Supplementary Information

Structure of the dopamine D₂ receptor in complex with the antipsychotic drug spiperone

D. Im et al.

Supplementary Fig. 1. Comparison of the ECL2 conformation of D₂-class receptors. a, Extracellular view of superposition of D₂R_{ris}, D₂R_{hal}, D₂R_{bro}, D₃R_{eti} and D₄R_{nem} around ECL2. The conformation of ECL2 of D₂R_{ris} (b), D₂R_{hal} (c), D₂R_{bro} (d), D₃R_{eti} (e) and D₄R_{nem} (f). D₂R_{ris} (cyan), D₂R_{hal} (purple), D₂R_{bro} (olive), D₃R_{eti} (yellow), D₄R_{nem} (pink), risperidone (magenta), haloperidol (ivory), bromocriptine (lightblue), eticlopride (blue), and nemonapride (red) are shown.

Supplementary Fig. 2. The displacement curves of the wild type (WT) and the mutants D_2Rs . The detailed values are shown in Supplementary Table 2. Data represent mean \pm SEM from 3 biologically independent experiments.

Supplementary Fig. 3. TGFa shedding response. HEK293 cells transfected with an empty vector (Mock), the wild type (WT) or the mutant D₂R-encoding plasmids were subjected to the TGFa shedding assay for their agonist activity to dopamine (grey) or antagonist activity to spiperone (pink) or risperidone (blue) in the presence of 1 μ M dopamine. AP-TGFa release response in the absence of any of the compounds was set as a baseline. Data represent mean \pm SEM from biologically independent experiments. The numbers of the independent agonist experiments are 11 for WT, 10 for V111A, V115A and I184A, 9 for W90L, L94A, W100A, I183A, T412N and T412A, 8 for V91A, F110A, V91A/V111A and W386L, 5 for F110W, L123W and W90L/F110W, 3 for S121K and S121K/L123W. The numbers of the independent antagonist experiments are 11 for WT, 6 for V111A, V115A and I184A, 5 for W90L, L94A, W100A, I183A, T412N and T412A, 4 for V91A, F110A, F110W, L123W, W386L, W90L/F110W and V91A/V111A.

Supplementary Fig. 4. Crystals, crystal packing and density maps of D_2R_{spi} . a, Crystals of D_2R_{spi} under the cross-polarized light. This experiment was repeated independently 5 times with similar results. b, Crystal packing of D_2R_{spi} . The unit cell is outlined by the black line. c, 2Fo-Fc electron density map for the D_2R_{spi} -Fab3089 complex contoured at 1.0 σ . d, Simulated-annealing composite omit map (upper, in magenta), Fo-Fc map (middle, in green mesh) and polder map (lower, in blue mesh) of spiperone contoured at 1 σ , 3 σ and 4 σ , respectively.

Supplementary Fig. 5. Structural comparison of the seven transmembrane helices and the activation motifs in D₂R and ADRB2. a, Intracellular view of the superposition of D₂R_{spi}, D₂R_{ris} and D₂R_{bro}. Seven transmembrane helices and helix 8 are represented as cylinders. b, Superposition of D₂R_{spi}, D₂R_{ris}, D₂R_{bro} around the PIF motif, the CWxP motif, the DRY motif, and the NPxxY motif. The PIF motif of D₂R_{spi} is also compared with those of the inactive state ADRB2 (PDB ID: 5JQH), and the active state ADRB2 (PDB ID: 3SN6). Ligands and side chains are shown as sticks. Red arrows indicate the conformational rearrangements of residues in the activation motifs upon receptor activation. D₂R_{spi} (green), D₂R_{ris} (cyan), D₂R_{bro} (olive), inactive state ADRB2 (blue), active state ADRB2 (purple), spiperone (orange), risperidone (magenta), and bromocriptine (lightblue) are shown.

