set of standard locations 
will prevent changes in regression coefficients from one GBD cycle to the next that are solely due to the 
addition of new subnational units in the analysis that might have lower quality data or small 
populations. Changes to CODEm for GBD 2019 included the addition of count models to the model 
ensemble for rarer causes. We also modified DisMod-MR priors to effectively increase the out-of-sample 
coverage of uncertainty intervals (UIs) as assessed in simulation testing.  

DisMod-MR was used to estimate deaths from three outcomes (dementia, Parkinson's, and atrial 
fibrillation), and to determine the proportions of deaths by underlying aetiologies of cirrhosis, liver 
cancer, and chronic kidney disease deaths. 
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Risk Factors Methods 
Overview 
The GBD 2019 estimation of attributable burden followed the general framework established for 
comparative risk assessment (CRA) (11, 12) used in GBD since 2002. Here, we provide a general 
overview and details on major innovations since GBD 2017. CRA can be divided into six key steps: 
inclusion of risk–outcome pairs in the analysis; estimation of relative risk as a function of exposure; 
estimation of exposure levels and distributions; determination of the counterfactual level of exposure, 
the level of exposure with minimum risk called the theoretical minimum risk exposure level (TMREL); 
computation of population attributable fractions and attributable burden; and estimation of mediation 
of different risk factors through other risk factors such as high body-mass index (BMI) and ischaemic 
heart disease, mediated through elevated systolic blood pressure (SBP), elevated fasting plasma glucose 
(FPG), and elevated LDL cholesterol, to compute the burden attributable to various combinations of risk 
factors (13). 

Geographical units, age groups, and time periods 
GBD 2019 estimated prevalence of exposure and attributable deaths, YLLs, YLDs, and DALYs for 23 age 
groups; males, females, and both sexes combined; and 204 countries and territories that were grouped 
into 21 regions and seven super-regions. GBD 2019 includes subnational analyses for Italy, Nigeria, 
Pakistan, the Philippines, and Poland, and 16 countries previously estimated at subnational levels (Brazil, 
China, Ethiopia, India, Indonesia, Iran, Japan, Kenya, Mexico, New Zealand, Norway, Russia, South Africa, 
Sweden, the UK, and the USA). All subnational analyses are at the first level of administrative 
organisation within each country except for New Zealand (by Māori ethnicity), Sweden (by Stockholm 
and non-Stockholm), the UK (by local government authorities), and the Philippines (by province). For 
this cycle, nine countries and territories (Cook Islands, Monaco, San Marino, Nauru, Niue, Palau, Saint 
Kitts and Nevis, Tokelau, and Tuvalu) were added, such that the GBD location hierarchy now includes all 
WHO member states. These new locations were previously included in regional totals by assuming that 
age-specific rates were equal to the regional rates. At the most detailed level, we generated estimates 
for 990 locations. The GBD diseases and injuries analytical framework generated estimates for every 
year from 1990 to 2019. 

GBD risk factor hierarchy 
Individual risk factors such as low birthweight or ambient ozone pollution are evaluated in the GBD CRA. 
In addition, there has been policy interest in groups of risk factors such as household air pollution 
combined with ambient particulate matter. To accommodate these diverse interests, the GBD CRA has a 
risk factor hierarchy. Level 1 risk factors are behavioural, environmental and occupational, and 
metabolic; Level 2 risk factors include 20 risks or clusters of risks; Level 3 includes 52 risk factors or 
clusters of risks; and Level 4 includes 69 specific risk factors. Counting all specific risk factors and 
aggregates computed in GBD 2019 yields 87 risks or clusters of risks.  

Determining the inclusion of risk–outcome pairs in GBD 
Since GBD 2010, we have used the World Cancer Research Fund criteria for convincing or probable 
evidence of risk–outcome pairs (14). For GBD 2019, we completely updated our systematic reviews for 
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81 risk–outcome pairs. Convincing evidence requires more than one study type, at least two cohorts, no 
substantial unexplained heterogeneity across studies, good-quality studies to exclude the risk of 
confounding and selection bias, and biologically plausible dose–response gradients. For GBD, for a newly 
proposed or evaluated risk–outcome pair, we additionally required that there was a significant 
association (p<0·05) after taking into account sources of potential bias. To avoid risk–outcome pairs 
repetitively entering and leaving the analysis with each cycle of GBD, the criteria for exclusion requires 
that with the available studies the association has a p value greater than 0·1. On the basis of these 
reviews and meta-regressions, 12 risk–outcome pairs included in GBD 2017 were excluded from GBD 
2019: vitamin A deficiency and lower respiratory infections; zinc deficiency and lower respiratory 
infections; diet low in fruits and four outcomes: lip and oral cavity cancer, nasopharynx cancer, other 
pharynx cancer, and larynx cancer; diet low in whole grains and two outcomes: intracerebral 
haemorrhage and subarachnoid haemorrhage; intimate partner violence and maternal abortion and 
miscarriage; and high FPG and three outcomes: chronic kidney disease due to hypertension, chronic 
kidney disease due to glomerulonephritis, and chronic kidney disease due to other and unspecified 
causes. In addition, on the basis of multiple requests to begin capturing important dimensions of climate 
change into GBD, we evaluated the direct relationship between high and low non-optimal temperatures 
on all GBD disease and injury outcomes. Rather than rely on a heterogeneous literature with a small 
number of studies examining relationships with specific diseases and injuries, we analysed individual-
level cause of death data for all locations with available information on daily temperature, location, and 
International Classification of Diseases-coded cause of death. These data totalled 58.9 million deaths 
covering eight countries. On the basis of this analysis, 27 GBD cause Level 3 outcomes met the inclusion 
criteria for each non-optimal risk factor and were included in this analysis. Other climate-related 
relationships, such as between precipitation or humidity and health outcomes, have not yet been 
evaluated. 

Estimating relative risk as a function of exposure for each risk–outcome pair 
In GBD, we use published systematic reviews and for GBD 2019, we updated these where necessary to 
include any new studies that became available before Dec 31, 2019. We did meta-analyses of relative 
risks from these studies as a function of exposure. For GBD 2019, 81 new systematic reviews were done, 
including for 44 diet risk–outcome pairs. To allow for risk functions that might not be log-linear, we 
relaxed the meta-regression assumptions to allow for monotonically increasing or decreasing but 
potentially non-linear functions for 147 risk–outcome pairs. 218 risk–outcome pairs were estimated 
assuming log-linear relationships. For 126 risk–outcome pairs, exposure was dichotomous or 
polytomous. For 37 risk–outcome pairs, the population attributable fractions were assumed by 
definition to be 100% (eg, 100% of diabetes is assumed to be, by definition, related to elevated FPG). For 
32 risk–outcome pairs, other approaches were used that reflected the nature of the evidence that has 
been collected for those risks. For risks that affect cardiovascular outcomes, we adjusted relative risks by 
age such that they follow the empirical pattern of attenuation seen in published studies for elevated 
SBP, FPG, and LDL cholesterol. 

Estimation of the distribution of exposure for each risk by age-sex-location-year 
For each risk factor, we systematically searched for published studies, household surveys, censuses, 
administrative data, ground monitor data, or remote sensing data that could inform estimates of risk 
exposure. To estimate mean levels of exposure by age-sex-location-year, specific methods varied across 
risk factors. For many risk factors, exposure data were modelled using either spatiotemporal Gaussian 
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process regression or DisMod-MR 2.1 (4, 15), which are Bayesian statistical models developed over the 
past 12 years for GBD analyses. For most risk factors, the distribution of exposure across individuals was 
estimated by modelling a measure of dispersion, usually the SD, and fitting an ensemble of parametric 
distributions to the predicted mean and SD. Ensemble distributions for each risk were estimated based 
on individual-level data. Because of the strong dependency between birthweight and gestational age, 
exposure for these risks was modelled as a joint distribution using the copula method (16). In many 
cases, exposure data were available for the reference method of ascertainment and for alternative 
methods, such as tobacco surveys reporting daily smoking versus total smoking; in these cases, we 
estimated the statistical relationship between the reference and alternative methods of ascertainment 
using network meta-regression and corrected the alternative data using this relationship.  

Determining the TMREL 
For harmful risk factors with monotonically increasing risk functions, the theoretical minimum risk level 
was set to 0. For risk factors with J-shaped or U-shaped risk functions, such as for sodium and ischaemic 
heart disease or BMI and ischaemic heart disease, the TMREL was determined as the low point of the 
risk function. When the bottom of the risk function was flat or poorly determined, the TMREL 
uncertainty interval (UI) captured the range over which risks are indistinguishable. For protective risks 
with monotonically declining risk functions with exposure, namely risk factors where exposure lowers 
the risk of an outcome, the challenge is selecting the level of exposure with the lowest level of risk 
strongly supported by the available data. Projecting beyond the level of exposure supported by the 
available studies could exaggerate the attributable burden for a risk factor. In these cases, for each risk–
outcome pair, we determined the exposure level at the 85th percentile of exposure in the cohorts or 
trials used in the risk meta-regression. We then generated the TMREL by weighting each risk–outcome 
pair by the relative global magnitude of each outcome.  

Estimation of the population attributable fraction and attributable burden 
For each risk factor j, we computed the population attributable fraction (PAF) by age-sex-location-year 
using the following general formula for a continuous risk: 

 

where PAFjoasgt is the PAF for cause o, for age group a, sex s, location g, and year t; RRjoasg(x) is the relative 
risk as a function of exposure level x for risk factor j, for cause o controlled for confounding, age group a, 
sex s, and location g with the lowest level of observed exposure as l and the highest as u; Pjasgt(x) is the 
distribution of exposure at x for age group a, sex s, location g, and year t; and TMRELjas is the TMREL for 
risk factor j, age group a, and sex s. Where risk exposure is dichotomous or polytomous, this formula 
simplifies to the discrete form of the equation. 

Estimation of the PAF took into account the risk function and the distribution of exposure across 
individuals in each age-sex-location-year. By drawing 1000 samples from the risk function, 1000 
distributions of exposure for each age-sex-location-year, and 1000 samples from the TMREL, we 
propagated all of these sources of uncertainty into the PAF distributions. PAFs were also applied at the 
draw level to the uncertainty distributions of each associated outcome for that age-sex-location-year. 
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Estimating the PAF and attributable burden for combinations of risk factors 
For the estimation of each specific risk factor, the counterfactual distribution of exposure is the TMREL 
for that specific risk with no change in other risk factors. Thus, the sum of these risk-specific estimates of 
attributable burden can exceed 100% for some causes, such as cardiovascular diseases. It is also useful 
to assess the PAF and attributable burden for combinations of risk factors, such as all diet components 
together or household air and ambient particulate matter pollution. To estimate the combined effects of 
risk factors, we should take into account how one risk factor might be mediated through another (eg, 
the effect of fruit intake might be partly mediated through fibre intake). We used the mediation matrix 
as developed in GBD 2017 (6)  to try to correct for overestimation of the PAF and the attributable burden 
for combinations of risks if we were to simply assume independence without any mediation.  

Risk-deleted death rates 
We computed risk-deleted death rates as the death rates that would be observed if all risk factors were 
set to their respective TMRELs. This was calculated as the death rate in each age-sex group multiplied by 
1 minus the all-risk PAF for that age-sex group in each location. 

 

CoD cause-specific modelling descriptions 
Cardiovascular Diseases 

 

 

Input data 
Vital registration and verbal autopsy data were used to model the parent cardiovascular envelope. We 
outliered non-representative subnational verbal autopsies from a number of Indian states and verbal 
autopsy data in Nepal and Papua New Guinea that were implausible in terms of time and age trends. We 
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also outliered verbal autopsy data sources that were implausibly low in all age groups and ICD8 and 
ICD9BTL data points that were inconsistent with the rest of the data and created implausible time 
trends. 

Modelling strategy  
We used a standard CODEm approach to model deaths from cardiovascular diseases. The covariates 
included in the ensemble modelling process are listed in the table below. For GBD 2019, adjusted 
dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, and 
polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in each 
of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from cardiovascular disease. In addition, the dietary covariate for whole grains (kcal/capita, 
adjusted) the covariate for socio-demographic index as exploratory analyses indicated that these 
covariates were not predictive of the outcome. The summary exposure value scalar for CVD was 
dropped as this covariate was not produced for Level 2 causes in GBD 2019. Apart from these changes to 
the covariates, there are no other substantive changes from the approach used in GBD 2017. 



34 
 

Table: Selected covariates for CODEm models, cardiovascular diseases 
Covariate Transformation Level Direction 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose (mmol/L) None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution (all fuel types) None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value, omega-3 fatty acids None 3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, Nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value, PUFA adjusted (percent) None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Vital registration and verbal autopsy data were used to model ischaemic heart disease. We outliered 
verbal autopsy data in countries and subnational locations where high-quality vital registration data 
were also available. We also outliered non-representative subnational verbal autopsy data points, ICD8 
and ICD9BTL data points which were inconsistent with the rest of the data and created implausible time 
trends, and data in a number of Indian states identified by experts as poor-quality. 

Modelling strategy  
We used a standard CODEm approach to model deaths from ischemic heart disease. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from ischaemic heart disease. We changed the direction of the alcohol variable from 0 to 1 to reflect 
our a priori hypothesis about the expected direction of the association between this risk factor and 
mortality risk of ischaemic heart disease. In addition, we changed the level of the covariate for trans 
fatty acid from 1 to 3. Besides these covariate changes, there are no other substantive changes from the 
approach used in GBD 2017. 
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Table: Selected covariates for CODEm models, ischaemic heart disease 
Covariate Transformation Level Direction 
Summary exposure value, IHD None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value, omega-3  None  3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value, PUFA (percent, adjusted) None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Verbal autopsy and vital registration data were used to model cerebrovascular disease (stroke). We 
reassigned deaths from verbal autopsy reports for cerebrovascular disease to the parent cardiovascular 
disease for both sexes for those under 20 years of age. We outliered non-representative subnational 
verbal autopsy datapoints. We also outliered ICD8, ICD9BTL, and tabulated ICD10 datapoints which were 
inconsistent with the rest of the data and created implausible time trends. Datapoints from sources 
which were implausibly low in all age groups and data points that were causing the regional estimates to 
be improbably high were outliered. 

Modelling strategy  
We used a standard CODEm approach to model deaths from stroke. The covariates included in the 
ensemble modelling process are listed in the table below. For GBD 2019, adjusted dietary covariates for 
consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, and polyunsaturated fatty acids 
(PUFA) were replaced with the summary exposure value scalars for diet low in each of these factors. The 
direction for each dietary covariate was changed from -1 to 1 to as our a priori assumption is that low 
levels of intake of these dietary factors are associated with increasing mortality risk from stroke. We 
dropped the dietary covariate for whole grains (kcal/capita, adjusted) and the socio-demographic index 
covariate as exploratory analyses indicated that these variables were not predictive of stroke mortality. 
In addition, we changed the direction of the alcohol consumption covariate from 0 to 1 to reflect the 
expected direction of the association for this risk factor with stroke mortality. Apart from these 
covariate changes, there are no substantive changes from the approach used in GBD 2017. 
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Table: Selected covariates for CODEm models, stroke 
Covariate Transformation Level Direction 
Summary exposure variable, stroke None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1,500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare Access and Quality Index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value, omega-3  None  3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value, PUFA adjusted (percent) None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Vital registration data were used to model deaths from ischaemic stroke. We outliered ICD8 data points 
which were inconsistent with the rest of the data and created implausible time trends. We also outliered 
ICD10 data points in The Republic of Tajikistan due to unstable and implausible estimates in similar age 
groups.  

Modelling strategy  
We used a standard CODEm approach to model deaths from ischemic stroke. For GBD 2019, adjusted 
dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, and 
polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in each 
of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from ischaemic stroke. In addition, the dietary covariate for whole grains (kcal/capita, adjusted) and 
the socio-demographic index covariate were dropped as exploratory analyses indicated that the 
covariates were not predictive of the outcome. In addition, we changed the direction of the alcohol 
variable from 0 to 1 to reflect our a priori hypothesis about the expected direction of the association 
between this risk factor and mortality risk of ischaemic stroke. We also changed the level of the trans 
fatty acid covariate from 1 to 3. Besides these covariate changes, there are no other substantive changes 
from the approach used in GBD 2017.   
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Table: Selected covariates for CODEm models, ischaemic stroke 
Covariate Transformation Level Direction 
Summary exposure value, ischaemic stroke None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value, omega-3  None  3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value PUFA adjusted  None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Vital registration data were used to model intracerebral haemorrhage. We outliered ICD8 data points 
which were inconsistent with the rest of the data and created implausible time trends. In addition, we 
outliered vital registration data points in certain countries in Latin American countries due to implausibly 
high values at the oldest age groups resulting in inconsistencies in time trends.  

Modelling strategy  
We used a standard CODEm approach to model deaths from intracerebral haemorrhage. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from intracerebral haemorrhage. In addition, the dietary covariate for whole grains (kcal/capita, 
adjusted) and the social demographic index covariate were dropped as exploratory analyses indicated 
that these covariates were not predictive of the mortality risk from intracerebral haemorrhage. We 
changed the direction of the covariate for alcohol from 0 to 1 due to our a priori hypothesis about the 
direction of the association for this covariate. We also changed the level of the cholesterol covariate 
from 1 to 3 and the direction from 0 to -1 to reflect the mixed and inconclusive evidence regarding 
cholesterol levels and risk of intracerebral haemorrhage. In addition, we changed the level of the trans 
fatty acid from covariate from 1 to 3 in accordance with the expected importance of this risk factor on 
mortality from intracerebral haemorrhage. Besides these covariate changes, there are no other 
substantive changes from the approach used in GBD 2017. 

  



42 
 

Table: Selected covariates for CODEm models, intracerebral haemorrhage 
Covariate Transformation Level Direction 
Summary exposure variable, ICH None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Summary exposure value omega-3  None  3 1 
Summary exposure value fruits  None 3 1 
Summary exposure value vegetables  None 3 1 
Summary exposure value nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, un-adjusted) None 3 -1 
Summary exposure value PUFA  None 3 1 
Cholesterol (total, mean per capita) None 3 -1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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Input data 
Vital registration data were used to model subarachnoid haemorrhage. We outliered ICD8 datapoints 
which were inconsistent with the rest of the data and created implausible time trends. In addition, we 
outliered vital registration data in Tibet that was implausibly high for all years and age groups.  

Modelling strategy  
We used a standard CODEm approach to model deaths from subarachnoid haemorrhage. The covariates 
chosen for inclusion in the ensemble modelling process are listed in the table below. For GBD 2019, we 
dropped the Socio-demographic Index covariate as exploratory analyses indicated that it was not 
predictive of the outcome. We also changed the direction of the alcohol covariate from 0 to 1 to reflect 
the expected direction of the association of this risk factor with mortality risk. Apart from these changes 
to the covariates, there are no substantive changes from the approach used in GBD 2017. 

 

Table: Selected covariates for CODEm models, subarachnoid haemorrhage 
Level Covariate Transformation Direction 
1 Smoking prevalence None 1 
1 Systolic blood pressure (mmHg) None 1 
2 Healthcare access and quality index None -1 
3 Lag distributed income per capita (I$) Log -1 
3 Alcohol (litres per capita) None 1 
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Input data 
Vital registration data were used to model cause-specific mortalty for hypertensive heart disease. We 
outliered ICD9BTL data points, which were inconsistent with the rest of the data and created implausible 
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time trends. In addition, we outliered vital registration data from Grenada in 2017 for being implausibly 
low across all age groups. 

  

Modelling strategy  
We used a standard CODEm approach to model deaths from hypertensive heart disease. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from hypertensive heart disease. We also changed the direction of the covariates for alcohol and 
socio-demographic index from 0 to 1 to reflect the expected direction of these covariates with mortality 
risk. Apart from these covariate updates, there are no other substantive changes from the approach 
used in GBD 2017. 
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Table: Selected covariates for CODEm models, hypertensive heart disease 
Covariate Transformation Level Direction 
Systolic blood pressure (mmHg) None 1 1 
Cholesterol (total, mean per capita) None 2 1 
Smoking prevalence None 2 1 
Mean BMI None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 1 
Alcohol (litres per capita) None 3 1 
Summary exposure value, omega-3  None 3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Summary exposure value, PUFA  None 3 1 
Summary exposure value, vegetables  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Trans fatty acid (percent) None 3 1 
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Input data 
For GBD 2019, input data for estimating mortality due to congenital anomalies was centrally extracted, 
processed, and stored in cause of death (CoD) database. Vital registration (VR) was the dominant data 
type, followed by verbal autopsy (VA) and surveillance. Those CoD data sources that specified the 
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subcause of birth defect were included in estimation of both the parent congenital anomalies model as 
well as in subtype-specific models.  

For GBD 2019, data exclusions were limited. The majority of VA data were outliered in those over 5 
years old as the age patterns were unreliable and led to poor model performance in the under-5 age 
groups. We also excluded some data sources from the parent model where only a subset of subcauses 
were specified (e.g., congenital heart disease, neural tube defects, and other congenital anomalies) and 
the sum of the subcauses clearly represented systematic underreporting of one of the subcauses. 
Systematic underreporting was suspected when sex- and age-specific rates were more than an order of 
magnitude lower than neighbouring or comparable locations. Data sources for those locations were still 
included by default for subcause specific models because underreporting of the total was not assumed 
to necessarily be associated with underreporting of all of the component conditions.  

Modelling strategy  
All types of congenital anomalies were estimated using cause of death ensemble modelling (CODEm) for 
GBD 2019, as was done for previous iterations of the GBD study. Specific causes included neural tube 
defects, congenital heart anomalies, orofacial clefts, Down syndrome, other chromosomal anomalies, 
congenital musculoskeletal anomalies, urogenital congenital anomalies, digestive congenital anomalies, 
and other congenital birth defects. We assumed no mortality from either Klinefelter syndrome or Turner 
syndrome, for which we model nonfatal outcomes only. For GBD 2019, we modelled congenital 
anomalies as a cause of death for ages 0–69 years only, assuming that all mortality from congenital 
conditions occurs before age 70 years of age.  

For GBD 2016, we added three new causes to the congenital anomalies: congenital musculoskeletal and 
limb anomalies; urogenital congenital anomalies; and digestive congenital anomalies. We made no 
additions to the causes of congenital anomalies for GBD 2017 or 2019. 

Table 1: Covariates tested for CODEm model of overall congenital birth defects 

Covariate Transformation Level Direction 

Maternal alcohol consumption during pregnancy (proportion) None 1 + 

In-facility delivery (proportion) None 1 - 

Live births 35+ (proportion) None 1 + 

Folic acid unadjusted (ug) None 1 - 

Folic acid fortification index None 1 - 

Birth prevalence of congenital heart disease None 1 + 

Birth prevalence of chromosomal anomalies None 1 + 

Legality of abortion None 2 - 

Antenatal care (1 visit) coverage (proportion) None 2 - 

Age-standardised summary exposure value (SEV) of smoking None 2 + 
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Antenatal care (4 visits) coverage (proportion) None 2 - 

Healthcare Access and Quality Index None 2 - 

Maternal education (years per capita) None 3 - 

Alcohol (litres per capita) None 3 + 

Age-standardised SEV of low fruits None 3 + 

Outdoor air pollution (PM2.5) None 3 + 

Age-standardised SEV of household air pollution None 3 + 

Socio-demographic Index None 3 - 

Age-standardised SEV of low vegetables None 3 + 

Table 2: Covariates tested for CODEm model of neural tube defects 

Covariate Transformation Level Direction 

In-facility delivery (proportion) None 1 - 

Folic acid unadjusted (ug) None 1 - 

Folic acid fortification index None 1 - 

Healthcare Access and Quality Index None 2 - 

Antenatal care (1 visit) coverage (proportion) None 2 - 

Antenatal care (4 visits) coverage (proportion) None 2 - 

Age-standardised SEV of smoking None 2 + 

Age-standardised SEV of low fruits None 3 + 

Age-standardised SEV of low vegetables None 3 + 

Maternal education (years per capita) None 3 - 

Socio-demographic Index None 3 - 

Legality of abortion None 2 - 

Maternal alcohol consumption during pregnancy (proportion) None 3 + 

Age-standardised SEV of household air pollution None 3 + 

Age-standardised SEV of fasting plasma glucose None 3 + 

Litres of alcohol consumed per capita None 3 + 

Table 3: Covariates selected for CODEm model of congenital heart anomalies 

Covariate Transformation Level Direction 
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Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Birth prevalence of congenital heart disease None 1 + 

Socio-demographic Index Log 2 - 

Age-standardised SEV of smoking None 2 + 

Age-standardised SEV of diabetes None 2 + 

Healthcare Access and Quality Index None 2 - 

Legality of abortion None 2 - 

Antenatal care (1 visit) coverage (proportion) None 2 - 

In-facility delivery (proportion) None 2 - 

Maternal education (years per capita) None 3 - 

Alcohol (litres per capita) None 3 + 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Skilled birth attendance (proportion) None 3 - 

Live births 35+ (proportion) None 3 + 

Table 4: Covariates selected for CODEm model of cleft lip and cleft palate 

Covariate Transformation Level Direction 

Socio-demographic Index None 1 - 

Folic acid fortification index None 1 - 

Age-standardised SEV of diabetes None 2 + 

Maternal alcohol consumption during pregnancy (proportion) None 2 + 

Healthcare Access and Quality Index None 2 - 

Legality of abortion None 2 - 

Skilled birth attendance (proportion) None 2 - 

Age-standardised SEV of smoking None 2 + 

Age-standardised SEV of household air pollution None 3 + 

Age-standardised SEV of low vegetables None 3 + 

Alcohol (litres per capita) None 3 + 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Maternal education (years per capita) None 3 - 
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Age-standardised SEV of low fruits None 3 + 

Antenatal care (1 visit) coverage (proportion) None 3 - 

Table 5: Covariates selected for CODEm model of Down syndrome 

Covariate Transformation Level Direction 

Live births 35+ (proportion) None 1 + 

Legality of abortion None 1 - 

Live births 40+ (proportion) None 1 + 

Birth prevalence of chromosomal anomalies None 1 + 

Socio-demographic Index None 2 - 

In-facility delivery (proportion) None 2 - 

Healthcare Access and Quality Index None 2 - 

Maternal alcohol consumption during pregnancy (proportion) None 3 + 

Antenatal care (1 visit) coverage (proportion) None 3 - 

Maternal education (years per capita) None 3 - 

Age-standardised SEV of household air pollution None 3 + 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Age-standardised SEV of low vegetables None 3 - 

Age-standardised SEV of smoking None 3 + 

Litres of alcohol consumed per capita None 3 + 

Table 6: Covariates selected for CODEm model of other chromosomal abnormalities 

Covariate Transformation Level Direction 

Live births 35+ (proportion) None 1 + 

Live births 40+ (proportion) None 1 + 

Legality of abortion None 1 - 

Lag distributed income (LDI) (I$ per capita) Log 2 - 

Healthcare Access and Quality Index None 2 - 

Antenatal care (4 visits) coverage (proportion) None 2 - 

Antenatal care (1 visit) coverage (proportion) None 2 - 

In-facility delivery (proportion) None 2 - 
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Maternal alcohol consumption during pregnancy (proportion) None 2 + 

Socio-demographic Index None 3 - 

Alcohol (litres per capita) None 3 + 

Age-standardised SEV of smoking None 3 + 

Age-standardised SEV of household air pollution None 3 + 

Maternal education (years per capita) None 3 - 

Skilled birth attendance (proportion) None 3 - 

Table 7: Covariates selected for CODEm model of congenital musculoskeletal and limb anomalies 

Covariate Transformation Level Direction 

Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Legality of abortion None 1 - 

In-facility delivery (proportion) None 2 - 

Ag-standardised SEV of diabetes None 2 + 

Socio-demographic Index None 2 - 

Healthcare Access and Quality Index None 2 - 

Age-standardised SEV of household air pollution None 2 + 

Age-standardised SEV of smoking None 2 + 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Alcohol (litres per capita) None 3 + 

Age-standardised SEV of low fruits None 3 + 

Age-standardised SEV of low vegetables None 3 + 

Maternal education (years per capita) None 3 - 

Antenatal care (1 visit) coverage (proportion) None 3 - 

LDI per capita Log 3 - 

Table 8: Covariates selected for CODEm model of urogenital congenital anomalies 

Covariate Transformation Level Direction 

Age-standardised SEV of smoking None 1 + 

Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Healthcare Access and Quality Index None 2 - 
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Diabetes age-standardised prevalence (proportion) None 2 + 

Socio-demographic Index None 2 - 

Age-standardised SEV of outdoor air pollution None 2 + 

In-facility delivery (proportion) None 2 - 

Age-standardised SEV of household air pollution None 2 + 

Antenatal care (1 visit) coverage (proportion) None 3 - 

Alcohol (litres per capita) None 3 + 

Maternal education (years per capita) None 3 - 

LDI (I$ per capita) Log 3 - 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Table 9: Covariates selected for CODEm model of digestive congenital anomalies  

Covariate Transformation Level Direction 

Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Age-standardised SEV of smoking None 1 + 

Age-standardised SEV of household air pollution None 2 + 

Diabetes age-standardised prevalence (proportion) None 2 + 

Age-standardised SEV of diabetes None 2 + 

Socio-demographic Index None 2 - 

Age-standardised SEV of obesity None 2 + 

In-facility delivery (proportion) None 2 - 

Healthcare Access and Quality Index None 2 - 

Alcohol (litres per capita) None 3 + 

Maternal education (years per capita) None 3 - 

Age-standardised SEV of low vegetables None 3 + 

Antenatal care (1 visit) coverage (proportion) None 3 - 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Age-standardised SEV of low fruits None 3 + 

LDI (I$ per capita) Log 3 - 

MCI None 3 - 
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Table 10: Covariates selected for CODEm model of other congenital birth defects 

Covariate Transformation Level Direction 

Maternal alcohol consumption during pregnancy (proportion) None 1 + 

Live births 35+ (proportion) None 1 + 

Maternal education (years per capita) None 2 - 

Legality of abortion None 2 - 

In-facility delivery (proportion) None 2 - 

Age-standardised SEV of household air pollution None 2 + 

Healthcare Access and Quality Index None 2 - 

Antenatal care (1 visit) coverage (proportion) None 3 - 

Age-standardised SEV of diabetes None 3 + 

LDI (I$ per capita) Log 3 - 

Socio-demographic Index None 3 - 

Antenatal care (4 visits) coverage (proportion) None 3 - 

Alcohol (litres per capita) None 3 + 

 

Rheumatic heart disease  
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Input data 
Vital registration and surveillance data were used to model rheumatic heart disease. We outliered ICD8 
and ICD9 BTL datapoints which were inconsistent with the rest of the data and created implausible time 
trends. We also outliered datapoints which were too high after the redistribution process in a number of 
age groups. In addition, we outliered verbal autopsy datapoints in Nepal and Pakistan which created an 
implausibly low cause fraction.  

Modelling strategy  
We used a standard CODEm approach to model deaths from rheumatic heart disease. There have been 
no substantive changes from the approach used in GBD 2017, including any covariate changes. 

 
Table 1: Selected covariates for CODEm models, rheumatic heart disease 

Level Covariate Transformation Direction 
1 Rheumatic heat disease summary exposure value scalar None 1 
1 Improved water (proportion) None -1 
1 Malnutrition None 1 
1 Sanitation (proportion with access) None -1 
2 Healthcare access and quality index None -1 
3 Lag distributed income per capita (I$) Log -1 
3 Socio-demographic Index None -1 
3 Education (years per capita) None -1 
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Input data 
Vital registration data were used to model deaths due to cardiomyopathy and myocarditis. We outliered 
data points in Central Asia, Central Europe, and Eastern Europe due to implausibly high values which we 
attributed to variation in local coding practices. We also outliered ICD8 and ICD9BTL data points in 
countries where they were discontinuous with other data in the time series or were implausibly high or 
low. Additionally, we outliered ICD10 data points in Grenada that were improbably low and causing 
inconsistencies in the time pattern.  

 

Modelling strategy  
We used a standard CODEm approach to model deaths from cardiomyopathy and myocarditis. The 
covariates selected for inclusion in the CODEm modelling process can be found in the table below. A 
select few changes were made to the covariates as compared with GBD 2017. We dropped the alcohol 
(litres per capita) covariate as exploratory analyses indicated that it was not predictive of the outcome. 
We also changed the directions of the socio-demographic index covariate and lag distributed income 
(per capita) covariate from 0 to -1 to reflect our a priori hypotheses about the relationships of these 
covariates with mortality risk from cardiomyopathy and myocarditis. Aside from these covariate 
changes, there have been no substantive changes to the modelling strategy since GBD 2017. 
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Table: Selected covariates for CODEm models, cardiomyopathy and myocarditis 
Covariate Transformation Level Direction 
Summary exposure value, CMP none 1 1 
Mean systolic blood pressure (mmHg) none 1 1 
Smoking prevalence none 1 1 
Mean BMI (kg/m2) None 2 1 
Healthcare access and quality index none 2 -1 
Lag distributed income per capita (I$) log 3 -1 
Socio-demographic Index none 3 -1 

 

Myocarditis 

 

Input data 
Vital registration data were used to model deaths due to myocarditis.  

Modelling strategy  
We used a standard CODEm approach to model deaths from myocarditis. The covariates selected for 
evaluation in the CODEm ensemble modelling process can be found in the table below. We changed the 
direction on the lag distributed income per capita and socio-demographic index covariates from 0 for 
both to -1 and 1, respectively, to reflect our a priori hypotheses regarding these associations. Aside from 
these changes, there have been no substantive changes to the modelling strategy since GBD 2017. 

 
Table: Selected covariates for CODEm models, myocarditis 

Covariate Transformation Level Direction 
Summary exposure variable, CMP none 1 1 
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Systolic blood pressure (mm Hg) none 1 1 
Healthcare access and quality index none 2 -1 
Lag distributed income per capita (I$) log 3 -1 
Socio-demographic Index none 3 1 

 

Other cardiomyopathy 

 

Input data 
Vital registration data were used to model deaths due to other cardiomyopathy. We outliered 
datapoints in Central Asia and Central and Eastern Europe due to implausibly high values which we 
attributed to variation in local coding practices after review with experts. 

Modelling strategy  
We used a standard CODEm approach to model deaths from other cardiomyopathy. The covariates 
selected for inclusion in the CODEm modelling process can be found in the table below. We changed the 
directions of the Socio-demographic Index and lag distributed income per capita covariates from 0 for 
both to 1 and -1, respectively. Aside from these covariate changes, there have been no substantive 
changes to the modelling process since GBD 2017. 

 
Table: Selected covariates for CODEm models, other cardiomyopathy  

Level Covariate Transformation Direction 
1 Summary exposure variable, CMP none 1 
1 Systolic blood pressure (mmHg) none 1 
1 Smoking prevalence none 1 
2 Body mass index (kg/m2) none 1 
2 Healthcare Access and Quality Index none -1 
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3 Lag distributed income per capita (I$) log -1 
3 Socio-demographic Index none 1 
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Input data 
Vital registration data were used to model deaths due to alcoholic cardiomyopathy. We outliered ICD9 
data points in Cyprus that were implausibly high and discontinuous with the rest of the time series. We 
also dropped ICD9BTL data points in locations in Central and Eastern Europe where we were unable to 
disaggregate them appropriately. Additionally, we outliered tabulated ICD10 data points in locations 
where unreliable estimates caused an abrupt inconsistency with detailed ICD10 data.  

Modelling strategy  
We used a standard CODEm approach to model deaths from alcoholic cardiomyopathy. The covariates 
selected for inclusion in the CODEm modelling process can be found in the table below. For GBD 2019, 
we dropped the covariate on socio-demographic index as exploratory analyses indicated that it was not 
predictive of the outcome. Additionally, we changed the direction of the lag distributed income per 
capita covariate from 0 to -1 to reflect our a priori hypothesis about the expected relationship between 
this covariate and deaths from alcoholic cardiomyopathy. Aside from these covariate changes, there 
have been no substantive changes from the approach used in GBD 2017. 

 
Table: Selected covariates for CODEm models, alcoholic cardiomyopathy 

Covariate Transformation Level Direction 
Summary exposure value, CMP none 1 1 
Smoking prevalence none 1 1 
Alcohol (litres per capita) none 1 1 
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Healthcare access and quality index none 2 -1 
Lag distributed income per capita (I$) log 3 -1 
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Input data 
Vital registration (VR) data: We outliered ICD8 and ICD9 data points that were discontinuous from other 
data in the time series and created an unlikely time trend. We also outliered data points that were 
implausibly low in multiple age groups.  

Modelling strategy  
In order to address changes in coding practices for atrial fibrillation, we used an integrated approach 
that combined DisMod-MR 2.1 and CODEm models to estimate deaths from atrial fibrillation and flutter. 
This approach allowed us to adjust estimates to more accurately reflect the number of deaths for which 
atrial fibrillation was the true underlying cause of death. Due to the restrictions of the decomposition 
analysis implemented for GBD 2019, we utilized the CSMR from the final GBD 2017 DisMod-MR 2.1 
model to inform the misdiagnosis correction described below.  

 
The modelling steps are illustrated in the above flowchart. Covariates included in both the DisMod-MR 
2.1 and CODEm models can be found in the table below. In Step 1, we estimated deaths for atrial 
fibrillation using a standard CODEm approach. In Step 2, we estimated prevalence rates in DisMod-MR 
2.1 using data from published reports of cross-sectional and cohort surveys, as well as primary care 
facility data. We also used claims data covering inpatient and outpatient visits for the United States 
along with inpatient hospital data from 163 locations in 15 countries. Inpatient hospital data were 
adjusted using age- and sex-specific information for: 1) readmission within one year; 2) primary 
diagnosis code to secondary codes; and, 3) the ratio of inpatient to outpatient visits. We set priors of no 
remission and no excess mortality prior to age 30.  
 
In Step 3, we calculated the excess mortality rate (EMR) for 2017 (defined as the cause-specific mortality 
rate (CSMR) estimated from CODEm divided by the prevalence rate from DisMod-MR 2.1). We then 
selected 17 countries based on four conditions: 1) ranking of 4 or 5 stars on the newly developed system 
for assessing the quality of VR data; 2) prevalence data available from the literature were included in the 
DisMod-MR 2.1 estimation; 3) prevalence rate ≥ 0.005; and, 4) CSMR ≥ 0.00002. Using information from 
these countries as input data, we ran a linear mixed-effects regression of logEMR on sex, age, and 
location. Sex and age were treated as fixed effects for the regression, while location was considered a 
random effect. We then predicted age- and sex-specific EMR using the results of this regression for all 
non-selected countries. Countries included in the regression were assigned their directly calculated 
values. These EMR data points were assigned to the time period 1990–2017 and uploaded into the 
nonfatal database in order to be used in modelling.  
 
In Step 4, we reran DisMod-MR 2.1 including the EMR estimated in Step 3 as input data using the same 
priors as in Step 2 to obtain CSMR estimates from DisMod-MR 2.1 that are consistent with the available 
data for incidence and prevalence. As DisMod-MR 2.1 only generates estimates for six years (1990, 
1995, 2000, 2005, 2010, 2017), we interpolated using a log-linear approach for 1990–2017. Estimates for 
1980–1990 were generated via regression on the entire time series, using sociodemographic index as a 
predictor.  
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In Step 5, the CSMR estimates were divided by the all-cause mortality estimates used in DisMod-MR 2.1 
to calculate the cause fraction for atrial fibrillation and flutter. We then calculated the difference 
between the cause fraction estimated by DisMod-MR 2.1 and the cause fraction in the VR data 
generated by the Cause of Death data preparation process. This yielded the cause fraction that would 
need to be retrieved from other causes via the process described in Section 2.6: Correction for 
miscoding of Alzheimer’s and other dementias and Parkinson’s disease. After this correction process, 
the cause fraction data are processed through the standard redistribution and noise reduction 
processes.  
 
In Step 6, these adjusted cause fraction data are then used as inputs for a final CODEm model, using the 
covariates described below. The results from the CODEm model are processed through CoDCorrect; 
these post-CoDCorrected results are the final estimates for cause-specific mortality for atrial fibrillation 
and flutter. 
 

Modelling strategy  
We used a standard CODEm approach to model deaths from ischemic heart disease. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from ischaemic heart disease. We changed the direction of the alcohol variable from 0 to 1 to reflect 
our a priori hypothesis about the expected direction of the association between this risk factor and 
mortality risk of ischaemic heart disease. In addition, we changed the level of the covariate for trans 
fatty acid from 1 to 3. Besides these covariate changes, there are no other substantive changes from the 
approach used in GBD 2017. 
 
For GBD 2019, adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, 
nuts and seeds, and polyunsaturated fatty acids were replaced with the summary exposure value scalars 
for diet low in each of these factors. The direction for each dietary covariate was changed from -1 to 1 to 
as our a priori assumption is that low levels of intake of these dietary factors are associated with 
increasing mortality risk from atrial fibrillation. In addition, the dietary covariate for whole grains 
(kcal/capita, adjusted) was dropped as exploratory analyses indicated that it was not associated with 
mortality risk. The direction for the alcohol and socio-demographic index covariates was changed from 0 
to 1 to reflect our a priori hypotheses about the expected directions of the associations between these 
covariates and mortality risk of atrial fibrillation. Besides these covariate changes, there are no other 
substantive changes from the approach used in GBD 2017. 
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CODEm Covariates, atrial fibrillation and flutter 
Covariate Transformation Level Direction 
Summary exposure variable, atrial fibrillation None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Fasting plasma glucose None 2 1 
Healthcare Access and Quality Index None 2 -1 
Cholesterol (total, mean per capita) None 2 1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 1 
Summary exposure value, omega-3  None  3 1 
Summary exposure value, fruits  None 3 1 
Summary exposure value, vegetables  None 3 1 
Summary exposure value, nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, unadjusted) None 3 -1 
Summary exposure value, PUFA  None 3 1 
Alcohol (litres per capita) None 3 1 
Trans fatty acid None 3 1 
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DisMod-MR 2.1 Covariates – Step 2 
Covariate Parameter Beta Exponentiated beta 
All MarketScan, year 2010 Prevalence -0.077 (-0.099 to -0.051) 0.93 (0.91 to 0.95) 
SEV scalar: Atrial fibrillation Prevalence 0.75 (0.75 to 0.75) 2.12 (2.12 to 2.12) 
Healthcare access and 
quality index 

Excess mortality rate -0.11 (-0.13 to -0.088) 0.90 (0.88 to 0.92) 

 
DisMod-MR 2.1 Covariates – Step 4 

Covariate Parameter Beta Exponentiated beta 
All MarketScan, year 2010 Prevalence 0.017 (-0.013 to 0.040) 1.02 (0.99 to 1.04) 
SEV scalar: Atrial fibrillation Prevalence 0.75 (0.75 to 0.75) 2.12 (2.12 to 2.12) 
LDI (I$ per capita) Excess mortality rate -0.1 (-0.1 to -0.1) 0.90 (0.90 to 0.90) 
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Input data 
Vital registration data were used to model cause-specific mortality for aortic aneurysm. We outliered 
data in Oman as they were improbably high in comparison with the rest of the region. We also outliered 
ICD8 data that were discontinuous with the rest of the time series and created implausible time trends. 
In addition, we outliered a subset of vital registration data points in Latin America due to implausibly 
high values at the oldest age groups that resulted in inconsistencies in time trends. 

