
eAppendix 1

In this appendix, we provide an overview of identifiability conditions and identification

results for the five causal effects described in the main text of the paper. To simplify the

exposition, as in the main text, we consider a simplified setting with a time-fixed treatment

and a binary outcome measured at a single time-point, and no losses to follow-up. Formal

results about analogous estimands in more realistic settings (e.g., for failure-time outcomes)

can be found elsewhere [1–4].

Data and notation: Let A denote an indicator for random assignment to treatment at

baseline (1 for letrozole; 0 for gonadotropin), D an indicator for the competing event (1 for

no live birth; 0 for live birth) and Y the indicator for the event of interest (1 for neonatal

complications; 0 otherwise) at the end of follow-up (where D occurs before Y ). Let Q denote

the composite event (1 if no live birth or neonatal complications; 0 otherwise). Let L denote

the measured baseline covariates, and U a set of unmeasured covariates that may exert effect

on having a live born baby (D) and on neonatal complications (Y ). We assume that the data

are independent and identically distributed realizations of the random tuple (L,A,D, Y ).

Throughout, we use italic capital letters for random variables and corresponding lower case

letters for their realizations. For example, L denotes baseline covariate random variable that

takes values l in the set of possible values, L.

We use superscripts to denote counterfactual variables. In particular, Y a is the coun-

terfactual indicator of the event of interest if the individual had, possibly contrary to fact,

been assigned treatment a; Da is the counterfactual indicator of the competing event if the

individual had, possibly contrary to fact, been assigned treatment a.

Randomization and exchangeability assumptions: We assume that the trial gener-

ating the data is marginally randomized, so that

(Y a, Da, L) |= A.
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By the decomposition and weak union properties of conditional independence [5, 6], the

independence condition above implies several others. Here, we only list the implications

that we use in derivations in this Appendix:

(Y a, Da, L) |= A =⇒



Y a |= A
Da |= A

(Y a, Da) |= A
(Y a, L) |= A

(Y a, Da) |= A|L


.
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Causal Effect 1. The total effect of treatment on the composite event is defined as

Pr[Qa=1 = 1]− Pr[Qa=0 = 1]. Assume that the following identifiability conditions hold [1]:

1. Exchaneability: (Y a, Da) |= A for a ∈ {0, 1}.

2. Positivity: Pr[A = a] > 0 for each a ∈ {0, 1}.

3. Consistency: if A = a, then Y a = Y and Da = D for each a ∈ {0, 1}.

The components of the total effect of treatment on the composite event are the risks

Pr[Qa = 1] of the composite event had everyone in the study population been assigned

treatment a ∈ {0, 1}.
Under the above identifiability conditions, Pr[Qa = 1] is identified as follows:

Pr[Qa = 1] = Pr[Y a = 1, Da = 0] + Pr[Y a = 0, Da = 1]

= Pr[Y a = 1, Da = 0|A] + Pr[Y a = 0, Da = 1|A] (by exchangeability)

= Pr[Y = 1, D = 0|A = a] + Pr[Y = 0, D = 1|A = a] (by consistency)

= Pr[Y = 1|D = 0, A = a] Pr[D = 0|A = a] + Pr[D = 1|A = a].

The last step in the derivation above uses the following fact: for each treatment a, we have

Pr[D = 1|A = a] =
1∑

y=0

Pr[Y = y,D = 1|A = a]

= Pr[Y = 0, D = 1|A = a] + Pr[Y = 1, D = 1|A = a]

= Pr[Y = 0, D = 1|A = a].

Thus, the total effect of treatment on the composite event is identified as

Pr[Qa = 1]− Pr[Qa=0 = 1] =

Pr[Y = 1|D = 0, A = 1] Pr[D = 0|A = 1] + Pr[D = 1|A = 1]

−
{

Pr[Y = 1|D = 0, A = 0] Pr[D = 0|A = 0] + Pr[D = 1|A = 0]
}
.
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Causal Effect 2. The total effect of treatment on the event of interest is defined as

Pr[Y a=1 = 1]− Pr[Y a=0 = 1]. Assume that the following identifiability conditions hold [1]:

1. Exchangeability: Y a |= A for a ∈ {0, 1}.

2. Positivity: Pr[A = a] > 0 for a ∈ {0, 1}.

3. Consistency: if A = a, then Y a = Y for a ∈ {0, 1}.

The components of the total effect of treatment on the event of interest are the risks Pr[Y a =

1] of the event of interest had everyone in the population been assigned to treatment a ∈
{0, 1}.