Supplementary Fig. 6. The conserved conformation of $Trp^{23.50}$ on ECL1, the disulfide bridge, and residue^{45.51} and residue^{45.52} on ECL2. Ligands and side chains are shown as sticks. The PDB IDs are shown in parentheses. **a**, D_2R_{spi} . **b**, D_2R_{ris} (6CM4). **c**, D_3R_{eti} (3PBL). **d**, D_4R_{nem} (5WIU). **e**, 5-HT_{2A} R_{ris} (6A93). **f**, 5-HT_{2C} R_{rit} (6BQH). **g**, 5-HT_{2B}R (4IB4). **h**, 5-HT_{1B}R (5V54). **i**, ACM1 (5CXV). **j**, ACM2 (3UON). **k**, ACM3 (4DAJ). **l**, ACM4 (5DSG). **m**, HRH1 (3RZE). **n**, ADRB1 (2RH1). **o**, ADRB2 (2RH1). **p**, OX2R (5WS3). **q**, EP4 (5YWY). **r**, AT1R (4YAY). **s**, CXCR4 (3OE6). **t**, OPRD (4RWA).

Supplementary Fig. 7. Comparison of D_2R_{spi} with D_2R_{ris} around TM5 and the bottom hydrophobic cleft. a, Close-up view of the superposition of D_2R_{spi} and D_2R_{ris} around I/A122^{3.40}. Black dotted lines indicate the contact between I/A122^{3.40} and the ligand or the carbonyl oxygen of S197^{5.46}. b, The seven allowed side chain rotamers of the I122A^{3.40} mutant of D_2R_{ris} generated using Coot. Green dotted lines indicate the steric contacts between I122^{3.40} and risperidone or residues on TM5. Rotamer 4 represents the inactive conformation of the isoleucine of the PIF motif in the aminergic receptors, including D_2R_{spi} . D_2R_{spi} , D_2R_{ris} , spiperone, and risperidone are indicated in green, cyan, orange, and magenta, respectively.

Supplementary Fig. 8. Comparison of the ligand-binding pocket in D₂-class receptors. a, Vertical cross sections of D₂-class receptors. Black dotted line indicates the positions of C^{3.36} and F^{6.52}. Blue circle indicates the bottom hydrophobic cleft. **b**, Superposition of the TMs of D₂R_{spi} and D₃R_{eti} (left) or D₄R_{nem} (right). Red arrows indicate the tilt of TM6 to TM3 in D₃R_{eti} and D₄R_{nem} in comparison with D₂R_{spi}. D₂R_{spi}, D₃R_{eti}, D₄R_{nem}, spiperone, eticlopride and nemonapride are shown in green, yellow, pink, orange, magenta and red, respectively. **c**, Schematic representation of two inactive states of D₂-class receptors. Benzamide antipsychotics and butyrophenone or a pyridopyrimidine antipsychotics are shown pink and orange, respectively. The bottom hydrophobic cleft is indicated in yellow. The PIF motif is shown in green.

	D ₂ R _{spi}		$D_2 R_{ris}$			$D_2 R_{hal}$			
	Overall	$\Delta ECL2^1$	$7 T M^2$	Overall	$\Delta ECL2$	7TM	Overall	$\Delta ECL2$	7TM
D ₂ R _{ris}	2.2	1.0	0.8						
$D_2 R_{hal}$	2.1	0.9	0.7	0.9	0.7	0.5			
D ₂ R _{bro}	2.5	2.5	2.4	3.2	2.6	2.5	3.1	2.4	2.4

Supplementary Table 1. RMSD values (Å) among the D₂R structures.

¹ Comparison without ECL2.

² Comparison of the transmembrane region.

Supplementary Table 2. Affinities of antipsychotics for mutants and wild-type D₂R.

	Spiperone	Raclopride	Eticlopride
	$Kd \pm SEM (nM)$	$Kd \pm SEM (nM)$	Ki (nM)
			(pKi± SEM)
Wild type	0.29 ± 0.05	14.0 ± 6.2	0.24
			(9.62 ± 0.04)
Crystallized	1.1 ± 0.5		
construct ¹			
S121K ^{3.39}	0.34 ± 0.04	75.6 ± 15.9	1.5
			(8.83 ± 0.13)
L123W ^{3.41}	0.22 ± 0.06		
S121K ^{3.39} /L123W ^{3.41}	0.40 ± 0.07		
I184A	ND ²		

¹ Expressed in Sf9 cells. Other receptors were expressed in HEK cells.