Modelling strategy  
We used a standard CODEm approach to model deaths from aortic aneurysm. The covariates selected 
for inclusion in the CODEm modelling process can be found in the table below. For GBD 2019, adjusted 
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dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, and 
polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in each 
of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from aortic aneurysm. We also changed the direction of the covariates for alcohol consumption and 
the socio-demographic index from 0 to 1. Besides these covariate changes, there are no other 
substantive changes from the approach used in GBD 2017. 
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Table: Selected covariates for CODEm models, aortic aneurysm 
Covariate Transformation Level Direction 
Summary exposure variable, aortic aneurysm None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Cumulative cigarettes (10 yrs) None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Mean BMI None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 1 
Summary exposure value omega-3  None  3 1 
Summary exposure value fruits  None 3 1 
Summary exposure value vegetables  None 3 1 
Summary exposure value nuts and seeds  None 3 1 
Pulses/legumes (kcal/capita, un-adjusted) None 3 -1 
Summary exposure value PUFA  None 3 1 
Alcohol (litres per capita) None 3 1 

 

Non-rheumatic valvular heart disease: Non-rheumatic calcific aortic valve disease, 
non-rheumatic degenerative mitral valve disease, and other non-rheumatic valvular 
heart diseases 

 

Input data 
Vital registration data were used to model non-rheumatic valvular heart disease, non-rheumatic calcific 
valve disease, non-rheumatic degenerative mitral valve disease, and other non-rheumatic valve 



66 
 

diseases. We outliered ICD8, ICD9BTL, and tabulated ICD10 datapoints which were inconsistent with the 
rest of the data and created implausible time trends. Datapoints from sources which were implausibly 
low in all age groups and datapoints that were causing the regional estimates to be improbably high 
were outliered.  

Modelling strategy  
We used a standard CODEm approach to model deaths from non-rheumatic valvular heart disease, non-
rheumatic calcific valve disease, non-rheumatic degenerative mitral valve disease, and other non-
rheumatic valvular diseases. The covariates used in the GBD 2019 models, along with their 
transformations, importance levels, and imposed directions are reported by cause in the tables below. 
For non-rheumatic valvular heart disease and non-rheumatic calcific aortic valve disease, we added the 
appropriate summary exposure value, setting both the direction and level to 1. We changed the 
direction of the Socio-demographic Index covariate from 0 to 1; this change affected the non-rheumatic 
valve disease, non-rheumatic calcific aortic valve disease, and non-rheumatic degenerative mitral valve 
disease models. We also changed the direction of the alcohol consumption variable from 0 to 1; this 
update affected the non-rheumatic valvular heart disease and calcific aortic valve disease models. All 
covariates for the other non-rheumatic valvular heart disease model were changed. In GBD 2017, we 
had included only the summary exposure value for cardiovascular diseases in the model. For GBD 2019, 
we updated the model to include the summary exposure value for non-rheumatic valvular heart disease 
(level 1, direction 1), Healthcare Access and Quality Index (level 1, direction -1), and Socio-demographic 
Index (level 2, direction -1).  

Table 1: Selected covariates for CODEm models, non-rheumatic valvular heart disease 
Level Covariate Transformation Direction 
1 Smoking prevalence None 1 
1 Summary exposure value, non-rheumatic valve disease None 1 
1 Systolic blood pressure (mmHg) None 1 
2 Cholesterol (total, mean per capita) None 1 
2 Mean BMI None 1 
2 Healthcare Access and Quality Index None -1 
3 Lag distributed income per capita (I$) Log -1 
3 Socio-demographic Index None 1 
3 Alcohol (litres per capita) None 1 

 
 
Table 2: Selected covariates for CODEm models, non-rheumatic calcific aortic valve disease 

Level Covariate Transformation Direction 
1 Smoking prevalence None 1 

1 Summary exposure value, non-rheumatic calcific aortic 
valve disease None 1 

1 Systolic blood pressure (mmHg) None 1 
2 Cholesterol (total, mean per capita) None 1 
2 Mean BMI None 1 
2 Fasting plasma glucose None 1 
2 Healthcare Access and Quality Index None -1 
3 Lag distributed income per capita (I$) Log -1 
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3 Socio-demographic Index None 1 
3 Alcohol (litres per capita) None 1 

 
 
Table 3: Selected covariates for CODEm models, non-rheumatic degenerative mitral valve disease 

Level Covariate Transformation Direction 
1 Healthcare Access and Quality Index None -1 
1 Lag distributed income per capita (I$) Log 1 
1 Socio-demographic Index None 1 

 
Table 4: Selected covariates for CODEm models, other non-rheumatic valvular heart diseases 

Level Covariate Transformation Direction 

1 Summary exposure value, non-
rheumatic valve disease None 1 

1 Healthcare Access and Quality Index None -1 
2 Socio-demographic Index None -1 
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Input data 
Vital registration data were used to model endocarditis. We outliered data in Mozambique as these 
were non-representative for sub-Saharan Africa and were causing regional estimates to be implausibly 
low. We also outliered ICD8 data that were discontinuous from the rest of the data series and created 
an implausible time trend. 
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Modelling strategy  
We used a standard CODEm approach to model deaths from endocarditis. Covariates selected for 
inclusion in the CODEm ensemble modelling process are listed in the table below. For GBD 2019, the 
same covariates as GBD 2017 were used. We changed the level of the healthcare access and quality 
index covariate from 1 to 2 for consistency with our a priori hypothesis about the relative impact of the 
covariate on mortality from endocarditis. We also changed the direction of the socio-demographic index 
covariate from 0 to -1. Apart from these updates to the covariates, there have been no substantive 
changes from the approach used in GBD 2016. 

Table: Selected covariates for CODEm models, endocarditis 
Covariate Transformation Level Direction 
Summary exposure value, endocarditis None 1 1 
Improved water (proportion) None 1 -1 
Sanitation (proportion with access) None 1 -1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 -1 
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Input data 
Vital registration data were used to model peripheral artery disease. We outliered all datapoints with 
less than 1 death in Egypt per expert review. 

Modelling strategy  
We used a standard CODEm approach to model deaths from peripheral artery disease. For GBD 2019, 
adjusted dietary covariates for consumption of fruits, omega-3 fatty acids, vegetables, nuts and seeds, 
and polyunsaturated fatty acids were replaced with the summary exposure value scalars for diet low in 
each of these factors. The direction for each dietary covariate was changed from -1 to 1 to as our a priori 
assumption is that low levels of intake of these dietary factors are associated with increasing mortality 
risk from peripheral arterial disease. In addition, we dropped the dietary covariates for whole grains 
(kcal/capita, adjusted) and trans fatty acid (percent). We changed the direction of the alcohol and the 
Socio-demographic Index covariates from 0 to 1 to reflect the expected direction of the association for 
these risk factors with mortality risk. Apart from these changes, there are no substantive changes from 
the approach used in GBD 2017. 
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Table: Selected covariates for CODEm models, peripheral artery disease 
Level Covariate Transformation Direction 
1 Summary exposure variable, PAD None 1 
1 Systolic blood pressure (mmHg) None 1 
1 Cholesterol (total, mean per capita) None 1 
1 Smoking prevalence None 1 
2 Mean body mass index (kg/m2) None 1 
2 Healthcare Access and Quality Index None -1 
2 Diabetes fasting plasma glucose (mmol/L) None 1 
3 Lag distributed income per capita (I$) Log -1 
3 Socio-demographic Index None 1 
3 Summary exposure value, omega-3  None  1 
3 Summary exposure value, fruits  None 1 
3 Summary exposure value, vegetables  None 1 
3 Summary exposure value, nuts and seeds  None 1 
3 Pulses/legumes (kcal/capita, unadjusted) None -1 

3 
Summary exposure value, polyunsaturated 
fatty acids  None 1 

3 Alcohol (litres per capita) None 1 
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Input data and methodological summary 
 

Case definition 
Case definitions: 

1) Acute myocardial infarction (MI): Definite and possible MI according to the third universal 
definition of myocardial infarction: 

a. When there is clinical evidence of myocardial necrosis in a clinical setting consistent 
with myocardial ischaemia or  

b. Detection of a rise and/or fall of cardiac biomarker values and with at least one of the 
following: i) symptoms of ischaemia, ii) new or presumed new ST-segment-T wave 
changes or new left bundle branch block, iii) development of pathological Q waves in 
the ECG, iv) imaging evidence of new loss of viable myocardium or new regional wall 
motion abnormality, or v) identification of an intracoronary thrombus by angiography or 
autopsy. 

c. Sudden (abrupt) unexplained cardiac death, involving cardiac arrest or no evidence of a 
non-coronary cause of death 

d. Prevalent MI is considered to last from the onset of the event to 28 days after the event 
and is divided into an acute phase (0–2 days) and subacute (3–28 days). 

 

2) Chronic IHD 
a. Angina; clinically diagnosed stable exertional angina pectoris or definite angina pectoris 

according to the Rose Angina Questionnaire, physician diagnosis, or taking nitrate 
medication for the relief of chest pain. 

b. Asymptomatic ischaemic heart disease following myocardial infarction; survival to 28 
days following incident MI. The GBD study does not use estimates based on ECG 
evidence for prior MI, due to its limited specificity and sensitivity (1). 

 
ICD codes used for inclusion of hospital and claims data for MI and angina can be found elsewhere in the 
appendix. 
 
Input data 
The total source counts for non-fatal ischaemic heart disease are shown in the table below by measure. 

Table 1: Source counts for all non-fatal ischaemic heart disease models. 

Measure Total sources Countries with data 

All measures 442 84 

Prevalence 88 61 

Incidence 296 44 

Excess mortality rate 90 21 

Relative risk 1 1 
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Standardized mortality 
ratio 

1 1 

With-condition 
mortality rate 

4 4 

Proportion 16 1 

Myocardial infarction 
 
A systematic review was done for myocardial infarction for GBD 2019 in order to update our current 
database. The search strings used were ((“myocardial infarction”[tiab] AND (incidence OR “case fatality” 
OR “excess mortality”)) OR (“acute coronary syndrome”[tiab] AND (incidence OR “case fatality” OR 
“excess mortality”)) OR (angina[tiab] AND (incidence OR prevalence OR “case fatality” OR “excess 
mortality”))) AND ("2019/01/01"[PDAT] : "2019/12/31"[PDAT]) NOT rat[tiab] NOT mice[tiab] NOT 
monkey[tiab] NOT pig[tiab] NOT animals[tiab].  
 
The dates of the search were 1/1/2019 – 12/31/2019. 28957 studies were returned, 80 were extracted. 
The PRISMA diagram for the systematic review is given below. In the diagram, screening refers to 
reviewing of the title and abstract of an article for relevant information, not screening of the entire 
article.  
  



74 
 

 
 
PRISMA Diagram 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The last systematic review for myocardial infarction was done for GBD 2015. The dates of the search 
were 1/1/2009 – 2/3/2015. 38,522 studies were returned; 194 were extracted (this number includes 
extractions that were done for STEMI/NSTEMI models and revascularisation models that are not 
currently part of the MI modelling process but may be in the future). 
 
A systematic review for myocardial infarction was also done for GBD 2013. The extensive search terms 
for that review will be provided on request.  
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Apart from inpatient hospital and inpatient claims data, we did not include any data from sources other 
than the literature for myocardial infarction. We also split excess mortality data points where the age 
range was greater than 25 years. Age splitting was based on the global sex-specific age pattern from a 
Dismod model that only used excess mortality input data from scientific literature with less than a 25-
year age range. We excluded incidence data with broad age ranges where it was impossible to obtain 
more granular data, as these data caused the known age pattern for increased risk of myocardial 
infarction to be masked in the estimates generated from DisMod.  
 
We crosswalked incidence measurements for myocardial infarction literature data with alternative 
definitions to agree with our case reference definition using MR-BRT (Meta Regression – Bayesian, 
Regularized, Trimmed) modeling tool. MR-BRT and the process of data adjustment are discussed 
elsewhere in the appendix. For myocardial infarction we crosswalked using multiple different covariates: 
a covariate to capture only first-ever MI, using studies where all events were included as the reference; 
a covariate to adjust estimates from studies that only included non-fatal cases, using sources that 
included fatal and non-fatal cases as reference; and a covariate to adjust for studies that did not use 
troponin measurements in their case diagnosis, using sources that did include troponin measurements 
in their diagnostic method. The coefficients in Table 2 below can be used to calculate adjustment factors 
for alternative definitions. The formula for computing adjustment factors is given in equation 1 below. 
We also included a standardized age variable (age scaled) and a sex variable to the regression to adjust 
for the possibly of bias.  
 
Equation 1: Calculation of adjustment factors:  
 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎஺௟௧௘௥௡௔௧௜௩௘ ஽௘௙ − 𝐵𝑒𝑡𝑎ௌ௘௫ ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎஺௚௘ೞ೎ೌ೗೐೏
∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 

Table 2a: MR-BRT Crosswalk Adjustment Factors for Myocardial Infarction 

Data input Measure 
Reference or 

alternative case 
definition 

Gamma Beta Coefficient, 
Logit (95% CI) 

Any event, fatal and nonfatal 
events, used troponin Incidence Ref 

0.27 

--- 

Troponin not used as part of 
definition Incidence Alt -0.55 (-1.08 - -0.01) 

First-ever Incidence Alt -0.59 (-1.21 – 0.03)  
Non-fatal Incidence Alt -0.35 (-0.98 – 0.29) 
Age scaled Incidence Alt -0.05 (-0.59 – 0.49) 
Sex (male) Incidence Alt -0.001 (-0.54 – 0.54) 

 
 
Asymptomatic ischaemic heart disease following myocardial infarction 
 
No systematic review was performed for Asymptomatic ischaemic heart disease following myocardial 
infarction in GBD 2019. The primary input for this model are 28-day survivors calculated from the excess 
mortality estimates for the myocardial infarction model. We included data for excess mortality and 
standardised mortality ratio to inform the estimates of survival after myocardial infarction. 
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Angina 
 
A systematic review was not performed for GBD 2019. Updates to systematic reviews are performed on 
an ongoing schedule across all GBD causes; an update for angina will be performed in the next one to 
two iterations.  
 
A systematic review for angina was last performed for GBD 2013. The search terms for that are: (Angina 
Pectoris/epidemiology[Mesh] OR Angina Pectoris/mortality[Mesh] ) AND (prevalence[Title/Abstract] OR 
incidence[Title/Abstract]) AND ("2010"[Date - Publication] : "3000"[Date - Publication]) 
 
 
We included survey data (including NHANES and World Health Study questionnaires) which included the 
RAQ items. Prevalence of angina was calculated using the standard algorithm to determine whether the 
RAQ was positive or negative. 
 
We excluded data with broad age ranges where it was impossible to obtain more granular data, as these 
data caused the known age pattern for increased risk of angina to be masked in the estimates generated 
from DisMod. 
 
We also included US claims data, but did not include inpatient hospital data from any locations. Stable 
angina (unstable angina is modeled as part of MI) is expected to be rare in inpatient but common in 
outpatient data as it is a condition usually managed on an outpatient basis, except for specific surgical 
interventions. This discrepancy leads to implausible correction factors based on inpatient/outpatient 
information from claims data (~150X); thus adjusted data cannot be used. Including uncorrected data in 
the model is likely to lead to incorrect estimates as hospitalisation and procedure rates are likely to vary 
between geographies based on access to and patterns of care. All outpatient data were excluded as they 
were implausibly low for all locations when compared with literature and claims data. 

We crosswalked prevalence data obtained from survey data using the RAQ using claims data as a 
reference since the RAQ has been shown to be neither sensitive nor specific. Specifics on the 
crosswalking process are discussed elsewhere in the appendix. Table 2b shows the coefficients 
adjustments made to the alternative definition.  

  



77 
 

Table 2b: MR-BRT Crosswalk Adjustment Factors for Angina 

Data input Measure 
Reference or 

alternative case 
definition 

Gamma Beta Coefficient, Logit 
(95% CI) 

United States Claims 
Data Prevalence Ref 

0.11 
 

--- 

Rose Angina 
Questionnaire Prevalence Alt 2.21 (1.97 to 2.44) 

Age (scaled) Prevalence Alt -0.97 (-1.20 to -0.74) 
Sex (male) Prevalence Alt -0.62 (-0.86 to -0.38) 

 

Severity split inputs 

Acute myocardial infarction was split into two severity levels by length of time since the event – days 1 
and 2 versus days 3 through 28. Disability weights were established for these two severities using the 
standard approach for GBD 2019. 

Asymptomatic ischaemic heart disease following myocardial infarction was all assigned to the 
asymptomatic severity level. No disability weight is assigned to this level. 

Angina was split into asymptomatic, mild, moderate, and severe groups using information from MEPS. 
Disability weights were established for these severities using the standard approach for GBD 2019. 
 
Acute myocardial infarction 
 
Table 3a. Severity distribution, details on the severity levels for Myocardial Infarction in GBD 2019 and 
the associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 

Acute myocardial 
infarction, days 1-2 

Has severe chest pain that becomes worse with 
any physical activity. The person feels 
nauseated, short of breath, and very anxious. 

0.432 (0.288–0.579) 

Acute myocardial 
infarction, days 3-28 

Gets short of breath after heavy physical 
activity, and tires easily, but has no problems 
when at rest. The person has to take 
medication every day and has some anxiety. 

0.074 (0.049–0.105) 

 

Asymptomatic ischaemic heart disease following myocardial infarction 
 
Table 3b. Severity distribution, details on the severity levels for Asymptomatic ischaemic heart disease 
following myocardial infarction in GBD 2019 and the associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 
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Asymptomatic ischaemic heart disease  N/A 

 

Angina pectoris 

 
Table 3c. Severity distribution, details on the severity levels for Angina pectoris in GBD 2019 and the 
associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 

Asymptomatic angina  N/A 

Mild angina Has chest pain that occurs with strenuous physical 
activity, such as running or lifting heavy objects. After 
a brief rest, the pain goes away. 

0.033 (0.02–0.052) 

Moderate angina Has chest pain that occurs with moderate physical 
activity, such as walking uphill or more than half a 
kilometer (around a quarter-mile) on level ground. 
After a brief rest, the pain goes away. 

0.08 (0.052–0.113) 

Severe angina Has chest pain that occurs with minimal physical 
activity, such as walking only a short distance. After a 
brief rest, the pain goes away. The person avoids 
most physical activities because of the pain. 

0.167 (0.11–0.24) 

 

Modelling strategy  
 
Myocardial infarction 
 We first calculated custom cause-specific mortality estimates using cause of death data prior to 

garbage code redistribution, generating age-sex-country-specific proportions of IHD deaths that 
were due to MI (acute IHD) versus those due to other causes of IHD (chronic IHD). Estimates of this 
proportion for all locations were then generated using a DisMod proportion-only model. Due to a 
high degree of variability in pre-redistribution coding practices by location, we used the global age-, 
sex-, and year-specific proportions of acute deaths in subsequent calculations. The global 
proportions were multiplied by post-Fauxcorrect (final GBD 2019 CoD estimates with GBD 2017 
scalers) IHD deaths by location to generate CSMR estimates for MI. These data, along with incidence 
and excess mortality data, informed a DisMod model to estimate the prevalence and incidence of 
myocardial infarction due to ischaemic heart disease. 

 These estimates were split into estimates for days 1-2 and days 3-28 post-event. Disability weights 
were assigned to each of these two groupings. 

 We set a value prior of one month for remission (11/13) from the MI model. We also set a value 
prior for the maximum excess mortality rate of 10 for all ages. We included the Healthcare Access 
and Quality (HAQ) Index as a fixed-effect country-level covariate on excess mortality, forcing an 
inverse relationship. 
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Table 4a. Covariates. Summary of covariates used in the Myocardial Infarction DisMod-MR meta-
regression model  

Covariate Parameter Beta Exponentiated beta 
Healthcare Access and Quality 
(HAQ) Index 

Excess mortality 
rate 

-0.01 (-0.01 to -0.01)  0.99 (0.99 to 0.99) 

Log-transformed age-standardised 
SEV scalar: IHD 

Incidence  0.75 ( 0.75 to 0.76)  2.12 (2.12 to 2.13) 

 
Asymptomatic ischaemic heart disease  
 Excess mortality estimates from the myocardial infarction model were used to generate data of the 

incidence of surviving 28 days post-event. 
 We used these data, along with the estimates of CSMR due to chronic IHD (the other part of the 

proportion described in step 1) and excess mortality data in a DisMod model to estimate the 
prevalence of persons with IHD following myocardial infarction. This estimate included subjects with 
angina and heart failure; a proportion of this prevalence was removed in order to avoid double-
counting based on evidence from the literature (2). The result of this step generates estimates of 
asymptomatic ischaemic heart disease following myocardial infarction. 

 We set a value prior of 0 for remission for all ages. 
 We also included the log-transformed, age-standardised SEV scalar for IHD as a fixed effect, country-

level covariate on prevalence and LDI (I$ per capita) as a fixed-effect country-level covariate on 
excess mortality, forcing an inverse relationship for LDI. 

 
Table 4b. Covariates. Summary of covariates used in Asymptomatic Ischaemic Heart Disease DisMod-
MR meta-regression model  

Covariate Parameter Beta Exponentiated beta 
LDI (I$ per capita) Excess mortality 

rate 
-0.28 ( -0.45 to -0.13) 0.76 (0.63 to 0.88) 

Log-transformed age-standardised 
SEV scalar: IHD 

Incidence 
1.00 ( 0.77 to 1.24) 2.72 (2.15 to 3.47) 

 
Angina 
 We used prevalence data from the literature and USA claims databases, along with data on 

mortality risk to estimate the prevalence and incidence of angina for all locations. Data which used 
the Rose Angina Questionnaire to determine prevalence of angina was adjusted using MR-BRT as 
described above. 

 The proportion of mild, moderate, and severe angina was determined by the standard approach for 
severity splitting for GBD 2019. 

 We included a value prior of 0 for remission for all ages. We also included a value prior of 1 for 
excess mortality for all ages. 

 We also included the log-transformed, age-standardised SEV scalar for IHD as a fixed effect, country-
level covariate on prevalence and LDI (I$ per capita) as a fixed effect, country-level covariate on 
excess mortality, forcing an inverse relationship LDI. 
 

Table 4c. Covariates. Summary of covariates used in the Angina DisMod-MR meta-regression model  
Covariate Parameter Beta Exponentiated beta 
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Log-transformed age-
standardised SEV scalar: IHD 

Prevalence 1.09 (1.01 to 1.18) 2.99 (2.74 to 3.27) 

LDI (I$ per capita) Excess mortality 
rate 

-0.54 (-0.99 to -.10) 0.58 (0.37 to 0.90) 

 
There have been no substantive changes in the modelling strategy for myocardial infarction, 
asymptomatic ischaemic heart disease following myocardial infarction, and angina from GBD 2017. 
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Ischaemic Stroke, Intracerebral Haemorrhage, and Subarachnoid Haemorrhage 

Comorbidity correction (COMO)

YLLs

Comorbidity 
adjusted 

YLDs

DALYs

Unadjusted YLD by 
sequela

Disability weights 
for each sequela

Ischemic Stroke

Ratio of 
Acute:Chronic CSMR

Ischemic stroke 
deaths 

(Fauxcorrect)

First ever acute 
ischemic stroke w/

CSMR estimates

Chronic ischemic 
stroke w/CSMR 

estimates

Literature data

Inpatient hospital 
data

Survey data

Severity splits 
(acute)

Prevalence of acute 
ischemic stroke, 
severity level 3

Scaled DisMod 
proportion models 

(acute)

28-day Rankin Scores 
from Literature

Prevalence of acute 
ischemic stroke, 
severity level 4

Prevalence of acute 
ischemic stroke, 
severity level 5

Prevalence of acute 
ischemic stroke, 
severity level 2

Prevalence of acute 
ischemic stroke, 
severity level 1

Severity splits
(chronic)

Prevalence of chronic 
ischemic stroke, 
severity level 3

Scaled DisMod 
proportion models 

(chronic)

1 year Rankin Scores 
from Literature

Prevalence of chronic 
ischemic stroke, 
severity level 4

Prevalence of chronic 
ischemic stroke, 
severity level 5

Prevalence of chronic 
ischemic stroke, 
severity level 2

Prevalence of chronic 
ischemic stroke, 
severity level 1

28-day survivorship 
from excess 
mortality * 
incidence

Crosswalking/ 
Age-sex 
splitting

Split non-subtype 
specific survey 

data

28-day survivors 
from acute model

Chronic 
ischemic 

CSMR

Acute 
ischemic 

CSMR

Prevalence of 
asymptomatic 

chronic ischemic 
stroke

Nonfatal 
database

Dismod-MR

Nonfatal 
database

Dismod-MR

Location-level covariates
1) ln(LDI)

2) SEV for Ischemic Stroke

Location-level covariates
1) ln(LDI)

2) SEV for Ischemic Stroke

Intracerebral hemorrhage (ICH)

ICH deaths 
(Fauxcorrect)

First ever acute 
ICH w/CSMR 

estimates

Chronic ICH w/
CSMR estimates

Literature data

Inpatient hospital 
data

Survey data

Ratio of 
Acute:Chronic CSMR

Severity splits 
(acute)

Prevalence of acute 
ICH, severity level 3

Scaled DisMod 
proportion models 

(acute)

28-day Rankin Scores 
from Literature

Prevalence of acute 
ICH, severity level 4

Prevalence of acute 
ICH, severity level 5

Prevalence of acute 
ICH, severity level 2

Prevalence of acute 
ICH, severity level 1

Severity splits
(chronic)

Prevalence of chronic 
ICH, severity level 3

Scaled DisMod 
proportion models 

(chronic)

1 year Rankin Scores 
from Literature

Prevalence of chronic 
ICH, severity level 4

Prevalence of chronic 
ICH, severity level 5

Prevalence of chronic 
ICH, severity level 2

Prevalence of chronic 
ICH, severity level 1

28-day survivorship 
from excess 
mortality * 
incidence

Crosswalking/Age-
sex 

splitting

Split non-subtype 
specif ic  survey 

data

28-day survivors 
from acute model

Chronic ICH 
CSMR

Acute ICH 
CSMR

Prevalence of 
asymptomatic 

chronic ICH

Nonfatal 
database Dismod-MR

Nonfatal 
database Dismod-MR

Location-level covariates
1) ln(LDI)

2) SEV for ICH

Location-level covariates
1) ln(LDI)

2) SEV for ICH

SAH deaths 
(Fauxcorrect)

First ever acute 
SAH w/CSMR 

estimates

Chronic SAH w/
CSMR estimates

Literature data

Inpatient hospital 
data

Survey data

Ratio of 
Acute:Chronic CSMR

Severity splits 
(acute)

Prevalence of acute 
SAH, severity level 3

Scaled DisMod 
proportion models 

(acute)

28-day Rankin Scores 
from Literature

Prevalence of acute 
SAH, severity level 4

Prevalence of acute 
SAH, severity level 5

Prevalence of acute 
SAH, severity level 2

Prevalence of acute 
SAH, severity level 1

Severity splits
(chronic)

Prevalence of chronic 
SAH, severity level 3

Scaled DisMod 
proportion models 

(chronic)

1 year Rankin Scores 
from Literature

Prevalence of chronic 
SAH, severity level 4

Prevalence of chronic 
SAH, severity level 5

Prevalence of chronic 
SAH, severity level 2

Prevalence of chronic 
SAH, severity level 1

28-day survivorship 
from excess 
mortality * 
incidence

Crosswalking/ 
Age-sex 
splitting

Split non-subtype 
specific survey 

data

28-day survivors 
from acute model

Chronic SAH 
CSMR

Acute SAH 
CSMR

Prevalence of 
asymptomatic 

chronic SAH

Nonfatal 
database Dismod-MR

Nonfatal 
database Dismod-MR

Location-level covariates
1) ln(LDI)

Location-level covariates
1) ln(LDI)

2) Mean systolic blood pressure

Subarachnoid hemorrhage (SAH)

Final GBD 2017 
Chronic SAH 

CSMR

Final GBD 2017 
Acute SAH CSMR

Final GBD 2017 
Chronic ICH 

CSMR

Final GBD 2017 
Acute ICH CSMR

Final GBD 2017 
Chronic ICH 

CSMR

Final GBD 2017 
Acute ICH CSMR
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Input data and methodological summary 
Case definition 
Stroke was defined according to WHO criteria – rapidly developing clinical signs of focal (at times global) 
disturbance of cerebral function lasting more than 24 hours or leading to death with no apparent cause 
other than that of vascular origin (1). Data on transient ischaemic attack (TIA) were not included. 
 
Acute stroke: Stroke cases are considered acute from the day of incidence of a first-ever stroke through 
day 28 following the event. 

Chronic stroke: Stroke cases are considered chronic beginning 28 days following the occurrence of an 
event. Chronic stroke includes the sequelae of an acute stroke AND all recurrent stroke events. GBD 
2015 adopts this broader definition of chronic stroke than was used in prior iterations in order to model 
acute strokes using only first-ever incident events.  

 

Ischaemic stroke: an episode of neurological dysfunction caused by focal cerebral, spinal, or retinal 
infarction 

 
Intracerebral haemorrhage: a focal collection of blood within the brain parenchyma or ventricular 
system that is not caused by trauma 
 
Subarachnoid haemorrhage: bleeding into the subarachnoid space (the space between the arachnoid 
membrane and the pia mater of the brain or spinal cord) 
 
ICD codes used for inclusion of hospital and claims data can be found elsewhere in the appendix. 

Input data 
 
Tables 1a, 1b, and 1c display source count information for non-fatal ischaemic stroke, intracerebral 
haemorrhage, and subarachnoid haemorrhage respectively.  
 
Table 1a: Source counts for ischaemic stroke models. 

Measure Total sources Countries with data 

All measures 523 76 

Prevalence 117 24 

Incidence 332 62 

Excess mortality rate 141 47 

Case fatality rate 50 22 

 
Table 1b: Source counts for intracerebral haemorrhage models. 
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Measure Total sources Countries with data 

All measures 502 74 

Prevalence 117 24 

Incidence 322 61 

Excess mortality rate 125 41 

Case fatality rate 40 18 

Table 1c: Source counts for subarachnoid haemorrhage models. 

Measure Total sources Countries with data 

All measures 435 63 

Prevalence 117 24 

Incidence 260 47 

Excess mortality rate 88 28 

 
 
A systematic review was not performed for GBD 2019. However, a systematic review was performed for 
GBD 2017. Search terms, dates of search, and databases queried follow: 

1) Ischaemic stroke 
a. Google scholar: ("ischemic stroke" OR “cerebral infarction” OR “ischaemic stroke”) AND 

(incidence OR prevalence OR mortality OR epidemiology). Reviewed first 1000 hits, 
sorted by relevance 

b. Global Index Medicus search: (tw:("ischemic stroke") OR tw:(“cerebral infarction” OR 
tw:(“ischaemic stroke”)) AND (tw:(incidence) OR tw:(prevalence) OR tw:(mortality) OR 
tw:(epidemiology)) AND NOT (tw:(rats) OR tw:(mice) OR tw:(dogs) OR tw:(apes) OR 
tw:(monkeys)). Dates of search: 01Jan2010 – 31Aug2017  

2) Intracerebral haemorrhage 
a. Google scholar: ("hemorrhagic stroke" OR “intracerebral hemorrhage” OR 

“haemorrhagic stroke” OR “intracerebral haemorrhage”) AND (incidence OR prevalence 
OR mortality OR epidemiology). Reviewed first 1000 hits, sorted by relevance 

b. GIM search: (tw:("intracerebral hemorrhage") OR tw:(“intracerebral haemorrhage”) OR 
tw:(“hemorrhagic stroke”) OR tw:(“haemorrhagic stroke”)) AND (tw:(incidence) OR 
tw:(prevalence) OR tw:(mortality) OR tw:(epidemiology)) AND NOT (tw:(rats) OR 
tw:(mice) OR tw:(dogs) OR tw:(apes) OR tw:(monkeys)). Dates of search: 01Jan2010 – 
31Aug2017 

3) Subarachnoid haemorrhage 
a. Google scholar search: ("subarachnoid hemorrhage" OR “subarachnoid haemorrhage”) 

AND (incidence OR prevalence OR mortality OR epidemiology). Reviewed first 1000 hits, 
sorted by relevance. 

b. GIM search: (tw:("subarachnoid hemorrhage") OR tw:(“subarachnoid haemorrhage”)) 
AND (tw:(incidence) OR tw:(prevalence) OR tw:(mortality) OR tw:(epidemiology)) AND 
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NOT (tw:(rats) OR tw:(mice) OR tw:(dogs) OR tw:(apes) OR tw:(monkeys)). Dates of 
search: 01Jan2010 – 31Aug2017 

 
 
We included inpatient hospital data, adjusted for readmission and primary to any diagnosis using 
correction factors estimated from US claims data. We excluded data for locations where the data points 
were implausibly low (Vietnam, Philippines, India). In addition, we included unpublished stroke registry 
data for acute ischaemic stroke, acute intracerebral haemorrhage, and acute subarachnoid 
haemorrhage. We also included survey data for chronic stroke. These surveys were identified based on 
expert opinion and review of major survey series focused on world health that included questions 
regarding self-reported history of stroke. For GBD 2019, we split unspecified strokes (ICD-10 I64) into 
ischaemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage according to the 
proportions of subtype-specific coded strokes in the original data. We also split ICD-10 I62 into 
intracerebral haemorrhage, and subarachnoid haemorrhage using the same approach.  
 
As with many models in GBD, the diversity of data sources available means that we needed to adjust 
available data to our reference case definition. We thus crosswalked incidence and excess mortality data 
that did not meet our reference case definitions using MR- BRT, a Bayesian meta-regression tool 
develop for the GBD. More information on MR-BRT can be found elsewhere in the appendix.  
 
We adjusted data points for first and recurrent strokes combined, using data for first strokes only as 
reference. For ischaemic stroke and intracerebral haemorrhage, we also adjusted data points that 
reported all stroke subtypes combined, using as reference studies with subtype-specific information. We 
also adjusted data which included only persons who survived to hospital admission, using as reference 
data on both fatal and nonfatal strokes. In addition, we adjusted subtype-specific, inpatient clinical 
informatics data using subtype-specific literature estimates as a reference. These adjustments can be 
examined more closely in Table 2. The coefficients in Tables 2a, 2b, and 2c below can be used to 
calculate adjustment factors for alternative definitions. The formula for computing adjustment factors is 
given in equation 1 below. We also included a standardized age variable (age scaled) and a sex variable 
to the crosswalking procedure to adjust for the possibly of bias.  
 
Equation 1: Calculation of adjustment factors:  
 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎஺௟௧௘௥௡௔௧௜௩௘ ஽௘௙ − 𝐵𝑒𝑡𝑎ௌ௘௫ ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎஺௚ ೞ೎ೌ೗೐೏
∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 
No data adjustments were necessary for the chronic stroke models.  
 
Table 2a: MR-BRT Crosswalk Adjustment Factors for Ischaemic stroke 

 
Data input Measure 

Reference or 
alternative case 

definition 
Gamma 

Beta 
Coefficient, 

Logit (95% CI) 
Ischaemic stroke First-ever, 

subtype-
specific, fatal 
and nonfatal 

events 

Incidence Ref --- --- 

Ischaemic stroke Hospital data Incidence Alt 0.97 -0.26 
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(-2.22 to 1.70) 
Ischaemic stroke Any stroke Incidence Alt 0.02 

(-1.94 to 1.98) 
Ischaemic stroke Acute first-ever 

stroke Incidence Alt 0.22 
(-1.67 to 2.12) 

Ischaemic stroke Inpatient clinical 
informatics Incidence Alt 0.70 

(-1.26 to 2.66) 
Ischaemic stroke Sex (male) Incidence Alt 0.07 

(-1.82 to 1.96) 
Ischaemic stroke Age scaled Incidence Alt 0.28 

(-1.61 to 2.17) 
 

Table 2b: MR-BRT Crosswalk Adjustment Factors for Intracerebral Haemorrhage 

 
Data input Measure 

Reference or 
alternative 

case definition 
Gamma 

Beta 
Coefficient, 

Logit (95% CI) 
Intracerebral 
Haemorrhage 

First-ever, subtype-
specific, fatal and 
nonfatal events 

Incidence Ref --- --- 

Intracerebral 
Haemorrhage Hospital data Incidence Alt 

0.50 

0.04 
(-0.93 to 1.02) 

Intracerebral 
Haemorrhage Any stroke Incidence Alt 1.78 

(0.80 to 2.76) 
Intracerebral 
Haemorrhage 

Acute first-ever 
stroke Incidence Alt 0.15 

(-0.83 to 1.13) 
Intracerebral 
Haemorrhage 

Inpatient clinical 
informatics Incidence Alt 1.40 

(0.41 to 2.38) 
Intracerebral 
Haemorrhage Age scaled Incidence Alt 0.09 

(-0.88 to 1.07) 
Intracerebral 
Haemorrhage Sex (male) Incidence Alt 0.10 

(-0.88 to 1.06) 
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Table 2c: MR-BRT Crosswalk Adjustment Factors for Subarachnoid Haemorrhage 

 
Data input Measure 

Reference or 
alternative 

case definition 
Gamma 

Beta 
Coefficient, 

Logit (95% CI) 
Subarachnoid 
Haemorrhage 

First-ever, subtype-
specific, fatal and 
nonfatal events 

Incidence Ref --- --- 

Subarachnoid 
Haemorrhage 

Aneurysmal 
subarachnoid 

haemorrhage only 
Incidence Alt 

0.76 

-0.79 
(-2.28 to 0.70) 

Subarachnoid 
Haemorrhage Age scaled Incidence Alt -0.11 

(-1.59 to 1.38) 
Subarachnoid 
Haemorrhage Sex (male) Incidence Alt -0.07 

(-1.56 to 1.42) 
 
 
 Severity split inputs 

 

The table below illustrates the severity level, lay description, and disability weights for GBD 2019. In 
previous iterations of GBD, severity splits for stroke were based on the standard approach described 
elsewhere (3). For GBD 2016, we undertook a review to identify epidemiologic literature which reported 
the degree of disability at 28 days (for acute stroke) or one year (for chronic stroke) using the modified 
Rankin scale (mRS) and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive 
Assessment (MoCA). The mRS assesses functional capabilities, while the MMSE and MoCA tests provide 
evaluations of cognitive functioning. We then mapped these measures to the existing GBD categories as 
indicated below. This approach allowed us to include location-specific information and can be updated 
as more data on functional or cognitive status become available. 

 

Acute stroke severity splits  

Table 3a. Severity distribution, details on the severity levels for Acute Stroke in GBD 2019 and the 
associated disability weight (DW) with that severity.  

Severity level Lay description Modified 
Rankin score 

Cognitive 
status 

DW (95% CI) 

Stroke, mild Has some difficulty in moving 
around and some weakness in 
one hand, but is able to walk 
without help. 

1 N/A 0.019 

(0.01–0.032) 
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Stroke, moderate Has some difficulty in moving 
around, and in using the hands 
for lifting and holding things, 
dressing, and grooming. 

2, 3 MoCA>=24 
or 

MMSE>=26 

 

0.07 

(0.046–0.099) 

Stroke, moderate 
plus cognition 
problems 

Has some difficulty in moving 
around, in using the hands for 
lifting and holding things, dressing 
and grooming, and in speaking. 
The person is often forgetful and 
confused. 

2, 3 MoCA<24 
or 

MMSE<26 

0.316 (0.206–
0.437) 

Stroke, severe Is confined to bed or a 
wheelchair, has difficulty 
speaking, and depends on others 
for feeding, toileting, and 
dressing. 

4, 5 MoCA>=24 
or 

MMSE>=26 

0.552 (0.377–
0.707) 

Stroke, severe 
plus cognition 
problems 

Is confined to bed or a 
wheelchair, depends on others 
for feeding, toileting, and 
dressing, and has difficulty 
speaking, thinking clearly, and 
remembering things. 

 MoCA<24 
or 

MMSE<26 

0.588 (0.411–
0.744) 

 

Chronic stroke severity splits 

Table 3b. Severity distribution, details on the severity levels for Chronic Stroke in GBD 2019 and the 
associated disability weight (DW) with that severity.  

Severity level Lay description Modified 
Rankin 
score 

Cognitive 
status 

DW (95% CI) 

Stroke, asymptomatic  0 N/A N/A 

Stroke, long-term 
consequences, mild 

Has some difficulty in moving 
around and some weakness in 
one hand, but is able to walk 
without help. 

1 N/A 0.019 

(0.01–0.032) 

Stroke, long-term 
consequences, 
moderate 

Has some difficulty in moving 
around, and in using the hands 
for lifting and holding things, 
dressing, and grooming. 

2, 3 MoCA>=24 
or 

MMSE>=26 

0.07 

(0.046–0.099) 
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Stroke, long-term 
consequences, 
moderate plus 
cognition problems 

Has some difficulty in moving 
around, in using the hands for 
lifting and holding things, 
dressing and grooming, and in 
speaking. The person is often 
forgetful and confused. 

2, 3 MoCA<24 or 
MMSE<26 

0.316 

(0.206–0.437) 

Stroke, long-term 
consequences, severe 

Is confined to bed or a 
wheelchair, has difficulty 
speaking, and depends on 
others for feeding, toileting, 
and dressing. 

4, 5 MoCA>=24 
or 

MMSE>=26 

0.552 

(0.377–0.707) 

Stroke, long-term 
consequences, severe 
plus cognition 
problems 

Is confined to bed or a 
wheelchair, depends on others 
for feeding, toileting, and 
dressing, and has difficulty 
speaking, thinking clearly, and 
remembering things. 

4, 5 MoCA<24 or 
MMSE<26 

0.588 

(0.411–0.744) 

 

 
 
 
Table 4: Data input counts for the estimation process for the custom severity splits. 

 Acute 
proportion 

Chronic 
proportion 

Site-years (total) 9 16 

Number of countries with data 6 13 

Number of GBD regions with data (out of 21 regions) 6 7 

Number of GBD super-regions with data (out of 7 super-regions) 4 5 

 
We used DisMod-MR, a Bayesian meta-regression tool, to model the six severity levels, with an 
independent proportion model for each. Reports which grouped mRS scores differently than our 
mapping (eg, 0-2) were adjusted in DisMod by estimating the association between these alternate 
groupings and our preferred mappings. These statistical associations were used to adjust data points to 
the referent category as necessary. The six models were scaled such that the sum of the proportions for 
all levels equaled 1.   
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Modelling strategy  
The general approach employed for all of the components of the stroke modelling process is detailed in 
the table below. 
o Data points were adjusted from alternative to reference case definitions using estimates from 

statistical models generated by MR-BRT (discussed elsewhere in the appendix) for the acute models. 
Coefficients for these crosswalks can be found in Table 2a, 2b, and 2c.  
 

o The GBD summary exposure values (SEV), which are the relative risk-weighted prevalence of 
exposure, were included as covariates for the ischaemic stroke or intracerebral haemorrhage 
models as appropriate, and a covariate for country income was used as a country-level covariate for 
both models (4). Subarachnoid haemorrhage did not included an SEV covariate, but did include a 
covariate for country income for excess mortality. Coefficients for these covariates can be found in 
Table 5a, 5b, 5c for fixed effects located below. 
 

o We used the ratio of acute:chronic cause-specific mortality estimated by the final GBD 2017 dismod 
model estimates to divide GBD 2019 stroke deaths into acute and chronic stroke deaths, using the 
global average for the proportion of acute:chronic stroke mortality. The acute and chronic models 
were then run using the same incidence, prevalence, and case fatality data as well as the custom 
cause-specific mortality rates as input data. 

 
o We ran the first-ever acute subtype-specific models with CSMR as derived from FauxCorrect and 

epidemiological data as described above using Dismod-MR.  
 

o We then calculated the rate of surviving until 28 days after an acute event for all three subtypes 
using the modelled estimates of excess mortality and incidence from the acute stroke models. 
 

o Twenty-eight-day survivorship data was uploaded into the chronic subtype-specific with CSMR 
models. These chronic models also use CSMR as derived from FauxCorrect and epidemiological data 
as described above. Models were evaluated based on expert opinion, comparison with previous 
iterations, and model fit. 