Under the above identifiability conditions, Pr[Y a = 1] can be identified as follows:

Pr[Y a = 1] = Pr[Y a = 1|A = a] (by exchangeability)

= Pr[Y = 1|A = a] (by consistency)

=
1∑

d=0

Pr[Y = 1, D = d|A = a]

= Pr[Y = 1, D = 0|A = a] + Pr[Y = 1, D = 1|A = a]

= Pr[Y = 1, D = 0|A = a]

= Pr[Y = 1|D = 0, A = a] Pr[D = 0|A = a].

Thus, the total effect of treatment on the event of interest is identified as

Pr[Y a=1 = 1]− Pr[Y a=0 = 1] = Pr[Y = 1|D = 0, A = 1] Pr[D = 0|A = 1]

− Pr[Y = 1|D = 0, A = 0] Pr[D = 0|A = 0].
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Causal Effect 3. Controlled direct effect of treatment on the event of interest.

Pr[Y a=1,d=0 = 1] − Pr[Y a=0,d=0 = 1]. Compared to the total effect, controlled direct effect

requires additional exchangeability conditions. In our setting, the identifiability assumptions

[1] can be simplified to:

1. Exchangeability 1: (Y a,d=0, L) |= A for each a ∈ {0, 1}.

2. Exchangeability 2: Y a,d=0 |= D | (L,A) for each a ∈ {0, 1}.

3. Positivity: for each a ∈ {0, 1}, if fL(l) 6= 0, then Pr[A = a|L = l] > 0; if fL,A(l, a) 6= 0,

then Pr[D = 0|L = l, A = a] > 0.

4. Consistency: if A = a and D = 0, then Y a,d=0 = Y

The components of the controlled direct effect of treatment on the event of interest are the

risks Pr[Y a,d=0 = 1] of the event of interest had everyone in the population been assigned to

treatment a ∈ {0, 1} and had the competing event (no live births) been eliminated.

Under the above identifiability conditions, the risk under treatment a and elimination of

the competing event can be identified by:

Pr[Y a,d=0 = 1] =
∑
l

Pr[Y a,d=0 = 1|L = l]fL(l)

=
∑
l

Pr[Y a,d=0 = 1|A = a, L = l]fL(l) (by exchangeability 1)

=
∑
l

Pr[Y a,d=0 = 1|A = a, L = l, D = d]fL(l) (by exchangeability 2)

=
∑
l

Pr[Y = 1|A = a, L = l, D = 0]fL(l) (by consistency).

Thus, risk difference of the direct effect of treatment on the event of interest had competing

events been eliminated are:

Pr[Y a=1,d=0 = 1]− Pr[Y a=0,d=0 = 1] =
∑
l

Pr[Y = 1|A = 1, L = l, D = 0]fL(l)

−
∑
l

Pr[Y = 1|A = 0, L = l, D = 0]fL(l).
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Causal Effect 4. The separable direct and indirect effects of treatment on the

effect of interest are defined as Pr[Y aY =1,aD = 1] − Pr[Y aY =0,aD = 1] and Pr[Y aY ,aD=1 =

1] − Pr[Y aY ,aD=0 = 1]. Identifying these effects requires the assumption that A can be

decomposed into two components (AY and AD) that exert effects through different causal

pathways: AY affects the event of interest Y, and AD affects competing events. In our

setting, the assumptions described in reference [2] can be simplified as follows:

1. Exchangeability: (Y a, Da) |= A|L for each a ∈ {0, 1}.

2. Consistency: if A = a, then Y a = Y and Da = D, for each a ∈ {0, 1}.

3. Positivity: if fL(l) 6= 0, then Pr[A = a|L = l] > 0 for each a ∈ {0, 1}.
If fL,D(l, 0) 6= 0, then Pr[A = a|L = l, D = 0] > 0 for each a ∈ {0, 1}.