 

 
Table 5a, 5b, 5c below indicate the covariates used by cause in the estimation process, as well as the 
beta and exponentiated beta values.  
 

Table 5a: Coefficients for covariates used in the acute and chronic ischemic stroke DisMod-MR models  
Model Variable name Measure beta Exponentiated beta 

First-ever acute 
ischaemic stroke with 
CSMR 

Log-transformed age-
standardised SEV scalar: 

Ischaemic stroke 
Incidence 

0.90 

( 0.85 to 0.95) 

2.46 

(2.34 to 2.58) 

First-ever acute 
ischaemic stroke with 
CSMR 

Healthcare access and 
quality index 

Excess 
mortality rate 

-0.035 

(-0.035 to -0.035) 

0.97 

(0.97 to 0.97) 
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Chronic ischaemic stroke 
with CSMR 

Log-transformed SEV 
scalar: Ischaemic stroke 

Prevalence 
0.85 

( 0.78 to 0.92) 

2.34 

(2.18 to 2.51) 

Chronic ischaemic stroke 
with CSMR 

LDI (I$ per capita) 
Excess 

mortality rate 
-0.41 (-0.46 to -0.36) 

0.67 

(0.63 to 0.70) 

 
Table 5b: Coefficients for covariates used in the acute and chronic intracerebral haemorrhage DisMod-
MR models  

Model Variable name Measure beta Exponentiated beta 

First-ever acute 
intracerebral 
haemorrhage with CSMR 

Log-transformed SEV 
scalar: Intracerebral 

Haemorrhage 
Incidence 

0.76 

(0.75 to 0.77) 

2.13 

(2.12 to 2.15) 

First-ever acute 
intracerebral 
haemorrhage with CSMR 

Healthcare access and 
quality index 

Excess 
mortality rate 

-0.07 

(-0.07 to -0.069) 

0.93 

(0.93 to 0.93) 

Chronic intracerebral 
haemorrhage with CSMR 

Log-transformed SEV 
scalar: Intracerebral 

haemorrhage 
Prevalence 

0.75 

(0.75 to 0.76) 

2.12 

(2.12 to 2.14) 

Chronic intracerebral 
haemorrhage with CSMR 

LDI (I$ per capita) 
Excess 

mortality rate 

-0.5 

(-0.5 to -0.5) 

0.61 

(0.61 to 0.61) 

 
Table 5c: Coefficients for covariates used in the acute and chronic subarachnoid DisMod-MR models  

Model Variable name Measure beta Exponentiated beta 

First-ever acute 
subarachnoid 
haemorrhage with CSMR 

LDI (I$ per capita) 
Excess 

mortality rate 

-0.3 

( -0.49 to -0.11) 

0.74 

(0.61 to 0.90) 

 

 

Congenital birth defects 
Overview and Cause List  

We have estimated the prevalence and associated disability of the following categories of congenital 
birth defects (those in bold are GBD causes): 

1. Neural tube defects 
a. Anencephaly 
b. Encephalocele 
c. Spina bifida 

2. Congenital heart defects 
a. Single ventricle and single ventricle pathway defects 
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b. Complex congenital heart defects excluding single ventricle and single ventricle pathway 
defects 

c. Malformations of great vessels, congenital valvular heart disease and patent ductus 
arteriosis 

d. Ventricular septal defect and atrial septal defect 
e. Other congenital cardiovascular anomalies 

3. Orofacial clefts: Cleft lip and cleft palate 
4. Total chromosomal congenital birth defects 

a. Down Syndrome 
b. Turner Syndrome 
c. Klinefelter Syndrome 
d. Other chromosomal abnormalities, genetic syndromes, and micro-deletions  

i. Edwards Syndrome and Patau Syndrome 
ii. Other chromosomal abnormalities, genetic syndromes, and micro-deletions  

5. Congenital anomalies of the urogenital system 
a. Congenital urinary anomalies 
b. Congenital genital anomalies 

6. Congenital anomalies of the digestive system 
a. Congenital diaphragmatic hernia 
b. Congenital malformations of the abdominal wall 
c.  Congenital atresia and/or stenosis of the gastrointestinal tract 
d. Other congenital malformations of the gastrointestinal tract 

7. Musculoskeletal congenital anomalies 
a. Polydactyly and syndactyly 
b. Limb reduction defects 
c. Other musculoskeletal congenital anomalies 

8. Other congenital anomalies: all birth defects (excluding minor anomalies) not contained in the 
other categories.  

This appendix will first describe the input data sources and aspects of the modelling strategy that are 
common to all sub-types of congenital anomalies. We will then provide a description of the case 
definitions, ICD-10 codes, and health states associated with each of the component congenital causes, 
as well as the specific modelling strategies employed in each congenital cause, including the model 
settings, study-level and country-level covariates, and other modelling decisions made.  
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congenital heart anomalies, neural tube defects, orofacial clefts, urogenital congenital anomalies, digestive congenital anomalies, 
congenital musculoskeletal and limb anomalies, and other chromosomal abnormalities 

Cause-specific CSMR 
estimates from CoD  
(total models only, 

excluding MSK, CHD, 
Digest, Chromo)

Nonfatal database

Dismod-MR 2.1

Incidence and 
prevalence of birth 

defects (by category)

Comorbidty 
simulation 

(COMO)

Severity splits

Disability weights for each 
sequela, combined when 

applicable

Unadjusted 
YLD by 
sequela

Meta-analysis of health 
states and severities 
associated with each 
congenital condition

Registry

Location-Level Covariates:
Prevalence: Folic acid unadjusted (NT, SB, Enc, Anenc, cleft), Composite fortification standard and 
folic acid inclusion (NT, SB, Enc, Anenc, cleft), Legality of abortion (Anenc, chromo, down, kline, Ed/
Pat, MSK), Maternal alcohol consumption during pregnancy (CHD, SVSVP, CCHD, MGV, VSD/ASD, 
Digest, CDH, MAW, CAS), HAQI (CHD, cleft), Live births 35+ (chromo, down, turner [- direction], kline, 
Ed/Pat), SEV ambient air pollution (urinary, genital), SEV High FPG (urinary, genital), SEV smoking 
(Digest, CDH, MAW, CAS), SEV high BMI (Digest, CDH, MAW, CAS)
Excess mortality: HAQI (NT, SB, Enc, CHD, SVSVP, CCHD, MGV, VSD/ASD, cleft, chromo, down, turner, 
kline, Ed/Pat, MSK, urinary, digest, CDH, MAW, CAS)

Literature

Hospital discharge

Literature on long-
term outcomes 

Scale sub-cause models 
to total (mimimum 

residual = 10%); 
remainder = other

Claims

Heart failure 
due to CHD 

(asymp, mild, 
mod, severe)

Split to congenital heart 
sub-cause models using 

CSMR proportions

Sum subcause 
models

Apply sex restrictions: 
Turner (female only), 
Klineflter (male only)

Anencephaly life 
table calculation

Claims

Calculate ratio of 
“other” to total

Neural tube Chromosomal 
anomalies

Scale 
encephalocele and 
spina bifida to total

Correction for 
multiple admission, 
code position, inpt-

oupt ratio, HAQI Age-sex 
splitting

MR-BRT 
crosswalks

Musculoskeletal HeartCleft UrogenitalDigestive

Abbreviations:
NT = neural tube defects (parent), SB = spina bifida, Enc = encephalocele, Anenc = anencephaly, CHD = 

congenital heart anomalies (parent), SVSVP = single ventricle and single ventricle pathway, CCHD = complex 
congenital heart disease excluding single ventricle and single ventricle pathway, MGV = malformations of 

great vessels, congenital valvular disease, and patent ductus arteriosus, VSD/ASD = ventricular septal defect 
and atrial septal defect, cleft = orofacial clefts, chromo = chromosomal anomalies (parent), down = Down 
syndrome, turner = Turner syndrome, kline = Klinefelter syndrome, Ed/Pat = Edward and Patau Syndrome, 

MSK = muskuloskeletal  birth defects (parent), LR = limb reduction defects, Poly/Syn = polydactyly and 
syndactyly, urinary = congenital urinary anomalies, genital = congenital genital anomalies, Digest = digestive 
congenital anomalies (parent), CDH = congenital diaphragmatic hernia, MAW = malformations of abdominal 
wall, CAS = congenital atresia and/or stenosis of digestive tract, HAQI = Healthcare Access and Quality Index, 

SEV = summary exposure value, FPG = fasting plasma glucose, BMI = body mass index

Apply ratio to 
calculate “other”

Input data

Process

Results

Database

Input Data

Risk Factors
Burden estimation

Disability weights
Nonfatal

Deaths, YLLs, YLDs, 
DALYs

Comorbidity 
adjusted YLDs

Deaths, YLLs

 

Case Definition  

The GBD case definition of congenital anomalies includes any condition present at birth that is a result 
of abnormalities of embryonic development, excluding those that are directly the result of infections or 
substance abuse (e.g. fetal alcohol syndrome, congenital syphilis) modeled elsewhere in GBD and 
excludes minor anomalies as they are defined by EUROCAT.  

Input Data  

Several types of data sources are used in the estimation of congenital anomalies: literature prevalence, 
with-condition mortality and excess mortality data, birth prevalence and neonatal with-condition 
mortality data from a number of international birth defects registries and surveillance systems, inpatient 
hospital and Marketscan claims data prepared internally by the GBD research team, and cause-specific 
mortality estimates produced by the causes of death analysis. 
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First, We extracted data from a number of international birth defects registries. The International 
Clearinghouse for Birth Defects Surveillance and Research (ICBDSR) reports birth prevalence from a 
number of international member registries. The World Atlas Report also published birth prevalence 
estimates from these international registries prior to the publication of ICBDSR reports. The European 
Surveillance of Congenital Anomalies (EUROCAT) reports the birth prevalence of anomalies for a variety 
of locations in Western Europe as reported by participating member registries. China’s Maternal and 
Child Health Surveillance survey (MCHS) reports birth prevalence and early neonatal mortality data for 
all subnational locations of China. The National Birth Defects Prevention Network (NBDPN) reports birth 
prevalence estimates as compiled by a number of subnational registries within the United States. The 
Birth Defects Registry of India (BDRI) reports congenital anomalies from participating hospitals within 
India.  

Second, we used ionpatient hospital and claims data (from USA, Taiwan, and Singapore) for all 
congenital anomalies causes and sub-cause models. These data were prepared centrally by the clinical 
informatics research team and is described in detail in the Clinical Informatics section of this appendix. 
Four rounds of data bias correction were employed in the processing of clinical data. This included 1) 
adjustment for readmission, 2) correction of primary diagnoses to all diagnoses, 3) adjustment for 
inpatient-to-outpatient ratio, and 4) adjustment based on Healthcare Access and Quality Index (HAQI). 
Of note, in GBD 2017 we used congenital birth defects data only using the first two corrections, but 
changed in GBD 2019 to use clinical data that had all four corrections applied. This change was 
factilitated by improvements in analysis of corrections by the clinical informatics team and was a change 
made across GBD. Of note, we also changed the mapping of club foot and hip dysplasia in GBD 2019. 
Previously they were mapped to “limb reduction defects,” but in preparatioin for disaggregated models 
(which is planned for the next time they are estimated in GBD), they are now included only in the total 
for musculoskeletal birth defects.  

Third, we included data from a systematic review of the available literature for all types of congenital 
birth defects that was completed in GBD 2015 by constructing search strings designed to capture 
information on the prevalence, associated mortality and long-term health outcomes associated with 
each sub-category of congenital anomalies. All results were screened – first abstracts, then full-text 
screenings – to ensure the availability of required information and the representativeness of the 
reported population, and the exclusion of duplicate data also reported as part of the birth registry data 
inputs.  

 

Table 1: Data inputs for modeling prevalence of congenital causes 

Cause 
Total 

Sources 
Countries 
with Data 

Congenital birth defects (all measures) 2065 104 

Prevalence 1875 97 

With condition mortality rate 160 41 

Proportion 52 27 
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Other 7 5 

Neural tube defects (all measures) 1677 88 

Prevalence 1663 88 

With condition mortality rate 10 6 

Proportion 8 3 

Congenital heart anomalies  (all measures) 1717 93 

Prevalence 1623 88 

With condition mortality rate 98 28 

Other 7 5 

Orofacial clefts (all measures) 1619 87 

Prevalence 1616 87 

With condition mortality rate 5 2 

Down syndrome (all measures) 1661 75 

Prevalence 1626 73 

With condition mortality rate 23 17 

Proportion 21 21 

Turner syndrome (all measures) 777 46 

Prevalence 773 46 

With condition mortality rate 2 2 

Proportion 3 1 

Klinefelter syndrome (all measures) 769 43 

Prevalence 766 43 

Proportion 3 1 

Other chromosomal abnormalities (all measures) 1327 67 

Prevalence 1304 65 

Proportion 23 22 

Congenital musculoskeletal and limb anomalies (all measures) 1639 87 

Prevalence 1635 87 

With condition mortality rate 2 1 
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Proportion 2 1 

Urogenital congenital anomalies (all measures) 1709 93 

Prevalence 1697 92 

With condition mortality rate 7 4 

Proportion 7 5 

Digestive congenital anomalies (all measures) 1758 80 

Prevalence 1716 76 

With condition mortality rate 45 16 

Proportion 7 6 

Data processing  
Age-sex splitting 

Any data that was not sex-specific or did not fit entirely within GBD age-groups were age- and sex-split 
to fit these groups prior to modeling using empirical age- and sex-patterns derived from previous 
DisMod-MR 2.1 models of the same condition. This is a change from GBD 2017 when age- and sex-
splitting of data was not completed prior to modeling and had a substantial effect on the magnitude of 
estimates in those causes for which cause-specific mortality rate (CSMR) data was used in modeling. This 
is described further below.  

Crosswalks in MR-BRT 

A number of the input data sources used for the estimation of congenital birth defects are known to 
have biases leading to under-reporting or over-reporting relative to the true prevalence of congenital 
anomalies among live births and all subsequent age groups. We used Meta Regression – Bayesian, 
Regularised Trimmed (MR-BRT) to develop statistical models that were used to adjust non-reference 
data. The alternate definitions that were crosswalked are described below. The specifics of each MR-BRT 
crosswalk are shown in the corresponding cause-specific sections.  

Live/Stillbirths: Where necessary, we used a crosswalk to adjust for the inclusion of stillbirths in the 
reported birth prevalence estimates in literature and registry data sources, as stillbirths are not included 
in our case definition of prevalence among live births. Each of these crosswalks used a spline on log-
transformed neonatal mortality rate.  

Exclusion of chromosomal conditions: Some sources report birth defects on in isolation (i.e. excluding 
any persons who have a coexisting genetic or chromosomal disorder). Our reference definition is the 
inclusion of chromosomal diagnoses. No splines were used in these crosswalks.  

Registry to total: For a subset of congenital causes, particularly the congenital heart defects, we noted 
substantial differences in the lists of case definitions being reported to the various congenital registries. 
Across all types of congenital heart defects, the National Birth Defects Prevention Network (NBDPN) had 
the most complete list of reported case definitions – i.e. the highest case ascertainment – and was 
considered the gold standard among all birth registry data sources. We used registry-specific crosswalks 
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to adjust all other birth defects registries to match the case ascertainment seen in the NBDPN. No 
splines were used in these crosswalks. 

Determining outliers and data thresholds 

Underreporting of congenital birth defects is common and can vary by source, location, year, sex, and 
age. In order to have an empirical, systematic approach to outliering of data, we adapted the non-zero 
floor approach used by the GBD cause-specific mortatlity analysis. After all age-sex splitting and 
crosswalking was complete, the first step was to calculate median absolute deviation (MAD) for the age 
group of birth, where registry and literature data were combined with all clinical data for the early 
neonatal age group (0 to 6 days). The thresholds chosen were -0.5 MAD and +3 MAD with any data 
outside of these bounds being identified as outliers. This was determined based on the right skewed 
distribution observed in most of the congenital data and the expert prior that underreporting is far more 
prevalent than overreporting – and therefore the bias is asymmetric. In any case where the lower MAD 
bound was negative, we used a threshold of 0.  

For most models, we calculated the MADs using only the EUROCAT data, which we found to be the most 
reliable source for prevalence of congenital disorders. Exceptions were neural tube defects (all data 
sources), Urinary birth defects (EUROCAT and USA claims data), musculoskeletal defects (only USA 
claims data), and chromosomal anomalies, which differed by condition given the high volume of zeroes 
in the data. For Down Syndrome, we used all data. For Edward Syndrome and Patau Syndrome, we used 
all non-zero EUROCAT data. For Turner and Klinefelter syndrome, we used EUROCAT data and logged 
mean absolute deviation and exponentiated this to determine bounds for these data.  

To evaluate data for older age groups, we employed two approaches. First, we outliered data from any 
location-year-source that was outliered for the first stage MAD algorithm. Second, using all clinical and 
literature data, we developed a model with fixed effects by age to estimated implied MAD bounds for 
each non-zero age group and again applied the same thresholds of -0.5 MAD and +3 MAD.  

Modelling Strategy 
Overview 

All available input data was utilized in a series DisMod-MR 2.1 models in order to estimate the 
prevalence of each category of congenital anomalies across the full life course for each location/age/sex 
combination. Incidence was set to 0 for all congenital models, as congenital conditions occur at the time 
of birth and by GBD case definition, congenital cases do not occur after birth. Remission was allowed 
only in the models of a select subset of causes for which surgical intervention or spontaneous remission 
can completely eliminate the disability due to that congenital condition. Cause-specific priors and slope 
priors were used to guide biologically plausible DisMod-MR 2.1 estimates of excess mortality and 
remission where applicable.  

For most of the congenital birth defects causes, we ran DisMod-MR 2.1 models of all defects combined 
(termed “parent” models). This allowed us to use data on all anomalies within each cause as well as to 
leverage cause-specific mortality rate (CSMR) results from the GBD cause of death (COD) analysis. When 
CSMR data is used as an input, DisMod-MR 2.1 pairs each CSMR datum with a mathing prevalence data 
point by age, sex, location, and year. After matching, CSMR is divided by prevalence to calculate an 
implied excess-mortality rate (EMR) datum. All EMR data is then used in driving the model. Of note, EMR  
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data is not calculated when prevalence data is of broader than GBD age groups or is for both sexes 
combined.  

We used CSMR as input to all of the models except congenital heart disease, chromosomal anomalies, 
digestive anomalies, musculoskeletal birth defects, and urogenital congenital anomalies. For congenital 
heart defects, the reason is that excess mortalilty would be underestimated in older ages if CSMR results 
are used because despite continuing higher rates of mortality through adolescence and adulthood, 
many of these deaths are not coded as being due to congenital heart disease. Similarly, musculoskeletal 
and gastrointestinal anomalies estimates for CSMR in older children, adolescents, and adults are much 
lower than would be suggested by cohort and cross-sectional studies of survival as few of these deaths 
are coded as being due to the congenital birth defect present. Finally, for urogenital congenital 
anomalies, in addition to our modeling urinary and genital anomalies separately, the mechanism of 
death in older ages will typically be via development of chronic kidney disease and these deaths are 
classified in GBD as being due to chronic kidney disease due to other conditions. Details are in each 
cause-specific section below. 

Location-level Covariates 

Location-level covariates were used in each of the congenital DisMod-MR 2.1 models based on 
published information about the risk factors for these birth defects. Folic acid availability was used as a 
covariate on prevalence for all neural tube defects models and a subset of the congenital 
musculoskeletal anomalies models. A folic acid fortification covariate was used in the neural tube 
defects and cleft models, which was modelled based on data from the Global Fortification Data 
Exchange. The legality of abortion was used as a covariate on prevalence for conditions in which 
prenatal diagnosis is commonly available and the prognosis is severe enough to cause high rate of 
termination of pregnancy following prenatal diagnosis: these include all chromosomal conditions and a 
subset of the congenital heart defects. Maternal consumption of alcohol during pregnancy, as a 
proportion of all pregnancies, was used as a covariate on prevalence for all congenital heart defects. The 
proportion of live births by mothers age 35+ was used as a covariate on all chromosomal models. Across 
many of the congenital models, the Health Access and Quality Index (HAQI) covariate was used to guide 
the global pattern of with-condition mortality and excess mortality, as was the natural log of the lag-
distributed income per capita (LN-LDI). For most of the severe congenital conditions, the mortality 
associated with the condition is highly dependent on access to adequate surgical interventions and 
other medical care during the first hours, weeks, and years of life.  

Post-model processing 
For those causes with a parent model (neural tube defects, we then squeezed the sum of the specific 
sub-cause prevalence estimates to these total prevalence estimates in order to ensure internal 
consistency of our cause-level and sub-cause estimates. The prevalence of other heart, musculoskeletal, 
and gastrointestinal anomalies was derived by reducing the total envelope model for each cause by its 
sub-causes to derive the difference that was attributable to other anomalies in that category. 

Assigning health states and sequelae for long-term outcomes  

To determine the distribution of health outcomes associated with the congenital causes, we performed 
a review of available literature on the long-term health outcomes of survivors in cohorts born with each 
type of congenital malformation. For conditions requiring surgical intervention shortly after birth to 
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ensure survival, the health states included in the disability weight calculations correspond to the post-
surgery outcomes reported in cohorts of individuals born with these life-threatening congenital 
conditions. Where data was available from multiple cohorts, we pooled these cohorts together to 
calculate the proportion of individuals with each health state. Where data on the joint distribution of 
the long-term health outcomes was not available, we assumed independence of each long-term health 
outcome. Combined disability weights were calculated for all necessary combinations of existing 
disability weights.  

Congenital heart anomalies 
Summary and associated health states 

There are many distinct types of congenital heart anomalies with a range of anatomical patterns, 
severities, and requirements for medical treatment. For the purpose of estimating nonfatal outcomes, in 
GBD 2017 congenital heart anomalies were split into five-sub categories based on both the anatomical 
characteristics and the treatment requirements of each condition.  

1. Single ventricle and single ventricle pathway defects 
2. Complex congenital heart defects excluding single ventricle and single ventricle pathway defects 
3. Malformations of great vessels, congenital valvular heart disease and patent ductus arteriosis 
4. Ventricular septal defect and atrial septal defect 
5. Other congenital cardiovascular anomalies 

We also began development of a model of total congenital heart anomalies, but this was not used in 
scaling the subcauses for GBD 2019. Instead, we used claims data to calculate a ratio of other-to-total 
and this was applied to the sum of the other four subcauses for each location, age group, sex, and year. 

Every case of congenital heart defects was associated with a health state of congenital heart disease, 
except for a proportion of ventricular and atrial septal defects which are considered asymptomatic. All 
congenital heart defects cases were split into a proportion without intellectual disability and a 
proportion with every severity from borderline to profound intellectual disability. The proportion of 
congenital heart anomalies cases experiencing each severity of intellectual disability were calculated 
using available literature sources on the prevalence and severity of intellectual disability in congenital 
heart defect populations1,2,3.  The proportion of VSD/ASD cases attributed to the asymptomatic category 
was derived from literature sources on the long-term outcomes of patients diagnosed with septal 
defects at birth4,5,6.  GBD estimates of congenital heart failure were assigned to the congenital heart 
defect categories according to the proportion of total congenital heart cause-specific mortality assigned 
to each category of congenital heart defects. 

Total congenital heart anomalies  
Crosswalks 
The MR-BRT crosswalk results are shown below.  

Table 1: MR-BRT crosswalk betas for alternate definitions (reference = livebirths including those with 
chromosomal anomalies) 

Crosswalk Beta Standard Error 

Excluding chromosomal diagnoses adjustment -0.096 0.006 
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Figure 1: MR-BRT crosswalk of alternate definition (livebirths and stilbirths included) with spline on log-
transformed neonatal mortality rate.  

 

Modelling strategy 

In the DisMod-MR 2.1 model of total congenital heart anomalies, random effects on prevalence were 
limited to +- 0.5 in order to limit geographic variation in the estimates of birth prevalence. The minimum 
excess mortality rate for the neonatal age range was set to 5.0. The smoothness on excess mortality rate 
was increased to Xi=5.0 in order to allow high excess mortality in the neonatal age groups and lower 
excess mortality rates in older ages.  

Table 2. Location-level covariate effects 

Covariate Name Measure Beta value 
Exponentiated 

value 

Maternal alcohol consumption during 
pregnancy (proportion) 

Prevalence 0.17046 ( 0.01367 - 0.37530) 1.19 (1.01 - 1.46) 

Healthcare access and quality index Prevalence 0.00087 ( 0.00007 - 0.00202) 1.00 (1.00 - 1.00) 

Healthcare access and quality index EMR -0.15320 (-0.29760 - -0.00718) 0.86 (0.74 - 0.99) 

 

Single ventricle and single ventricle pathway defects  
Case definition 

Single ventricle and single ventricle pathway defects include tricuspid atresia, hypoplastic left heart 
syndrome, mitral valve atresia, single left ventricle, double outlet right ventricle, and pulmonary atresia; 
the corresponding ICD-10 codes are Q20.1, Q20.2, Q20.4, Q22.4, Q22.6 and Q23.4. Each of the single 
ventricle and single ventricle pathway conditions requires surgical intervention shortly after birth to 
ensure infant survival.  

Crosswalks 
The MR-BRT crosswalk results are shown below.  
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Table 1: MR-BRT crosswalk betas for alternate definitions (reference = livebirths including those with 
chromosomal anomalies) 

Crosswalk Beta 
Standard 

Error 

 

Excluding chromosomal diagnoses adjustment -0.066 0.023 

Adjustment for registry specific case definitions (World Atlas) -0.752 0.035 

Adjustment for registry specific case definitions (ICBDMS) -0.751 0.036 

Adjustment for registry specific case definitions (Congenital Malformations Worldwide) -0.754 0.036 

Figure 1: MR-BRT crosswalk of alternate definition (livebirths and stilbirths included) with spline on log-
transformed neonatal mortality rate.  

 

Modelling strategy 

In the DisMod-MR 2.1 model of single ventricle and single ventricle pathway heart defects, random 
effects on prevalence were limited to +- 0.5 in order to limit the estimated geographic variation in birth 
prevalence. A minimum excess mortality rate of 8 was set for the early neonatal period in order to 
capture the high mortality risk, based on expert priors and a review available literature on the mortality 
risk among infants born with single ventricle and single ventricle pathway heart defects. The 
smoothness on excess mortality rate was set to 5.0 in order to fit steep changes in the excess mortality 
rate during the first weeks of life, as the risk of death due to these congenital heart anomalies is greatest 
shortly after birth and diminishes over the life course.  

Table 2. Location-level covariate effects 

Covariate Name Measure Beta value 
Exponentiated 

value 
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Maternal alcohol consumption during 
pregnancy (proportion) 

Prevalence 0.23369 ( 0.02821 - 0.45690) 1.26 (1.03 - 1.58) 

HAQI EMR -0.04909 (-0.09541 - -0.00156) 0.95 (0.91 - 1.00) 

 

Complex congenital heart defects excluding single ventricle and single ventricle pathway defects  
Case definition 

Complex congenital heart defects excluding single ventricle and single ventricle pathway defects include 
common arterial trunk, common truncus, discordant ventriculoaterial connection, transposition of great 
vessels, atrioventricular septal defect, endocardial cushion defect, Tetralogy of fallot, aortopulmonary 
septal defect, pulmonary valve atresia, congenital stenosis of aortic valve, and total anomalous 
pulmonary venous connection. This category of severe congenital heart defects includes ICD-10 codes 
Q20.0; Q20.3; Q21.2; Q21.3; Q21.4; Q22.0; Q23.0 and Q26.2.  

Crosswalks 
The MR-BRT crosswalk results are shown below.  

Table 1: MR-BRT crosswalk betas for alternate definitions (reference = livebirths including those with 
chromosomal anomalies) 

Crosswalk Beta Standard Error 

Excluding chromosomal diagnoses adjustment -0.223 0.014 

Adjustment for registry specific case definitions (World Atlas) -0.626 0.015 

Adjustment for registry specific case definitions (ICBDMS) -0.625 0.016 

Figure 1: MR-BRT crosswalk of alternate definition (livebirths and stilbirths included) with spline on log-
transformed neonatal mortality rate.  
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Modelling strategy 

In the DisMod-MR 2.1 model of congenital heart defects excluding single ventricle and single ventricle 
pathway defects, random effects on prevalence were limited to +- 0.5. A minimum excess mortality rate 
of 1.0 for the early neonatal period was enforced in order to capture the high risk of mortality 
associated with these conditions, and a decreasing slope prior on excess mortality rate was applied for 
all ages. The smoothness on excess mortality rate was set to Xi = 3.0 in order to allow the model to fit 
steep changes in the mortality rate of these conditions in the neonatal age period.  

Table 2. Location-level covariate effects 

Covariate Name Measure Beta value 
Exponentiated 

value 

Maternal alcohol consumption during 
pregnancy (proportion) 

Prevalence 0.18871 ( 0.01810 - 0.43850) 1.21 (1.02 - 1.55) 

HAQI EMR -0.05045 (-0.09804 - -0.00408) 0.95 (0.91 - 1.00) 

 

Malformations of great vessels, congenital valvular heart disease and patent ductus arteriosis  
Case definition 

Malformations of great vessels, congenital valvular heart disease and patent ductus arteriosis. The 
malformations of vessels and valves in this sub-cause category include Ebstein's anomaly, congenital 
pulmonary valve stenosis, pulmonary valve insufficiency, other malformations of the pulmonary valve, 
malformations of the tricuspid valve, tricuspid atresia or stenosis, insufficiency of the aortic valve, mitral 
stenosis or insufficiency, and other malformations of aortic and mitral valves. Patent ductus arteriosis 
cases are only included among infants of >37 weeks gestational age, as premature infants often have 
minor patent ductus arteriosis that closes shortly after birth.  The ICD-10 codes corresponding to the 
critical malformations of great vessels category include Q22.1, Q22.2, Q22.3, Q22.5, Q22.8, Q22.9, 
Q23.1, Q23.2, Q23.3, Q23.8, Q23, Q25.1, Q25.2, Q25.3, Q25.4, Q25.5, and Q25.0. The majority of these 
conditions require medical attention shortly within the first few weeks of life.  

Crosswalks 
The MR-BRT crosswalk results are shown below.  

Table 1: MR-BRT crosswalk betas for alternate definitions (reference = livebirths including those with 
chromosomal anomalies) 

Crosswalk Beta Standard Error 

Excluding chromosomal diagnoses adjustment -0.094 0.01 

Adjustment for registry specific case definitions (World Atlas) -1.079 0.021 

Adjustment for registry specific case definitions (ICBDMS) -1.08 0.021 

Figure 1: MR-BRT crosswalk of alternate definition (livebirths and stilbirths included) with spline on log-
transformed neonatal mortality rate.  
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Modelling strategy 

In the DisMod-MR 2.1 model of critical malformations of great vessels, congenital valvular heart disease 
and patent ductus arteriosis, random effects on prevalence were limited to +- 0.5. A minimum excess 
mortality rate of 1.0 was set for the early neonatal period in order to capture the high mortality risk 
associated with these conditions. The smoothness on excess mortality was increased to Xi = 3.0 in order 
to fit steep changes in the mortality associated with these conditions during and after the neonatal 
period, as the risk of death due to congenital heart anomalies is highest shortly after birth. 

Table 2. Location-level covariate effects 

Covariate Name Measure Beta value 
Exponentiated 

value 

Maternal alcohol consumption during 
pregnancy (proportion) 

Prevalence 0.23645 ( 0.03553 - 0.45853) 1.27 (1.04 - 1.58) 

HAQI EMR -0.04919 (-0.09692 - 0.00000) 0.95 (0.91 - 1.00) 

 

Ventricular septal defects and atrial septal defects 
Case definition 

Ventricular septal defects and atrial septal defects, includes holes in the walls separating the chambers 
of the heart. Many of these septal defects close spontaneously, while other require surgical care. The 
ICD-10 codes corresponding to ventricular septal defect and atrial septal defect are Q21.0 and Q21.1, 
respectively.  

Crosswalks 
The MR-BRT crosswalk results are shown below.  

Table 1: MR-BRT crosswalk betas for alternate definitions (reference = livebirths including those with 
chromosomal anomalies) 
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Crosswalk Beta Standard Error 

Excluding chromosomal diagnoses adjustment -0.082 0.006 

Figure 1: MR-BRT crosswalk of alternate definition (livebirths and stilbirths included) with spline on log-
transformed neonatal mortality rate.  

 

Modelling strategy 

In the DisMod-MR 2.1 model of ventricular septal defects and atrial septal defects (VSD/ASD), remission 
was set to zero for all ages. Cases of septal defects that spontaneously close over time were considered 
as part of the asymptomatic proportion of VSD/ASD rather than remitted cases.  Random effects on 
prevalence were limited to +- 0.3 in order to limit the random geographic variation in the estimated 
birth prevalence. No minimum excess mortality rate was set in this model, as VSD/ASD cases are not 
associated with excess mortality rates as high as the other subtypes of congenital heart defects. The 
smoothness on excess mortality rate was set to Xi=3.0, and a decreasing slope prior was set on 
remission for all ages, with remission set to 0 past age 10. 

Table 2. Location-level covariate effects 

Covariate Name Measure Beta value Exponentiated 
value 

Maternal alcohol consumption during 
pregnancy (proportion) 

Prevalence 0.06761 ( 0.00336 - 0.17970) 1.07 (1.00 - 1.2) 

HAQI EMR -0.14973 (-0.29700 - -0.00485) 0.86 (0.74 - 1.0) 

 

Other congenital cardiovascular birth defects 
Case definition 

The fifth and final sub-cause category of congenital heart defects is other congenital cardiovascular 
anomalies, which correspond to ICD-10 codes Q27, Q27.1, Q27.2, Q27.3, Q27.30, Q27.31, Q27.32, 
Q27.33, Q27.34, Q27.39, Q27.4, Q27.8, Q27.9, Q28, Q28.0, Q28.1, Q28.2, Q28.3, Q28.8 and Q28.9.  
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Modeling strategy 

Other congenital cardiovascular anomalies are modeled by applying the ratio of other congenital heart 
anomalies to total congenital heart anomalies as it is reflected in Marketscan data (a trusted data 
source), to the sum of the sub-causes of congenital cardiovascular anomalies. The result is prevalence of 
other congenital cardiovascular anomalies by age/year/sex/location. Specifically, we use claims data to 
calculate the proportion of cases that are due to the other causes. To do that, we sum the cases for the 
specified congenital subcauses and the other category subcauses. We divide the number of other 
subcause cases by the total number of cases to obtain the proportion. In order to have a valid 
proportion, we only use datapoints for which we have the combination of age, sex, location and year for 
all subcauses. We then calculate the prevalence of other: p_other = (p_sum_subcauses / 1-prop_other) - 
p_sub_subcauses. 
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Input data and methodological appendix 
 

Case definition 
Rheumatic heart disease (RHD) was defined as a clinical diagnosis by a physician with or without 
confirmation using echocardiography. This case definition for echocardiographic confirmation of RHD 
follows the World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease 
(1). 
 

Criterion Definition 

1. Echocardiography Prevalent rheumatic heart disease based on echocardiographic assessment 
and clinical confirmation 

2. Clinical diagnosis Prevalent rheumatic heart disease based on physician diagnosis 

 

ICD codes for data included from hospital records can be found elsewhere in the appendix. 
 
Input data 
Model inputs 

Table 1: Source counts for rheumatic heart disease 

Measure Total sources Countries with data 

All measures 198 58 
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Prevalence 198 58 

 
Table 1 shows the source counts for rheumatic heart disease. We did not perform a systematic review 
for GBD 2017. A systematic review was performed for GBD 2013 and updated for GBD 2015. The GBD 
2015 search information encompassed the following: 

 Search terms: ('rheumatic heart disease' AND epidemiology[MeSH Subheading]) OR  ('acute 
rheumatic fever' AND epidemiology[MeSH Subheading]) OR   ('rheumatic fever' AND 
epidemiology[MeSH Subheading]) OR   (RHD AND epidemiology[MeSH Subheading]) OR    
('valvular heart disease' AND epidemiology[MeSH Subheading]) OR  (((streptococcus OR 
streptococci) AND heart) AND epidemiology[MeSH Subheading]) OR   (heart AND valve AND 
disease AND epidemiology[MeSH Subheading]) OR   ('mitral valve stenosis' AND 
epidemiology[MeSH Subheading]) OR  (('rheumatic heart disease' OR 'rheumatic fever') AND 
prevalence) OR  (('rheumatic heart disease' OR 'rheumatic fever') AND incidence) OR  
(('rheumatic heart disease' OR 'rheumatic fever') AND ('standardized mortality ratio' OR 
SMR)) OR  ('rheumatic heart disease' OR 'rheumatic fever' AND 'case fatality') 

 Dates included in search: 1/1/2013 – 3/16/2015 
 Number of initial hits: 2,045 
 Number of sources included: 17 

 
These differed from the GBD 2013 search terms: 

 (hasabstract[text] AND Humans[Mesh] AND middle age[MeSH])) OR 21) AND ((rheumatic 
heart disease/epidemiology[Mesh] OR rheumatic heart disease/mortality[Mesh]) AND 
(prevalence[Title/Abstract] OR incidence[Title/Abstract]) AND ("2010"[Date - Publication] : 
"3000"[Date - Publication]) AND (hasabstract[text] AND Humans[Mesh] AND middle 
age[MeSH])) 

 
We did not include any non-literature-based data types other than the hospital and claims data 
described elsewhere. Prevalence from hospital and claims data sources were included only for the non-
endemic country model. Inpatient data were adjusted for multiple visits, non-primary diagnoses, and 
inpatient to outpatient utilisation ratios. This methodology is detailed elsewhere in the appendix.  

 
Severity splits and disability weights 

 
Severity level Lay description DW (95% CI) 

Rheumatic heart disease, not 
including heart failure 

Has a chronic disease that requires 
medication every day and causes some 
worry but minimal interference with daily 
activities. 

0.049 (0.031–0.072) 

 

Modelling strategy  
For GBD 2019 estimation, we ran two models using DisMod-MR – one for non-endemic countries and 
one for endemic countries. For GBD 2016, we identified locations as endemic if the estimated death rate 
due to RHD was greater than 0.15 per 100,000 in the 5 to 9 age group, or if that location had an SDI less 
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than 0.6. Beginning in GBD 2017, we identified locations as endemic if the estimated death rate due to 
RHD was greater than 0.15 per 100,000 in the 10 to 14 age group, or if that location had an SDI less than 
0.6. This change in age group was made based on feedback from RHD expert reviewers due to concerns 
that the death rate in 5 to 9 age group would not capture endemicity in locations where RHD is common 
only in later age groups. Each location estimated as part of GBD 2019 is listed below as either “Endemic” 
or “Non-endemic”. 
 
Remission 
In GBD 2016, we assumed that there was no remission from RHD. Beginning in GBD 2017, we estimated 
remission in both the endemic and non-endemic DisMod models. This decision was based on two 
studies2,3 that observed remission among confirmed RHD cases. We used the equation below to convert 
reported proportion of remitted individuals in each study to a remission rate, defined as the number of 
remitted cases divided by the total person-years of disease: 

𝑟𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
log(1 − 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑟𝑒𝑚𝑖𝑡𝑡𝑒𝑑)

𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝
 

Where proportion remitted is the reported proportion of all individuals with RHD at baseline who ended 
up remitting, and years of followup is the mean follow-up time in the study. The relevant values for the 
two papers and the calculated remission rates are listed in the table below. 
 

Study Remitted proportion Mean follow-up time Calculated remission rate 
Beaton et al2   0.3 2.4 years 0.14 cases per person-year 

Engelman et al3   0.1 7.5 years 0.014 cases per person-year 
 
In order to acknowledge the uncertainty in these calculated remission rates and to allow DisMod 
flexibility in estimating remission, we input 0.2 as the upper bound for remission the remission prior and 
0.00 as the lower bound for remission the remission prior. Because the two studies used to estimate 
remission were done only in children, we applied these remission priors to only those younger than age 
20, and setting a remission prior of zero for adults older than age 20. 
 
DisMod models 
Non-endemic model: We included hospital data, claims data, and limited literature data on prevalence. 
We also included CSMR from our mortality estimates of RHD for non-endemic locations only. A prior of 
no remission was set, and excess mortality was capped at 0.1 for all ages. Coefficients for selected 
covariates are listed in the table below. 
 
Endemic model: We included prevalence data from surveys published in the literature. As with the high-
income model, we included CSMR from our mortality estimates of RHD for endemic locations only. A 
prior of no remission was set for all ages, and excess mortality was capped at 0.07, the highest observed 
mean excess mortality rate data point observed in this model. We also set priors of 0 on incidence for 
ages 0 to 1 and 50 to 100 to account for patterns of incidence in endemic countries. We used lnLDI as a 
fixed-effect country-level covariate on prevalence and excess mortality, enforcing an inverse 
relationship for both. The log-transformed, age-standardised SEV scalar was also used as a fixed-effect 
country-level covariate on prevalence.  
 
We combined estimates from the endemic and non-endemic models, selecting estimates for the 
locations identified as non-endemic from the non-endemic model and estimates for the locations 
identified as endemic from the endemic model. Estimates of heart failure due to RHD were then 
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subtracted from the estimates for RHD, giving the overall prevalence of RHD without heart failure. A 
description of the modelling strategy for heart failure due to RHD can be found in the heart failure 
appendix. We evaluated models based on comparing estimates with input data as well as estimates 
from previous rounds of GBD. 
 
The table below shows the country covariates, parameters, betas, and exponentiated betas: 
 

Covariate Parameter Beta Exponentiated beta 
Endemic model 
Log-transformed age-
standardised SEV scalar: RHD 

Prevalence 0.95 (0.76 to 1.17) 2.57 (2.15 to 3.23) 

LDI (I$ per capita) Excess mortality 
rate 

-0.3 (-0.49 to -0.11) 0.74 (0.61 to 0.90) 

Non-endemic model 
Log-transformed age-
standardised SEV scalar: RHD 

Prevalence 0.76 (0.75 to 0.78) 2.14 (2.12 to 2.18) 

LDI (I$ per capita) Excess mortality 
rate 

-0.94 (-0.96 to -0.93) 0.39 (0.38 to 0.40) 

 
 
Endemic locations: Aceh, Acre, Addis Ababa, Afar, Afghanistan, Alagoas, Albania, Alborz, Algeria, 
Amapá, Amazonas, American Samoa, Amhara, Andean Latin America, Andhra Pradesh, Andhra Pradesh, 
Rural, Andhra Pradesh, Urban, Angola, Anhui, Antigua and Barbuda, Ardebil, Argentina, Armenia, 
Arunachal Pradesh, Arunachal Pradesh, Rural, Assam, Assam, Rural, Assam, Urban, Azerbaijan, Bahia, 
Bangladesh, Barbados, Baringo, Belize, Bengkulu, Benin, Benishangul-Gumuz, Bhutan, Bihar, Bihar, Rural, 
Bihar, Urban, Bolivia, Bomet, Botswana, Brazil, Bungoma, Burkina Faso, Burundi, Busia, Cambodia, 
Cameroon, Cape Verde, Caribbean, Ceará, Central African Republic, Central Asia, Central Europe, Eastern 
Europe, and Central Asia, Central Kalimantan, Central Sub-Saharan Africa, Chad, Chahar Mahaal and 
Bakhtiari, Chhattisgarh, Chhattisgarh, Rural, Chhattisgarh, Urban, Chiapas, China, Chongqing, Comoros, 
Congo, Costa Rica, Cote d'Ivoire, Cuba, Delhi, Delhi, Rural, Delhi, Urban, Democratic Republic of the 
Congo, Dire Dawa, Distrito Federal, Djibouti, Dominica, Dominican Republic, East Asia, East Azarbayejan, 
East Nusa Tenggara, Eastern Cape, Eastern Sub-Saharan Africa, Ecuador, Egypt, El Salvador, Elgeyo-
Marakwet, Embu, Equatorial Guinea, Eritrea, Espírito Santo, Ethiopia, Fars, Federated States of 
Micronesia, Fiji, Free State, Gabon, Gambella, Gansu, Garissa, Gauteng, Georgia, Ghana, Gilan, Global, 
Goa, Goa, Rural, Goa, Urban, Goiás, Golestan, Gorontalo, Grenada, Guam, Guangxi, Guatemala, 
Guerrero, Guinea, Guinea-Bissau, Guizhou, Gujarat, Gujarat, Rural, Gujarat, Urban, Guyana, Hainan, 
Haiti, Hamadan, Harari, Haryana, Haryana, Rural, Haryana, Urban, Hebei, Heilongjiang, Henan, Hidalgo, 
Himachal Pradesh, Himachal Pradesh, Rural, Himachal Pradesh, Urban, HomaBay, Honduras, 
Hormozgan, Hubei, Hunan, Ilam, India, Inner Mongolia, Iran, Iraq, Isfahan, Isiolo, Jamaica, Jammu and 
Kashmir, Jammu and Kashmir, Rural, Jammu and Kashmir, Urban, Jharkhand, Jharkhand, Rural, 
Jharkhand, Urban, Jiangxi, Jilin, Kajiado, Kakamega, Karnataka, Karnataka, Rural, Karnataka, Urban, 
Kenya, Kerala, Kerala, Rural, Kerala, Urban, Kericho, Kerman, Kermanshah, Khorasan-e-Razavi, 
Khuzestan, Kiambu, Kilifi, Kiribati, Kirinyaga, Kisii, Kisumu, Kitui, Kohgiluyeh and Boyer-Ahmad, 
Kurdistan, Kwale, KwaZulu-Natal, Kyrgyzstan, Laikipia, Lamu, Laos, Latin America and Caribbean, 
Lesotho, Liaoning, Liberia, Libya, Limpopo, Lorestan, Machakos, Madagascar, Madhya Pradesh, Madhya 
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Pradesh, Rural, Madhya Pradesh, Urban, Maharashtra, Maharashtra, Rural, Maharashtra, Urban, 
Makueni, Malawi, Malaysia, Maldives, Mali, Maluku, Mandera, Manipur, Manipur, Rural, Manipur, 
Urban, Maranhão, Markazi, Marsabit, Marshall Islands, Mato Grosso, Mato Grosso do Sul, Mauritania, 
Mauritius, Mazandaran, Meghalaya, Meghalaya, Rural, Meghalaya, Urban, Meru, Mexico City, 
Michoacán de Ocampo, Migori, Minas Gerais, Mizoram, Rural, Mombasa, Mongolia, Morocco, 
Mozambique, Mpumalanga, Murang’a, Myanmar, Nagaland, Nagaland, Rural, Nairobi, Nakuru, Namibia, 
Nandi, Narok, Nepal, Nicaragua, Niger, Nigeria, Ningxia, North Africa and Middle East, North Africa and 
Middle East, North Khorasan, North Korea, North Maluku, North-West, Northern Cape, Northern 
Mariana Islands, Nyamira, Nyandarua, Nyeri, Oaxaca, Oceania, Odisha, Odisha, Rural, Odisha, Urban, 
Oromia, Pakistan, Palestine, Panama, Papua, Papua New Guinea, Pará, Paraguay, Paraíba, Paraná, 
Pernambuco, Peru, Philippines, Piaui, Puebla, Punjab, Punjab, Rural, Punjab, Urban, Qazvin, Qinghai, 
Rajasthan, Rajasthan, Rural, Rajasthan, Urban, Republic of Tuva, Riau Islands, Rio de Janeiro, Rio Grande 
do Norte, Rio Grande do Sul, Rondônia, Roraima, Rwanda, Saint Lucia, Saint Vincent and the Grenadines, 
Samburu, Samoa, Santa Catarina, São Paulo, Sao Tome and Principe, Semnan, Senegal, Sergipe, 
Seychelles, Shaanxi, Shandong, Shanxi, Siaya, Sichuan, Sierra Leone, Sikkim, Sikkim, Rural, Sikkim, Urban, 
Sistan and Baluchistan, Solomon Islands, Somali, Somalia, South Africa, South Asia, South Asia, South 
Kalimantan, South Khorasan, South Sudan, Southeast Asia, Southeast Asia, East Asia, and Oceania, 
Southeast Sulawesi, Southern Nations, Nationalities, and Peoples, Southern Sub-Saharan Africa, Sub-
Saharan Africa, Sudan, Suriname, Swaziland, Syria, TaitaTaveta, Tajikistan, Tamil Nadu, Tamil Nadu, 
Rural, Tamil Nadu, Urban, TanaRiver, Tanzania, Tehran, Telangana, Telangana, Rural, Telangana, Urban, 
Thailand, TharakaNithi, The Bahamas, The Gambia, Tianjin, Tibet, Tigray, Timor-Leste, Tocantins, Togo, 
Tonga, TransNzoia, Trinidad and Tobago, Tripura, Tripura, Rural, Tripura, Urban, Tropical Latin America, 
Turkana, Turkmenistan, Tyumen oblast without autonomous areas, UasinGishu, Uganda, Union 
Territories other than Delhi, Union Territories other than Delhi, Rural, Union Territories other than Delhi, 
Urban, United Arab Emirates, Uttar Pradesh, Uttar Pradesh, Rural, Uttar Pradesh, Urban, Uttarakhand, 
Uttarakhand, Rural, Uttarakhand, Urban, Uzbekistan, Vanuatu, Veracruz de Ignacio de la Llave, Vihiga, 
Wajir, West Azarbayejan, West Bengal, West Bengal, Rural, West Bengal, Urban, West Kalimantan, West 
Nusa Tenggara, West Papua, West Sulawesi, West Sumatra, Western Cape, Western Sub-Saharan Africa, 
WestPokot, Xinjiang, Yemen, Yunnan, Zambia, Zanjan, Zimbabwe 

 
Non-endemic locations: Aguascalientes, Aichi, Akershus, Akita, Alabama, Alaska, Altai kray, Amur oblast, 
Andorra, Aomori, Arizona, Arkansas, Arkhangelsk oblast without Nenets autonomous district, Arunachal 
Pradesh, Urban, Astrakhan oblast, Aust-Agder, Australasia, Australia, Austria, Bahrain, Baja California, 
Baja California Sur, Bali, Bangka-Belitung Islands, Banten, Barking and Dagenham, Barnet, Barnsley, Bath 
and North East Somerset, Bedford, Beijing, Belarus, Belgium, Belgorod oblast, Bermuda, Bexley, 
Birmingham, Blackburn with Darwen, Blackpool, Bolton, Bosnia and Herzegovina, Bournemouth, 
Bracknell Forest, Bradford, Brent, Brighton and Hove, Bristol, City of, Bromley, Brunei, Bryansk oblast, 
Buckinghamshire, Bulgaria, Bury, Bushehr, Buskerud, Calderdale, California, Cambridgeshire, Camden, 
Campeche, Canada, Central Bedfordshire, Central Europe, Central Java, Central Latin America, Central 
Sulawesi, Chechen Republic, Chelyabinsk oblast, Cheshire East, Cheshire West and Chester, Chiba, 
Chihuahua, Chile, Chukchi autonomous area, Chuvash Republic, Coahuila, Colima, Colombia, Colorado, 
Connecticut, Cornwall, County Durham, Coventry, Croatia, Croydon, Cumbria, Cyprus, Czech Republic, 
Darlington, Delaware, Denmark, Derby, Derbyshire, Devon, District of Columbia, Doncaster, Dorset, 
Dudley, Durango, Ealing, East Java, East Kalimantan, East Midlands, East of England, East Riding of 
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Yorkshire, East Sussex, Eastern Europe, Ehime, Enfield, England, Essex, Estonia, Finland, Finnmark, 
Florida, France, Fujian, Fukui, Fukuoka, Fukushima, Gateshead, Georgia, Germany, Gifu, Gloucestershire, 
Greater London, Greece, Greenland, Greenwich, Guanajuato, Guangdong, Gunma, Hackney, Halton, 
Hammersmith and Fulham, Hampshire, Haringey, Harrow, Hartlepool, Havering, Hawaii, Hedmark, 
Herefordshire, County of, Hertfordshire, High-income, High-income Asia Pacific, High-income North 
America, Hillingdon, Hiroshima, Hokkaidō, Hong Kong Special Administrative Region of China, 
Hordaland, Hounslow, Hungary, Hyōgo, Ibaraki, Iceland, Idaho, Illinois, Indiana, Indonesia, Iowa, Ireland, 
Irkutsk oblast, Ishikawa, Isle of Wight, Islington, Israel, Italy, Ivanovo oblast, Iwate, Jakarta, Jalisco, 
Jambi, Japan, Jewish autonomous oblast, Jiangsu, Jordan, Kabardian-Balkar Republic, Kagawa, 
Kagoshima, Kaliningrad oblast, Kaluga oblast, Kamchatka kray, Kanagawa, Kansas, Karachaev-
Chercassian Republic, Kazakhstan, Kemerovo oblast, Kensington and Chelsea, Kent, Kentucky, 
Khabarovsk kray, Khanty-Mansi autonomous area, Kingston upon Hull, City of, Kingston upon Thames, 
Kirklees, Kirov oblast, Knowsley, Kōchi, Komi Republic, Kostroma oblast, Krasnodar kray, Krasnoyarsk 
kray, Kumamoto, Kurgan oblast, Kursk oblast, Kuwait, Kyōto, Lambeth, Lampung, Lancashire, Latvia, 
Lebanon, Leeds, Leicester, Leicestershire, Leningrad oblast, Lewisham, Lincolnshire, Lipetzk oblast, 
Lithuania, Liverpool, Louisiana, Luton, Luxembourg, Macao Special Administrative Region of China, 
Macedonia, Magadan oblast, Maine, Malta, Manchester, Maryland, Massachusetts, Medway, Merton, 
Mexico, México, Michigan, Middlesbrough, Mie, Milton Keynes, Minnesota, Mississippi, Missouri, 
Miyagi, Miyazaki, Mizoram, Mizoram, Urban, Moldova, Montana, Montenegro, Møre og Romsdal, 
Morelos, Moscow City, Moscow oblast, Murmansk oblast, Nagaland, Urban, Nagano, Nagasaki, Nara, 
Nayarit, Nebraska, Nenets autonomous district, Netherlands, Nevada, New Hampshire, New Jersey, New 
Mexico, New York, New Zealand, New Zealand Maori population, New Zealand non-Maori population, 
Newcastle upon Tyne, Newham, Niigata, Nizhny Novgorod oblast, Nordland, Norfolk, North Carolina, 
North Dakota, North East England, North East Lincolnshire, North Kalimantan, North Lincolnshire, North 
Somerset, North Sulawesi, North Sumatra, North Tyneside, North West England, North Yorkshire, 
Northamptonshire, Northern Ireland, Northumberland, Norway, Nottingham, Nottinghamshire, 
Novgorod oblast, Novosibirsk oblast, Nuevo León, Ohio, Ōita, Okayama, Okinawa, Oklahoma, Oldham, 
Oman, Omsk oblast, Oppland, Oregon, Orenburg oblast, Oryol oblast, Ōsaka, Oslo, Østfold, Oxfordshire, 
Pennsylvania, Penza oblast, Perm kray, Peterborough, Plymouth, Poland, Poole, Portsmouth, Portugal, 
Primorsky kray, Pskov oblast, Puerto Rico, Qatar, Qom, Querétaro, Quintana Roo, Reading, Redbridge, 
Redcar and Cleveland, Republic of Adygeya, Republic of Altai, Republic of Bashkortostan, Republic of 
Buryatia, Republic of Crimea, Republic of Dagestan, Republic of Ingushetia, Republic of Kalmykia, 
Republic of Karelia, Republic of Khakasia, Republic of Mariy El, Republic of Mordovia, Republic of North 
Ossetia-Alania, Republic of Sakha (Yakutia), Republic of Tatarstan, Rhode Island, Riau, Richmond upon 
Thames, Rochdale, Rogaland, Romania, Rostov oblast, Rotherham, Russian Federation, Rutland, Ryazan 
oblast, Saga, Saitama, Sakhalin oblast, Salford, Samara oblast, San Luis Potosí, Sandwell, Sankt-
Petersburg, Saratov oblast, Saudi Arabia, Scotland, Sefton, Serbia, Sevastopol, Shanghai, Sheffield, Shiga, 
Shimane, Shizuoka, Shropshire, Sinaloa, Singapore, Slough, Slovakia, Slovenia, Smolensk oblast, Sogn og 
Fjordane, Solihull, Somerset, Sonora, South Carolina, South Dakota, South East England, South 
Gloucestershire, South Korea, South Sulawesi, South Sumatra, South Tyneside, South West England, 
Southampton, Southend-on-Sea, Southern Latin America, Southwark, Spain, Sri Lanka, St Helens, 
Staffordshire, Stavropol kray, Stockholm, Stockport, Stockton-on-Tees, Stoke-on-Trent, Suffolk, 
Sunderland, Surrey, Sutton, Sverdlovsk oblast, Sweden, Sweden except Stockholm, Swindon, 
Switzerland, Tabasco, Taiwan, Tamaulipas, Tambov oblast, Tameside, Telemark, Telford and Wrekin, 
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Tennessee, Texas, Thurrock, Tlaxcala, Tochigi, Tokushima, Tōkyō, Tomsk oblast, Torbay, Tottori, Tower 
Hamlets, Toyama, Trafford, Troms, Trøndelag, Tula oblast, Tunisia, Turkey, Tver oblast, Udmurt 
Republic, Ukraine, Ukraine (without Crimea & Sevastopol), Ulyanovsk oblast, United Kingdom, United 
States, Uruguay, Utah, Venezuela, Vermont, Vest-Agder, Vestfold, Vietnam, Virgin Islands, U.S., Virginia, 
Vladimir oblast, Volgograd oblast, Vologda oblast, Voronezh oblast, Wakayama, Wakefield, Wales, 
Walsall, Waltham Forest, Wandsworth, Warrington, Warwickshire, Washington, West Berkshire, West 
Java, West Midlands, West Sussex, West Virginia, Western Europe, Westminster, Wigan, Wiltshire, 
Windsor and Maidenhead, Wirral, Wisconsin, Wokingham, Wolverhampton, Worcestershire, Wyoming, 
Yamagata, Yamaguchi, Yamalo-Nenets autonomous area, Yamanashi, Yaroslavl oblast, Yazd, Yogyakarta, 
York, Yorkshire and the Humber, Yucatán, Zabaikalsk kray, Zacatecas, Zhejiang 
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Input data and methodological summary 
 

Case definition 
Myocarditis refers to a heterogenous group of diseases with variable clinical and pathological features. 
Acute myocarditis was defined for GBD as the acute and time-limited symptoms of myocarditis separate 
from its chronic heart failure-related sequelae. Heart failure due to myocarditis is estimated separately 
in GBD (see methods for heart failure). Symptoms of acute myocarditis are nonspecific and include a flu-
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like or gastrointestinal syndrome, followed by anginal-type chest pain, arrhythmias, syncope, or heart 
failure.  

 

A list of the ICD codes included can be found in elsewhere in the appendix. 

Input data 
Model inputs 

The preferred data sources for acute myocarditis were hospital admission data and other health facility 
data identifying cases of acute myocarditis. Table 1 shows the source counts for acute myocarditis.  
 
Table 1: Source counts for acute myocarditis 

Measure Total sources Countries with data 

All measures 250 39 

Incidence 250 39 

 
 
A systematic review was performed for GBD 2013 and updated for GBD 2015. A systematic review was 
not performed for GBD 2019. 
 
The GBD 2015 search terms included: (cardiomyopathy AND epidemiology [MeSH Subheading]) OR 
(myocarditis AND epidemiology [MeSH Subheading]) OR (cardiomyopathy AND (incidence OR 
prevalence OR “case fatality”)) OR (myocarditis AND (incidence OR prevalence OR “case fatality”)) 
 

 Dates included in search: 1/1/2013 – 3/16/2015 
 Number of initial hits: 3,598 
 Number of sources included: 0 
 

The GBD 2013 search terms included: (hasabstract[text] AND Humans[Mesh] AND middle age[MeSH])) 
OR 21) AND ((cardiomyopathy/epidemiology[Mesh] OR cardiomyopathy/mortality[Mesh]) AND 
(prevalence[Title/Abstract] OR incidence[Title/Abstract]) AND ("2010"[Date - Publication] : "3000"[Date 
- Publication]) AND (hasabstract[text] AND Humans[Mesh] AND middle age[MeSH])) 
 
We did not include any non-literature-based data, apart from the hospital and claims data described 
elsewhere. We used inpatient hospital data adjusted for readmission, primary to any diagnosis, and 
inpatient to outpatient utilisation based on correction factors generated using USA claims data. We 
excluded all outpatient data, as they were implausibly low when compared with inpatient data from the 
same locations and with claims data. Inpatient hospital data points that were more than two-fold higher 
or 0.5-fold lower than the median absolute deviation value for high-income North America, Central 
Europe, and Western Europe for that age-sex group were excluded.  
 
Severity splits and disability weights 
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Table 2. Severity distribution, details on the severity levels for Acute Myocarditis in GBD 2019 and the 
associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 

Acute myocarditis Has a fever and aches, and feels weak, which causes 
some difficulty with daily activities. 

0.051 (0.032–0.074) 

 

Modelling strategy  
For GBD 2019, we estimated acute myocarditis using a DisMod-MR Bayesian meta-regression model, 
setting a minimum of 3 and maximum of 5 as value priors on remission to establish an average duration 
of three months. We set a value prior of 0 for all ages on excess mortality. In GBD 2017, the country-
level covariates used included the cardiomyopathy and myocarditis summary exposure variable (SEV) on 
incidence and the Healthcare Access and Quality index (HAQ Index) on excess mortality. For GBD 2019, 
The only country level covariate used was Healthcare Access and Quality Index (HAQ Index) on excess 
mortality.  
 
Table 3 below gives the parameters, betas, and exponentiated betas for study-level and country-level 
covariates used in the model 
 
Table 3. Covariates. Summary of covariates used in the Acute Myocarditis DisMod-MR meta-regression 
model  

Study covariate Parameter beta Exponentiated beta 
Healthcare Access and Quality index Excess mortality rate -0.55 (-0.99 to -0.1) 0.58 (0.37 to 0.90) 

 
Aside from the minor covariate change, no other substantive changes were made to the modelling 
approach for GBD 2017. 
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Input data and methodological summary 
Case definition 
Atrial fibrillation is a supraventricular arrhythmia due to disorganised depolarisation of the atrium. Atrial 
flutter is a macro-reentrant supraventricular arrhythmia, usually involving the cavo-tricuspid isthmus. 
Diagnosis requires an ECG demonstrating: 1) irregularly irregular RR intervals (in the absence of 



116 
 

complete AV block); 2) no distinct P waves on the surface ECG, and; 3) an atrial cycle length (when 
visible) that is usually variable and less than 200 milliseconds. 

ICD codes used for inclusion of hospital and claims data can be found elsewhere in the appendix. 

Input data 
Model inputs 

Table 1 shows the source counts for atrial fibrillation and flutter in GBD 2019.  
 

Measure Total sources Countries with data 

All measures 347 51 

Prevalence 335 51 

Incidence 11 8 

Excess mortality rate 4 4 

With-condition 
mortality rate 

6 6 

 
We did not perform a systematic review for GBD 2019. A systematic review was performed for GBD 
2015 with the following search terms: (“atrial fibrillation” AND epidemiology[MeSH Subheading]) OR 
(“atrial flutter” AND epidemiology[MeSH Subheading]) OR (“atrial fibrillation” AND (prevalence OR 
incidence OR “case fatality”)) OR (“atrial flutter” AND (prevalence OR incidence OR “case fatality”)) OR 
(“heart atrium fibrillation” AND epidemiology[MeSH Subheading]) OR (“heart atrium fibrillation” AND 
(prevalence OR incidence OR “case fatality”)) 
 
The dates of the search were 1/1/2013 – 3/15/2016. There were 5,630 studies returned and, of those, 
27 were extracted.  
 
A systematic review was also performed for GBD 2013, with the search terms: (hasabstract[text] AND 
Humans[Mesh] AND middle age[MeSH])) OR 21) AND ((atrial fibrillation/epidemiology[Mesh] OR atrial 
fibrillation/mortality[Mesh]) AND (prevalence[Title/Abstract] OR incidence[Title/Abstract]) AND 
("2010"[Date - Publication]: "3000"[Date - Publication]) AND (hasabstract[text] AND Humans[Mesh] 
AND middle age[MeSH])) 
 
Apart from hospital and claims data points on prevalence, no non-literature-based data were included. 
We included hospital data corrected for readmission, primary to any diagnosis, and inpatient to 
outpatient utilisation ratios using adjustment factors calculated from US claims data. We excluded 
hospital data in certain geographies (eg, Philippines, China, India, Mexico, Botswana) where the data 
were implausibly low.  We also excluded all outpatient administrative data as the values for all locations 
were implausibly low.  
 
We adjusted claims and inpatient hospital data using literature data in which an ECG reading was used 
as a reference using MR-BRT crosswalking procedures. These procedures are discussed in detail 
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elsewhere in the appendix. Table 2 shows the adjustment factors produced by the crosswalking 
procedure. The crosswalking coefficients in Table 2 below can be used to calculate adjustment factors 
for alternative definitions. The formula for computing adjustment factors is given in equation 1 below. 
We also included a standardized age variable (age scaled) and a sex variable to the crosswalking 
procedure to adjust for the possibly of bias.  
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Equation 1: Calculation of adjustment factors:  
 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎஺௟௧௘௥௡௔௧௜௩௘ ஽௘௙ − 𝐵𝑒𝑡𝑎ௌ௘௫ ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎஺௚௘ೞ೎ೌ೗೐೏
∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 
 
Table 2: MR-BRT Crosswalk Adjustment Factors for Atrial Fibrillation and Flutter 

Data input 
Reference or alternative 

case definition 
Gamma 

Beta Coefficient, Logit 

(95% CI) 

Literature using ECG reading Ref 

0.99 

--- 

Claims and hospital inpatient 
data 

Alt -0.29(-2.33 to 1.75) 

Age scaled Alt -0.04 (-1.98 to 1.89) 

Sex (male) Alt -0.07 (-2.00 to 1.87) 

 
Severity splits & disability weights 

Atrial fibrillation is split into symptomatic and asymptomatic based on standard GBD proportion 
information. The table below includes lay descriptions and disability weights for the severity levels of 
atrial fibrillation: 

Table 3. Severity distribution, details on the severity levels for Atrial Fibrillation and Flutter in GBD 2019 
and the associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 

Asymptomatic No symptoms N/A 

Symptomatic Has periods of rapid and irregular heartbeats and 
occasional fainting 

0.224 (0.151–0.312) 

 

Modelling strategy  
In order to address changes in coding practices for atrial fibrillation that resulted in an implausible trend 
of increasing death-certificate-based mortality rates, we used a prevalence-based modelling approach 
that combined DisMod-MR and CODEm models to generate estimates for atrial fibrillation and flutter. 
This approach, first used in GBD 2015, allowed us to generate more accurate estimates, using observed 
prevalence and incidence rates along with modelled excess mortality rates generated from prevalence 
and cause-specific mortality estimates. 
 
The modelling steps are illustrated in the above flowchart. Effect sizes for covariates included in both 
the DisMod-MR 2.1 and CODEm models can be found in the table below.  

 In Step 1, we estimated deaths for atrial fibrillation using a standard CODEm approach. 
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 In Step 2, we estimated prevalence rates in DisMod-MR using data from published reports of cross-

sectional and cohort surveys, as well as primary care facility data. We also used claims data covering 
inpatient and outpatient visits for the United States along with inpatient hospital data from 247 
locations in 15 countries. For GBD 2019, inpatient hospital data were adjusted using age- and sex-
specific information for: 1) readmission within one year; 2) primary diagnosis code to secondary 
codes; and, 3) the ratio of inpatient to outpatient visits. These clinical informatics data were then 
further adjusted using MR-BRT to account for misclassification compared with reference data. We 
set priors of no remission and capped excess mortality at 0.4 for all ages. We included the 
Healthcare Access and Quality (HAQ) index as a country-level, fixed-effect covariate on excess 
mortality and the log-transformed, age-standardised SEV scalar for atrial fibrillation and flutter as a 
country-level, fixed-effect covariate on prevalence. 
 

 In Step 3, we calculated the excess mortality rate (EMR) for 2019 (defined as the cause-specific 
mortality rate [CSMR] estimated from CODEm divided by the prevalence rate from DisMod-MR). We 
then selected 17 countries based on four conditions: 1) ranking of 4 or 5 stars on the system for 
assessing the quality of VR data; 2) prevalence data available from the literature were included in 
the DisMod-MR estimation; 3) prevalence rate ≥ 0.005; and, 4) CSMR ≥ 0.00002. Using information 
from these countries as input data, we ran a MR-BRT model of logEMR on sex, a cubic spline of age, 
and HAQI. Specifics on the MR-BRT framework can be found elsewhere in the appendix. We then 
predicted year-, age- and sex-specific EMR using the results of this regression for all non-selected 
countries. Countries included in the regression were assigned their directly calculated values. These 
EMR data points were assigned to the time period 1990–2017 and uploaded into the non-fatal 
database in order to be used in modelling.  
 

 In Step 4, we re-ran DisMod-MR using the input data described in Step 2 along with the EMR 
estimated in Step 3. We included Healthcare access and quality index (HAQI) as a fixed-effect, 
country-level covariate on excess mortality and the log-transformed, age-standardised SEV scalar for 
atrial fibrillation and flutter as a fixed-effect, country-level covariate on prevalence. We included a 
value prior of 0 for remission for all ages and set a value prior of 0 for excess mortality for ages 0-30. 

 
The prevalence from the DisMod-MR model in Step 4 was used as the finalised output for upload to 
COMO and further processing into YLDs and DALYs.  
 
Models were evaluated based on expert opinion, comparison with results from previous rounds of GBD, 
and model fit.  
 
The tables below include the study covariates, parameters, betas, and exponentiated betas. 
 

Table 4a. Covariates. Summary of covariates used in the Atrial Fibrillation and Flutter step 2 DisMod-MR 
meta-regression model  

Covariate Parameter Beta Exponentiated 
beta 

Log-transformed age-
standardised SEV scalar: A Fib 

Prevalence 0.75 (0.75 to 0.76) 2.12 (2.12 to 2.13) 
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Healthcare Access and 
Quality Index 

Excess mortality 
rate 

-0.11 (-0.13 to -0.099) 0.89 (0.88 to 0.91) 

 
 
 
Table 4b. Covariates. Summary of covariates used in the Atrial Fibrillation and Flutter step 4 DisMod-MR 
meta-regression model  

Covariate Parameter Beta Exponentiated beta 
Log-transformed age-
standardised SEV scalar: A Fib 

Prevalence 1.15 ( 1.10 to 1.21) 3.17 (3.01 to 3.34) 

Healthcare Access and 
Quality Index 

Excess mortality 
rate 

-0.017 ( -0.017 to -
0.017) 

0.98 (0.98 to 0.98) 

 
No substantive changes were made to the modelling strategy for GBD 2019. 

 

Non-rheumatic valvular heart diseases: Calcific aortic valve disease, degenerative 
mitral valve disease, and other non-rheumatic valve disease 
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Case definitions 
Calcific aortic valve disease 
Calcific aortic valve disease was defined as clinical diagnosis of aortic valve stenosis or regurgitation due 
to progressive calcification of the aortic valve or annulus leading to haemodynamically moderate or 
severe aortic stenosis or regurgitation. Cases were determined by echocardiography. Calcific aortic valve 
disease in the GBD did not include aortic valve disease with an aetiology that was congenital, rheumatic, 
or infectious. Disease due to these aetiologies are modelled in other causes in the GBD. Information on 
unicuspid or bicuspid valves was generally not available and is often unknown in advanced calcific 
disease. Therefore, we included cases of unicuspid or bicuspid valves in our case definition if they 
developed clinically significant aortic stenosis. The criteria for aortic stenosis follow the American Heart 
Association/American College of Cardiology definition of haemodynamically moderate or severe aortic 
stenosis and are listed in Table 1. The criteria for aortic regurgitation follow the American Heart 
Association/American College of Cardiology definition of haemodynamically moderate or severe aortic 
regurgitation and are listed in Table 2. Mild haemodynamic aortic stenosis or regurgitation was not 
included in our case definition because mildly abnormal haemodynamic parameters are difficult to 
differentiate from non-pathological stenosis and/or regurgitation, and are generally not reported in 
population-based studies. 

Table 1: AHA/ACC definitions of aortic stenosis 

Maximum jet velocity ≥ 3 m/s 

Mean pressure gradient ≥ 20 mmHg 

 

Table 2: AHA/ACC definitions of aortic regurgitation 

Central jet mitral regurgitation ≥ 25% of the left ventricular outflow tract 

Vena contracta ≥ 0.3 cm 

Regurgitant volume ≥ 30 mL/beat 

Regurgitant fraction ≥ 30% 

Angiography grade ≥ 2+ 

 

Degenerative mitral valve disease 
Degenerative mitral valve disease was defined as myxomatous degeneration of the mitral valve leading 
to regurgitation or prolapse. Cases were determined by echocardiography by a physician. Degenerative 
mitral valve disease did not include mitral valve disease with an aetiology that was congenital, 
rheumatic, infectious, traumatic, carcinoid, or functional (ie, secondary to left ventricular remodeling 
due to heart failure from another cause). Mitral valve stenosis was always considered to have a 
rheumatic aetiology and therefore was not included in the definition of degenerative mitral valve 
disease. Degenerative mitral valve disease was restricted to persons at or above the age of 15 in order 
to exclude congenital mitral valve disorders. This age restriction is consistent with other progressive 
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cardiovascular diseases modelled in the GBD. The criteria for mitral regurgitation follow the American 
Heart Association/American College of Cardiology definition of haemodynamically progressive or severe 
mitral regurgitation and are listed in Table 3. Mild haemodynamic mitral regurgitation was not included 
in our case definition because mild mitral valve disease cannot be differentiated from nonpathological 
regurgitation and is generally not reported in population-based studies. 

Table 3: AHA/ACC definitions of mitral regurgitation 

Central jet mitral regurgitation > 20% of the left atrium 

Vena contracta ≥ 0.7 cm 

Regurgitant volume ≥ 60 mL/beat 

Regurgitant fraction ≥ 50% 

Effective regurgitant orifice ≥ 0.4 cm2 

Angiography grade ≥ 2+ 

 

Other non-rheumatic valve disease 
Other non-rheumatic valve disease is a residual category that captures non-rheumatic, non-congenital 
valve disorders of the tricuspid and pulmonary valves. This includes tricuspid regurgitation, tricuspid 
stenosis, pulmonary regurgitation, and pulmonary stenosis. Other non-rheumatic valve disease did not 
include tricuspid or pulmonary valve disease with an aetiology that was congenital, rheumatic, 
infectious, traumatic, carcinoid, or functional (ie, secondary to heart failure due to another cause). 

Input data 
Data on the prevalence, incidence, treatment, haemodynamic severity, and asymptomatic status were 
collected from PubMed using the following search strings on 8/21/2017: 

Calcific aortic valve disease 
("aortic stenosis"[Title/Abstract] OR "aortic regurgitation"[Title/Abstract]) NOT ("Transcatheter Aortic 
Valve Replacement"[MeSH] OR "Transcatheter aortic valve implantation"[KEYWORD]) AND 
(epidemiology[MeSH Major Topic] OR epidemiology[Subheading] OR epidemiology[MeSH Terms] OR 
prevalence[Title/Abstract] OR mortality[Title/Abstract]) NOT (animals[MeSH] NOT humans[MeSH]) AND 
("1980/1/01"[PDAT] : "2017/12/31"[PDAT]) NOT Comment[ptyp] NOT Case Reports[ptyp] 

Degenerative mitral valve disease 
("mitral stenosis"[Title/Abstract] OR "mitral regurgitation"[Title/Abstract]) AND ("epidemiology"[MeSH 
Major Topic] OR "epidemiology"[Subheading] OR "epidemiology"[MeSH Terms] OR 
prevalence[Title/Abstract] OR mortality[Title/Abstract]) NOT (animals[MeSH] NOT humans[MeSH]) AND 
("1980/1/01"[PDAT] : "2017/12/31"[PDAT]) NOT Comment[ptyp] NOT Case Reports[ptyp] 

Other non-rheumatic valve disease 
We did not run a literature review for “other non-rheumatic valve diseases” because we did not directly 
model non-fatal burden due to this cause.  
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We excluded literature that was not representative, included rheumatic, endocarditic, or congenital 
heart disease in its case definition, or included haemodynamically mild valve disease in its case 
definition. 

Data on the prevalence of calcific aortic valve and degenerative mitral valve disease were also obtained 
from inpatient hospital data. These data were adjusted for multiple visits, non-primary diagnoses, and 
inpatient to outpatient utilisation ratios. Hospital data were excluded below age 30 or if the age-series 
for a given hospital data source was implausible. Prevalence data from both inpatient and outpatient 
hospital claims were used in the United States. 

For GBD 2019, we used the modeling software Meta-Regression, Baysian Regularized Trimming (MR-
BRT) to correct for biases in data types, replacing the in-DisMod crosswalks used in GBD 2017. We used 
a network meta-analysis to adjust inpatient data, MarketScan data from 2010-2016, and MarketScan 
data from 2000, which used a different sampling methodology than other years, to literature and 
inpatient data. Tables 4 and 5 show MR-BRT crosswalk adjustment factors. 

MR-BRT was used to split both-sex data points into sex-specific estimates. This methodology is detailed 
elsewhere in the appendix. We also split data points where the age range was greater than 25 years. 
Age splitting was based on the global sex-specific age pattern from a Dismod model that only used input 
data from scientific literature with less than a 25-year age range. 

 

Source counts 
 Measure Total sources Countries with data 

Calcific aortic valve disease Prevalence 221 35 

Calcific aortic valve disease Case fatality rate 1 1 

Degenerative mitral valve disease Prevalence 198 30 

Degenerative mitral valve disease With-condition 
mortality rate 

1 1 

Degenerative mitral valve disease Case fatality rate 1 1 

 

 

Table 4: MR-BRT adjustment factors for calcific aortic valve disease 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎஺௟௧௘௥௡௔௧௜௩௘ ஽௘௙ − 𝐵𝑒𝑡𝑎ௌ௘௫ ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎஺௚ ೞ೎ೌ೗೐೏
∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 

Data input Reference or 
alternative case 

definition 
Gamma 

Beta Coefficient, Logit 

(95% CI) 

Beta 
Coefficient, 
real-space 

Literature  Reference 0.07 --- --- 
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Inpatient Alternate -1.08 (-1.27, -0.89) 0.25 

Marketscan, 2000 Alternate -0.78 (-0.98, -0.58) 0.31 

Marketscan, 2010-2016 Alternate -0.04 (-0.23, 0.15) 0.49 

Age, scaled  0.45 (0.32, 0.59) 0.61 

Male  0.06 (-0.08, 0.19) 0.51 

 

Table 5: MR-BRT adjustment factors for degenerative mitral valve disease 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎஺௟௧௘௥௡௔௧௜௩௘ ஽௘௙ − 𝐵𝑒𝑡𝑎ௌ௘௫ ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎஺௚௘ೞ೎ೌ೗೐೏
∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 

Data input Reference or 
alternative case 

definition 
Gamma 

Beta Coefficient, Logit 

(95% CI) 

Beta 
Coefficient, 
real-space 

Literature  Reference 

0.07 

--- --- 

Inpatient Alternate -1.88 (-2.34, -1.43) 0.13 

Marketscan, 2000 Alternate -1.53 (-1.99, -1.06) 0.18 

Marketscan, 2010-2016 Alternate -0.82 (-1.28, -0.37) 0.31 

Age, scaled  0.41 (0.03, 0.80) 0.60 

Male  0.01 (-0.38, 0.39) 0.50 

 

Modelling strategy 
For other non-rheumatic valve diseases, we estimated nonfatal burden using the cause of death heart 
failure approach. This method is used for most cardiovascular diseases that cause heart failure and is 
described in detail in the appendix section on heart failure. 

In order to estimate non-fatal burden for calcific aortic valve disease and degenerative mitral valve 
disease, we first determined the sequelae and corresponding health states that result from these 
conditions. This information, along with the disability weights applied to each health state, are displayed 
in Table 6. 

Table 6: Sequelae, health state lay descriptions, and disability weights 

Sequela Health state name 
Health state lay 

description 
Disability weight 

Asymptomatic non-
rheumatic valve disease 

Asymptomatic -- 0 
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Non-rheumatic valve 
disease after treatment 

Generic uncomplicated 
disease: worry and 

daily medication 

Has a chronic disease that 
requires medication every day 

and causes some worry but 
minimal interference with daily 

activities. 

0.049 
(0.031–0.072) 

Mild heart failure due to 
non-rheumatic valve 

disease 
Heart failure, mild 

Is short of breath and easily 
tires with moderate physical 

activity, such as walking uphill 
or more than a quarter-mile on 
level ground. The person feels 
comfortable at rest or during 
activities requiring less effort. 

0.041 
(0.026–0.062) 

Moderate heart failure 
due to non-rheumatic 

valve disease 

Heart failure, 
moderate 

Is short of breath and easily 
tires with minimal physical 

activity, such as walking only a 
short distance. The person 

feels comfortable at rest but 
avoids moderate activity. 

0.072 
(0.047–0.103) 

Severe heart failure due 
to non-rheumatic valve 

disease 
Heart failure, severe 

Is short of breath and feels 
tired when at rest. The person 
avoids any physical activity, for 

fear of worsening the 
breathing problems. 

0.179 
(0.122–0.251) 

 

To model the burden due to each of the sequela above, we first modelled the overall prevalence of 
combined haemodynamically moderate and severe calcific aortic valve disease and degenerative mitral 
valve disease. We then estimated the proportion of those with prevalent disease who were 
haemodynamically moderate, assuming that this would approximate the proportion who were 
asymptomatic. We next estimated the proportion of those with symptomatic disease (ie, those with 
haemodynamically severe disease) who were treated. The remaining proportion – those with untreated 
symptomatic disease – was split into four proportions: 1) controlled, medically managed; 2) mild; 3) 
moderate; and 4) severe heart failure. All proportions were calculated and converted to population 
prevalence at the draw level, thus propagating uncertainty from each step through to all subsequent 
steps. Population prevalence for each severity level are necessary in order to accurately calculate the 
burden for these diseases. Figure 1 visualises this framework. Each of these modelling steps is outlined 
in greater detail below. 
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Figure 1: Modelling framework for calcific aortic valve disease and degenerative mitral 
valve disease 

 

Prevalence envelope 
We separately modelled the overall prevalence of calcific aortic valve disease and degenerative mitral 
valve disease in DisMod-MR 2.1. We used cause-specific mortality rates from the fatal modelling process 
as inputs. These two models estimate the prevalence of these two valve diseases for each age, sex, 
location, and year. Covariates included in the DisMod models for prevalence of calcific aortic valve and 
degenerative mitral valve disease are presented in tables 9 and 10. 

Table 9: Covariates and resulting coefficients for calcific aortic valve disease DisMod 
model 

Covariate Integrand Coefficients Exponentiated 
coefficients 

Mean BMI Prevalence 
1.76 

(1.74-1.77) 
5.79 

(5.72-5.88) 

Smoking Prevalence Prevalence 
0.0026 

(0.000086 to 0.0095) 
1.00 

(1.00 to 1.01) 

HAQ index  
 

Excess mortality rate 
-0.079 

(-0.082 to -0.077) 
0.92 

(0.92 to 0.93) 
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Table 10: Covariates and resulting coefficients for degenerative mitral valve disease 
DisMod model 

Covariate Integrand Coefficients Exponentiated 
coefficients 

HAQ index Excess mortality rate -0.073 
(-0.18 to –0.005) 

0.93 
(0.84 to 1.00) 

 

Haemodynamically moderate proportion 
We estimated the proportion of individuals with haemodynamically moderate or severe valve disease 
who were haemodynamically moderate. As mentioned above, we assumed that individuals with 
haemodynamically moderate disease were asymptomatic. There were a total of five data sources that 
reported the proportion of individuals who were haemodynamically moderate. Because of the sparsity 
of data, we modelled the haemodynamically moderate proportion together for both calcific aortic valve 
disease and degenerative mitral valve disease. We modelled a proportion with uncertainty that varied 
by age with the following regression: 

𝑙𝑜𝑔𝑖𝑡(𝑦) =  𝛽଴ + 𝛽ଵ𝑎𝑔𝑒 + 𝛾 

Where 𝑦 is the proportion of haemodynamically moderate disease, age is the midpoint age for each 
data point, and 𝛾 is a random effect for each data source. The regression coefficients are reported in 
Table 11. 

Table 11: Moderate NRVD regression coefficients  

Covariate Coefficients Transformed coefficients 

Intercept (𝛽଴) 6.6 (4.9 to 8.4) 0.998 (0.992 to 0.999) 

Age (𝛽ଵ) -0.07 (-0.093 to -0.047) 0.932 (0.911 to 0.954) 

 

The prevalence of those with haemodynamically moderate valve disease and the prevalence of those 
with haemodynamically severe disease were calculated using the prevalence envelope and the 
proportion of those with haemodynamically moderate disease for each five-year age group, sex, 
location, and year. 