4. Dismissible component condition 1:

Pr[DaY =1,aD = 1|L = l] = Pr[DaY =0,aD = 1|L = l] for aD ∈ {0, 1}.

5. Dismissible component condition 2:

Pr[Y aY ,aD=1 = 1|DaY ,aD=1 = 0, L = l] = Pr[Y aY ,aD=0 = 1|DaY ,aD=0 = 0, L = l] for

aY ∈ {0, 1}.

The components of separable direct effect of treatment on the event of interests are risks

Pr[Y aY =1,aD = 1] of the event of interest had everyone in the study population been assigned

to AY = 1 and AD = aD, where aD can take values of 0 or 1.
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Under the above assumptions, the risk under aY = 1 and aD can be identified because

Pr[Y aY =1,aD = 1] =
∑
l

Pr[Y aY =1,aD = 1|L = l]fL(l)

=
∑
l

1∑
d=0

Pr[Y aY =1,aD = 1|DaY =1,aD = d, L = l] Pr[DaY =1,aD = d|L = l]fL(l)

=
∑
l

Pr[Y aY =1,aD = 1|DaY =1,aD = 0, L = l] Pr[DaY =1,aD = 0|L = l]fL(l)

=
∑
l

Pr[Y aY =1,aD=1 = 1|DaY =1,aD=1 = 0, L = l] Pr[DaY =aD,aD = 0|L = l]fL(l)

(by dismissible assumptions)

=
∑
l

Pr[Y a=1 = 1|Da=1 = 0, L = l] Pr[Da=aD = 0|L = l]fL(l)

=
∑
l

Pr[Y a=1 = 1|Da=1 = 0, L = l, A = 1] Pr[Da=aD = 0|L = l, A = aD]fL(l)

(by exchangeability)

=
∑
l

Pr[Y = 1|D = 0, L = l, A = 1] Pr[D = 0|L = l, A = aD]fL(l)

(by consistency).

The risks Pr[Y aY =0,aD = 1] of the event of interest had everyone in the study population

been assigned to AY = 0 and AD = aD, where aD can take values of 0 or 1, can be identified

analogously.

Thus, the separable direct effect of treatment on the event of interest when AD is set to aD

can be identified as follows:

Pr[Y aY =1,aD = 1]− Pr[Y aY =0,aD = 1] =∑
l

Pr[Y = 1|A = 1, L = l, D = 0] Pr[D = 0|A = aD, L = l]fL(l)

−
∑
l

Pr[Y = 1|A = 0, L = l, D = 0] Pr[D = 0|A = aD, L = l]fL(l).
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Similarly, the components of separable indirect effect of treatment on the event of interests

are risks Pr[Y aY ,aD=1 = 1] of the event of interest had everyone in the study population been

assigned to AY = aY and AD = 1, where aY can take values of 0 or 1.

The risk under aY and aD = 1 can be identified by:

Pr[Y aY ,aD=1 = 1] =
∑
l

Pr[Y aY ,aD=1 = 1|L = l]fL(l)

=
∑
l

Pr[Y aY ,aD=1 = 1|DaY ,aD=1 = 0, L = l] Pr[DaY ,aD=1 = 0|L = l]fL(l)

=
∑
l

Pr[Y aY ,aD=aY = 1|DaY ,aD=aY = 0, L = l] Pr[DaY =1,aD=1 = 0|L = l]fL(l)

(by dismissible assumptions)

=
∑
l

Pr[Y a=aY = 1|Da=aY = 0, L = l] Pr[Da=1 = 0|L = l]fL(l)

=
∑
l

Pr[Y a=aY = 1|Da=aY = 0, L = l, A = aY ] Pr[Da=1 = 0|L = l, A = 1]fL(l)

(by exchangeability)

=
∑
l

Pr[Y = 1|D = 0, L = l, A = aY ] Pr[D = 0|L = l, A = 1]fL(l)

(by consistency).

The risks Pr[Y aY ,aD=0 = 1] of the event of interest had everyone in the study population

been assigned to AY = aY and AD = 0, where aY can take values of 0 or 1, can be identified

analogously.