Treated proportion 
We estimated the proportion of individuals who had haemodynamically severe disease who had been 
treated. Treatment was defined as valve replacement or repair. We assumed that treatment was not 
performed on any individuals with only haemodynamically moderate disease. The number of data points 
are reported in Table 10.  
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Table 12: Data on treated calcific aortic and degenerative mitral valve disease  

Input data Number of data points 

Unique sources 23 

Geography-years 35 

 
These data were all from relatively high-income geographies, yet it is important that we capture the 
difference in treatment between high- and low-income locations. Because of this challenge, we ran a 
regression using the Healthcare Access and Quality (HAQ) index predicting the level of treatment and set 
a prior that the proportion of individuals with a valve replacement or repair was zero where HAQ index 
was equal to zero. This assumption allowed us to estimate an increasing relationship between HAQ 
index and proportion treated, where the estimated proportion treated was based on data where HAQ 
index was high. We used the regression equation: 

𝑙𝑜𝑔𝑖𝑡(𝑦) = 𝛼 + 𝛽ଵ ∗ ℎ𝑎𝑞𝑖 + 𝛽ଶ ∗ 𝑎𝑔𝑒 + 𝛽ଷ ∗ 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 

where 𝑦 is the proportion of individuals with haemodynamically severe disease who had a valve 
replacement or repair, ℎ𝑎𝑞𝑖 is the Healthcare Access and Quality index, 𝑎𝑔𝑒 is the midpoint of the age 
range for a given data point, and 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 is an indicator variable to adjust for data points where the 
denominator of the proportion treated included both haemodynamically moderate and 
haemodynamically severe individuals. The prevalence of those with treated valve disease and the 
prevalence of those with untreated haemodynamically severe disease were calculated using the 
prevalence of haemodynamically severe disease and the proportion of those with treated valve disease. 
The results of this regression are reported in Table 13 and plotted for three ages in Figure 2. 

Table 13: Treated calcific aortic valve and degenerative mitral valve disease regression 
coefficients  

Covariate Coefficients Transformed coefficients 

Intercept (𝛽଴) -4.69 (-5.90 to -3.43) 0.009 (0.003 to 0.032) 

HAQI (𝛽ଵ) 0.080 (0.070 to 0.089) 1.083 (1.073 to 1.093) 

Age (𝛽ଶ) -0.029 (-0.04 to -0.015) 0.971 (0.957 to 0.985) 

Severity (𝛽ଷ) -0.947 (-1.40 to -0.54) 0.377 (0.246 to 0.578) 
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Figure 2: Results of treatment model for three ages 

 

 

Final burden estimation 
The proportions of 1) controlled, medically managed, 2) mild, 3) moderate and 4) severe heart failure 
due to valve disease were estimated using the approach described in the heart failure section of the 
appendix. Prevalence for each of these health states was estimated using the prevalence of 
haemodynamically severe disease and the corresponding proportion for each severity of heart failure. 
Burden due to each severity of valve disease was estimated by multiplying the prevalence of each 
severity by the corresponding disability weight.  
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Input data and methodological appendix 
 

Case definition 
Our case definition for acute endocarditis was a clinical diagnosis of infective endocarditis. The ICD 
codes included can be found elsewhere in the appendix. 
 
Input data 
Model inputs 

Table 1: Source counts for acute endocarditis 

Measure Total sources Countries with data 

All measures 303 41 

Incidence 303 41 

 
Table 1 displays the source counts for the non-fatal acute endocarditis model. We did not perform a 
systematic review for GBD 2019. A systematic review was performed for GBD 2013 and updated for GBD 
2015. . The following search terms were used: ((‘endocarditis’[MeSH Terms] OR ‘endocarditis’[All 
Fields]) AND ‘epidemiology’[Subheading]) OR ((‘endocarditis’[MeSH Terms] OR ‘endocarditis’[All Fields]) 
AND ((‘epidemiology’[Subheading] OR ‘epidemiology’[All Fields] OR ‘incidence’[All Fields] OR 
‘incidence’[MeSH Terms]) OR (‘epidemiology’[Subheading] OR ‘epidemiology’[All Fields] OR 
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‘prevalence’[All Fields] OR ‘prevalence’[MeSH Terms]) OR ‘case fatality’[All Fields])) OR 
((‘endocardium’[MeSH Terms] OR ‘endocardium’[All Fields]) AND inflammation[TIAB] AND 
‘epidemiology’[Subheading]) OR ((‘endocardium’[MeSH Terms] OR ‘endocardium’[All Fields]) AND 
inflammation[TIAB] AND ((‘epidemiology’[Subheading] OR ‘epidemiology’[All Fields] OR ‘incidence’[All 
Fields] OR ‘incidence’[MeSH Terms]) OR (‘epidemiology’[Subheading] OR ‘epidemiology’[All Fields] OR 
‘prevalence’[All Fields] OR ‘prevalence’[MeSH Terms]) OR ‘case fatality’[All Fields])) 
 

 Dates included in search: 1/1/2013 – 3/16/2015 
 Number of initial hits: 1,246 
 Number of sources included: 6 

 
We did not include any non-literature-based data types, apart from the hospital and claims data 
described elsewhere. We excluded all outpatient data, as they were implausibly low when compared 
with inpatient data from the same locations and claims data. We used hospital data corrected for 
readmission and primary to any diagnosis based on the correction factors generated by the clinical 
informatics team. We excluded any inpatient hospital data points which were more than two-fold higher 
or 0.5-fold lower than the median absolute deviation value for high-income North America, Central 
Europe, and Western Europe for that age-sex group. No data adjustments was done for acute 
endocarditis in GBD 2019.  
 
Severity split inputs 
 
We used the standard GBD approach, which utilises MEPS data to split overall estimates of endocarditis 
into moderate and severe categories. The table below includes the severity level, lay descriptions, and 
DWs associated with acute endocarditis. 
 
Table 2. Severity distribution, details on the severity levels for Acute Endocarditis in GBD 2019 and the 
associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 

Moderate Has a fever and aches, and feels weak, which causes some 
difficulty with daily activities. 

0.051 (0.032–0.074) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 (0.088–0.19) 

 

Modelling strategy  
For GBD 2019, we estimated endocarditis using a DisMod-MR Bayesian meta-regression model, setting a 
minimum of 11 and maximum of 13 as value priors on remission to establish an average duration of one 
month. For GBD 2019, we outliered cause specific mortality rate data from Mali due to implausibly high 
estimates. Country-level covariates used included the endocarditis summary exposure variable (SEV) on 
incidence and Health Access and Quality Index on excess mortality. 
 
We evaluated models by comparing model fits with the data and with results from previous GBD 
estimation cycles.  



132 
 

 
The table below gives the parameters, betas, and exponentiated betas for study-level and country-level 
covariates used in the model. 
 
Table 3. Covariates. Summary of covariates used in the Acute Endocarditis DisMod-MR meta-regression 
model  

Covariate Parameter Beta Exponentiated beta 
(95% Uncertainty 

Interval) 
Health Access and Quality 
Index 

Excess mortality 
rate 

-0.1 (-0.1 to -0.1) 0.90 (0.90 to 0.90) 

Log-transformed age-
standardised SEV scalar: 
endocarditis 

 
Incidence 

 
0.78 (0.75 to 0.83) 

 
2.19 (2.12 to 2.30) 

 
No significant changes were made to the modelling strategy from GBD 2017. 
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Case definition 
For GBD 2019, peripheral arterial disease was defined as having an ankle-brachial index (ABI) < 0.9. 
Intermittent claudication was defined clinically.  

Specific ICD codes for claims data included can be found elsewhere in the appendix. 

Input data 
Model inputs 

Table 1: Source counts for peripheral arterial disease  

Measure Total sources Countries with data 

All measures 45 15 

Prevalence 37 14 

Proportion 11 4 

 
Table 1 shows the source counts for peripheral arterial disease modeling. We did not perform a 
systematic review for GBD 2019. A systematic review was performed for peripheral arterial disease and 
intermittent claudication for GBD 2015. The search terms were: ('peripheral vascular disease'[TIAB] AND 
'epidemiology'[Subheading]) OR   ('peripheral arterial disease'[TIAB] AND 'epidemiology'[Subheading]) 
OR  ('peripheral artery disease'[TIAB] AND 'epidemiology'[Subheading]) OR  ('intermittent 
claudication'[TIAB] AND 'epidemiology'[Subheading]) OR   ('ankle-brachial index'[TIAB] AND 
'epidemiology'[Subheading]) OR   ('ankle brachial index'[TIAB] AND 'epidemiology'[Subheading]) OR   
('peripheral artery occlusive disease'[TIAB] AND 'epidemiology'[Subheading]) OR ('peripheral obliterative 
arteriopathy'[TIAB] AND 'epidemiology'[Subheading]) OR ('peripheral vascular disease'[TIAB] AND 
'prevalence'[MeSH Terms]) OR   ('peripheral vascular disease'[TIAB] AND 'incidence'[MeSH Terms]) OR   
('peripheral vascular disease'[TIAB] AND 'case fatality'[All Fields]) OR ('symptomatic claudication'[TIAB] 
AND (proportion[All Fields] OR percent[All Fields])) 
 
The search was conducted from 1/1/2013 to 3/16/2015. 1,658 results were returned, of which six were 
extracted.  
 
A systematic review was also performed for peripheral arterial disease and intermittent claudication for 
GBD 2013. Search terms can be provided upon request.  
 
Apart from the claims data from the United States, we did not include any non-literature-based data 
types. We did not use inpatient hospital data, as peripheral arterial disease is expected to be rare in 
inpatient data but common in outpatient data as it is a condition usually managed on an outpatient 
basis, except for specific surgical interventions. This discrepancy leads to implausible correction factors 
based on inpatient/outpatient information from claims data (~150X); thus, adjusted data cannot be 
used. Including uncorrected data in the model is likely to lead to incorrect estimates as hospitalisation 
and procedure rates are likely to vary between geographies based on access to and patterns of care.  

For GBD 2019 we adjusted prevalence data from claims using the MR-BRT data adjustment procedure 
described elsewhere the appendix. Our reference data was from literature in which the prevalence of 
PAD was based on directly-measured ABI values. The coefficients in Table 2 below can be used to 
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calculate adjustment factors for alternative definitions. The formula for computing adjustment factors is 
given in equation 1 below. We also included a standardized age variable (age scaled) and a sex variable 
to the crosswalking procedure to adjust for the possibly of bias.  
 
Equation 1: Calculation of adjustment factors:  
 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓 = 𝑖𝑛𝑣𝑙𝑜𝑔𝑖𝑡(𝑙𝑜𝑔𝑖𝑡(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐷𝑒𝑓) − 𝐵𝑒𝑡𝑎஺௟௧௘௥௡௔௧௜௩௘ ஽௘௙ − 𝐵𝑒𝑡𝑎ௌ௘௫ ∗ 𝑆𝑒𝑥 − 𝐵𝑒𝑡𝑎஺௚௘ೞ೎ೌ೗೐೏
∗ 𝐴𝑔𝑒 𝑆𝑐𝑎𝑙𝑒𝑑) 

 
Table 2: MR-BRT Crosswalk Adjustment Factors for Peripheral Arterial Disease  

Data input Measure 
Reference or alternative 

case definition 
Gamma 

Beta Coefficient,Logit 

(95% CI) 

Measured ABI less 
than or equal to 0.90 

Prevalence Ref 

0 

--- 

Claims data Prevalence Alt -1.87 (-1.92 to -1.82) 

Age scaled Prevalence Alt 0.27 (0.23 to 0.31) 

Sex (male) Prevalence Alt 0.29 (0.22 to 0.36) 

 
Severity splits and disability weights 

We used the proportion of intermittent claudication to split the overall prevalence of peripheral arterial 
disease into symptomatic and asymptomatic peripheral vascular disease. The table below illustrates 
these values: 

Table 3. Severity distribution, details on the severity levels for Peripheral Arterial Disease in GBD 2019 
and the associated disability weight (DW) with that severity.  

Severity level Lay description DW (95% CI) 

Asymptomatic No symptoms No DW assigned 

Symptomatic Has cramping pains in the legs after walking a medium 
distance. The pain goes away after a short rest. 

0.014 (0.007–0.025) 

 

Modelling strategy  
For GBD 2019, we used DisMod MR 2.1 to model the overall prevalence of peripheral arterial disease 
using prevalence data from literature studies and and crosswalked claims data.  

We included the log-transformed, age-standardised SEV scalar for PAD and log-transformed LDI as fixed-
effect, country-level covariates. We set value priors of 0 for incidence from ages 0 to 30. We also set a 
value prior of 0 for remission for all ages. Additionally, we set a value prior of 0 for excess mortality 
inbetween ages 0 and 30 as well as a value prior between 0 and 0.05 for excess mortality inbetween 
ages 30 and 100.   
 



135 
 

The table below illustrate the beta values and and exponentiated beta values for the covariates chosedn 
for the overall peripheral vascular disease model. 
 
Table 4a. Covariates. Summary of covariates used in the Peripheral Arterial Disease DisMod-MR meta-
regression model  

Covariate Parameter Beta Exponentiated beta 
Log-transformed age-
standardised SEV scalar: PAD 

Prevalence 1.24 (1.22 to 1.25) 3.46 (3.39 to 3.49) 
 

LDI (I$ per capita) Excess mortality rate -0.3 (-0.5 to -0.1) 0.74 (0.61 to 0.90) 

 
We used DisMod MR to model the proportion of peripheral vascular disease with intermittent 
claudication. We set a value prior of 0 for proportion for ages 0 to 40. We included the Health Access 
and Quality Index score as a country-level covariate for excess mortality. 

The table below illustrate the study covariates, parameters, beta, and exponentiated beta values for the 
proportion model for intermittent claudication. 
 
Table 4b. Covariates. Summary of covariates used in the Intermittent Claudication DisMod-MR meta-
regression model  

Covariate Parameter Beta Exponentiated 
beta 

Healthcare Access and Quality 
index 

Proportion     -.0064 (-.014 to -.00066) 0.99 (.99 to 1.00) 

 
To obtain final estimates for the sequelae of interest, we multiplied the prevalence model by the 
proportion model at the draw level to generate the prevalence of symptomatic and asymptomatic 
peripheral vascular disease. 
  
Models were evaluated based on expert review, comparisons with estimates from prior rounds of GBD, 
and assessing model fit.  
 
There have been no substantive changes from GBD 2017 in terms of modelling strategy for peripheral 
arterial disease. 
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Risk-specific modelling descriptions 
High systolic blood pressure 

 
Input data and methodological summary 
Exposure 
 

Case definition 
Brachial systolic blood pressure in mmHg. 
 
Input data 
We utilised data on mean systolic blood pressure from literature and from household survey microdata 
and reports (e.g. STEPS, NHANES). For GBD 2019, we did not carry out a systematic review of the 
literature for new data. Counts of the data inputs used for GBD 2019 are show in Tables 1 and 2 below. 
Details of inclusion and exclusion criteria and data processing steps follow. 
 
Table 1: Data inputs for exposure for systolic blood pressure. 

 Input data Exposure 
Total sources 1112 
Number of countries with data 166 

 
Table 2: Data inputs for relative risks for systolic blood pressure. 

 Input data Relative risk 
Source count (total) 3 

 
Inclusion criteria 
Studies were included if they were population-based and directly measured systolic blood pressure 
using a sphygmomanometer. We assumed the data were representative if the geography or the 
population were not selected because it was related to hypertension or hypertensive outcomes. 
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Outliers 
Data were utilised in the modelling process unless an assessment strongly suggested that the source 
was biased. A candidate source was excluded if the quality of study did not warrant a valid estimate 
because of selection (non-representative populations) or if the study did not provide methodological 
details for evaluation. In a small number of cases, a data point was considered to be an outlier candidate 
if the level was implausibly low or high based on expert judgement and data from other country data. 
 
Data extraction 
Where possible, individual-level data on blood pressure estimates were extracted from survey 
microdata. These data points were collapsed across demographic groupings to produce mean estimates 
in the standard GBD five-year age-sex groups. If microdata were unavailable, information from survey 
reports or from literature were extracted along with any available measure of uncertainty including 
standard error, uncertainty interval, and sample size. Standard deviations were also extracted. Where 
mean systolic blood pressure was reported split out by groups other than age, sex, location, and year 
(e.g. by hypertensive status), a weighted mean was calculated. 
 
Incorporating United States prevalence data 
Survey reports and literature often report information only about the prevalence, but not the level, of 
hypertension in the population studied.  These sources were not used to model systolic blood pressure, 
with the exception of data from the Behavioral Risk Factors Surveillance System (BRFSS) because of the 
availability of a similarly structured exam survey that is representative of the same population 
(NHANES).  BRFSS is a telephone survey conducted in the United States for all US counties.  It collects 
self-reported diagnosis of hypertension.  These self-reported values of prevalence of raised blood 
pressure were adjusted for self-report bias and tabulated by age group, sex, US state, and year.  These 
prevalence values were used to predict a mean systolic blood pressure for the same strata with a 
regression using data from the National Health and Nutrition Examination Survey, a nationally 
representative health examination survey of the US adult population.  The regression was run separately 
by sex, and was specified as: 

SBP୪,ୟ,୲,ୱ =  β଴ + βଵprev୪,ୟ,୲,ୱ 
 
where SBP୪,ୟ,୲,ୱ is the location, age, time, and sex specific mean systolic blood pressure and prev୪,ୟ,୲,ୱ is 
the location, age, time, and sex specific prevalence of raised blood pressure.  The coefficients for both 
models are reported in Table 3.   
 
Table 3.  Coefficients in the sex-specific US states blood pressure prediction models 

Term Male model Female model 
Intercept (𝛽଴) 114.65 108.28 
Prevalence (𝛽ଵ) 51.86 68.87 

 
Out of sample RMSE was used to quantify the predictive validity of the model. The regression was 
repeated 10 times for each sex, each time randomly holding out 20% of the data. The RMSEs from each 
holdout analysis were averaged to get the average out of sample RMSE. The results of this holdout 
analysis are reported in Table 4. 
 
Table 4. Out of sample RMSEs of the sex-specific US states blood pressure prediction models 

 Male model Female model 
Out of sample RMSE 2.37 mmHg 3.27 mmHg 



138 
 

 
 
Age and sex splitting 
Prior to modelling, data provided in age groups wider than the GBD five-year age groups were processed 
using the approach outlined in Ng and colleagues.2 Briefly, age-sex patterns was identified using 115 
sources of microdata with multiple age-sex groups, and these patterns were applied to estimate age-
sex-specific levels of mean systolic blood pressure from aggregated results reported in published 
literature or survey reports. In order to incorporate uncertainty into this process and borrow strength 
across age groups when constructing the age-sex pattern, we used a model with auto-regression on the 
change in mean SBP over age groups: 

𝜇௔ = 𝜇௔ିଵ + 𝜔௔ 
𝜔௔~𝑁(𝜔௔ିଵ, 𝜏) 

 
Where 𝜇௔ is the mean predicted value for age group a, 𝜇௔ିଵ is the mean predicted value for the age 
group previous to age group a, 𝜔௔ is the difference in mean between age group a and age group a-1, 
𝜔௔ିଵ is the difference between age group a-1 and age group a-2, and 𝜏 is a user-input prior on how 
quickly the mean SBP changes for each unit increase in age. We used a 𝜏 of 1.5 mmHg for this model. 
Draws of the age-sex pattern were combined with draws of the input data needing to be split in order to 
calculate the new variance of age-sex split data points. 
 

Modelling 
Exposure estimates were produced from 1980 to 2019 for each national and subnational location, sex, 
and for each five-year age group starting from 25+. As in GBD 2017, we used a spatiotemporal Gaussian 
process regression (ST-GPR) framework to model the mean systolic blood pressure at the location-, 
year-, age-, sex- level. Details of the ST-GPR method used in GBD 2019 can be found elsewhere in the 
appendix. 
 
Covariate selection 
The first step of the ST-GPR framework requires the creation of a linear model for predicting SBP at the 
location-, year-, age-, sex- level. Covariates for this model were selected in two stages. First a list of 
variables with an expected causal relationship with SBP was created based on significant association 
found within high-quality prospective cohort studies reported in the published scientific literature. The 
second stage in covariate selection was to test the predictive validity of every possible combination of 
covariates in the linear model, given the covariates selected above. This was done separately for each 
sex. Predictive validity was measured with out of sample root-mean-squared error. 
 
In GBD 2016, the linear model with the lowest root-mean-squared error for each sex was then used in 
the ST-GPR model. Beginning in GBD 2017, we used an ensemble model of the 50 models with the 
lowest root-mean-squared error for each sex. This allows us to utilise covariate information from many 
plausible linear mixed-effects models. The 50 models were each used to predict the mean SBP for every 
age, sex, location, and year, and the inverse-RMSE-weighted average of this set of 50 predictions was 
used as the linear prior. The relative weight contributed by each covariate is plotted by sex in Figure 1. 
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Figure 1. Results of the ensemble linear model covariate selection 

 
  
 
The results of the ensemble linear model were used for the first stage in an ST-GPR model. The result of 
the ST-GPR model are estimates of the mean SBP for each age, sex, location, and year. 
 
Estimate of standard deviation  
Currently, the ST-GPR model only produces an estimate of mean exposure level without standard 
deviation. Therefore, the standard deviation of systolic blood pressure within a population was 
estimated for each national and subnational location, sex, and five-year age group starting from age 25 
using the standard deviation from person-level and some tabulated data sources. Person-level 
microdata accounted for 10 375 of the total 12 570 rows of data on standard deviation. The remaining 
2195 rows came from tabulated data. Tabulated data were only used to model standard deviation if it 
was sex-specific and five-year-age-group-specific and reported a population standard deviation of 
systolic blood pressure. The systolic blood pressure standard deviation function was estimated using a 
linear regression: 

log൫SD୪,ୟ,୲,ୱ൯ =  β଴ + βଵlog (mean_SBP୪,ୟ,୲,ୱ)+βସsex +  ෍ β୩I୅

ଵ଺

୩ୀଶ

 

where mean_SBP୪,ୟ,୲,ୱ is the location-, age-, time-, and sex-specific mean SBP estimate from ST-GPR, and 
I୅ is a dummy variable for a fixed effect on a given five-year age group. 
 
Adjustment for usual levels of blood pressure 
To account for in-person variation in systolic blood pressure, a “usual blood pressure” adjustment was 
done. The need for this adjustment has been described elsewhere.5 Briefly, measurements of a risk 
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factor taken at a single time point may not accurately capture an individual’s true long-term exposure to 
that risk. Blood pressure readings are highly variable over time due to measurement error as well as 
diurnal, seasonal, or biological variation. These sources of variation result in an overestimation of the 
variation in cross-sectional studies of the distribution of SBP. 
 
To adjust for this overestimation, we applied a correction factor to each location-, age-, time-, and sex-
specific standard deviation. These correction factors were age-specific and represented the proportion 
of the variation in blood pressure within a population that would be observed if there were no within-
person variation across time. Four longitudinal surveys were used to estimate these factors: the China 
Health and Retirement Longitudinal Survey (CHRLS), the Indonesia Family Life Survey (IFLS), the National 
Health and Nutrition Examination Survey I Epidemiological Follow-up Study (NHANES I/EFS), and the 
South Africa National Income Dynamics Survey (NIDS). The sample size and number of blood pressure 
measurements at each measurement period for each survey is reported in Table 5.   
 
Table 4. Characteristics of longitudinal surveys used for the usual blood pressure adjustment 

Source Measurement 
periods 

Number of 
measurements 

Sample size 

CHRLS 
2008 3 1967 
2012 3 1419 

IFLS 
1997 1 19 418 
2000 1 16 626 
2007 3 14 136 

NIDS 
1997 2 14 084 
2000 2 9612 
2007 2 9098 

NHANES I/EFS 
1971–1976 2 20 716 
1982–1984 3 9932 

 
For each survey, the following regression was created for each age group: 

SBP୧,ୟ =  β଴ + βଵsex+βଷage + +υ୧  
where SBP୧,ୟ is the systolic blood pressure of an individual i at age a, sex is a dummy variable for the sex 
of an individual, age is a continuous variable for the age of an individual, and υ୧ is a random intercept for 
each individual. Then, a blood pressure value SBP෢

୧,ୠ was predicted for each individual i for his/her age at 
baseline b. The correction factor cf for each age group within each survey was calculated as variation in 
these predicted blood pressures was divided by the variation in the observed blood pressures at 
baseline, SBP୧,ୠ: 

cf = ඨ
var൫SBP෢

 ୠ൯

var(SBP ୠ)
 

 
The average of the correction factors was taken over the three surveys to get one set of age-specific 
correction factors, which were then multiplied by the square of the modelled standard deviations to 
estimate standard deviation of the “usual blood pressure” of each age, sex, location, and year. Because 
of low sample sizes, the correction factors for the 75–79 age group was used for all terminal age groups.  
The final correction factors for each age group are reported in Table 6. Figure 2 shows the correction 
factors by survey and age group ID. 
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Table 5. Age-specific usual blood pressure correction factors 

Age group Correction factor 

25–29 0.665 

30–34 0.713 

35–39 0.737 

40–44 0.733 

45–49 0.798 

50–54 0.771 

55–59 0.764 

60–64 0.753 

65–69 0.719 

70–74 0.689 

75+ 0.678 
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Figure 2: Correction factor by survey and age group id. The correction factor is equal to the variance of 
the predictions divided by the variance of the raw dataset. In pink is the average correction factor for 
each age group, summarised in Table 6. 

  
A visualisation of how the uncorrected blood pressure measurements overestimate the “usual” blood 
pressure variation is shown in Figure 3. This image shows the density of the distribution of the observed 
blood pressure values SBP୧,ୠ in participants in the Indonesian Family Life Study survey in red, and the 
density of the predicted blood pressure values SBP෢

୧,ୠ in blue. The ratio of the variance of the blue 
distribution to the variance of the red distribution is an example of the scalar adjustment factor being 
applied to the modelled standard deviations. 
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Figure 3: Raw and predicted distributions of blood pressure in the Indonesia Family Life Survey 
 

 
 
Estimating the exposure distribution shape 
The shape of the distribution of systolic blood pressure was estimated using all available person-level 
microdata sources, which was a subset of the input data into the modelling process. The distribution 
shape modelling framework for GBD 2019 is detailed in the elsewhere in the appendix. Briefly, an 
ensemble distribution created from a weighted average of distribution families was fit for each 
individual microdata source, separately by sex. The weights for the distribution families for each 
individual source were then averaged and weighted to create a global ensemble distribution for each 
sex. 
 

Theoretical minimum-risk exposure level 
No changes have been made to the TMREL used for systolic blood pressure since GBD 2015. We 
estimated that the TMREL of SBP ranges from 110 to 115 mmHg based on pooled prospective cohort 
studies that show risk of mortality increases for SBP above that level.3,4 Our selection of a TMREL of 110–
115 mmHg is consistent with the GBD study approach of estimating all attributable health loss that 
could be prevented even if current interventions do not exist that can achieve such a change in exposure 
level, for example a tobacco smoking prevalence of zero percent. To include the uncertainty in the 
TMREL, we took a random draw from the uniform distribution of the interval between 110 mmHg and 
115 mmHg each time the population attributable burden was calculated. 
 

Relative risks 
No changes have been made to the relative risk estimates for blood pressure outcomes used since GBD 
2016. RRs for chronic kidney disease are from the Renal Risk Collaboration meta-analysis of 2.7 million 
individuals in 106 cohorts. For other outcomes, we used data from two pooled epidemiological studies: 

- Distribution of unadjusted 
blood pressure measurements 

- Distribution of predicted blood 
pressure measurements 



144 
 

the Asia Pacific Cohort Studies Collaboration (APCSC) and the Prospective Studies Collaboration (PSC).4,5 
Additional estimates of RR for cardiovascular outcomes were used from the CALIBER study, a health-
record linkage cohort study from the UK.6  
 
For cardiovascular disease, epidemiological studies have shown that the RR associated with SBP declines 
with age, with the log (RR) having an approximately linear relationship with age and reaching a value of 
1 between the ages of 100 and 120. RRs were reported per 10 mmHg increase in SBP above the TMREL 
value (115 mmHg), calculated as in the equation below: 
 

𝑅𝑅(𝑥) = 𝑅𝑅଴

(௫ି்ெோா )
ଵ଴ ௠௠ு௚  

 
Where 𝑅𝑅(𝑥) is the RR at exposure level x and 𝑅𝑅଴ is the increase in RR for each 10 mmHg above the 
TMREL. We used DisMod-MR 2.1 to pool effect sizes from included studies and generate a dose-
response curve for each of the outcomes associated with high SBP. The tool enabled us to incorporate 
random effects across studies and include data with different age ranges. RRs were used universally for 
all countries and the meta-regression only helped to pool the three major sources and produce RRs with 
uncertainty and covariance across ages taking into account the uncertainty of the data points. 
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Case definition 
High fasting plasma glucose (FPG) is measured as the mean FPG in a population, where FPG is a 
continuous exposure in units of mmol/L. Since FPG is along a continuum, we define high FPG as any level 
above the TMREL, which is 4.8-5.4 mmol/L.  

Data seeking 
Exposure 
We conducted a systematic review for FPG and diabetes in GBD 2019. We use all available sources on 
FPG and prevalence of diabetes in the FPG model. 
 
1. Search terms:  
  
Diabetes Mellitus search string: (diabetes[TI] AND (prevalence[TIAB] OR incidence[TIAB])) OR ('Diabetes 
Mellitus'[MeSH Terms] AND 'epidemiology'[MeSH Terms]) OR (diabetes[TI] AND 'epidemiology'[MeSH 
Terms]) NOT gestational[All Fields] NOT ('neoplasms'[MeSH Terms] OR 'neoplasms'[All Fields] OR 
'cancer'[All Fields]) NOT ('mice'[MeSH Terms] OR 'mice'[All Fields]) NOT ('schizophrenia'[MeSH Terms] 
OR 'schizophrenia'[All Fields]) NOT ('emigrants and immigrants'[MeSH Terms] OR ('emigrants'[All Fields] 
AND 'immigrants'[All Fields]) OR 'emigrants and immigrants'[All Fields] OR 'immigrants'[All Fields]) NOT 
('pregnancy'[MeSH Terms] OR 'pregnancy'[All Fields] OR 'gestation'[All Fields]) NOT ('rats'[MeSH Terms] 
OR 'rats'[All Fields] OR 'rat'[All Fields]) NOT ('kidney'[MeSH Terms] OR 'kidney'[All Fields]) NOT renal[All 
Fields] NOT ('vitamins'[Pharmacological Action] OR 'vitamins'[MeSH Terms] OR 'vitamins'[All Fields] OR 
'vitamin'[All Fields])  

 

And 
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FPG search string:  ((“glucose”[Mesh] OR “hyperglycemia”[Mesh] OR “prediabetic state”[Mesh]) AND 
"Geographic Locations"[Mesh] NOT "United States"[Mesh]) AND ("humans"[Mesh] AND "adult"[MeSH]) 
AND ("Data Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population 
Surveillance"[Mesh] OR "Vital statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR 
surve*[TiAb]) NOT Comment[ptyp] NOT Case Reports[ptyp]) NOT "hospital"[TiAb] 

 Search date: October 17, 2018. The search took place for the following dates: 10/15/2017-10/16/2018. 
The number of studies returned was 717, and the number of studies extracted was 36.  

 Figure 1: PRISMA diagram of data sources used in GBD 2019 high fasting plasma glucose model 

 
Data inputs 
Data inputs come from 3 sources: 

 Estimates of mean FPG in a representative population 
 Individual-level data of fasting plasma glucose measured from surveys 
 Estimates of diabetes prevalence in a representative population 

 
Data sources that did not report mean FPG or prevalence of diabetes are excluded from analysis. When 
a study reported both mean fasting plasma glucose (FPG) and prevalence of diabetes, we use the mean 
FPG for exposure estimates. Where possible, individual-level data supersede any data described in a 
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study. Individual-level data are aggregated to produce estimates for each 5-year age group, sex, 
location, and year of a survey. 
 
Table 1: Number of sources used in exposure and relative risk models in GBD 2019 

Measure Total sources Countries with data 
Total 549 127 
Relative risk 20 - 
Exposure 529 127 

 
Data processing  
We perform several processing steps to the data in order to address sampling and measurement 
inconsistencies that will ensure the data are comparable. 

1. Small sample size 
Estimates in a sex and age group with a sample size <30 persons is considered a small sample 
size. In order to avoid small sample size problems that may bias estimates, data are collapsed 
into the next age group in the same study till the sample size reach at least 30 persons. The 
intent of collapsing the data is to preserve as much granularity between age groups as possible. 
If the entire study sample consists of <30 persons and did not include a population-weight, the 
study is excluded from the modelling process.  
 

2. Crosswalks 
We predicted mean FPG from diabetes prevalence using an ensemble distribution. We 
characterized the distribution of FPG using individual-level data. Details on the ensemble 
distribution can be found elsewhere in the Appendix. Before predicting mean FPG from 
prevalence of diabetes, we ensured that the prevalence of diabetes was based on the reference 
case definition: fasting plasma glucose (FPG) >126 mg/dL (7 mmol/L) or on treatment. For more 
details on how the case-definition crosswalk is conducted, please see the diabetes mellitus 
appendix in Global, regional, and national incidence, prevalence, and years lived with disability 
for 354 diseases and injuries for 195 countries, 1990–2019: a systematic analysis for the Global 
Burden of Disease Study 2019. 

 

Exposure modelling 
Exposure estimates are produced for every year between 1980 to 2019 for each national and 
subnational location, sex, and for each 5-year age group starting from 25 years. As in previous rounds of 
GBD, we used a Spatio-Temporal Gaussian Process Regression (ST-GPR) framework to model the mean 
fasting plasma glucose at the location-, year-, age-, and sex- level. Updates to the ST-GR modelling 
framework for GBD 2019 are detailed elsewhere in the Appendix.  
 

Fasting plasma glucose is frequently tested or reported in surveys aiming at assessing the prevalence of 
diabetes mellitus. In these surveys, the case definition of diabetes may include both a glucose test and 
questions about treatment for diabetes. People with positive history of diabetes treatment may be 
excluded from the FPG test. Thus, the mean FPG in these surveys would not represent the mean FPG in 
the entire population. In this event, we estimated the prevalence of diabetes assuming a definition of 
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FPG>126 mg/dL (7mmol/L), then crosswalked it to our reference case definition, and then predicted 
mean FPG.  

To inform our estimates in data-sparse countries, we systematically tested a range of covariates and 
selected age specific prevalence of obesity as a covariate based on direction of the coefficient and 
significance level.  
 
Mean FPG is estimated using a mixed-effects linear regression, run separately by sex: 

logit൫FPGୡ,ୟ,୲൯ =  β଴ + βଵp୭୴ୣ୰୵ୣ୧୥୦୲ౙ,౗,౪
+ ෍ β୩I୅[ୟ]

ଵ଺

୩ୀଶ

+ αୱ + α୰ + αୡ + ϵୡ,ୟ,୲ 

 

where p୭୴ୣ୰୵ୣ୧୥୦୲ౙ,౗,౪
 is the prevalence of overweight, I୅[ୟ] is an indicator variable for a fixed effect on a 

given 5-year age group, and αୱ α୰ αୡ are random effects at the super-region, region, and country level, 
respectively. The estimates were then propagated through the ST-GPR framework to obtain 1000 draws 
for each location, year, age, and sex.  

 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level (TMREL) for FPG is 4.8-5.4 mmol/L. This was calculated by 
taking the person-year weighted average of the levels of FPG that were associated with the lowest risk 
of mortality in the pooled analyses of prospective cohort studies.1   
 

Relative risks 
We estimate 15 outcomes due to high fasting plasma glucose (continuous risk) or diabetes (categorical 
risk). 

Risk Outcome 
Fasting plasma glucose Ischemic heart disease 
Fasting plasma glucose Ischemic stroke 
Fasting plasma glucose Subarachnoid hemorrhage 
Fasting plasma glucose Intracerebral hemorrhage 
Fasting plasma glucose Peripheral vascular disease 
Fasting plasma glucose Type 1 diabetes 
Fasting plasma glucose Type 2 diabetes 
Fasting plasma glucose Chronic kidney disease due to 

Type 1 diabetes 
Fasting plasma glucose Chronic kidney disease due to 

Type 2 diabetes 
Diabetes mellitus Drug-resistant tuberculosis 
Diabetes mellitus Drug-susceptible tuberculosis 
Diabetes mellitus Multidrug-resistant tuberculosis 

without extensive drug resistance 
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Diabetes mellitus Extensively drug-resistant 
tuberculosis 

Diabetes mellitus Liver cancer due to NASH 
Diabetes mellitus Liver cancer due to other causes 
Diabetes mellitus Pancreatic cancer 
Diabetes mellitus Ovarian cancer 
Diabetes mellitus Colorectal cancer 
Diabetes mellitus Bladder cancer 
Diabetes mellitus Lung cancer 
Diabetes mellitus Breast cancer 
Diabetes mellitus Glaucoma 
Diabetes mellitus Cataracts 
Diabetes mellitus Dementia 

 

Relative risks for High Fasting Plasma Glucose (continuous risk) 
After a review of the chronic kidney disease literature, we determined that there is only an attributable 
risk of chronic kidney disease due to diabetes type 1 and chronic kidney disease due to diabetes type 2 
to FPG. Thus, in GBD 2019 we removed chronic kidney disease due to glomerulonephritis, chronic kidney 
disease due to hypertension, chronic kidney disease due to other causes as an outcome.   

  

Relative risks (RR) were obtained from dose-response meta-analysis of prospective cohort studies. 
Please see the citation list for a full list of studies that are utilized. For cardiovascular outcomes, we 
estimated age-specific RRs using DisMod-MR 2.1 with log (RR) as the dependent variable and median 
age at event as the independent variable with an intercept at age 110. Morbidity and mortality directly 
caused by diabetes type 1 and diabetes type 2 is considered directly attributable to FPG.  

Relative risks for Diabetes mellitus (Categorical risk) 
Relative risks were obtained from meta-analysis of cohort studies. Please see the citation list for a full 
list of studies that are utilized. 
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High LDL cholesterol 

 
Input data and methodological summary 
 

Exposure 
Case definition 
In earlier iterations of the GBD study, we estimated burden attributable to total cholesterol. Beginning 
in GBD 2017, we modelled blood concentration of low-density lipoprotein (LDL) in units of mmol/L. 
 
Input data 
We used data on blood levels for low-density lipoprotein, total cholesterol, triglyceride, and high-density 
lipoprotein from literature and from household survey microdata and reports. We adjusted data for 
total cholesterol, triglycerides, and high-density lipoprotein using the correction approach described in 
the Lipid Crosswalk section below. Counts of the data inputs used for GBD 2019 are show in Tables 1 and 
2 below. Details of inclusion and exclusion criteria and data processing steps follow. 
 
Table 1: Data inputs for exposure for low-density lipoprotein 

 Input data Exposure 
Total sources 711 
Number of countries with data 145 

 
Table 2: Data inputs for relative risks for low-density lipoprotein 

 Input data Relative risk 
Source count (total) 1 
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Inclusion criteria  
Studies were included if they were population-based and measured total LDL, total cholesterol (TC), 
high-density lipoprotein (HDL), and/or triglycerides (TG) were available from blood tests or if LDL was 
calculated using the Friedewald equation. We assumed the data were representative of the location if 
the geography or population chosen were not related to the diseases and if it was not an outlier 
compared to other data in the country or region. 
 
Outliers 
Data were utilised in the modelling process unless an assessment of data strongly suggested that the 
data were biased. A candidate source was excluded if the quality of study did not warrant a valid 
estimate because of selection (non-representative populations) or if the study did not provide 
methodological details for evaluation. In a small number of cases, a data point was considered to be an 
outlier candidate if the level was implausibly low or high based on expert judgement and other country 
data. 
 
Data extraction 
Where possible, individual-level data on LDL estimates were extracted from survey microdata and these 
were collapsed across demographic groupings to produce mean estimates in the standard GBD five-year 
age-sex groups. If microdata were unavailable, information from survey reports or from literature were 
extracted along with any available measure of uncertainty including standard error, uncertainty 
intervals, and sample size. Standard deviations were also extracted. Where LDL was reported split out by 
groups other than age, sex, location, and year (eg, by diabetes status), a weighted mean was calculated. 
 
Lipid crosswalk 
Total cholesterol consists of three major components: LDL, HDL, and TG. LDL is often calculated for an 
individual using the Friedewald equation, shown below: 
 

𝐿𝐷𝐿 = 𝑇𝐶 − ൬𝐻𝐷𝐿 +
𝑇𝐺𝐿

2.2
൰ 

 
We utilised this relationship at the individual level to impute the mean LDL for a study population when 
only data on TC, HDL, and TGL were available. Because studies report different combinations of TC, HDL, 
and TGL, we constructed a single regression to utilise all available data to evaluate the relationship 
between each lipid and LDL at the population level. We used the following regression:  
 

𝐿𝐷𝐿 = 𝑖𝑛𝑑௧௖𝛽ଵ𝑇𝐶 − ൫𝑖𝑛𝑑௛ௗ௟𝛽ଶ𝐻𝐷𝐿 + 𝑖𝑛𝑑௧௚௟𝛽ଷ𝑇𝐺𝐿൯ + ෍ 𝛼௟𝐼௟ 

 
Where 𝑖𝑛𝑑௧௖ ,  𝑖𝑛𝑑௛ௗ௟ , and 𝑖𝑛𝑑௧௚௟ are indicator variables for whether data are available for a given lipid, 
𝐼௟ is an indicator variable a given set of available lipids 𝑙. 𝛼௟  is a unique intercept for each set of available 
lipid combinations. For example, for sources that only reported TC and HDL, 𝛼௟ୀ்஼,ு஽௅ should account 
for the missing lipid data, ie, TGL. The form of this regression allows us to estimate the betas for each 
lipid using all available data. As a sensitivity analysis, we also ran separate regressions for each set of 
available lipids and found that the single regression method had much lower root-mean-squared error. 
A comparison of the observed versus predicted LDL for each set of available lipids is shown in Figure 1. 
We found almost no relationship between LDL and HDL or TGL when TC was not available, so only 
studies that reported TC were adjusted to LDL. 
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Figure 6.  Results of the lipid crosswalk using a single regression method 
 

 
 
 
Incorporating United States prevalence data 
 
Survey reports and literature often report information only about the prevalence, but not the level, of 
hypercholesterolemia in the population studied.  These sources were not used to model LDL, with the 
exception of data from the Behavioral Risk Factors Surveillance System (BRFSS) because of the 
availability of a similarly structured exam survey covering the identical population (NHANES).  BRFSS is a 
telephone survey conducted in the United States for all counties.  It collects self-reported diagnosis of 
hypercholesterolemia.  These self-reported values of prevalence of raised total cholesterol in each age 
group, sex, US state, and year were used to predict a mean total cholesterol for the same strata with a 
regression using data from the National Health and Nutrition Examination Survey, a nationally 
representative health examination survey of the US adult population. The regression was: 
 

TCl,a,t,s =  β
0

+ β
1

prev
l,a,t,s

  

 
where TCl,a,t,s is the location, age, time, and sex specific mean total cholesterol and prev

l,a,t,s
 is the 

location, age, time, and sex specific prevalence of raised total cholesterol.  The coefficients for both 
models are reported in Table 1. 
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Table 3.  Coefficients in the sex-specific US states TC prediction models 

Term Male model Female model 

Intercept 4.23 4.36 

Prevalence 6.25 5.22 

 
 
Out of sample RMSE was used to quantify the predictive validity of the model. The regression was 
repeated 10 times for each sex, each time randomly holding out 20% of the data. The RMSEs from each 
holdout analysis were averaged to get the average out of sample RMSE. The results of this holdout 
analysis are reported in Table 2. Total cholesterol estimates were crosswalked to LDL using the lipid 
crosswalk reported above.  
 