Thus, the separable indirect effects when AY is set to aY can be identified by

Pr[Y aY ,aD=1 = 1]− Pr[Y aY ,aD=0 = 1] =∑
l

Pr[Y = 1|A = aY , L = l, D = 0] Pr[D = 0|A = 1, L = l]fL(l)

−
∑
l

Pr[Y = 1|A = aY , L = l, D = 0] Pr[D = 0|A = 0, L = l]fL(l).
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Causal Effect 5. The total (direct) effect in the principal stratum of always

survivors is defined as Pr[Y a=1 = 1|Da=1 = Da=0 = 0] − Pr[Y a=0 = 1|Da=1 = Da=0 = 0].

There are several approaches (requiring different assumptions) for identifying the principal

stratum effect. Here, we describe an approach for bounding [3] and an approach for point

identifying the effect in the principal stratum of always survivors [4].

Bounding of the principal stratum effect [3] is possible under the following conditions:

1. Monotonicity: For all individuals, Da=1 ≥Da=0, which implies that Pr[Da=1 = 0, Da=0 =

1] = 0.

2. Pr[Y a=0 = 1|D = 0, A = 1]− Pr[Y a=0 = 1|D = 0, A = 0] = α ≥ 0.

3. Exchangeability: (Y a, Da) |= A for each a ∈ {0, 1}.

4. Positivity: Pr[A = a,D = 0] > 0 for each a ∈ {0, 1}.

5. Consistency: if A = a and D = 0, then Y a = Y and Da = D for each a ∈ {0, 1}.

Using the above conditions, we have

Pr[Y a = 1|D = 0, A = 1] = Pr[Y a = 1|Da=1 = 0, A = 1] (by consistency)

=
Pr[Y a = 1, Da=1 = 0|A = 1]

Pr[Da=1 = 0|A = 1]

=
Pr[Y a = 1, Da=1 = 0]

Pr[Da=1 = 0]
(by exchangeability)

= Pr[Y a = 1|Da=1 = 0]

= Pr[Y a = 1|Da=1 = 0, Da=0 = 0] (by monotonicity).

The total effect (equal to the direct effect) of the event among the principal stratum can be

written as

Pr[Y a=1|Da=1 = Da=0 = 0]− Pr[Y a=0|Da=1 = Da=0 = 0]

= Pr[Y a=1 = 1|D = 0, A = 1]− Pr[Y a=0 = 1|D = 0, A = 1] (by monotonicity)

= Pr[Y a=1 = 1|D = 0, A = 1]− (Pr[Y a=0 = 1|D = 0, A = 0] + α) (by assumption 2)

= Pr[Y = 1|D = 0, A = 1]− Pr[Y = 1|D = 0, A = 0]− α (by consistency)

≤ Pr[Y = 1|D = 0, A = 1]− Pr[Y = 1|D = 0, A = 0].

Thus, upper bound for effect of treatment on event of interest among the principal stratum
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is Pr[Y = 1|D = 0, A = 1] − Pr[Y = 1|D = 0, A = 0], which is equal to the unadjusted

estimate of event restricted to live births.

Point identification of the principal stratum effect is possible using a regression-based ap-

proach [4]: this approach does not require the monotonicity assumption, but requires a

cross-world counterfactual independence condition and parametric assumptions about the

data generating mechanism [4]. Specifically, we assume that the following conditions hold:

1. Y a |= D1−a|(Da = 0, A = a, L, U) for a ∈ {0, 1}.

2. logitPr[D = 0|A,U, L] = γU + v(A,L), where v(A,L) is an unrestricted function.

3. logPr[Y = 1|D = 0, A, L, U ] = β0 + β1A + U + bl(L), where bl(L) is an unrestricted

function.

4. E[U |A,L] = E[U |L].

5. ∆d |= (A,L)|D = d for d ∈ {0, 1}, where ∆d = U − E[U |A,L,D = d] is a shift in the

distribution of U .

6. Positivity: if fL,A(l, a) 6= 0, then Pr[D = 0|A = a, L = l] > 0.

7. Consistency: if A = a and D = 0, then Y a = Y and Da = D.

We observed that

E[Y |A = a, L,D = 0]

= E[E[Y |A = a, L, U,D = 0]|A = a, L,D = 0]

= E[exp(β0 + β1a+ U + bl(L))|A = a, L,D = 0] (by assumption 3)

= exp{β0 + β1a+ bl(L)}E[exp(U)|A = a, L,D = 0]

= exp{β0 + β1a+ bl(L)}E[exp(∆d)|A = a, L,D = 0]E[exp(E[U |A,D,L])|A = a, L,D = 0]

( using the model in assumption 5: U = ∆d + E[U |A,D,L])

= exp{β0 + β1a+ bl(L)}E[exp(∆d)|D = 0]E[exp(E[U |A = a,D = 0, L])|A = a, L,D = 0]

( by assumption 5)

= exp{β0 + β1a+ bl(L) + E[U |A = a, L,D = 0]}E[exp(∆d)|D = 0]

Next, we use the Theorem of [7] to rewrite E[U |A = a, L,D = 0]
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E[U |A = a, L,D = 0]

=
E[U exp(γU)|A = a, L,D = 1]

E[exp(γU)|A = a, L,D = 1]
(by (5), see below proof of intermediate step)

=
∂

∂γ
log E[exp(γU)|A = a, L,D = 1]

=
∂

∂γ
log{E[exp(γ{∆d + E[U |A = a, L,D = 1]})|A = a, L,D = 1]} (by assumption 5)

=
∂

∂γ
log{E[exp(γ∆d)|A = a, L,D = 1] exp(γE[U |A = a, L,D = 1])}

=
∂

∂γ
{γE[U |A = a, L,D = 1] + log E[exp(γ∆d)|A = a, L,D = 1]}

= E[U |A = a, L,D = 1] +
∂

∂γ
log E[exp(γ∆d)|A,L,D = 1)]

= E[U |A = a, L,D = 1] +
∂

∂γ
log E[exp(γ∆d|D = 1)] (by assumption 5)

therefore

E[U |A = a, L,D = 0]− E[U |A = a, L,D = 1]

=
∂

∂γ
log E[exp(γ∆d|D = 1)]

= βal

(1)

Furthermore, from the law of total expectation

E[U |A = a, L,D = 0]

= E[U |A = a, L]− {E[U |A = a, L,D = 1]− E[U |A = a, L,D = 0]}Pr[D = 1|A = a, L]

= E[U |A = a, L] + βal Pr[D = 1|A = a, L]

= E[U |L] + βal Pr[D = 1|A = a, L] (by assumption 4)

(2)

We therefore conclude that

E[Y |A = a, L,D = 0]

= exp{β0 + β1a+ bl(L) + E[U |A = a, L,D = 0]}E[exp(∆d)|D = 0]

= exp{β0 + β1a+ bl(L) + E[U |L] + βal Pr[D = 1|A,L]}E[exp(∆d)|D = 0] (by (2))

= exp{β1a+ b∗l (L) + βal Pr[D = 1|A,L]}
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where we define b∗l (L) = β0 + bl(L) + E[U |L] + logE[exp(∆d)|D = 0]

Thus, it follows that

log Pr[Y = 1|A,L,D = 0] = β1A+ b∗lL+ βalP [D = 1|A,L]

and we can conclude that the risk ratio comparing treatment a = 1 versus a = 0 in the

principal stratum is exp(β1).

Proof of the intermediate step: We will now show that

E[U |A = a, L,D = 0] =
E[U exp(γU)|A,L,D = 1]

E[exp(γU)|A,L,D = 1]
. (3)

Using the model in assumption 2, we have that

logit Pr[D = 0|A,U, L] = γU + v(A,L)

⇒ Pr[D = 0|A,L, U ]

Pr[D = 1|A,L, U ]
= exp(γU) exp(v(A,L)).