Table 4. Out of sample RMSEs of the sex-specific US states TC prediction models 

 Male model Female model 

Out of sample RMSE 0.21 mmol/L 0.20 mmol/L 

   
 
Age and sex splitting 
Prior to modelling, data provided in age groups wider than the GBD five-year age groups were processed 
using the approach outlined in Ng and colleagues.2 Briefly, age-sex patterns were identified using 
person-level microdata (58 sources), and estimate age-sex-specific levels of total cholesterol from 
aggregated results reported in published literature or survey reports. In order to incorporate uncertainty 
into this process and borrow strength across age groups when constructing the age-sex pattern, we used 
a model with auto-regression on the change in mean LDL over age groups: 
 

𝜇௔ = 𝜇௔ିଵ + 𝜔௔ 
𝜔௔~𝑁(𝜔௔ିଵ, 𝜏) 

 
Where 𝜇௔ is the mean predicted value for age group a, 𝜇௔ିଵ is the mean predicted value for the age 
group previous to age group a,  𝜔௔ is the difference in mean between age group a and age group a-1, 
𝜔௔ିଵ is the difference between age group a-1 and age group a-2, and 𝜏 is a user-input prior on how 
quickly the mean LDL changes for each unit increase in age. We used a 𝜏 of 0.05 mmol/L for this model. 
Draws of the age-sex pattern were combined with draws of the input data needing to be split in order to 
calculate the new variance of age-sex-split data points. 
 

Modelling strategy 
Exposure estimates were produced from 1980 to 2019 for each national and subnational location, sex, 
and for each five-year age group starting from 25. As in GBD 2017, we used a spatiotemporal Gaussian 
process regression (ST-GPR) framework to model the mean LDL at the location-, year-, age-, and sex- 
level. Details of the ST-GPR method used in GBD 2019 can be found elsewhere in the appendix.  
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Covariate selection 
The first step of the ST-GPR framework requires the creation of a linear model for predicting LDL at the 
location-, year-, age-, sex- level. Covariates for this model were selected in two stages. First a list of 
variables with an expected causal relationship with LDL was created based on significant association 
found within high-quality prospective cohort studies reported in the published scientific literature. The 
second stage in covariate selection was to test the predictive validity of every possible combination of 
covariates in the linear model, given the covariates selected above. This was done separately for each 
sex. Predictive validity was measured with out of sample root-mean-squared error.  
 
In GBD 2016, the linear model with the lowest root-mean-squared error for each sex was then used in 
the ST-GPR model. Beginning in GBD 2017, we used an ensemble model of the 50 models with the 
lowest root-mean-squared error for each sex. This allows us to utilise covariate information from many 
plausible linear mixed-effects models. The 50 models were each used to predict the mean LDL for every 
age, sex, location, and year, and the inverse-RMSE-weighted average of this set of 50 predictions was 
used as the linear prior. The relative weight contributed by each covariate is plotted by sex in Figure 2. 
 
Figure 2. Results of the ensemble linear model covariate selection 

  
 
The results of the ensemble linear model were used for the first stage in an ST-GPR model. The result of 
the ST-GPR model are estimates of the mean LDL for each age, sex, location, and year. 
 
Estimate of standard deviation 
The standard deviation of LDL within a population was estimated for each national and subnational 
location, sex, and five-year age group starting from age 25 using the standard deviation from person-
level and some tabulated data sources. Person-level microdata accounted for 3009 of the total 4001 
rows of data on standard deviation. The remaining 992 rows came from tabulated data. Tabulated data 
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were only used to model standard deviation if they were sex-specific and five-year-age-group-specific 
and reported a population standard deviation LDL. The LDL standard deviation function was estimated 
using a linear regression: 

log൫SDୡ,ୟ,୲,ୱ൯ =  β଴ + βଵlog (mean_LDLୡ,ୟ,୲,ୱ)+βସsex + ෍ β୩I୅[ୟ]

ଵ଺

୩ୀଶ

 

where mean_LDLୡ,ୟ,୲,ୱ is the country-, age-, time-, and sex-specific mean LDL estimate from ST-GPR, and 
I୅[ୟ] is a dummy variable for a fixed effect on a given five-year age group. 
 
Distribution shape modelling 
The shape of the distribution of LDL was estimated using all available person-level microdata sources, 
which was a subset of the input data into the modelling process. The distribution shape modelling 
framework for GBD 2019 is detailed elsewhere in the appendix. Briefly, an ensemble distribution created 
from a weighted average of distribution families was fit for each individual microdata source, separately 
by sex. The weights for the distribution families for each individual source were then averaged and 
weighted to create a global ensemble distribution for each sex. 

 
Theoretical minimum-risk exposure level 
For GBD 2017, we reviewed the literature to select a TMREL for LDL. A meta-analysis of randomised 
trials has shown that outcomes can be improved even at low levels of LDL-cholesterol, below 1.3 
mmol/L.3 Recent studies of PCSK-9 inhibitors support these results.4 We therefore used a TMREL with a 
uniform distribution between 0.7 and 1.3 mmol/L; this value remained unchanged for GBD 2019. 
 

Relative risks 
After a systematic search, we were unable to find relative risks for LDL that were reported by age and 
level of LDL. Given this evidence that the relative risks for LDL and TC are very similar5 and the strong 
linear correlation between TC and LDL at the individual level, we used relative risks reported for TC to 
approximate the relative risks for LDL. We used DisMod-MR 2.1 to pool effect sizes from included 
studies and generate a dose-response curve for each of the outcomes associated with LDL. The tool 
enabled us to incorporate random effects across studies and include data with different age ranges. RRs 
were used universally for all countries and produce RRs with uncertainty and covariance across ages, 
considering the uncertainty of the data points.  
 
As in GBD 2017, RRs for IHD and ischaemic stroke are obtained from meta-regressions of pooled 
epidemiological studies: the Asia Pacific Cohort Studies Collaboration (APCSC) and the Prospective 
Studies Collaboration (PSC).6 RRs for IHD were modelled with log (RR) as the dependent variable and 
median age at event as the independent variable with an age intercept (RR equals 1) at age 110. For LDL 
and ischaemic stroke, a similar approach was used, except that there was no age intercept at age 110, 
due to the fact that there was no statistically significant relationship between LDL and stroke after age 
70 with a mean RR less than one. We assumed that there is not a protective effect of LDL and therefore 
did not include an RR for ages 80+.  
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High body-mass index 
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Input data and methodological summary  
 

Case definitions 
High body-mass index (BMI) for adults (ages 20+) is defined as BMI greater than 20 to 25 kg/m2. High 
BMI for children (ages 1–19) is defined as being overweight or obese based on International Obesity 
Task Force standards. 

Data sources 
In GBD 2019, new data were added from sources included in the annual GHDx update of known survey 
series. We conducted a systematic review in GBD 2017 to identify studies providing nationally or 
subnationally representative estimates of overweight prevalence, obesity prevalence, or mean body-
mass index (BMI). We limited the search to literature published between January 1, 2016, and 
December 31, 2016, to update the systematic literature search previously performed as part of GBD 
2015.  

The search for adults was conducted on 4 January 2017, using the following terms:  

((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic 
Locations"[Mesh] NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "adult"[MeSH]) AND ("Data 
Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital 
statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT 
(Comment[ptyp] OR Case Reports[ptyp] OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : 
"2016/12/31"[Date - Publication])) 

The search for children was conducted on 4 August 2016, using the following terms: 
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((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic 
Locations"[Mesh] NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "child"[MeSH]) AND ("Data 
Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital 
statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT 
(Comment[ptyp] OR Case Reports[ptyp] OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : 
"2016/12/31"[Date - Publication])) 

Table 1: Data inputs for exposure for high body-mass index. 

 Input data Exposure 
Source count (total) 2022 
Number of countries with data 190 

 

Table 2: Data inputs for relative risks for high body-mass index. 

 Input data Relative risk 
Source count (total) 267 
Number of countries with data  32 

 

Eligibility criteria 
We included representative studies providing data on mean BMI or prevalence of overweight or obesity 
among adults or children. For adults, studies were included if they defined overweight as BMI≥25 kg/m2 
and obesity as BMI≥30 kg/m2, or if estimates using those cutoffs could be back-calculated from reported 
categories. For children (children ages 2–19), studies were included if they used International Obesity 
Task Force (IOTF) standards to define overweight and obesity thresholds. We only included studies 
reporting data collected after January 1, 1980. Studies were excluded if they used non-random samples 
(eg, case-control studies or convenience samples), conducted among specific subpopulations (eg, 
pregnant women, racial or ethnic minorities, immigrants, or individuals with specific diseases), used 
alternative methods to assess adiposity (eg, waist-circumference, skin-fold thickness, or 
hydrodensitometry), had sample sizes of less than 20 per age-sex group, or provided inadequate 
information on any of the inclusion criteria. We also excluded review articles and non-English-language 
articles.  

Data collection process  
Where individual-level survey data were available, we computed mean BMI using weight and height. We 
then used BMI to determine the prevalence of overweight and obesity. For individuals aged over 19 
years, we considered them to be overweight if their BMI was greater than or equal to 25 kg/m2, and 
obese if their BMI was greater than or equal to 30 kg/m2. For individuals aged 2 to 19 years, we used 
monthly IOTF cutoffs2 to determine overweight and obese status when age in months was available. 
When only age in years was available, we used the cutoff for the midpoint of that year. Obese 
individuals were also considered to be overweight. We excluded studies using the World Health 
Organization (WHO) standards or country-specific cutoffs to define childhood overweight and obesity. 
At the individual level, we considered BMI<10 kg/m2 and BMI>70 kg/m2 to be biologically implausible 
and excluded those observations. 
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The rationale for choosing to use the IOTF cutoffs over the WHO standards has been described 
elsewhere.1 Briefly, the IOTF cutoffs provide consistent child-specific standards for ages 2–18 derived 
from surveys covering multiple countries. By contrast, the WHO growth standards apply to children 
under age 5, and the WHO growth reference applies to children ages 5–19. The WHO growth reference 
for children ages 5–19 was derived from United States data, which are less representative than the 
multinational data used by IOTF. Additionally, the switch between references at age 5 can produce 
artificial discontinuities. Given that we estimate global childhood overweight and obesity for ages 2–19 
(with ages 19 using standard adult cutoffs), the IOTF cutoffs were preferable. Additionally, we found 
that IOTF cutoffs were more commonly used in scientific literature covering childhood obesity. 

From report and literature data, we extracted data on mean BMI, prevalence of overweight, and 
prevalence of obesity, measures of uncertainty for each, and sample size, by the most granular age and 
sex groups available. Additionally, we extracted the same study-level covariates as were extracted from 
microdata (measurement, urbanicity, and representativeness), as well as location and year.  

In addition to the primary indicators described above, we extracted relevant survey-design variables, 
including primary sampling unit, strata, and survey weights, which were used to tabulate individual-level 
microdata and produce accurate measures of uncertainty. We extracted three study-level covariates: 1) 
whether height and weight data were measured or self-reported; 2) whether the study was 
predominantly conducted in an urban area, rural area, or both; and 3) the level of representativeness of 
the study (national or subnational).  

Finally, we extracted relevant demographic indicators, including location, year, age, and sex. We 
estimated the standard error of the mean from individual-level data, where available, and used the 
reported standard error of the mean for published data. When multiple data sources were available for 
the same country, we included all of them in our analysis. If data from the same data source were 
available in multiple formats such as individual-level data and tabulated data, we used individual-level 
data.  

Modelling strategy  
Age and sex splitting 
Any report or literature data provided in age groups wider than the standard five-year age groups or as 
both sexes combined were split using the approach used by Ng and colleagues.2 Briefly, age-sex patterns 
were identified using sources with data on multiple age-sex groups and these patterns were applied to 
split aggregated report and literature data. Uncertainty in the age-sex split was propagated by 
multiplying the standard error of the data by the square root of the number of splits performed. We did 
not propagate the uncertainty in the age pattern and sex pattern used to split the data as they seemed 
to have small effect. 

Self-report bias adjustment 
We included both measured and self-reported data. We tested for bias in self-report data compared to 
measured data, which is considered to be the gold-standard. There was no clear direction of bias for 
children ages 2–14, so for these age groups we only included measured data. For individuals ages 15 and 
above, we adjusted self-reported data for overweight prevalence and obesity prevalence. In GBD 2017, 
the self-report bias adjustment used a nested hierarchical mixed-effects regression model. This approach 
was updated in GBD 2019 to utilise the power of MR-BRT. For both overweight and obesity, we fit sex-
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specific MR-BRT models on the logit difference between measured and self-reported with a fixed effect 
on super-region. The bias coefficients derived from these two models are in Table 1 and 2. 

 

Table 1: MR-BRT self-report crosswalk adjustment factors for overweight prevalence 

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit 
(95% CI) 

Females Measured data Ref 0.26 
 

--- 
Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  -0.53 (-1.03, -0.04) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt -0.20 (-0.69, 0.30) 

Self-reported data (high-income) Alt  -0.25 (-0.75, 0.24) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.19 (-0.69, 0.31) 

Self-report data (north Africa and Middle 
East) 

Alt -0.38 (-0.89,0.11) 

Self-report data (south Asia) Alt 0.36 (-0.14, 0.85) 
Self-report data (sub-Saharan Africa) Alt -0.26 (-0.76, 0.24) 

Males Measured data Ref 0.43 
 

--- 
Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  -0.36 (-1.17, 0.50) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt -0.03 (-0.84, 0.82) 

Self-reported data (high-income) Alt  0.05 (-0.77, 0.87) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.02 (-0.84, 0.81) 

Self-report data (north Africa and Middle 
East) 

Alt -0.21 (-1.04, 0.61) 

Self-report data (south Asia) Alt 0.53 (-0.28, 1.37) 
Self-report data (sub-Saharan Africa) Alt -0.27 (-1.09, 0.55) 

 

 

 

Table 2: MR-BRT self-report crosswalk adjustment factors for obesity prevalence  

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit 
(95% CI) 

Females Measured data Ref 0.38 
 

--- 
Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  -0.11 (-0.86, 0.64) 
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Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt -0.95 (-1.70, -0.19) 

Self-reported data (high-income) Alt  -0.42 (-1.16, 0.34) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.41 (-1.16, 0.34) 

Self-report data (north Africa and Middle 
East) 

Alt -0.48 (-1.23, 0.27) 

Self-report data (south Asia) Alt 0.50 (-0.25, 1.26) 
Self-report data (sub-Saharan Africa) Alt -0.41 (-1.16, 0.34) 

Males Measured data Ref 0.74 
 

 
Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  0.04 (-1.41, 1.53) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt -0.79 (-2.25, 0.71) 

Self-reported data (high-income) Alt  -0.13 (-1.58, 1.40) 
Self-reported data (Latin America and 
Caribbean) 

Alt -0.26 (-1.70, 1.21) 

Self-report data (north Africa and Middle 
East) 

Alt -0.33 (-1.77, 1.16) 

Self-report data (south Asia) Alt 0.66 (-0.78, 2.15) 
Self-report data (sub-Saharan Africa) Alt -0.41 (-1.86, 1.08) 

 

Prevalence estimation for overweight and obesity 
After adjusting for self-report bias and splitting aggregated data into five-year age-sex groups, we used 
spatiotemporal Gaussian process regression (ST-GPR) to estimate the prevalence of overweight and 
obesity. This modelling approach has been described in detail elsewhere.  

The linear model, which when added to the smoothed residuals forms the mean prior for GPR is as 
follows:  
 

logit(overweight)ୡ,ୟ,୲ = β଴ + βଵenergyୡ,୲ + βଶSDIୡ,୲ +  βଷvehiclesୡ,୲ +  βସagricultureୡ,୲ + ෍ β୩I୅[ୟ]

ଶଵ

୩ୀହ

+ αୱ + α୰ + αୡ 

logit(obesity/overweight)ୡ,ୟ,୲ = β଴ + βଵenergyୡ,୲ + βଶSDIୡ,୲ +  βଷvehiclesୡ,୲ + ෍ β୩I୅[ୟ]

ଶଵ

୩ୀସ

+ αୱ + α୰ + αୡ 

 
where energy is ten-year lag-distributed energy consumption per capita, SDI is a composite index of 
development including lag-distributed income per capita, education, and fertility, vehicles is is the 
number of two- or four-wheel vehicles per capita, and agriculture is the proportion of the population 
working in agriculture. I୅[ୟ] is a dummy variable indicating specific age group A that the prevalence 
point captures, and αୱ, α୰, and αୡ are super-region, region, and country random intercepts, respectively. 
Random effects were used in model fitting but were not used in prediction. 
 
We tested all combinations of the following covariates to see which performed best in terms of in-
sample AIC for the overweight linear model and the obesity as a proportion of overweight linear model: 
ten-year lag-distributed energy per capita, proportion of the population living in urban areas, SDI, lag-
distributed income per capita, educational attainment (years) per capita, proportion of the population 



162 
 

working in agriculture, grams of sugar adjusted for energy per capita, grams of sugar not adjusted for 
energy per capita, and the number of two- or four-wheeled vehicles per capita. We selected these 
candidate covariates based on theory as well as reviewing covariates used in other publications. The 
final linear model was selected based on 1) if the direction of covariates matched what is expected from 
theory, 2) all the included covariates were significant, and 3) minimising in-sample AIC. The covariate 
selection process was performed using the dredge package in R. 
 

Estimating mean BMI 
To estimate the mean BMI for adults in each country, age, sex, and time period 1980–2019, we first 
used the following nested hierarchical mixed-effects model, fit using restricted maximum likelihood on 
data from sources containing estimates of all three indicators (prevalence of overweight, prevalence of 
obesity, and mean BMI), in order to characterise the relationship between overweight, obesity, and 
mean BMI:  

log (BMIୡ,ୟ,ୱ,୲) = β଴ + βଵowୡ,ୟ,ୱ,୲ + βଶobୡ,ୟ,ୱ,୲ + βଷsex + ෍ β୩I୅[ୟ]

ଶ଴

୩ୀସ

+ αୱ(1 + owୡ,ୟ,ୱ,୲ + obୡ,ୟ,ୱ,୲)

+ α୰(1 + owୡ,ୟ,ୱ,୲ + obୡ,ୟ,ୱ,୲) + αୡ(1 + owୡ,ୟ,ୱ,୲ + obୡ,ୟ,ୱ,୲) + ϵୡ,ୟ,ୱ,୲ 
 

where owୡ,ୟ,ୱ,୲ is the prevalence of overweight in country c, age a, sex s, and year t, obୡ,ୟ,ୱ,୲ is the 
prevalence of obesity in country c, age a, sex s, and year t, sex is a fixed effect on sex, IA[a] is an indicator 
variable for age, and αୱ, α୰, and αୡ are random effects at the super-region, region, and country, 
respectively. The model was run in Stata 13. 

We applied 1000 draws of the regression coefficients to the 1000 draws of overweight prevalence and 
obesity prevalence produced through ST-GPR to estimate 1000 draws of mean BMI for each country, 
year, age, and sex. This approach ensured that overweight prevalence, obesity prevalence, and mean 
BMI were correlated at the draw level and uncertainty was propagated. 

Estimating BMI distribution 
We used the ensemble distribution approach described in the manuscript. We fit ensemble weights by 
source and sex, with source- and sex-specific weights averaged across all sources included to produce 
the final global weights. The ensemble weights were fit on measured microdata. The final ensemble 
weights were exponential = 0.002, gamma = 0.028, inverse gamma = 0.085, log-logistic = 0.187, Gumbel 
= 0.220, Weibull = 0.011, log-normal = 0.058, normal = 0.012, beta = 0.136, mirror gamma = 0.008, and 
mirror Gumbel = 0.113. 
 
One thousand draws of BMI distributions for each location, year, age group, and sex estimated were 
produced by fitting an ensemble distribution using 1000 draws of estimated mean BMI, 1000 draws of 
estimated standard deviation, and the ensemble weights. Estimated standard deviation was produced 
by optimising a standard deviation to fit estimated overweight prevalence draws and estimated obesity 
prevalence draws. 
 

Assessment of risk-outcome pairs 
Risk-outcome pairs were defined based on strength of available evidence supporting a causal effect. We 
performed a systematic review of published meta-analyses, pooled analyses, and systematic reviews 
available through PubMed using the following search string: ("Body Mass Index"[Mesh] OR 
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"Overweight"[Mesh] OR "Obesity"[Mesh]) AND (Meta-Analysis[ptyp] OR "systematic review"[tiab] OR 
"pooled analysis"[tiab]). Inclusion criteria are 1) the health outcome is included in GBD, 2) at least one 
prospective cohort is included, and 3) that the summary effect size is statistically significant. For 
outcomes meeting inclusion criteria we completed causal criteria tables to evaluate the strength of 
evidence supporting a causal relationship (see Appendix Table 4). Gallbladder disease, cataract, multiple 
myeloma, gout, non-Hodgkin lymphoma, asthma, Alzheimer’s disease, and atrial fibrillation were added 
as new outcomes in GBD 2016, resulting in a total of 38 outcomes. 

Theoretical minimum risk exposure level  
For adults (ages 20+), the theoretical minimum risk exposure level (TMREL) of BMI (20–25 kg/m2) was 
determined based on the BMI level that was associated with the lowest risk of all-cause mortality in 
prospective cohort studies.3 

For children (ages 2–19), the TMREL is “normal weight,” that is, not overweight or obese, based on IOTF 
cutoffs. 

Relative risk 
The relative risk per five-unit change in BMI for each disease endpoint was obtained from meta-
analyses, and where available, pooled analyses of prospective observational studies. In cases where a 
relative risk per five-unit change in BMI was not available we computed our own dose-response meta-
analysis using two-step generalised least squares for time trends estimation methods.  

For childhood outcomes (ages 2–19), we computed categorical relative risks for overweight and obesity 
using a random effects meta-analysis.  
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Kidney dysfunction 
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DisMod-MR 2.1
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factors where applicable

Deaths, YLLs, YLDs, 
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attributable to each 
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Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

1. The Chronic Kidney Disease Prognosis Consortium is  a research group composed of investigators representing cohorts from around the 
world. Investigators share data for the purpose of collaborative meta-analyses to study prognosis in CKD.

MR-BRT RR analysis of outcome 
by risk exposure (by CKD stage if 

available)

 

Input data and methodological summary  
 
Exposure 
Case definition 
The kidney dysfunction risk factor exposure is divided into four categories of renal function defined by 
urinary albumin to creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR): 

 Albuminuria with preserved eGFR (ACR >30 mg/g & eGFR >=60 ml/min/1.73m2); this 
corresponds to stages 1 and 2 chronic kidney disease (CKD) in the Kidney Disease Improving 
Global Outcomes (KDIGO) classification 

 CKD stage 3 (eGFR of 30-59 ml/min/1.73m2); 
 CKD stage 4 (eGFR of 15-29 ml/min/1.73m2); and  
 CKD stage 5 (eGFR <15ml/min/1.73m2, not (yet) on renal replacement therapy).   

The modelling of renal function prevalence estimates is described in detail in the CKD section of the 
appendix to the GBD 2019 disease and injury paper. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level is ACR 30 mg/g or less and eGFR greater than 
60ml/min/1.73m2. An ACR above 30 mg/g and eGFR below 60ml/min/1.73m2 have been demonstrated 
in the literature to be the thresholds at which increased cardiovascular and gout events occur secondary 
to kidney dysfunction.(1-10)  

 

Input data 
The last systematic review of prevalence of low glomerular filtration rate was conducted for GBD 2016, 
updating searches done in GBD 2015, GBD 2013, and GBD 2010. Exclusion criteria included surveys that 
were not population-representative and studies not reporting on CKD by stage.   
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Data sources for kidney dysfunction: 

 Input data Exposure 
Source count (total) 98 
Number of countries with data 35 

 
 Input data Relative risk 
Source count (total) 9 

 

Modelling strategy  
We model the proportion of cardiovascular and musculoskeletal diseases attributable to kidney 
dysfunction. This is performed by 1) running DisMod-MR 2.1 models to estimate the prevalence of 
albuminuria, stage 3 CKD, stage 4 CKD, and stage 5 CKD; 2) estimate relative risks from available data on 
cardiovascular outcomes and gout; 3) calculate the population attributable fraction of those outcomes 
to IKF. 

The prevalence of exposure to albuminuria and CKD were obtained from the GBD 2019 non-fatal burden 
of disease analysis.  

Data on relative risks were contributed by the Chronic Kidney Disease Prognosis Consortium (CKD-PC). 
The Chronic Kidney Disease Prognosis Consortium is a research group composed of investigators 
representing cohorts from around the world. Investigators share data for the purpose of collaborative 
meta-analyses to study prognosis in CKD. 

Relative risks 
We estimate burden attributable to kidney dysfunction for cardiovascular diseases, chronic kidney 
diseases, and gout.  

In GBD 2017, we relied on a pooled cohort analysis of six cohort studies from the CKD-PC. For GBD 2019, 
in collaboration with CKD-PC, we got data on 38 new cohorts and continued to use the original from the 
previous analysis. We ran these new data through MR-BRT meta-regression to determine the 
relationship between age and outcomes based on exposure to IKF. Estimates were nested within 
cohorts. A three-degree spline was placed on age with decreasing monotonicity. All relative risk 
estimates for stroke and ischaemic heart disease above age 85 were set equal to the risk at age 85 to 
control for lack of data in older age groups. Gout currently uses GBD 2017 estimations of relative risk.   

We ran some sensitivity analyses with and without controlling for blood pressure. This is because IKF 
increases the risk of cardiovascular diseases directly, as well as through blood pressure. We wanted to 
understand how estimates of risk would differ. Generally, the relative risk of cardiovascular disease was 
lower when controlling for blood pressure. We decided to go with this lower risk that controlled for 
hypertension for a more conservative estimate.  

Relative risk plots 
The following plot shows the relative risks for heart disease and stroke by each stage of CKD. As 
expected, stage 5 and stage 4 CKD have higher risks overall. Risks is also higher at younger ages and 
lower at the oldest age, likely reflecting competing risk factors. While the risks themselves dip below 



166 
 

zero at the oldest age, we believe this is merely a function of lack of data above age 85. Because of this, 
our estimates for relative risk above age 85 take the estimate at age 85.  

 

 

 

We also include two forest plots to show the distribution of risk estimates for heart disease and stroke 
across our studies. In general, we see an expected pattern, with earlier stages of CKD with lower risks. 
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Population attributable fraction 
We calculated the cardiovascular and gout fatal and non-fatal burden attributable to the categorical 
exposure to kidney dysfunction using the following equation: 
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Equation 1. PAF based on categorical exposure 

where RRi is the relative risk for exposure level i, Pi is the proportion of the population in that exposure 
category, and n is the number of exposure categories.(11) 

Primary changes between GBD 2017 and GBD 2019 
The following are the main changes in the GBD 2019 modelling strategy compared to GBD 2017: 

1. In GBD 2019, we used MR-BRT to run a nested meta-regression analysis on the within-study sex 
ratios to estimate a pooled sex ratio with 95% confidence intervals. In GBD 2017, this was 
estimated in DisMod-MR 2.1.  

2. In GBD 2019, we used MR-BRT to make bias adjustments for data with alternative case 
definitions. CKD uses CKD-Epi as the reference definition. Alternative equations include the 
Cockcroft-Gualt and Modification of Diet in Renal Disease equations. MR-BRT models have 
larger confidence intervals due to taking into account study variance across all input data. In 
GBD 2017, these adjustments were made in DisMod-MR 2.1. The values of these adjustments 
are in the table below: 

 
MR-BRT bias adjustment factors  

Data input Status Gamma Beta coefficient, logit 
(95% CI) 

Adjustment 
factor* 

CKD-EPI Ref --- --- --- 
Stage III CG Alt 0.25 0.24  

(-0.28 to 0.76) 
0.56  
(0.43–0.68) 

Stage III MDRD Alt 0.03 0.49  
(0.34–0.64) 

0.62  
(0.58–0.66) 

Stage IV CG Alt 0 0.09 
(-0.05 to 0.24) 

0.52 
(0.49–0.56) 

Stage IV MDRD Alt 0 -0.07  
(-0.19 to 0.04) 

0.48 
(0.45–0.51) 

Stage V CG Alt 0 -0.18  
(-0.45 to 0.09) 

0.45  
(0.39–0.52) 

Stage V MDRD Alt 0 -0.06  
(-0.28 to 0.18) 

0.49  
(0.43–0.54) 

Stage III-V CG Alt 0.26 0.23  
(-0.29 to 0.75) 

0.56  
(0.43–0.68) 

Stage III-V MDRD Alt 0.03 0.47  
(0.32–0.62) 

0.62  
(0.58–0.65) 

 
3. In GBD 2017, the RRs were estimated via a pooled cohort meta-regression conducted in R using 

the metafor package. In GBD 2019, we made use of MR-BRT to run a nested meta-regression 
analysis that allowed more flexibility in the estimation process.  
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Proportional 
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Input data and modelling strategy 
 

Exposure 
Definition 
Exposure to ambient particulate matter pollution is defined as the population-weighted annual average 
mass concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a 
cubic meter of air. This measurement is reported in µg/m3. 

Input data 
The data used to estimate exposure to ambient particulate matter pollution comes from multiple 
sources, including satellite observations of aerosols in the atmosphere, ground measurements, chemical 
transport model simulations, population estimates, and land-use data. Table 1 summarizes exposure 
input data. 

Table 1: Exposure Input Data 

 Input data Exposure 

Source count (total) 663 

Number of countries with data 114 

 

The following details the updates in methodology and input data used in GBD 2019.  

PM2.5 ground measurement database 
Ground measurements used for GBD 2019 include updated measurements from sites included in 2017 
and additional measurements from new locations. New and up-to-date data (mainly from the USA, 
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Canada, EU, Bangladesh, China and USA embassies and consulates), were added to the data from the 
2018 update of the WHO Global Ambient Air Quality Database used in GBD 2017. The updated data 
included measurements of concentrations of PM10 and PM2.5 from 10,408 ground monitors from 116 
countries from 2010 to 2017. The majority of measurements were recorded in 2016 and 2017 (as there 
is a lag in reporting measurements, few data from 2018 or newer were available). Annual averages were 
excluded if they were based on less than 75% coverage within a year. If information on coverage was 
not available, then data were included unless there were already sufficient data within the same country 
(monitor density greater than 0.1). 

For locations measuring only PM10, PM2.5 measurements were estimated from PM10. This was performed 
using a hierarchy of conversion factors (PM2.5/PM10 ratios): (i) for any location a ‘local’ conversation 
factor was used, constructed as the ratio of the average measurements (of PM2.5 and PM10) from within 
50km of the location of the PM10 measurement, and within the same country, if such measurements 
were available; (ii) if there was not sufficient local information to construct a conversion factor then a 
country-wide conversion factor was used; and (iii) if there was no appropriate information within a 
country, then a regional factor was used. In each case, to avoid the possible effects of outliers in the 
measured data (both PM2.5 and PM10), extreme values of the ratios were excluded (defined as being 
greater/lesser than the 95% and 5% quantiles of the empirical distributions of conversion factors). As 
with GBD 2013, 2015, 2016, and 2017 databases, in addition to values of PM2.5 and whether they were 
direct measurement or converted from PM10, the database also included additional information, where 
available, related to the ground measurements such as monitor geo-coordinates and monitor site type.  

Satellite-based estimates 
The global geophysical PM2.5 estimates for the years 2000–2017 are from Hammer and colleagues 
Version V4.GL.03.NoGWR used at 0.1ox0.1o resolution (~11 x 11 km resolution at the equator).1 The 
method is based on the algorithms of van Donkelaar and colleagues (2016) as used in GBD 2017,2 with 
updated satellite retrievals, chemical transport modelling, and ground-based monitoring. The algorithm 
uses aerosol optical depth (AOD) from several updated satellite products (MAIAC, MODIS C6.1, and 
MISR v23), including finer resolution, increased global coverage, and improved long-term stability. 
Ground-based observations from a global sunphotometer network (AERONET version 3) are used to 
combine different AOD information sources. This is the first time that data from MAIAC at 1 km 
resolution was used to estimate PM2.5 at the global scale. The GEOS-Chem chemical transport model 

with updated algorithms was used for geophysical relationships between surface PM2.5 and AOD. 
Updates to the GEOS-Chem simulation included improved representation of mineral dust and secondary 
organic aerosol, as well as updated emission inventories. The resultant geophysical PM2.5 estimates are 
highly consistent with ground monitors worldwide (R2=0.81, slope = 1.03, n = 2541). 

Population data  
A comprehensive set of population data, adjusted to match UN2015 Population Prospectus, on a high-
resolution grid was obtained from the Gridded Population of the World (GPW) database. Estimates for 
2000, 2005, 2010, 2015, and 2020 were available from GPW version 4, with estimates for 1990 and 1995 
obtained from the GPW version 3. These data are provided on a 0.0083o× 0.0083o resolution. 
Aggregation to each 0.1o×0.1o grid cell was accomplished by summing the central 12 × 12 population 
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cells. Populations estimates for 2001–2004, 2006–2009, 2011–2014 and 2016–2019 were obtained by 
interpolation using natural splines with knots placed at 2000, 2005, 2010, 2015, and 2020. This was 
performed for each grid cell.  

Chemical transport model simulations 
Estimates of the sum of particulate sulfate, nitrate, ammonium, and organic carbon and the 
compositional concentrations of mineral dust simulated using the GEOS Chem chemical transport 
model, and a measure combining elevation and the distance to the nearest urban land surface (as 
described in van Donkelaar and colleagues 20162 and Hammer and colleagues (submitted))1 were 
available for 2000–2017 for each 0.1o×0.1o grid cell.  

Modelling strategy 
The following is a summary of the modelling approach, known as the Data Integration Model for Air 
Quality (DIMAQ) used in GBD 2015, 2016, 2017, and now in GBD 2019.3,4 

Before the implementation of DIMAQ (ie, in GBD 2010 and GBD 2013), exposure estimates were 
obtained using a single global function to calibrate available ground measurements to a “fused” 
estimate of PM2.5; the mean of satellite-based estimates and those from the TM5 chemical transport 
model, calculated for each 0.1o×0.1o grid cell. This was recognised to represent a tradeoff between 
accuracy and computational efficiency when utilising all the available data sources. In particular, the 
GBD 2013 exposure estimates were known to underestimate ground measurements in specific locations 
(see discussion in Brauer and colleagues, 2015).5 This underestimation was largely due to the use of a 
single, global calibration function, whereas in reality the relationship between ground measurements 
and other variables will vary spatially.  

In GBD 2015 and GBD 2016, coefficients in the calibration model were estimated for each country. 
Where data were insufficient within a country, information can be “borrowed” from a higher 
aggregation (region) and, if enough information is still not available, from an even higher level (super-
region). Individual country-level estimates were therefore based on a combination of information from 
the country, its region, and its super-region. This was implemented within a Bayesian hierarchical 
modelling (BHM) framework. BHMs provide an extremely useful and flexible framework in which to 
model complex relationships and dependencies in data. Uncertainty can also be propagated through the 
model, allowing uncertainty arising from different components, both data sources and models, to be 
incorporated within estimates of uncertainty associated with the final estimates. The results of the 
modelling comprise a posterior distribution for each grid cell, rather than just a single point estimate, 
allowing a variety of summaries to be calculated. The primary outputs here are the median and 95% 
credible intervals for each grid cell. Based on the availability of ground measurement data, modelling 
and evaluation were focused on the year 2016.  

The model used in GBD 2017 and GBD 2019 also included within-country calibration variation.6 The 
model used for GBD 2019, henceforth referred to as DIMAQ2, provides a number of substantial 
improvements over the initial formulation of DIMAQ. In DIMAQ, ground measurements from different 
years were all assumed to have been made in the primary year of interest and then regressed against 
values from other inputs (eg, satellites, etc.) made in that year. In the presence of changes over time, 
therefore, and particularly in areas where no recent measurements were available, there was the 
possibility of mismatches between the ground measurements and other variables. In DIMAQ2, ground 



173 
 

measurements were matched with other inputs (over time), and the (global-level) coefficients were 
allowed to vary over time, subject to smoothing that is induced by a first-order random walk process. In 
addition, the manner in which spatial variation can be incorporated within the model has developed: 
where there are sufficient data, the calibration equations can now vary (smoothly) both within and 
between countries, achieved by allowing the coefficients to follow (smooth) Gaussian processes. Where 
there are insufficient data within a country, to produce accurate equations, as before, information is 
borrowed from lower down the hierarchy and it is supplemented with information from the wider 
region.   

DIMAQ2 as described above is used for all regions except for the north Africa and Middle East and sub-
Saharan Africa super-regions, where there are insufficient data across years to allow the extra 
complexities of the new model to be implemented. In these super-regions, a simplified version of 
DIMAQ2 is used in which the temporal component is dropped. 

Model evaluation 
Model development and comparison was performed using within- and out-of-sample assessment. In the 
evaluation, cross-validation was performed using 25 combinations of training (80%) and validation (20%) 
datasets. Validation sets were obtained by taking a stratified random sample, using sampling 
probabilities based on the cross-tabulation of PM2.5 categories (0-24.9, 25-49.9, 50-74.9, 75-99.9, 100+ 
µg/m3) and super-regions, resulting in them having the same distribution of PM2.5 concentrations and 
super-regions as the overall set of sites. The following metrics were calculated for each 
training/evaluation set combination: for model fit – R2 and deviance information criteria (DIC, a measure 
of model fit for Bayesian models); for predictive accuracy – root mean squared error (RMSE) and 
population weighted root mean squared error (PwRMSE). The median R2 was 0.9, and the median 
PwRMSE was 10.1 µg/m3. 

All modelling was performed on the log-scale. The choice of which variables were included in the model 
was made based on their contribution to model fit and predictive ability. The following is a list of 
variables and model structures that were included in DIMAQ. 

Continuous explanatory variables: 

o (SAT) Estimate of PM2.5 (in μg/m3) from satellite remote sensing on the log-scale. 
o (POP) Estimate of population for the same year as SAT on the log-scale.  
o (SNAOC) Estimate of the sum of sulfate, nitrate, ammonium, and organic carbon 

simulated using the GEOS Chem chemical transport model. 
o (DST) Estimate of compositional concentrations of mineral dust simulated using the 

GEOS-Chem chemical transport model. 
o (EDxDU) The log of the elevation difference between the elevation at the ground 

measurement location and the mean elevation within the GEOS Chem simulation grid 
cell multiplied by the inverse distance to the nearest urban land surface. 
 

Discrete explanatory variables: 

o (LOC) Binary variable indicating whether exact location of ground measurement is 
known. 

o (TYPE) Binary variable indicating whether exact type of ground monitor is known. 
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o (CONV) Binary variable indicating whether ground measurement is PM2.5 or converted 
from PM10. 

Interactions: 

o Interactions between the binary variables and the effects of SAT. 
 

Random effects: 
o Regional temporal (random walk) hierarchical random-effects on the intercept   
o Regional hierarchical random-effects for the coefficient associated with SAT  
o Regional hierarchical random-effects for the coefficient associated with POP 
o Smoothed, spatially varying random-effects for the intercept 
o Smoothed, spatially varying random-effects for the coefficient associated with SAT 

 
 

Inference and prediction 
Due to both the complexity of the models and the size of the data, notably the number of spatial 
predictions that are required, recently developed techniques that perform “approximate” Bayesian 
inference based on integrated nested Laplace approximations (INLA) were used.7 Computation was 
performed using the R interface to the INLA computational engine (R-INLA). GBD 2019 also makes use of 
an innovation in the way that samples from the (Bayesian) model are used to represent distributions of 
estimated concentrations in each grid-cell. Here estimates, and distributions representing uncertainty, 
of concentrations for each grid are obtained by taking repeated (joint) samples from the posterior 
distributions of the parameters and calculating estimates based on a linear combination of those 
samples and the input variables.8   

DIMAQ2 was used to produce estimates of ambient PM2.5 for 1990, 1995, and 2010–2019 by matching 
the gridded estimates with the corresponding coefficients from the calibration. As there is a lag in 
reporting ambient air pollution based quantities, the input variables were extrapolated (as in GBD 2017), 
allowing estimates for 2018 and 2019 to be produced in the same way as other years and, crucially, 
allowing measures of uncertainty to be produced within the BHM framework rather than by using post-
hoc approximations.  

Estimates from the satellites and the GEOS-Chem chemical transport model in 2018 and 2019 were 
produced by extrapolating estimates from 2000–2017 using generalised additive models,9 on a cell-by-
cell basis, except in those grid cells that saw a >100% increase between 2016 and 2017, in which case 
only the 2000–2016 estimates were used for extrapolating, in order to avoid unrealistic and/or 
unjustified extrapolation of trends. Population estimates for 2018 and 2019 were obtained by 
interpolation as described above.   

Theoretical minimum-risk exposure level 
The TMREL was assigned a uniform distribution with lower/upper bounds given by the average of the 
minimum and fifth percentiles of outdoor air pollution cohort studies exposure distributions conducted 
in North America, with the assumption that current evidence was insufficient to precisely characterise 
the shape of the concentration-response function below the fifth percentile of the exposure 
distributions. The TMREL was defined as a uniform distribution rather than a fixed value in order to 
represent the uncertainty regarding the level at which the scientific evidence was consistent with 
adverse effects of exposure. The specific outdoor air pollution cohort studies selected for this averaging 
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were based on the criteria that their fifth percentiles were less than that of the American Cancer Society 
Cancer Prevention II (CPSII) cohort’s fifth percentile of 8.2 based on Turner and colleagues (2016).10 This 
criterion was selected since GBD 2010 used the minimum, 5.8, and fifth percentile solely from the CPS II 
cohort. The resulting lower/upper bounds of the distribution for GBD 2019 were 2.4 and 5.9. This has 
not changed since GBD 2015.  
 

Relative risks and population attributable fractions 
We create one set of cause-specific risk curves for both household air pollution and ambient air 
pollution as two different sources of PM2.5. In GBD 2017, we estimated the particulate matter-
attributable burden of disease based on the relation of long-term exposure to PM2.5 with Ischemic 
Heart Disease, stroke (ischemic and hemorrhagic), COPD, lung cancer, acute lower respiratory infection, 
and Type II Diabetes. In GBD 2019, we added adverse birth outcomes including low birthweight and 
short gestation. Because these are already risk factors (and not outcomes) in the GBD, we performed a 
mediation analysis, in which a proportion of the burden attributable to low birthweight and short 
gestation was attributed to PM2.5 pollution.  

For the six non-mediated outcomes, we used results from cohort and case-control studies of ambient 
PM2.5 pollution, cohort studies, case-control studies, and randomised-controlled trials of household use 
of solid fuel for cooking, and cohort and case-control studies of secondhand smoke. For the first time in 
GBD 2019, we no longer use active smoking data in the risk curves 

For GBD 2019, we made several important changes to the risk functions. Previously, we have used 
relative risk estimates for active smoking, converting cigarettes-per-day to PM2.5 exposure in order to 
estimate the PM2.5 relative risk at the highest end of the PM2.5 exposure-response curve. We took this 
approach because the vast majority of the air pollution epidemiological studies have been performed in 
low-pollution settings in high-income countries, preventing us from extrapolating the steep relationship 
at the beginning of the exposure range to locations with high exposure but no relative risk estimates, 
such as India and China. However, with the recent publication of studies in China and other higher-
exposure settings and additional studies of HAP, we have been able to include more estimates at high 
PM2.5 levels in the model.11,12,13,14,15 Furthermore, in contrast to previous cycles of the GBD where the 
power function used to develop the IER required the inclusion of active smoking data to anchor the risk 
function, with the current use of splines and their flexibility, it is easier to fit functions to the (ambient, 
household, and SHS) data without active smoking data. Beginning in GBD 2019, we excluded active 
smoking studies from the risk curves. Removal of active smoking information removes an important 
source of uncertainty in our earlier estimates related to differences in dose rates and other aspects of 
exposure between active smoking and the other PM2.5 sources, including differences in voluntary (active 
smoking) and involuntary (ambient and household PM2.5, secondhand smoke) exposure.16,17  

Additionally, in the past, we have built the curves for ischaemic heart disease and stroke based on 
studies of mortality and used evidence from three studies of both mortality and incidence to scale down 
the mortality curves to generate estimates of incidence risk. This year we extracted incidence and 
mortality from all available studies and included this as a covariate in the model. There was no 
significant difference between estimates of incidence risk and mortality risk, so we included both types 
of risk estimates in the curve fitting and used the same curve for both incidence and mortality. This is 
what was done for all other outcomes in the past and in GBD 2019. 
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For cardiovascular diseases, evidence suggests that the relative risk decreases with age.18 To account for 
this in our model, we generate unique risk curves for every five-year age group from 25–29 to 95 and 
older for both ischaemic heart disease and stroke. Because we do not have risk data for every unique 
age group, we adjust each study based on the median age during follow-up to generate a full adjusted 
dataset for every curve. We calculate the median age of follow-up by taking the median (or mean) age 
at enrollment and adding one-half of median or mean follow-up time. If follow-up time is not available, 
we take 70% of total study period based on the observed ratio of follow-up time to total study period 
for other studies.  

Once we have a median age during follow-up (a), we extrapolate each study to the full set of ages where 
the estimated datapoint for age, aj, is calculated with the following equation and accompanying 
explanatory figure:  

log (𝑅𝑅)௔ೕ
 =  

log (𝑅𝑅)௔ − 0

𝑎 − 110
∗ (𝑎௝ − 110)  

 

Previously we have used a fixed functional form to fit the risk curves.16 In GBD 2019, we used MR-BRT 
(described in detail elsewhere) splines to fit the risk data with a more flexible shape. While previously 
we built in the TMREL estimates into the model fitting, this year we have fit the curve beginning at zero 
exposure and incorporate the TMREL into the relative risk calculation process. This allows others to use 
our risk curves with whatever counterfactual level is of interest to them. Relative risk curves are 
available upon request.  

When fitting the risk curves, we consider the published relative risk over a range of exposure data. For 
OAP studies, the relative risk informs the curve from the fifth to the 95th percentile of observed 
exposure. When this is not available in the published study, we estimate the distribution from the 
provided information (mean and standard deviation, mean and IQR, etc.). We scale the RR to this range.  

For HAP studies, we allow each study to inform the curve from the ExpOAP to ExpOAP+ExpHAP, where 
ExpOAP is the GBD 2017 estimate of the ambient exposure level in the study location and year, and ExpHAP 

is the GBD 2017 estimate of the excess exposure for those who use solid fuel for cooking in the study 
location and year. 

For SHS studies, we updated our strategy of exposure estimation in GBD 2019. For the first time, we are 
also accounting for outdoor exposure. Similar to the approach used for HAP, we allow each study to 
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inform the curve from the ExpOAP to ExpOAP+ExpSHS, where ExpOAP is the GBD 2017 estimate of the 
ambient exposure level in the study location and year, and ExpSHS is an estimate of the excess exposure 
for those who experience secondhand smoke. This is estimated from the number of cigarettes smoked 
per smoker per day in a given location and year, estimated by the smoking team of GBD, and from a 
study in Sweden, which measured the PM2.5 exposure in homes of smokers.19 We divided the household 
PM2.5 exposure level by the average number of cigarettes smoked per smoker per day in Sweden over 
the study duration to estimate the SHS PM2.5 exposure per cigarette (2.31 µg/m3 [95% UI 1.53–3.39]). To 
calculate ExpSHS we multiplied the estimated number of cigarettes per smoker per day by the average 
PM2.5 exposures per cigarette to generate a predicted PM2.5 exposure level.   

MR-BRT risk splines 
We fit splines on the datasets including studies of OAP, HAP, and SHS using the following functional 
form, where X and XCF represent the range of exposure characterised by the effect size: 

𝑙𝑜𝑔 ൬
𝑀𝑅𝐵𝑅𝑇(𝑋)

𝑀𝑅𝐵𝑅𝑇(𝑋஼ி)
൰ ~log (𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝐸𝑓𝑓𝑒𝑐𝑡 𝑆𝑖𝑧𝑒) 

 

For each of the risk-outcome pairs, we tested various model settings and priors in fitting the MR-BRT 
splines. The final models used third-order splines with two interior knots and a constraint on the right-
most segment, forcing the fit to be linear rather than cubic. We used an ensemble approach to knot 
placement, wherein 100 different models were run with randomly placed knots and then combined by 
weighting based on a measure of fit that penalises excessive changes in the third derivative of the curve. 
Knots were free to be placed anywhere within the fifth and 95th percentile of the data, as long as a 
minimum width of 10% of that domain exists between them. We included shape constraints so that the 
risk curves were concave down and monotonically increasing, the most biologically plausible shape for 
the PM2.5 risk curve. On the non-linear segments, we included a Gaussian prior on the third derivative of 
mean 0 and variance 0.01 to prevent over-fitting; on the linear segment, a stronger prior of mean 0 and 
variance 1e-6 was used to ensure that the risk curves do not continue to increase beyond the range of 
the data. 

For chronic obstructive pulmonary disease, we used a looser Gaussian prior of mean 0 and variance 1e-4 
on the linear segment of the risk function. For this outcome, we have epidemiological evidence from 
household air pollution that the risk continues to increase at higher levels of PM2.5.  

Table 2 summarizes relative risk input data for ambient particulate matter pollution and household air 
pollution. 

Table 2: Relative Risk Input Data 

 Input data Relative risk 

Source count (total) 200 

Number of countries with data 40 
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The following table includes all ambient and household sources used in generating risk curves. 
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The following figures display risk curves for each outcome. The dashed line depicts the GBD 2017 IER 
including active smoking data, the dotted line depicts the GBD 2019 IER including active smoking data 
and updates to the AS and SHS exposure incorporation, and the solid line depicts the GBD 2019 MR-BRT 
curve without the inclusion of active smoking data. The grey shaded areas represent the 95% CI. The red 
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box represents the TMREL area of the curve. On each page, the first figure depicts the typical range of 
outdoor exposure, whereas the second plot includes higher levels typical of household air pollution 
exposure. 

Each point or number represents one study effect size. Each is plotted at the 95th percentile of the 
exposure distribution (OAP), the expected level of exposure for individual using solid fuel (HAP), or the 
expected level of exposure for individuals experiencing SHS. The relative risk is plotted relative to the 
predicted relative risk at the fifth percentile of exposure distribution (OAP), the expected (ambient only) 
level of exposure for individuals not using solid fuel (HAP), or the expected (ambient only) level of 
exposure for individuals not exposed to SHS. For example, a study predicting a relative risk of 1.5 for an 
exposure range of 10 to 20 would be plotted at (20, MRBRT(10)*1.5). Arrows represent studies that 
would have been outside the range of the plot but have been moved to include on the figure. 
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Low birthweight and short gestation mediation analysis 
The outcomes of low birthweight and short gestation include mortality due to diarrhoeal diseases, lower 
respiratory infections, upper respiratory infections, otitis media, meningitis, encephalitis, neonatal 
preterm birth, neonatal encephalopathy due to birth asphyxia and trauma, neonatal sepsis and other 
neonatal infections, haemolytic disease and other neonatal jaundice, and other neonatal disorders. We 
also calculate attributable YLDs for neonatal preterm birth. These are specific to ages 0-6 days and 7-27 
days.  

In partnership with Dr. Rakesh Ghosh at the University of California, San Francisco, we conducted a 
systematic review of all cohort, case-control, or randomised-controlled trial studies of ambient PM2.5 
pollution or household air pollution and birthweight or gestational age outcomes. Outcomes measured 
included continuous birthweight (bw), continuous gestational age (ga), low birthweight (LBW) (<2500 g), 
preterm birth (PTB) (<37 weeks), and very preterm birth (VPTB) (<32 weeks). We included any papers 
published until March 31, 2018. Systematic review PRISMA diagrams are below. 

Ambient particulate matter pollution, low birth weight 
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Ambient particulate matter pollution, preterm birth 
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Household air pollution, all outcomes 

 

 

The following plots depict forest and funnel plots for studies of OAP and birthweight, low birthweight, 
and preterm birth. Note that these plots do not capture the exposure level of these studies but the 
linear risk or difference in birthweight per 10-unit increase in PM2.5 exposure. 
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Birth weight 
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Low birth weight 
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For studies of household air pollution, we used the same strategy described above to map them to PM2.5 
exposure values.  

Preterm birth 
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Because birthweight and gestational age are modelled using a continuous joint distribution for the GBD, 
we were interested in how those distributions changed under the influence of PM2.5 pollution. We 
therefore estimated the continuous shift in birthweight (bw, in grams) and gestational age (ga, in weeks) 
at a given PM2.5 exposure level.  

 

When available, we used estimates of continuous shift in bw or ga directly from each study. When that 
was not available, we used the published OR/RR/HR for LBW, PTB, or VPTB and the following strategy:  

1. Extract the OR/RR/HR from the study.  
2. Select the GBD 2017 estimated bw-ga 

joint distribution for the study location 
and year.  

3. Calculate the number of grams or 
weeks required to shift the distribution 
such that the proportion of births 
under the specified threshold (P) is 
reduced by the study effect size to a 
counterfactual level (Pcf).  

4. Save the resulting shift and 95% CI as 
the continuous effect. 

 

We then fit a MR-BRT spline to these studies, where the difference in the value of the model at the 
upper concentration (X) and the value of the model at the counterfactual concentration (XCF) is equal to 
the published or calculated shift in bw or ga. We fit the same model and priors as the non-mediated 
outcomes (with the exception of COPD), except, because the change in birthweight and gestational age 
was expected to be negative, the shape constraints were monotonically decreasing and concave up. 

𝑀𝑅𝐵𝑅𝑇(𝑋) − 𝑀𝑅𝐵𝑅𝑇(𝑋஼ி)~𝑆ℎ𝑖𝑓𝑡 

 

The following figures depict the MR-BRT curves for shift in grams (bw) and weeks (ga). 
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Once we had curves of estimated shifts across the exposure range, we predicted the shift in both 
birthweight and gestational age for total female particulate matter pollution exposure in each location 
and year. Because the epidemiological studies mutually controlled for birthweight and gestational age, 
we assumed these shifts are independent. We then shifted the observed distributions to reflect the 
expected bwga distribution in the absence of particulate matter pollution. These shifted distributions 
were used as the counterfactual in the PAF calculation equation to calculate the burden attributable to 
PM2.5 pollution.  

To calculate PAFs, the distribution is divided into 56 bw-ga categories, each with a unique RR. Let pi be 
the observed proportion of babies in category, i and pi’ be the counterfactual proportion of babies in 
category, i if there were no particulate matter pollution. 

𝑃𝐴𝐹௉ெ =
∑ 𝑅𝑅௜𝑝௜௜ ∈௕௪௚௔ ௖௔௧௘௚௢௥௬ − ∑ 𝑅𝑅௜𝑝௜′௜∈௕௪௚௔ ௖௔௧௘௚௢௥௬

∑ 𝑅𝑅௜𝑝௜௜ ∈௕௪௚௔
 

We proportionately split this PAF to ambient and HAP based on exposure as is described below. One 
important assumption to note is that we are assuming the shift in bw and ga is linear across the bwga 
distribution.  

For lower respiratory infections, we have directly estimated PAFs attributable to PM2.5 in addition to 
those mediated through birthweight and gestational age. We would expect that some of the directly 
estimated PAFs are mediated through bw and ga. Additionally, the directly estimated PAF is based on a 
summary of relative risks for all children under 5 years, so there is a chance that the mediated PAF, 
which is more finely resolved, could be greater. To avoid double-counting for these two age groups (0-6 
days and 0-27 days), we take the max of the two PAF estimates. If the directly estimated PAF is greater 
than the bw-ga-mediated PAF, we take the direct estimate, and if the mediated PAF is greater, we take 
the mediated.  

PTB incidence and mortality are both outcomes measured in the GBD. 100% of the burden for this cause 
is attributable to short gestation. To calculate the percentage attributable to particulate matter 
pollution, we estimated the percentage of babies born at less than 37 weeks (pptb) and the percentage of 
babies that would have been born at less than 37 weeks in the counterfactual scenario of no particulate 
matter pollution (pptb’).  

𝑃𝐴𝐹௣௧௕,௣௠ = 1 −
𝑝௣௧௕′

𝑝௣௧௕
 

Limitations 
Although in GBD 2019 we have not used active smoking data to estimate the risk curves, we are still 
using an integrated exposure response approach because we are integrating relative risk estimates 
across various exposure sources: ambient, SHS, and HAP. The use of various sources to construct a risk 
curve with PM2.5 as the exposure indicator assumes equitoxicity of particles, despite some evidence 
suggesting differences in health impact by PM source, size, and chemical composition. However, in the 
absence of consistent and robust evidence of differential toxicity by source and sufficient estimates of 
source or composition-specific exposure-response relationships, integrating across OAP, SHS, and HAP 
studies is the approach most consistent with the current evidence, as reviewed by US EPA and WHO.20,21 

Use of a common risk function may affect the magnitude of risk estimates for HAP and OAP compared to 
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separate risk functions. As more data from higher OAP concentration locations and from HAP studies for 
non-respiratory outcomes becomes available it may be possible to evaluate the strength of evidence for 
each and to develop separate risk functions. 

Proportional PAF approach 
Prior to GBD 2017, relative risks for both exposures were obtained from the IER as a function of 
exposure and relative to the same TMREL. In reality, were a country to reduce only one of these risk 
factors, the other would remain. We did not consider the joint effects of particulate matter from 
outdoor exposure and burning solid fuels for cooking. For GBD 2017 we developed a new approach to 
use the IER for obtaining PAFs for both OAP and HAP: 

Let 𝐸𝑥𝑝ை஺௉ be the ambient PM2.5 exposure level and 𝐸𝑥𝑝ு஺௉ be the excess exposure for those who use 
solid fuel for cooking. Let 𝑃ு஺௉ be the proportion of the population using solid fuel for cooking. We 
calculated PAFs at each 0.1o×0.1o grid cell. We assumed that the distribution of those using solid fuel for 
cooking (HAP) was equivalent across all grid cells of the GBD location. 

For the proportion of the population not exposed to HAP the relative risk was: 

𝑅𝑅ை஺௉  =   𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝐸𝑥𝑝ை஺௉)/𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝑇𝑀𝑅𝐸𝐿), 

And for those exposed to HAP, the relative risk was  

𝑅𝑅ு஺௉  =   𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝐸𝑥𝑝ை஺௉ + 𝐸𝑥𝑝ு஺௉)/𝑀𝑅𝐵𝑅𝑇(𝑧 =  𝑇𝑀𝑅𝐸𝐿). 

We then calculate a population level RR and PAF for all particulate matter exposure. 

𝑅𝑅௉ெ = 𝑅𝑅ை஺௉(1 − 𝑃ு஺௉) + 𝑅𝑅ு஺௉𝑃ு஺௉ 

𝑃𝐴𝐹௉ெ =
𝑅𝑅௉ெ − 1

𝑅𝑅௉ெ
 

We population weight the grid-cell level particulate matter PAFs to get a country level PAF, and finally, 
we split this PAF based on the average exposure to each OAP and HAP.  

𝑃𝐴𝐹ை஺௉ =
ா௫௣ೀಲು

ா௫ ೀಲುା௉ಹಲು∗ா௫௣ಹಲು
𝑃𝐴𝐹௉ெ, and 𝑃𝐴𝐹ு஺௉ =

௉ಹಲು∗ா௫ ಹಲು

ா௫௣ೀಲುା௉ಹಲು∗ா௫௣ಹಲು
𝑃𝐴𝐹௉ெ. 

With this strategy, 𝑃𝐴𝐹௉ெ = 𝑃𝐴𝐹ு஺௉ + 𝑃𝐴𝐹ை஺௉, and no burden is counted twice.  
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Exposure 
Case definition 
Exposure to household air pollution from solid fuels (HAP) is estimated from both the proportion of 
individuals using solid cooking fuels and the level of PM2.5 air pollution exposure for these individuals. 
Solid fuels in our analysis include coal, wood, charcoal, dung, and agricultural residues.  

Input data 
We extracted information on use of solid fuels from the standard multi-country survey series such as 
Demographic and Health Surveys (DHS), Living Standards Measurement Surveys (LSMS), Multiple 
Indicator Cluster Surveys (MICS), and World Health Surveys (WHS), as well as censuses and country-
specific survey series such as Kenya Welfare Monitoring Survey and South Africa General Household 
Survey. To fill the gaps of data in surveys and censuses, we also downloaded and updated estimates 
from WHO Energy Database and extracted from literature through systematic review. Each nationally or 
subnationally representative datapoint provided an estimate for the percentage of households using 
solid cooking fuels. We used studies from 1980 to 2019 to inform the time series.  

We also excluded sources that did not distinguish specific primary fuel types, estimated fuel used for 
purposes other than cooking (eg, lighting or heating), failed to report standard error or sample size, had 
over 15% of households with missing responses, reported fuel use in physical units, or were secondary 
sources referencing primary analyses. Table 1 summarizes exposure input data. 

 

Table 1: Exposure Input Data 

 Input data Exposure 

Source count (total) 1680 

Number of countries with data 195 

 

Family size crosswalk 
Many estimates in the WHO Energy Database and other reports quantify the proportion of households 
using solid fuel for cooking; however, we are interested in the proportion of individuals using solid fuel 
for cooking. To crosswalk these estimates, whenever we had the available information, we extracted 
fuel use at both the individual and household levels. We included 3676 source-specific pairs in the MR-
BRT crosswalk model.   

MR-BRT crosswalk adjustment factors for household air pollution exposure 

Data input Reference or alternative 
case definition 

Gamma Beta coefficient, logit 
(95% CI) 

Proportion of 
individuals  

Ref 0.097 --- 

Proportion of 
Households 

Alt  -0.095  
(-0.100, -0.090) 
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We then apply this coefficient to household-only reports with the following formula: 

𝑝𝑟𝑜𝑝௜௡ௗ௜௩௜ௗ  = the proportion of individuals using solid fuel for cooking, and  

𝑝𝑟𝑜𝑝௛௛  = the proportion of households using solid fuel for cooking. 

 

log ൬
𝑝𝑟𝑜𝑝௜௡ௗ௜௩௜ௗ

1 − 𝑝𝑟𝑜𝑝௜௡ௗ௜௩௜ௗ

൰ = log ൬
𝑝𝑟𝑜𝑝௛௛

1 − 𝑝𝑟𝑜𝑝௛௛

൰ − 𝛽 

or 

𝑝𝑟𝑜𝑝௜௡ௗ௜௩௜ௗ =
𝑝𝑟𝑜𝑝௛௛ ∗ 𝑒ିఉ

1 − 𝑝𝑟𝑜𝑝௛௛ + 𝑝𝑟𝑜𝑝௛௛ ∗ 𝑒ିఉ
 

 

The effect is that the household studies are inflated to account for bias. Larger households are more 
likely to use solid fuel for cooking. The following figure depicts the 3676 data points that informed the 
crosswalk model. There the red points indicate the 10% of studies that were trimmed as outliers. 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑝௛௛) − 𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑝௜௡ௗ௜௩௜ௗ௨௔௟) 

Modelling strategy  
Household air pollution was modelled at individual level using a three-step modelling strategy that uses 
linear regression, spatiotemporal regression, and Gaussian process regression (GPR). The first step is a 
mixed-effect linear regression of logit-transformed proportion of individuals using solid cooking fuels. 
The linear model contains maternal education and the proportion of population living in urban areas as 
covariates and has nested random effects by GBD region and GBD super-region. The full ST-GPR process 
is specified elsewhere this appendix. No substantial modelling changes were made in this round 
compared to GBD 2017. 

First-stage linear model and coefficients 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛)~𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑢𝑟𝑏𝑎𝑛𝑖𝑐𝑖𝑡𝑦 + (1|𝑟𝑒𝑔𝑖𝑜𝑛) + (1|𝑠𝑢𝑝𝑒𝑟 − 𝑟𝑒𝑔𝑖𝑜𝑛)  

Variable Beta (95% CI) 
Intercept 3.16 (1.59, 4.74) 
Maternal education (years per capita) -0.45 (-0.76, -0.15) 
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Urbanicity (proportion of population living in urban areas) -1.42 (-2.67, -0.17) 
 

Theoretical minimum-risk exposure level 
For cataract, the TMREL is defined as no households using solid cooking fuel. For outcomes related to 
both ambient and household air pollution, the PAFs are estimated jointly and the TMREL is defined as 
uniform distribution between 2.4 and 5.9 ug/m3 PM2.5.  

Relative risks 
In addition to the previously included outcomes of lower respiratory infections (LRI), stroke, ischaemic 
heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer, type 2 diabetes, and 
cataract, in GBD 2019 we added low birthweight and short gestation as new outcomes of household air 
pollution through a mediation analyses. With the exception of cataract, all causes share risk curves and 
are jointly calculated with ambient PM2.5 air pollution. Table 2 summarizes relative risk input data for 
ambient particulate matter pollution and household air pollution. 

 

Table 2: Relative Risk Input Data 

 Input data Relative risk 

Source count (total) 200 

Number of countries with data 40 

 

Prior to GBD 2019, we utilised the results of an external meta-analysis with a summary relative of 2.47 
with 95% CI (1.63, 3.73).1 While this effect estimate was for both sexes, in the past we estimated burden 
for women only because women are known to have higher HAP exposure than men. In GBD 2019, we 
performed our own meta-regression analysis of household air pollution and cataracts. We extracted all 
of the components studies of the above meta-analysis paper but excluded one cross-sectional study. 
GBD risk factor analyses typically do not include cross-sectional analyses. In additional literature search, 
we found one additional paper describing different fuel types and cataracts.4 We excluded this study 
because there was no comparison group without solid fuel use. Our resulting dataset contained eight 
estimates from six sources in India and Nepal.  

On these eight estimates, we ran a MR BRT meta-regression to generate a summary effect size of 2.51 
(1.58, 3.96). We included a study-level bias covariate of whether or not the study participants were blind 
to the exposure-outcome pair of interest. The prior on this covariate was a Gaussian distribution with 
mean 0 and variance 0.1. The prior on gamma was a Gaussian distribution with mean 0.04 and 0.1. The 
table and figure below provide the model coefficients and a visual representation. 

MR-BRT relative risk meta-analysis for household air pollution and cataract 

Covariate Gamma Beta coefficient, logit 
(95% CI) 

Beta coefficient, adjusted 
(95% CI) 

Intercept 0.40 0.918 (0.460, 1.377) 2.51 (1.58, 3.96) 
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Outcome unblinded 0.031 (-0.450, 0.512) 1.03 (0.64, 1.67) 
 

 

Studies reported effect sizes for males, females, and/or both sexes. In a sensitivity analysis we included 
a covariate for sex and found no significant difference in effect size by sex. Therefore, we now estimate 
cataract as an outcome of household air pollution in both males and females.  

In GBD 2019, we also made substantial changes to our particulate matter risk curves. These risk curves, 
utilising splines in MR-BRT, the new mediation analysis with birthweight and gestational age, and the 
joint-estimation PAF approach are described in the ambient particulate matter appendix.  

PM2.5 mapping value  
In order to use the particulate matter risk curves, we must estimate the level of exposure to particulate 
matter with diameter of less than 2.5 micrometers (PM2.5) for individuals using solid fuels for cooking. 
The Global Household Air Pollution (HAP) Measurements database from WHO contains 196 studies with 
measurements from 43 countries of various pollution metrics in households using solid fuel for cooking.2 
From this database, we take all measurements of PM2.5 using indoor or personal monitors. In addition to 
the WHO database, we included eight additional studies from a systematic review conducted in 2015 for 
GBD.  

The final dataset included 336 estimates from 75 studies in 43 unique locations. We included 260, 64, 
nine, and three measurements indoors, on personal monitors for females, children (under 5), and males, 
respectively. 274 estimates were in households using solid fuels, 47 in households only using clean (gas 
or electricity) fuels, and 15 in households using a mixture of solid and clean fuels.  

We use the following model: 

log(𝑒𝑥𝑐𝑒𝑠𝑠 𝑃𝑀) ~ 𝑠𝑜𝑙𝑖𝑑 + 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑔𝑟𝑜𝑢𝑝 + 24 ℎ𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 + 𝑆𝐷𝐼 + (1|𝑠𝑡𝑢𝑑𝑦)  

Where, 

log(              ) 
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 24-hour measurement: binary variable equal to 1 if the measurement occurred over at least a 
24-hour period and not only during mealtimes 

 Measure group: categorical variable indicating indoor, female, male, or children 
 Solid: indicator variable equal to 1 if the measurements were among households using solid fuel 

only, 0.5 if the measurements represented a mix of clean and solid fuels, and 0 if the households 
only used clean fuels.  

 

We also included the Socio-demographic Index (SDI) as a variable to predict a unique value of HAP for 
each location and year based on development. We also included a random effect on study. We weighted 
each study by its sample size.  

Before modelling, we calculated the excess particulate matter in households using solid fuel by 
subtracting off the predicted ambient PM2.5 value in the study location and year based on the GBD 2017 
PM2.5 exposure model. The final model coefficients are included below: 

HAP mapping model and coefficients 

Variable Beta, log (95% CI) Beta, adjusted (95% CI) 
Intercept 6.23 (4.58, 7.88)  506 (97, 2635) 
Solid 2.60 (2.06, 3.13) 13.4 (7.8, 23.0) 
Measure group  

 Indoor (ref) 
 Female 
 Male 
 Child 

 
 

-0.56 (-1.15, 0.04) 
-1.56 (-3.81, 0.70) 

-1.13 (-2.06, -0.20) 

 
 

0.57 (0.32, 1.04) 
0.21 (0.02, 2.02) 
0.32 (0.13, 0.82) 

24-hour measurement -0.29 (-1.04, 0.46) 0.75 (0.35, 1.59) 
SDI -6.42 (-9.30, -3.54) 1.6 e -3 (9.1 e -5, 2.9 e -2) 

 

Therefore, for females in households using solid fuel, we would expect their long-term mean excess 
PM2.5 exposure due to the use of solid fuels to be 1522, 117, and 9 μg/m3 in SDI of 0.1, 0.5, and 0.9, 
respectively.  

Because there are so few studies of personal monitoring in men and children, rather than directly using 
the results of the model, we generated ratios using studies that measured at least two of the population 
groups for any size particulate matter. For PM2.5 we used the predicted ambient PM2.5 value in the study 
location and year based on the GBD 2017 PM2.5 exposure model as the “outdoor” measurement, and for 
PM4 and PM10 we used published values in the studies themselves. We first subtracted off this outdoor 
value from each PM measurement, and then calculated the ratio of male to female and child to female 
exposure, weighted by sample size.  

Study Location Year Pollutant Female N Female PM Group N PM Outdoor 

Balakrishnan et 
al., 2004 

Andhra 
Pradesh, Rural 

2004 PM4 591 352 male 503 187 94 

Gao X et al., 
2009. 

Tibet 2009 PM2.5 52 127 male 85 111 27 

Dasgupta et al., 
2006 

Bangladesh 2006 PM10 944 209 male 944 166 50 
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The final ratios were 0.64 95% CI (0.45, 0.91) for males and 0.85 95% CI (0.56, 1.31) for children. We 
used these results to scale the PM2.5 mapping model for these age and sex groups to input into the PM2.5 

risk curves. 
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Devkumar et al., 
2014 

Nepal 2014 PM2.5 405 169 male 429 167 90 

Balakrishnan et 
al., 2004 

Andhra 
Pradesh, Rural 

2004 PM4 591 352 child 56 262 94 

Dionisio et al., 
2008. 

The Gambia 2008 PM2.5 13 275 child 13 219 31 

Dasgupta et al., 
2006 

Bangladesh 2006 PM10 944 209 child 944 199 50 
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Smoking 

 

 
Input data and methodological summary  
 

Definition  
Exposure 
As in GBD 2017, we estimated the prevalence of current smoking and the prevalence of former smoking 
using data from cross-sectional nationally representative household surveys. We defined current 
smokers as individuals who currently use any smoked tobacco product on a daily or occasional basis. We 
defined former smokers as individuals who quit using all smoked tobacco products for at least six 
months, where possible, or according to the definition used by the survey. 

Input data 
Our extraction method has not changed from GBD 2017. We extracted primary data from individual-
level microdata and survey report tabulations. We extracted data on current, former, and/or ever 
smoked tobacco use reported as any combination of frequency of use (daily, occasional, and 
unspecified, which includes both daily and occasional smokers) and type of smoked tobacco used (all 
smoked tobacco, cigarettes, hookah, and other smoked tobacco products such as cigars or pipes), 
resulting in 36 possible combinations. Other variants of tobacco products, for example hand-rolled 
cigarettes, were grouped into the four type categories listed above based on product similarities. 
 
For microdata, we extracted relevant demographic information, including age, sex, location, and year, as 
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well as survey metadata, including survey weights, primary sampling units, and strata. This information 
allowed us to tabulate individual-level data in the standard GBD five-year age-sex groups and produce 
accurate estimates of uncertainty. For survey report tabulations, we extracted data at the most granular 
age-sex group provided. 

 

Table 1: Data inputs for exposure for smoking. 

 Input data Exposure 
Source count (total) 3439 

Number of countries with data 201 

 

Table 2: Data inputs for relative risks for smoking. 

 Input data Relative risk 
Source count (total) 673 

Number of countries with data 16 

 

Crosswalk 
Our GBD smoking case definitions were current smoking of any tobacco product and former smoking of 
any tobacco product. All other data points were adjusted to be consistent with either of these 
definitions. Some sources contained information on more than one case definition and these sources 
were used to develop the adjustment coefficient to transform alternative case definitions to the GBD 
case definition. The adjustment coefficient was the beta value derived from a linear model with one 
predictor and no intercept. We used the same crosswalk adjustment coefficients as in GBD 2017, and 
thus we have not included a methods explanation in this appendix, as it has been detailed previously. 

Age and sex splitting  
As in GBD 2017, we split data reported in broader age groups than the GBD 5-year age groups or as both 
sexes combined by adapting the method reported in Ng et al1 to split using a sex- geography- time-
specific reference age pattern. We separated the data into two sets: a training dataset, with data 
already falling into GBD sex-specific 5-year age groups, and a split dataset, which reported data in 
aggregated age or sex groups. We then used spatiotemporal Gaussian process regression (ST-GPR) to 
estimate sex-geography-time-specific age patterns using data in the training dataset. The estimated age 
patterns were used to split each source in the split dataset.  
 
The ST-GPR model used to estimate the age patterns for age-sex splitting used an age weight parameter 
value that minimises the effect of any age smoothing. This parameter choice allowed the estimated age 
pattern to be driven by data, rather than being enforced by any smoothing parameters of the model. 
Because these age-sex split data points were to be incorporated in the final ST-GPR exposure model, we 
did not want to doubly enforce a modelled age pattern for a given sex-location-year on a given 
aggregate data point.  
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Modelling strategy  
  

Smoking prevalence modelling 
We used ST-GPR to model current and former smoking prevalence. The model is nearly identical to that 
in GBD 2017. Full details on the ST-GPR method are reported elsewhere in the appendix. Briefly, the 
mean function input to GPR is a complete time series of estimates generated from a mixed effects 
hierarchical linear model plus weighted residuals smoothed across time, space, and age. The linear 
model formula for current smoking, fit separately by sex using restricted maximum likelihood in R, is: 
 

𝑙𝑜𝑔𝑖𝑡൫𝑝௚,௔,௧൯ = 𝛽଴ + 𝛽ଵ𝐶𝑃𝐶௚,௧ + ෍ 𝛽௞𝐼஺[௔] + 𝛼௦ + 𝛼௥ + 𝛼௚ + 𝜖௚,௔,௧

ଵଽ

௞ୀଶ

  

 

Where 𝐶𝑃𝐶௚,௧ is the tobacco consumption covariate by geography 𝑔 and time 𝑡, described above, 𝐼஺[௔] is 
a dummy variable indicating specific age group 𝐴 that the prevalence point 𝑝௚,௔,௧ captures, and 
𝛼௦, 𝛼௥ , and 𝛼௚ are super-region, region, and geography random intercepts, respectively. Random effects 
were used in model fitting but not in prediction.  

The linear model formula for former smoking is:  

𝑙𝑜𝑔𝑖𝑡൫𝑝௚,௔,௧൯ = 𝛽଴ + 𝛽ଵ𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒஺[௔],௚,௧ + 𝛽ଷ𝐶𝑆𝑃஺[௔],௚,௧ + ෍ 𝛽௞𝐼஺[௔] + 𝛼௦ + 𝛼௥ + 𝛼௚ + 𝜖௚,௔,௧

ଶ଴

௞ୀଷ

  

 
Where 𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒஺[௔],௚,௧ is the percentage change in current smoking prevalence from the previous 
year, and 𝐶𝑆𝑃஺[௔],௚,௧ is the current smoking prevalence by specific age group 𝐴, geography 𝑔, and time 𝑡 
that point 𝑝௚,௔,௧ captures, both derived from the current smoking ST-GPR model defined above.  

Supply-side estimation 
The methods for modelling supply-side-level data were changed substantially from those used in GBD 
2017. The raw data were domestic supply (USDA Global Surveillance Database and UN FAO) and retail 
supply (Euromonitor) of tobacco. Domestic supply was calculated as production + imports - exports. The 
data went through three rounds of outliering. First, they were age-sex split using daily smoking 
prevalence to generate number of cigarettes per smoker per day for a given location-age-sex-year. If 
more than 12 points for a particular source-location-year (equal to over 1/3 of the split points) were 
above the given thresholds, that source-location-year was outliered. A point would not be outliered if it 
was (in cigarettes per smoker): under five (10–14 year olds); under 20 (males, 15–19 year olds); under 
18 (females, 15–19 year olds); under 38/35 and over three (males/females, 20+ year olds). These 
thresholds were chosen by visualising histograms of the data for each age-sex, as well as with expert 
knowledge about reasonable consumption levels. In the second round of outliering, the mean tobacco 
per capita value over a 10-year window was calculated. If a point was over 70% of that mean value away 
from the mean value, it was outliered. The 70% limit was chosen using histograms of these distances. 
Additionally, some manual outliering was performed to account for edge cases. Finally, data smoothing 
was performed by taking a three-year rolling mean over each location-year. 
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Next, a simple imputation to fill in missing years was performed for all series to remove compositional 
bias from our final estimates. Since the data from our main sources covered different time periods, by 
imputing a complete time series for each data series, we reduced the probability that compositional bias 
of the sources was leading to biased final estimates. To impute the missing years for each series, we 
modelled the log ratio of each pair of sources as a function of an intercept and nested random effects on 
super-region, region, and location. The appropriate predicted ratio was multiplied by each source that 
we did have, and then the predictions were averaged to get the final imputed value. For example, if 
source A was missing for a particular location-year, but sources B and C were present, then we predicted 
A twice: once from the modelled ratio of A to B, and again from the modelled ratio of A to C. These two 
predictions were then averaged. For some locations where there was limited overlap between series, 
the predicted ratio did not make sense, and a regional ratio was used. 

Finally, variance was calculated both across series (within a location-year) as well as across years (within 
a location-source). Additionally, if a location-year had one imputed point was, the variance was 
multiplied by 2. If a location-year had two imputed points, the variance was multiplied by 4. The average 
estimates in each location-year were the input to an ST-GPR model. For this, we used a simple mixed 
effects model, which was modelled in log space with nested location random effects. Subnational 
estimates were then further modelled by splitting the country-level estimates using current smoking 
prevalence. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level is 0. 

Exposure among current and former smokers 
Identical to GBD 2017, we estimated exposure among current smokers for two continuous indicators: 
cigarettes per smoker per day and pack-years. Pack-years incorporates aspects of both duration and 
amount. One pack-year represents the equivalent of smoking one pack of cigarettes (assuming a 20-
cigarette pack) per day for one year. Since the pack-years indicator collapses duration and intensity into 
a single dimension, one pack-year of exposure can reflect smoking 40 cigarettes per day for six months 
or smoking 10 cigarettes per day for two years. 

To produce these indicators, we simulated individual smoking histories based on distributions of age of 
initiation and amount smoked. We informed the simulation with cross-sectional survey data capturing 
these indicators, modelled at the mean level for all locations, years, ages, and sexes using ST-GPR. We 
rescaled estimates of cigarettes per smoker per day to an envelope of cigarette consumption based on 
supply-side data. We estimated pack-years of exposure by summing samples from age- and time-specific 
distributions of cigarettes per smoker for a birth cohort in order to capture both age trends and time 
trends and avoid the common assumption that the amount someone currently smokes is the amount 
they have smoked since they began smoking. All distributions were age-, sex-, and region- specific 
ensemble distributions, which were found to outperform any single distribution.  

We estimated exposure among former smokers using years since cessation. We utilised ST-GPR to 
model mean age of cessation using cross-sectional survey data capturing age of cessation. Using these 
estimates, we generated ensemble distributions of years since cessation for every location, year, age 
group, and sex. 
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Relative risk 
The same risk-outcome pairs from GBD 2017 were used: tuberculosis, lower respiratory tract infections, 
oesophageal cancer, stomach cancer, bladder cancer, liver cancer, laryngeal cancer, lung cancer, breast 
cancer, cervical cancer, colorectal cancer, lip and oral cancer, nasopharyngeal cancer, other pharyngeal 
cancer, pancreatic cancer, kidney cancer, leukaemia, ischaemic heart disease, ischaemic stroke, 
haemorrhagic stroke, subarachnoid haemorrhage, atrial fibrillation and flutter, aortic aneurysm, 
peripheral arterial disease, chronic obstructive pulmonary disease, other chronic respiratory diseases, 
asthma, peptic ulcer disease, gallbladder and biliary tract diseases, Alzheimer disease and other 
dementias, Parkinson disease (protective), multiple sclerosis, type-II diabetes, rheumatoid arthritis, low 
back pain, cataracts, macular degeneration, and fracture.  

Dose-response risk curves 
Input data for relative risks were nearly the same as in GBD 2017. The only addition was for chronic 
obstructive pulmonary disease, for which a few additional studies were included. We synthesised effect 
sizes by cigarettes per smoker per day, pack-years, and years since quitting from cohort and case-control 
studies to produce nonlinear dose-response curves using a Bayesian meta-regression model. For 
outcomes with significant differences in effect size by sex or age, we produced sex- or age-specific risk 
curves. 

We estimated risk curves of former smokers compared to never smokers taking into account the rate of 
risk reduction among former smokers seen in the cohort and case-control studies, and the cumulative 
exposure among former smokers within each age, sex, location, and year group.  

Population attributable fraction (PAF) 
As in GBD 2017, we estimated PAFs based on the following equation: 

𝑃𝐴𝐹 =
𝑝(𝑛) + 𝑝(𝑓) ∫ exp(𝑥) ∗ 𝑟𝑟(𝑥) + 𝑝(𝑐) ∫ exp(𝑦) ∗ 𝑟𝑟(𝑦) − 1

𝑝(𝑛) + 𝑝(𝑓) ∫ exp(𝑥) ∗ 𝑟𝑟(𝑥) + 𝑝(𝑐) ∫ exp(𝑦) ∗ 𝑟𝑟(𝑦)
 

where 𝑝(𝑛) is the prevalence of never smokers, 𝑝(𝑓) is the prevalence of former smokers, 𝑝(𝑐) is the 
prevalence of current smokers, exp(𝑥) is a distribution of years since quitting among former smokers, 
𝑟𝑟(𝑥) is the relative risk for years since quitting, exp(𝑦) is a distribution of cigarettes per smoker per 
day or pack-years, and 𝑟𝑟(𝑦) is the relative risk for cigarettes per smoker per day or pack-years. 

We used pack-years as the exposure definition for cancers and chronic respiratory diseases, and 
cigarettes per smoker per day for cardiovascular diseases and all other health outcomes. 

References 
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Secondhand smoke  

Input data

Process

Results

Database

Risk Factors
Burden estimation

Cause of death

Covariates

Input Data

Censuses and surveys with household 
modules (ages and sexes of all household 

members), modeled primary smoking 
prevalence estimates

Probability of either non-
occupational or 

occupational SHS exposure 
and being a non-smoker

Spatiotemporal Gaussian 
process regression

Zero prevalence of 
second-hand smoke

Proportional risks of ambient/
household PM2.5, secondhand/

active smoking
Relative risks for 
lung cancer, IHD, 
cerebrovascular 
disease, and LRI

Population 
attributable 

fractions by risk, 
cause, age, sex, 
and geography

Exposures by 
risk, age, sex, 

year, and 
geography

Calculate PAFs using 
exposure, relative risks, 

and TMREL

Secondhand smoke

Exposure

Relative risks

CUSTOM COUNTRY-LEVEL COVARIATE
Overall male adult (15+) smoking 

prevalence (females and children under 
15); overall female adult (15+) smoking 

prevalence (males 15 and over)

Literature review of 
published meta-analyses

Power2 functional form

Bayesian MCMC 
nonlinear curve-fitting Integrated exposure 

response curve (IER)

Relative risks for 
otitis media, 

breast cancer, 
and diabetes

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Application of mediation 
factors where applicable

Deaths, YLLs, YLDs, 
and DALYs 

attributable to each 
risk by age, sex, 
year, geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Surveys with self-reported occupational 
exposure to secondhand smoke

Spatiotemporal Gaussian 
process regression

Probability of living with a 
daily smoker based on 

household composition

 

Exposure 
Case definition 
We define secondhand smoke exposure as current exposure to secondhand tobacco smoke at home, at 
work, or in other public places. We use household composition as a proxy for non-occupational 
secondhand smoke exposure and make the assumption that all persons living with a daily smoker are 
exposed to tobacco smoke. We use surveys to estimate the proportion of individuals exposed to 
secondhand smoke at work. We only consider non-smokers to be exposed to secondhand smoke. Non-
smokers are defined as all persons who are not daily smokers. Ex-smokers and occasional smokers are 
considered non-smokers in this analysis. Exposure is evaluated for both children and adults. 