(4)

Starting with the right-hand-side of (3) and using the definition of expectation,

E[U exp(γU)|A,L,D = 1]

E[exp(γU)|A,L,D = 1]

=

∫
u exp(γu)f(u|A,L,D = 1)du∫
exp(γu′)f(u′|A,L,D = 1)du′

=

∫
u exp(γu)Pr[D=0|A,L]

Pr[D=1|A,L]
Pr[D=1|A,L,U=u]
Pr[D=0|A,L,U=u]

f(u|A,L,D = 0)du∫
exp(γu′)Pr[D=0|A,L]

Pr[D=1|A,L]
Pr[D=1|A,L,U=u′]
Pr[D=0|A,L,U=u′]

f(u′|A,L,D = 0)du′

=

∫
u exp(γu)Pr[D=1|A,L,U=u]

Pr[D=0|A,L,U=u]
f(u|A,L,D = 0)du∫

exp(γu′)Pr[D=1|A,L,U=u′]
Pr[D=0|A,L,U=u′]

f(u′|A,L,D = 0)du′

=

∫
uf(u|A,L,D = 0)du (by (4))

= E[U |A,L,D = 0]

(5)

where we use the fact that,

f(u|A,L,D = 1) =
Pr[D = 0|A,L]

Pr[D = 1|A,L]

Pr[D = 1|A,L, U = u]

Pr[D = 0|A,L, U = u]
f(u|A,L,D = 0).
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eAppendix 2:  

Separable Effects 

To define the separable direct and indirect effects, we have made explicit assumptions 

about a decomposed version of the treatment.1  As an illustration, we suggest one way to reason 

about a decomposition of letrozole in the AMIGOS trial. However, note that these conditions can 

be considerably relaxed.2  

Suppose that letrozole, an aromatase inhibitor, can bind to aromatase-cytochrome P450 

that is expressed in mother’s ovaries and fetuses’ tissues, and suppose that letrozole exerts 

effects on neonatal complications through two distinct pathways (Figure 1B). In the first 

pathway, letrozole binds to receptors of the fetus that interfere with fetal development (without 

having effects on achieving a live birth), which increases the risk of neonatal complications. This 

would occur if letrozole interrupts the normal aromatase function in fetal tissues that express 

P450 receptors (including fetal liver, intestine, skin, and brain) without having effects on 

achieving a live birth.3 In the second pathway, letrozole binds to P450 receptors in the mother’s 

ovaries and enhances single-follicle recruitment, which may affect whether a mother achieves a 

live birth but not the risk of neonatal complications. A possible justification of this pathway is 

the following: suppose that letrozole inhibits the mother’s aromatization of androgen to estrogen 

and thus reduces circulating estrogen, which in turn increases FSH secretion and stimulates 

ovarian follicular growth.4 If the affinity of letrozole to P450 receptors in the mother and the 

fetus could be removed selectively, then we can conceptualize a decomposed versions of 

letrozole: one component AD (targeting the receptors of mother only) exerts effects on live birth 
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P450 receptors (including fetal liver, intestine, skin, and brain) without having effects on 

achieving a live birth.3 In the second pathway, letrozole binds to P450 receptors in the mother’s 

ovaries and enhances single-follicle recruitment, which may affect whether a mother achieves a 

live birth but not the risk of neonatal complications. A possible justification of this pathway is 

the following: suppose that letrozole inhibits the mother’s aromatization of androgen to estrogen 

and thus reduces circulating estrogen, which in turn increases FSH secretion and stimulates 

ovarian follicular growth.4 If the affinity of letrozole to P450 receptors in the mother and the 

fetus could be removed selectively, then we can conceptualize a decomposed versions of 

letrozole: one component AD (targeting the receptors of mother only) exerts effects on live birth 
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and one component AY (targeting the receptors of fetus only) exerts effects on neonatal 

complications.  

Suppose that we also could describe a decomposition of gonadotropin into a component 

that only exerts effects on neonatal complications (AY) and a component that only exerts effects 

on achieving a live birth (AD).  Then, we can define separable direct and indirect effects by 

considering a (hypothetical) four-arm trial in which both the component that affects neonatal 

complications (AY) and the component that affects live births (AD) are randomly assigned.1 The 

first separable direct effect is defined by the contrast of outcomes between the arm receiving 

both components of letrozole versus the arm receiving the component of letrozole that affects life 

birth and the component of gonadotropin that affects neonatal complications. Similarly, the 

second separable direct effect is defined by the contrast of outcomes between the arm receiving 

the component of gonadotropin that affects life births and the component of letrozole that affects 

neonatal complications versus the arm receiving both components of gonadotropin. The 

separable indirect effects are defined analogously.1 
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