Input data 
To calculate the proportion of non-smokers who live with at least one smoker, we used unit record data 
on household composition, which included the ages and sexes of all persons living in the same 
household. Our sources included representative major survey series with a household composition 
module, including the Demographic Health Surveys (DHS), the Multiple Indicator Cluster Surveys (MICS), 
and the Living Standards Measurement Surveys (LSMS); and national and subnational censuses, which 
included those captured in the IPUMS project and identified using the Global Health Data Exchange 
catalog (GHDx). 

To calculate the proportion of individuals exposed to secondhand smoke at work, by age and sex, we 
used cross-sectional surveys that ask respondents about self-reported occupational secondhand smoke 
exposure. Sources include the Global Adult Tobacco Surveys, Eurobarometer Surveys, and WHO STEPS 
Surveys. We identified sources using the GHDx. 

No major changes have been introduced to data inputs since 2016. A new systematic review is planned 
for the next GBD round. Table 1 summarizes exposure input data. 
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 Input data Exposure 

Source count (total) 721 

Number of countries with data 153 

 

Given the nature of the data used in our models (microdata), no crosswalk for case definition 
adjustment or age- and sex-splitting processes were required. Estimates of daily smoking prevalence in 
each location were also used in our calculations, as described in the modelling strategy section below. 

Modelling strategy  
Identical to GBD 2017, we estimated the probability that each person is living with a smoker and is also a 
non-smoker themselves using set theory. First, household composition data were used at the individual 
level to capture the ages and sexes of each person in the household. Second, we analysed surveys with 
both household composition data and tobacco use questions and determined that the distribution of 
household size, mean age of the household members, and the age distribution were not significantly 
different between households with and without a self-reported smoker. Since we did not find that 
household composition varied between smokers and non-smokers, we then used the GBD 2019 primary 
daily smoking prevalence model to calculate the probability that each household member is a daily 
smoker. Next, we used the probability of the union of sets on each individual household member to 
calculate the overall probability that at least one of the other household members was a daily smoker. 
As in GBD 2017, we incorporated occupational exposure by modelling prevalence of current exposure to 
secondhand smoke at work, by age, sex, location, and year, using ST-GPR. In order to avoid double 
counting we calculated the probability that an individual is exposed through either non-occupational 
exposure or occupational exposure, given their age, sex, and household composition. Finally, we 
multiplied this probability of exposure by the probability that the individual is not a smoker themselves 
(ie, 1 minus primary daily smoking prevalence for that person’s location, year, age, and sex). We then 
collapsed these individual-level probabilities to produce average probabilities of exposure by location, 
year, age, and sex.  

These probabilities were modelled in the GBD ST-GPR framework, which generates exposure estimates 
from a mixed effects hierarchical linear model plus weighted residuals smoothed across time, space, and 
age. The linear model formula was fit separately by sex using restricted maximum likelihood in R. 

We used the sex-specific overall daily smoking prevalence for adults (age 15 and older) as a country-
level covariate in the model. The overall male adult daily smoking prevalence was used as the covariate 
for females of all ages and for males under age 15. The overall female adult daily smoking prevalence 
was used as the covariate for males age 15 and older.  

All input datapoints from the probability calculation had a measure of uncertainty (variance and sample 
size) coming from the uncertainty of the primary smoking prevalence model and the sample size from 
the unit record data going into the modelling process. Geographical random effects were used in model 
fitting but were not used in prediction. 
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Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for secondhand smoke is zero exposure among non-
smokers, meaning that non-smokers would not live with any primary smokers. 

 

Relative risks 
The same risk-outcome pairs from GBD 2017 were used. For children ages 0-14, we estimated the 
burden of otitis media attributable to secondhand smoke exposure. For all ages we estimated the 
burden of lower respiratory infections (LRI), and for adults greater than or equal to 25 years of age we 
estimated the burden of lung cancer, chronic obstructive pulmonary disease (COPD), ischaemic heart 
disease, and cerebrovascular disease attributable to secondhand smoke exposure, breast cancer, and 
type 2 diabetes.  

For lung cancer, ischaemic heart disease, cerebrovascular disease, and LRI, we used country-specific 
relative risks created using integrated exposure response curves (IER) for PM2.5 air pollution. IER curve 
calculation was updated with the GBD 2019 cigarettes per smoker estimates. The relative risks for otitis 
media1, breast cancer2, and diabetes3 are derived from published meta-analyses and are the same as the 
ones used in the previous GBD cycle. Table 2 summarizes relative risk input data. 

 

 Input data Exposure 

Source count (total) 232 

Number of countries with data 34 

 

We used the standard GBD population attributable fraction (PAF) equation to estimate burden based on 
exposure and relative risks.  

 

References 
1. Jones LL, Hassanien A, Cook DG, Britton J, Leonardi-Bee J. Parental smoking and the risk of 

middle ear disease in children. Arch Pediatr Adolesc Med. 2012; 166: 18–27. 
2. Macacu A, Autier P, Boniol M, Boyle P. Active and passive smoking and risk of breast cancer: a 

meta-analysis. Breast Cancer Res Treat 2015; 154:213–224. 
3. Zhu B, Wu X, Wang X, Zheng Q, Sun G. The association between passive smoking and type 2 

diabetes: a meta-analysis. Asia-Pacific Journal of Public Health 2014; 26:226-237.  
 



226 
 

Chewing tobacco 

Risk Factor Estimation

Systematic Literature 
Review

Chewing Tobacco

Survey Reports

Survey Microdata
Age and Sex 

Splitting
ST-GPR

Prevalence of 
Current Chewing 
Tobacco Use by 
Country, Year, 

Age, Sex

PAF calculations

Chewing tobacco

Non-chew use

All smokeless tobacco

Age and Sex 
Splitting

Age and Sex 
Splitting

ST-GPR

ST-GPR

Calculate non-chew/
chew ratio

Adjust smokeless 
tobacco data to 

chewing tobacco level

ST-GPR with chewing 
tobacco and adjusted 

smokeless tobacco 
data

Exposure

Synthesized 
Relative Risks

Relative risks from individual or 
pooled cohort studies Meta-analysis

Relative Risks

Assessment of strength of 
evidence supporting 

causality

Risk-outcome 
pairs

Published pooled analyses

Published systematic reviews

Published meta-analyses

Theoretical minimum-risk exposure level

TMREL:
0% Prevalence

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Deaths, YLLs, YLDs, 
and DALYs 

attributable to 
each risk by age, 

sex, year, 
geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Input data ProcessResultsDatabase
Risk Factors
Burden estimation

Cause of death

Covariates

Input Data

Input data and methodological summary  

 

Definition  
Exposure 
Current chewing tobacco use is defined as current use (use within the last 30 days where possible, or 
according to the closest definition available from the survey) of any frequency (any, daily, or less than 
daily). Chewing tobacco includes local products, such as betel quid with tobacco.  

Input data 
As in GBD 2017, we included sources that reported primary chewing tobacco, non-chew smokeless 
tobacco, and all smokeless tobacco use among respondents over age 10. To be eligible for inclusion, 
sources had to be representative for their level of estimation (ie, national sources needed to be 
nationally representative, subnational sources subnationally representative). We included only self-
reported use data and excluded data from questions asking about others’ tobacco use behaviours.  

We extracted primary data from individual-level microdata and survey report tabulations on chewing 
tobacco, non-chew smokeless tobacco, and all smokeless tobacco use. We extracted data on current, 
former, and/or ever use as well as frequency of use (daily, occasional, and unspecified, which includes 
both daily and occasional smokers). Products that do not include tobacco, such as betel quid without 
tobacco, were excluded or estimated separately as part of the drug use risk factor, if applicable.  
 
For microdata, we extracted relevant demographic information, including age, sex, location, and year, as 
well as survey metadata, including survey weights, primary sampling units, and strata. This information 
allowed us to tabulate individual-level data in the standard GBD five-year age-sex groups and produce 
accurate estimates of uncertainty. For survey report tabulations, we extracted data at the most granular 
age-sex group provided. 
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Table 1: Data inputs for exposure for chewing tobacco. 

 Input data Exposure 
Source count (total) 5030 

Number of countries with data 203 

 

Table 2: Data inputs for relative risks for chewing tobacco. 

 Input data Relative risk 
Source count (total) 827 

Number of countries with data 38 

 
 
Age and sex splitting  
We split data reported in broader age groups than the GBD five-year age groups or as both sexes 
combined by adapting the method reported in Ng and colleagues 
(http://jamanetwork.com/journals/jama/fullarticle/1812960) to split using a sex-geography-time-
specific reference age pattern. We separated the data into two sets: a training dataset, with data 
already falling into GBD sex-specific five-year age groups, and a split dataset, which reported data in 
aggregated age or sex groups. We then used spatiotemporal Gaussian process regression (ST-GPR) to 
estimate sex-geography-time-specific age patterns using data in the training dataset. The estimated age 
patterns were then used to split each source in the split dataset.  
 
The ST-GPR model used to estimate the age patterns for age-sex splitting used an age weight parameter 
value that minimises the effect of any age smoothing. This parameter choice allows the estimated age 
pattern to be driven by data, rather than being enforced by any smoothing parameters of the model. 
Because these age-sex-split datapoints will be incorporated in the final ST-GPR exposure model, we do 
not want to doubly enforce a modelled age pattern for a given sex-location-year on a given aggregate 
datapoint. We run three separate ST-GPR models for age-sex splitting – one for each smokeless tobacco 
category (chew, non-chew, and all smokeless). 
 

Modelling strategy 
Prevalence modelling 
We used a ST-GPR to model chewing tobacco prevalence. Full details on the ST-GPR method are 
reported elsewhere in the Appendix. Briefly, the mean function input to GPR is a complete time series of 
estimates generated from a mixed effects hierarchical linear model plus weighted residuals smoothed 
across time, space, and age. The linear model formula for chewing tobacco, fit separately by sex using 
restricted maximum likelihood in R, is: 

𝑙𝑜𝑔𝑖𝑡൫𝑝௚,௔,௧൯ = 𝛽଴ + ෍ 𝛽௞𝐼஺[௔] + 𝛼௦ + 𝛼௥ + 𝛼௚ + 𝜖௚,௔,௧

ଵ଼

௞ୀଵ
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Where 𝐼஺[௔] is a dummy variable indicating specific age group 𝐴 that the prevalence point 𝑝௚,௔,௧ 
captures, and 𝛼௦, 𝛼௥, and 𝛼௚ are super-region, region, and geography random intercepts, respectively. 
The hyperparameters are the same as in GBD 2017. 

We run three ST-GPR models for each prevalence category – one for each smokeless tobacco category 
(chew, non-chew, and all smokeless). 

All smokeless tobacco prevalence adjustment 
Using the 1000 draws from each of the prevalence ST-GPR models, we calculated 1000 draws of chewing 
tobacco prevalence divided by the sum of chewing tobacco and non-chewing tobacco prevalence for 
each location, age group, sex, and year. The draws were unordered, as we did not want to enforce an 
assumption about the relationship between the levels of chewing tobacco and non-chewing tobacco 
prevalence. 

The draws of the ratio of chewing to non-chewing tobacco were then multiplied by the draws from the 
all smokeless tobacco prevalence model to adjust the estimates to chewing tobacco prevalence. These 
were then averaged to get the mean estimate. The variance across the ratios was calculated for each 
location, year, age, and sex, and was added to the variance from the original all smokeless tobacco 
draws. 

Final chewing tobacco prevalence model 
To calculate the final chewing tobacco prevalence, we ran an additional ST-GPR model with both the 
original chewing tobacco data (post-age-sex splitting), as well as the adjusted data. These adjusted data 
add more information to the model – as surveys will often only ask about all smokeless tobacco 
consumption – while taking into consideration the uncertainty from the ratio calculation.  

Theoretical minimum-risk exposure level 
The theoretical minimum risk exposure level is that everyone in the population has been a lifelong non-
user of chewing tobacco.  

 
Relative risk 
As in GBD 2017, we included outcomes based on the strength of available evidence supporting a causal 
relationship. There was sufficient evidence to include oral cancer and oesophageal cancer as health 
outcomes caused by chewing tobacco use. 
 
Relative risk estimates were derived from prospective cohort studies and population-based case-control 
studies. We used the same underlying effect size estimates from prospective cohort studies and 
population-based case-control studies as in GBD 2017. Briefly, we did not include hospital-based case 
control studies due to concerns over representativeness. We only included sources that adequately 
adjusted for major confounders, especially smoking status. Summary effect size estimates were 
calculated in R, using the ‘metafor’ package. We performed a random effects meta-analysis using the 
DerSimonian and Laird method, which does not assume a true effect size but considers each input study 
as selected from a random sample of all possible sets of studies for the outcome of interest. The 
random-effects method allows for more variation between the studies, and incorporates this variance 
into the estimation process. We used an inverse-variance weighting method to determine component 
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study weights. We found significantly different relative risks for oral cancer for males and females, and 
estimated relative risks separately by sex for oral cancer alone.  
 

Dietary risks  

Input data

Process

Results

Database

Risk Factors
Burden estimation

Cause of death

Covariates

Input Data

FAO 
Supply & Utilization Accounts 

FAO 
Food Balance Sheets

USDA Composition Tables

Linking food groups to 
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country-year data 

(ST-GPR)

Food and nutrient 
availability for all 

country-years

Country covariate:
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Food and nutrient 
availability by country 

and year

Age splitting Food and nutrient 
availability by age

Published reports from 
prospective cohort s and RCTs Meta-analysis

RR studies

Disease specific mortality TMREL

CVD and Diabetes RRs
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geography

Relative Risks

Dietary risks

 

 

Input data and methodological summary  
 

Definition  
Exposure 
 

Risk Definition 

Diet low in fruit 
Average daily consumption (in grams per day) of less than 310-340 grams 
of fruit including fresh, frozen, cooked, canned, or dried fruit, excluding 
fruit juices and salted or pickled fruits 

Diet low in vegetables 

Average daily consumption (in grams per day) of less than 280-320 grams 
of vegetables, including fresh, frozen, cooked, canned, or dried vegetables 
and excluding legumes and salted or pickled vegetables, juices, nuts and 
seeds, and starchy vegetables such as potatoes or corn 

Diet low in whole grains 

Average daily consumption (in grams per day) of less than 140-160 grams 
of whole grains (bran, germ, and endosperm in their natural proportion) 
from breakfast cereals, bread, rice, pasta, biscuits, muffins, tortillas, 
pancakes, and other sources 

Diet low in nuts and 
seeds 

Average daily consumption (in grams per day) of less than 10-19 grams of 
nuts and seeds, including tree nuts and seeds and peanuts 
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Diet low in fibre 
Average daily consumption (in grams per day) of less than 21-22 grams of 
fibre from all sources including fruits, vegetables, grains, legumes, and 
pulses 

Diet low in omega-3 
fatty acids 

Average daily consumption (in milligrams per day) of less than 430-470 
milligrams of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) 

Diet low in 
polyunsaturated fatty 
acids (PUFA) 

Average daily consumption (in % daily energy) of less than 7-9% total 
energy intake from polyunsaturated fatty acids 

Diet low in calcium Average daily consumption (in grams per day) of less than 1.06-1.1 grams 
of calcium from all sources, including milk, yogurt, and cheese 

Diet low in milk 
Average daily consumption (in grams per day) of less than 360-500 grams 
of milk including non-fat, low-fat, and full-fat milk, excluding soy milk and 
other plant derivatives 

Diet low in legumes 
Average daily consumption (in grams per day) of less than of 90-100 grams 
of legumes and pulses, including fresh, frozen, cooked, canned, or dried 
legumes 

Diet high in red meat Any intake (in grams per day) of red meat including beef, pork, lamb, and 
goat but excluding poultry, fish, eggs, and all processed meats 

Diet high in processed 
meat 

Any intake (in grams per day) of meat preserved by smoking, curing, 
salting, or addition of chemical preservatives 

Diet high in sugar-
sweetened beverages 
(SSBs) 

Any intake (in grams per day) of beverages with ≥50 kcal per 226.8 gram 
serving, including carbonated beverages, sodas, energy drinks, fruit drinks, 
but excluding 100% fruit and vegetable juices 

Diet high in trans fatty 
acids 

Any intake (in percent daily energy) of trans fat from all sources, mainly 
partially hydrogenated vegetable oils and ruminant products 

Diet high in sodium Average 24-hour urinary sodium excretion (in grams per day) greater than 
1-5 grams 

 

Input data 
In GBD 2019, we included new dietary recall sources from a literature search of PubMed and new 
sources from the IHME GHDx yearly known survey series updates in our models. We also conducted a 
new systematic review for sodium (Figure 1).  As in GBD 2017, the dietary data that we use in the 
models comes from multiple sources, including nationally and subnationally representative nutrition 
surveys, household budget surveys, accounts of national sales from the Euromonitor, and availability 
data from the United Nations FAO Supply and Utilization Accounts (SUA). Table 1 below provides a 
summary of data inputs used for dietary risk modeling in GBD 2019. 
 
 

Figure 1: PRISMA diagram for sodium intake data systematic review 
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Sources after duplicates removed
(n=835)

Sources identified through 
other sources

(n=13)

Sources identified through 
PubMed search string

(n=1023)

Title/abstract sources 
screened
(n=835)

Excluded non-English sources 
(n=110)

Excluded sources that did not 
meet inclusion criteria 

(n=342)

Full-text sources screened
(n=383) Excluded sources (n=336):

90 not representative 
159 irrelevant measures

58 no estimates on sodium
29 other reason

Included sources
(n=47)

 
 
 

Table 1a: Data inputs for exposure for dietary risk factors. 

Dietary risk factor Total exposure 
sources Countries with data 

All dietary risks 1461 195 
Calcium 160 178 

Fiber 155 180 
Fruit 869 180 

Legumes 683 169 
Milk 1148 177 

Nuts and seeds 100 158 
Omega 3 20 178 

Processed meat 737 66 
PUFA 70 180 

Red meat 760 178 
Sodium 92 53 

SSBs 720 66 
Trans fat 924 72 

Vegetables 871 180 
Whole grains 52 188 
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Table 1b: Data inputs for risk analysis for dietary risk factors. 

Dietary risk factor Total relative risk 
sources 

Countries with 
data 

Calcium 37 9 

Fiber 64 16 

Fruit 116 23 

Legumes 10 5 

Milk 12 8 

Nuts and seeds 23 9 

Omega 3 50 16 

Processed meat 41 11 

PUFA 18 8 

Red meat 92 20 

Sodium 21 6 

SSBs 15 5 

Transfat 10 5 

Vegetable 39 11 

Whole grains 37 9 
 
 
The availability data for food groups in GBD were previously based on the FAO Food Balance Sheets 
(FBS), which provide tabulated and processed data of national food supply. In GBD 2019, to more 
accurately characterise the national availability of various food groups, we used more disaggregated 
data on food commodities that were included in FAO SUA and recreated the national availability of each 
food group based on the GBD definition of the food group. We modelled missing country-year data from 
FAO using a spatiotemporal Gaussian process regression and lag-distributed country income as the 
covariate. For nutrient availability, we continued to use data from Global Nutrient Database.1  
 
For each dietary factor, we estimated the global age pattern of consumption based on nutrition surveys 
(ie, 24-hour diet recall) and applied that age pattern to the all-age data (availability, sales and  
household budget surveys) before the data source bias adjustment.  
 
Our gold-standard data source for all dietary risks (except sodium) is 24-hour dietary recall surveys 
where food and nutrient intake are reported or convertible to grams per person per day; the gold-
standard data source for sodium is 24-hour urinary sodium. The other data sources we use – household 
budget surveys, food frequency questionnaires, sales, and availability – are treated as alternate 
definitions for dietary intake and crosswalked to the gold-standard definition. In GBD 2016 and GBD 
2017, we determined the bias adjustment factors from a mixed effects linear regression. In GBD 2019, 
we used MR-BRT (a network meta-regression) to determine the adjustment factors for non-gold-
standard datapoints. Coefficients for these models can be found in Table 3.  
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Table 2. Types of data sources (other than 24-hour dietary recall) and covariates used in modelling of 
each dietary factor. 

  Data sources 
Country-level covariate 

  Sales FFQ1 HBS2 FAO 
Diet low in fruits     Lag distributed income 
Diet low in vegetables     Energy availability (kcal) 
Diet low in whole grains -  -  Energy availability (kcal) 
Diet low in nuts and seeds - -   Energy availability (kcal) 
Diet low in milk     Energy availability (kcal) 
Diet high in red meat     Energy availability (kcal) 
Diet high in processed meat    - Energy availability (kcal), pigs per capita 
Diet low in legumes   -  Energy availability (kcal) 
Diet high in sugar-sweetened 
beverages 

   - Energy availability (kcal), availability of sugar 

Diet low in fibre -  -  Energy availability (kcal) 
Diet suboptimal in calcium -  -  Energy availability (kcal) 
Diet low in seafood omega-3 fatty 
acids 

- - -  Lag distributed income, proportion landlocked 
area 

Diet low in polyunsaturated fatty 
acids 

-  -  Lag distributed income 

Diet high in trans fatty acids   - -  
Diet high in sodium3 - - - -  

1 Food Frequency Questionnaire  
2 Household Budge Survey  

3 For sodium, we used data from the 24-hour urinary sodium and 24-hour dietary recall.   
 

Table 3: MR-BRT crosswalk adjustment factors for all dietary risks 

Dietary risk Sex Data 
input 

Reference 
or 
alternative 
case 
definition 

Gamma Beta coefficient, 
log (95% CI) 

Adjustment 
factor* 

Calcium --- DR Ref 

0.24 

--- --- 
Calcium Female FAO Alt 0.04 (0.04, 0.5) 0.96 (0.64, 1.65) 
Calcium Female FFQ Alt -0.04 (-0.04, 0.43) 1.04 (0.59, 1.53) 
Calcium Male FAO Alt 0.17 (0.17, 0.63) 0.84 (0.73, 1.88) 
Calcium Male FFQ Alt 0.09 (0.09, 0.55) 0.91 (0.67, 1.74) 
Fibre --- DR Ref 

0.33 

--- --- 
Fibre Female FAO Alt 0.56 (0.56, 1.17) 0.57 (0.93, 3.23) 
Fibre Female FFQ Alt 0.27 (0.27, 0.88) 0.76 (0.69, 2.41) 
Fibre Male FAO Alt 0.55 (0.55, 1.17) 0.57 (0.92, 3.22) 
Fibre Male FFQ Alt 0.26 (0.26, 0.88) 0.77 (0.69, 2.4) 
Fruit --- DR Ref 

0.76 
--- --- 

Fruit Female FAO Alt 0.36 (0.36, 1.83) 0.7 (0.31, 6.21) 
Fruit Female Sales Alt 0.73 (0.73, 2.19) 0.48 (0.45, 8.98) 
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Fruit Female FFQ Alt -0.15 (-0.15, 1.32) 1.17 (0.19, 3.73) 
Fruit Female HHBS Alt 0.23 (0.23, 1.71) 0.79 (0.27, 5.5) 
Fruit Male FAO Alt 0.32 (0.32, 1.79) 0.73 (0.3, 5.97) 
Fruit Male Sales Alt 0.69 (0.69, 2.16) 0.5 (0.43, 8.64) 
Fruit Male FFQ Alt -0.19 (-0.19, 1.28) 1.21 (0.18, 3.58) 
Fruit Male HHBS Alt 0.19 (0.19, 1.66) 0.83 (0.26, 5.27) 
Legumes --- DR Ref 

0.74 

--- --- 
Legumes Female FAO Alt -0.08 (-1.49,1.39) 1.08 (0.22,4) 
Legumes Female Sales Alt -0.9 (-2.31,0.56) 2.47 (0.1,1.75) 
Legumes Female FFQ Alt -0.53 (-1.94,0.95) 1.7 (0.14,2.58) 
Legumes Male FAO Alt 0.06 (-1.35,1.53) 0.94 (0.26,4.61) 
Legumes Male Sales Alt -0.76 (-2.16,0.7) 2.14 (0.12,2.01) 
Legumes Male FFQ Alt -0.39 (-1.79,1.09) 1.47 (0.17,2.98) 
Milk --- DR Ref 

1.06 

--- --- 
Milk Female FAO Alt 0.27 (0.27, 2.57) 0.76 (0.16, 13.01) 
Milk Female Sales Alt 0.01 (0.01, 2.31) 0.99 (0.13, 10.11) 
Milk Female FFQ Alt 0.46 (0.46, 2.78) 0.63 (0.18, 16.2) 
Milk Female HHBS Alt -0.61 (-0.61, 1.69) 1.84 (0.07, 5.4) 
Milk Male FAO Alt 0.28 (0.28, 2.58) 0.75 (0.17, 13.17) 
Milk Male Sales Alt 0.03 (0.03, 2.33) 0.97 (0.13, 10.23) 
Milk Male FFQ Alt 0.48 (0.48, 2.8) 0.62 (0.18, 16.43) 
Milk Male HHBS Alt -0.59 (-0.59, 1.7) 1.81 (0.07, 5.48) 
Nuts --- DR Ref 

1.58 

--- --- 
Nuts Female FAO Alt 0.49 (0.49, 3.63) 0.62 (0.06, 37.68) 
Nuts Female FFQ Alt -0.34 (-0.34, 2.76) 1.41 (0.02, 15.75) 
Nuts Female HHBS Alt -0.72 (-0.72, 2.42) 2.06 (0.02, 11.27) 
Nuts Male FAO Alt 0.6 (0.6, 3.73) 0.55 (0.07, 41.65) 
Nuts Male FFQ Alt -0.23 (-0.23, 2.87) 1.26 (0.03, 17.58) 
Nuts Male HHBS Alt -0.62 (-0.62, 2.54) 1.85 (0.02, 12.66) 
Omega-3 --- DR Ref 

0.12 
--- --- 

Omega-3 Male FAO Alt -1.15 (-1.15, -0.92) 3.16 (0.25, 0.4) 
Omega-3 Female FAO Alt -1.01 (-1.01, -0.78) 2.75 (0.29, 0.46) 
Proc. meat --- DR Ref 

1.21 

--- --- 
Proc. meat Female Sales Alt 0.79 (0.79, 3.14) 0.46 (0.19, 23.07) 
Proc. meat Female FFQ Alt -0.3 (-0.3, 2.25) 1.35 (0.05, 9.49) 
Proc. meat Female HHBS Alt -0.46 (-0.46, 1.89) 1.59 (0.05, 6.63) 
Proc. meat Male Sales Alt 0.95 (0.95, 3.3) 0.39 (0.22, 27.03) 
Proc. meat Male FFQ Alt -0.13 (-0.13, 2.42) 1.14 (0.06, 11.2) 
Proc. meat Male HHBS Alt -0.3 (-0.3, 2.06) 1.35 (0.06, 7.82) 
PUFA --- DR Ref 

0.14 

--- --- 
PUFA Female FAO Alt -0.14 (-0.14, 0.14) 1.15 (0.65, 1.15) 
PUFA Female FFQ Alt 1.05 (1.05, 1.43) 0.35 (1.96, 4.18) 
PUFA Male FAO Alt -0.18 (-0.18, 0.1) 1.2 (0.62, 1.1) 
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PUFA Male FFQ Alt 1 (1, 1.38) 0.37 (1.87, 3.98) 
Red meat --- DR Ref 

0.83 

--- --- 
Red meat Female FAO Alt 0.89 (0.89, 2.54) 0.41 (0.45, 12.69) 
Red meat Female Sales Alt 1.09 (1.09, 2.74) 0.34 (0.54, 15.49) 
Red meat Female FFQ Alt -0.34 (-0.34, 1.6) 1.4 (0.11, 4.95) 
Red meat Female HHBS Alt 0.45 (0.45, 2.1) 0.64 (0.29, 8.18) 
Red meat Male FAO Alt 0.89 (0.89, 2.54) 0.41 (0.45, 12.66) 
Red meat Male Sales Alt 1.09 (1.09, 2.74) 0.34 (0.54, 15.43) 
Red meat Male FFQ Alt -0.34 (-0.34, 1.6) 1.4 (0.11, 4.94) 
Red meat Male HHBS Alt 0.45 (0.45, 2.1) 0.64 (0.29, 8.15) 

Sodium --- Urinary 
sodium Ref 

0.39 

--- --- 

Sodium Female DR Alt -0.02 (-0.02, 0.85) 1.02 (0.38, 2.34) 
Sodium Female FFQ Alt 0.47 (0.47, 1.29) 0.63 (0.69, 3.64) 
Sodium Male DR Alt -0.06 (-0.06, 0.8) 1.06 (0.38, 2.23) 
Sodium Male FFQ Alt 0.43 (0.43, 1.26) 0.65 (0.67, 3.52) 
SSBs --- DR Ref 

0.61 

--- --- 
SSBs Female Sales Alt 0.15 (0.15, 1.43) 0.86 (0.37, 4.17) 
SSBs Female FFQ Alt -0.01 (-0.01, 1.32) 1.01 (0.3, 3.75) 
SSBs Female HHBS Alt -0.59 (-0.59, 0.68) 1.8 (0.18, 1.98) 
SSBs Male Sales Alt 0.35 (0.35, 1.63) 0.7 (0.45, 5.1) 
SSBs Male FFQ Alt 0.19 (0.19, 1.53) 0.83 (0.37, 4.6) 
SSBs Male HHBS Alt -0.39 (-0.39, 0.89) 1.48 (0.22, 2.43) 
Trans fat --- DR Ref 

0.22 

--- --- 
Trans fat Male Sales Alt -0.23 (-1.27,0.94) 1.25 (0.28, 2.55) 
Trans fat Female Sales Alt -0.23 (-1.27,0.94) 1.25 (0.28, 2.55) 
Trans fat Male FFQ Alt 0.59 (-2.72,4.23) 0.56 (0.07,68.72) 
Trans fat Female FFQ Alt 0.86 (-2.63,4.9) 0.42 (0.07,134.0) 
Vegetables --- DR Ref 

0.64 

--- --- 
Vegetables Female FAO Alt 0.12 (0.12, 1.33) 0.89 (0.31, 3.78) 
Vegetables Female Sales Alt 0.62 (0.62, 1.83) 0.54 (0.51, 6.21) 
Vegetables Female FFQ Alt -0.05 (-0.05, 1.16) 1.05 (0.26, 3.18) 
Vegetables Female HHBS Alt 0.1 (0.1, 1.31) 0.91 (0.3, 3.69) 
Vegetables Male FAO Alt 0.16 (0.16, 1.37) 0.85 (0.32, 3.94) 
Vegetables Male Sales Alt 0.66 (0.66, 1.87) 0.52 (0.53, 6.49) 
Vegetables Male FFQ Alt -0.01 (-0.01, 1.2) 1.01 (0.27, 3.32) 
Vegetables Male HHBS Alt 0.14 (0.14, 1.35) 0.87 (0.32, 3.85) 
Whole grains --- DR Ref 

0.69 

--- --- 
Whole grains Female FAO Alt 1.94 (1.94, 3.37) 0.14 (1.82, 29.05) 
Whole grains Female FFQ Alt -0.35 (-0.35, 1.37) 1.42 (0.13, 3.94) 
Whole grains Male FAO Alt 2.09 (2.09, 3.52) 0.12 (2.12, 33.76) 
Whole grains Male FFQ Alt -0.2 (-0.2, 1.52) 1.22 (0.15, 4.58) 
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*Adjustment factor is the transformed beta coefficient in normal space and can be interpreted as the factor by 
which the alternative case definition is adjusted to reflect what it would have been if measured as the reference.  

 

Modelling strategy  
  
Exposure model  
We use a spatiotemporal Gaussian process regression (ST-GPR) framework to estimate the mean intake 
of each dietary factor by age, sex, country, and year. In GBD 2019, we removed lag-distributed income 
as a covariate from most of our models and added country-level energy availability (Table 2).  
 
To characterise the distribution of each dietary factor at the population level, we use an ensemble 
approach that separately fit 12 distributions for individual-level microdata to specific to each data 
source’s sampled population. The respective goodness of fit of each family was assessed, and a 
weighting scheme was determined to optimise overall fit to the unique distribution of each risk factor. A 
global mean of the weights for each risk factor’s data sources was created. We then determined the 
standard deviation of each population’s consumption through a linear regression that captured the 
relationship between the standard deviation and mean of intake in nationally representative nutrition 
surveys using 24-hour diet recalls:  

𝑙𝑛 (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)  =  𝛽଴  + 𝛽ଵ  ×  𝑙𝑛 (𝑀𝑒𝑎𝑛௜) 
 
Then we applied the coefficients of this regression to the outputs of our ST-GPR model to calculate the 
standard deviation of intake by age, sex, year, and country. We also quantified the within-person 
variation in consumption of each dietary component and adjusted the standard deviations accordingly.    

Theoretical minimum-risk exposure level 
The dietary TRMELs were updated for GBD 2019. For harmful dietary risks other than sodium, TMREL 
was set to zero. For protective dietary risk factors, we first calculated the level of intake associated with 
the lowest risk of mortality from each disease endpoint based on the 85th percentile of intake across all 
epidemiological studies included in the meta-analysis of the risk-outcome pair. Then we calculated the 
TMREL as the weighted average of these numbers using the global number of deaths from each 
outcome as the weight.  

Table 4. Theoretical minimum-risk exposure level for dietary factors, GBD 2017 and GBD 2019 

Dietary factor GBD 2017 GBD 2019 

Fruits 200-300 g/day 310-340 g/day 

Vegetables 290-430 g/day 280-320 g/day 

Whole grains 100-150 g/day 140-160 g/day 

Nuts 16-25 g/day 10-19 g/day 

Red meats 18-27 g/day 0 g/day 

Processed meats 0-4 g/day 0 g/day 
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Milk 350-520 g/day 360-500 g/day 

Legumes 50-70 g/day 90-100 g/day 

Sugar sweetened beverages 0-5 g/day 0 g/day 

Polyunsaturated fatty acids 9-13% of total daily energy 7-9% of total daily energy 

Seafood omega-3 fatty acids 200-300 mg/day 430-470 mg/day 

Trans fatty acids 0-1% of total daily energy 0% of total daily energy 

Dietary fibre 19-28 g/day 21-22 g/day 

Dietary calcium 1.0-1.3 g/day 1.06 – 1.1 g/day 

Dietary sodium 1-5 g/day 1-5 g/day 

 
Relative risks 
For GBD 2019, we performed systematic reviews for each dietary risk and its related outcomes. Using 
the sources identified during these searches, we incorporated the most recent epidemiological evidence 
assessing the relationship between each GBD dietary risk factor and related outcomes in our relative risk 
analysis. After evaluating all available evidence, we found sufficient evidence on the casual relationship 
for 8 new R-O pairs and insufficient evidence for 5 old R-O pairs. Based on these results, we updated the 
R-O pairs used the GBD dietary risk factor analysis in the following ways: 

Removed: 
Diet low in fruit and nasopharynx cancer 
Diet low in fruit and other pharynx cancer 
Diet low in fruit and oesophageal cancer 
Diet low in fruit and larynx cancer 
Diet low in whole grains and haemorrhagic stroke 

Added: 
 Diet low in whole grains and colon and rectum cancer 
 Diet high in red meat and breast cancer 

Diet high in red meat and ischaemic heart disease 
Diet high in red meat and haemorrhagic stroke 
Diet high in red meat and ischaemic stroke 
Diet low in fibre and ischaemic stroke 
Diet low in fibre and haemorrhagic stroke 
Diet low in fibre and diabetes mellitus  

 
Additionally, based on the most recent epidemiological evidence and GBD 2019 newly developed 
methods for characterising the risk curve, we updated the dose-response curve of relative risks for all 
dietary risks. For sodium, we continued to estimate its effect on cardiovascular disease based on the 
effect of sodium on systolic blood pressure.  

There is a well-documented attenuation of the risk for cardiovascular disease due to metabolic risks 
factors throughout one’s life. To incorporate this age trend in the relative risks, we first identified the 
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median age-at-event across all cohorts and considered that as the reference age group. We then 
assigned our newly estimated risk curves to this reference age group. Then, we derived the percentage 
change in relative risks between each age group and the reference age group by averaging percentage 
changes in relative risks of all metabolic mediators. The three cardiovascular disease outcomes for 
dietary risks are haemorrhagic stroke (including intracerebral hemmorhage and subarachnoid 
hemmorhage), ischaemic stroke, and ischaemic heart disease, and the effects of dietary risks on them 
are mediated through high systolic blood pressure, cholesterol (not included for haemorrhagic stroke), 
and fasting plasma glucose. Since the effect of diet is estimated independently of body-mass index (BMI) 
in the GBD, BMI was not included as a mediator in the RR age trend analysis.  
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Input data and methodological summary 
 

Exposure 
Case definition 
We measure physical activity performed by adults older than 25 years of age, for duration of at least ten 
minutes at a time, across all domains of life (leisure/recreation, work/household and transport). We use 
frequency, duration and intensity of activity to calculate total metabolic equivalent-minutes per week.  
MET (Metabolic Equivalent) is the ratio of the working metabolic rate to the resting metabolic rate.  One 
MET is equivalent to 1 kcal/kg/hour and is equal to the energy cost of sitting quietly.  A MET is also 
defined as the oxygen uptake in ml/kg/min with one MET equal to the oxygen cost of sitting quietly, 
around 3.5 ml/kg/min. 
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Input data 
We included surveys of the general adult population that captured self-reported physical activity in all 
domains of life (leisure/recreation, work/household and transport), where random sampling was used.   

Data were primarily derived from two standardised questionnaires: The Global Physical Activity 
Questionnaire (GPAQ) and the International Physical Activity Questionnaire (IPAQ), although we 
included other survey instruments that asked about intensity, frequency and duration of physical 
activities performed across all activity domains.   

Due to a lack of a consistent relationship on the individual level between activity performed in each 
domain and total activity, we were not able to use studies that included only recreational/leisure 
activities.  

Physical activity level is categorised by total MET-minutes per week using four categories based on 
rounded values closest to the quartiles of the global distribution of total MET-minutes/week.  The lower 
limit for the Level 1 category (600 MET-min/week) is the recommended minimum amount of physical 
activity to get any health benefit. We used four categories with higher thresholds rather than the GPAQ 
and IPAQ recommended 3 categories to better capture any additional protective effects from higher 
activity levels.   

 Level 0: < 600 MET-min/week (inactive) 
 Level 1: 600-3999 MET-min/week (low-active) 
 Level 2: 4000-7,999  MET-min/week (moderately-active) 
 Level 3: ≥ 8,000 MET-min/week (highly active) 

The GHDx was used to locate all surveys that use the GPAQ or IPAQ questionnaire. Although there were 
many other surveys that focused specifically on leisure activity, we were unable to use these sources 
because they did not comprise all three domains (work, transport and leisure). In addition, we excluded 
any surveys that did not report frequency, duration, and intensity of activity.  

Table 1: Data inputs for exposure for low physical activity. 

 Input data Exposure 
Site-years (total) 255 
Number of countries with data 128 

 

Table 2: Data inputs for relative risks for low physical activity. 

 Input data Exposure 
Site-years (total) 121 
Number of countries with data 38 
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Modelling strategy  
 
DisMod modelling  
For this round of the GBD, we have chosen to use a machine learning crosswalk to predict IPAQ 
estimates for GPAQ results and GPAQ estimates for IPAQ results, with original and estimated results 
then being combined to get one comprehensive IPAQ dataset and one comprehensive GPAQ dataset. 
We then estimated the proportion of each country/year/age/sex subpopulation in each of the above 
four activity levels using 12 separate Dismod models (one set of six for IPAQ and one for GPAQ). We use 
six categories of physical activity prevalence rather than four to accommodate the different MET-
minute/week cutoffs presented in tabulated data sources where individual unit record data was not 
available. Since the accepted threshold/definition for inactivity is consistently <600 MET-minutes/week, 
the vast majority of tabulated data was broken down into proportion inactive (model A) and proportion 
low, moderate or highly active (model B). 

 Label MET-min/week Name of sequelae in online visualisation tool 
A inactive <600 Physical inactivity and low physical activity, inactive 
B low/moderately/highly 

active 
≥600 Physical inactivity and low physical activity, 

low/moderately/highly active 
C low active 600-3999  Physical inactivity and low physical activity, low active 
D moderately/highly 

active 
>4000  Physical inactivity and low physical activity, 

moderately/highly active 
E moderately active 4000-7999  Physical inactivity and low physical activity, 

moderately active 
F highly active ≥8,000  Physical inactivity and low physical activity, highly 

active 
 
These models have mesh points at 0 15 25 35 45 55 65 75 85 100, and a study-level fixed effect on 
integrand variance (Z-cov) for whether a study was nationally representative or not, to account for the 
heterogeneity introduced by studies that are not generalizable to the entire population.  They also have 
national level fixed effects on prevalence of obesity.  

After DisMod, we rescale each of the 6 models specific to each data source so that the proportions sum 
to one. Since we have the most data for models A and B, we rescale the sum of the proportion in each 
category to be equal to one.  Next we rescale the sum of model C and D to be equal to the rescaled 
value from model B. Then we rescale the sum of models E and F to be equal to the rescaled value from 
model D.  After these three rescales we are left with a proportion for each of the four categories that all 
sum to 1. Scaled results for each data source are then hybridised to produce only one set of results for 
the prevalence of the four categories of physical activity.  

Similar to the previous round, we have not directly estimated total MET-minutes per week globally. 
Although, this year we made use of two specific machine learning algorithms (Random Forest and 
XGBoost) that were trained using data that could characterise the relationship between total MET-
mins/week and each of the categorical prevalences of physical activity. This resulted in country-year-
age-sex specific estimates of total physical activity in the form of MET-minutes per week.  
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Utilising microdata on total MET-mins per week from individual-level surveys, we characterised the 
distribution of activity level at the population level. We then used an ensemble approach to distribution 
fitting, borrowing characteristics from individual distributions to tailor a unique distribution to fit the 
data using a weighting scheme. We characterised the standard deviation of each population’s activity 
through a linear regression that captured the relationship between standard deviation and mean activity 
levels in nationally representative IPAQ surveys: 

𝑙𝑛 (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

=  𝛽଴  + 𝛽ଵ  ×  𝑙𝑛 (𝑀𝑒𝑎𝑛௜) + 𝛽ଶ  × 𝐴𝑔𝑒௜  +  𝛽ଷ  × 𝑆𝑅௜  +  𝛽ସ  × 𝐹𝑒𝑚௜ 
 

Agei is the youngest age in population i’s age group, SRi is the super region in which the population lives, 
and Femi is a Boolean value depicting whether the population is female. We then applied the 
coefficients of this regression to the outputs of our estimate of total MET-minutes per week regression 
outputs to calculate the standard deviation by country, year, age, and sex. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for physical inactivity is 3000-4500 MET-min per week, 
which was calculated as the exposure at which minimal deaths across outcomes occurred.3  

Relative risk 
We used a dose-response meta-analysis of prospective cohort studies to estimate the effect size of the 
change in physical activity level on breast cancer, colon cancer, diabetes, ischemic heart disease and 
ischemic stroke.3  

There is a well-documented attenuation of the risk for cardiovascular disease and diabetes due to 
metabolic risks factors throughout one’s life. To incorporate this age trend in the relative risks, we first 
identified the median age-at-event across all cohorts and considered that as the reference age-group. 
We then assigned our risk curves to this reference age group. Then, we derived the percent change in 
relative risks between each age group and the reference age group by averaging percentage changes in 
relative risks of all metabolic mediators.  
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