 2 ND: not determined because of the low expression.

	V	WT $(n = 16, 10)$	$)^1$	W90L ^{2.60} $(n = 9, 5)$		
	E_{max} ²	pEC50	EC50 ³ (nM)	Emax	pEC ₅₀	EC50 (nM)
Dopamine	57.5 ± 1.6	7.91 ± 0.02	16	58.5 ± 1.5	6.78 ± 0.06	170
	pK_B	$K_B{}^3$ (pM)	$\Delta p K_{\rm B}{}^4$	рК _В	$K_{B}\left(pM ight)$	$\Delta p K_{\rm B}$
Spiperone	11.48 ± 0.11	3.3	0	10.17 ± 0.06	68	-1.42 ± 0.14
Risperidone	9.95 ± 0.08	110	0			
	V	$91A^{2.61}$ (<i>n</i> = 8,	4)	L	$94A^{2.64}$ (<i>n</i> = 9, 5)	5)
	E_{max}	pEC50	EC50 (nM)	Emax	pEC ₅₀	EC50 (nM)
Dopamine	53.8 ± 1.8	8.54 ± 0.03	2.9	55.7 ± 1.1	7.72 ± 0.03	19
	рКв	K _B (pM)	$\Delta p K_{\rm B}$	рКв	K _B (pM)	$\Delta p K_{\rm B}$
Spiperone	10.62 ± 0.25	24	$\textbf{-0.94} \pm 0.15$	11.27 ± 0.09	5.4	$\textbf{-0.33}\pm0.11$
	W1	$00A^{23.50}$ (<i>n</i> = 9	, 5)	F	$10A^{3.28}$ (<i>n</i> = 8,	4)
	E_{max}	pEC50	EC50 (nM)	Emax	pEC ₅₀	EC50 (nM)
Dopamine	59.8 ± 1.3	5.95 ± 0.04	1100	56.2 ± 1.4	6.84 ± 0.03	150
	pK_B	K _B (pM)	$\Delta p K_{\rm B}$	pК _В	$K_{B}\left(pM ight)$	$\Delta p K_{\rm B}$
Spiperone	8.71 ± 0.06	2000	-2.95 ± 0.12	10.69 ± 0.09	20	$\textbf{-0.87} \pm 0.12$
	F1	$10W^{3.28}$ (<i>n</i> = 5,	, 4)	W90L ^{2.60} / F110W ^{3.28} ($n = 5, 4$)		
	E_{max}	pEC50	EC50 (nM)	Emax	pEC ₅₀	EC50 (nM)
Dopamine	64.2 ± 3.2	7.11 ± 0.05	77	65.3 ± 3.3	6.56 ± 0.04	270
	pK_B	K _B (pM)	$\Delta p K_{\rm B}$	pК _В	$K_{B}\left(pM ight)$	$\Delta p K_{\rm B}$
Spiperone	10.45 ± 0.08	36	$\textbf{-0.90}\pm0.13$	10.13 ± 0.04	75	-1.22 ± 0.17
	V1	$11A^{3.29}$ (<i>n</i> = 10)	, 6)	V91A ²	. ⁶¹ /V111A ^{3.29} (<i>n</i>	= 8, 4)
	E_{max}	pEC ₅₀	EC50 (nM)	E_{max}	pEC ₅₀	EC50 (nM)
Dopamine	57.8 ± 1.0	7.69 ± 0.04	20	53.5 ± 1.6	8.81 ± 0.03	1.6
	рКв	K _B (pM)	рКв	рКв	K _B (pM)	$\Delta p K_B$
Spiperone	10.72 ± 0.15	19	-0.83 ± 0.12	10.53 ± 0.17	30	-1.03 ± 0.14
	V115 $A^{3.33}$ (<i>n</i> = 10, 6)			S12	$21K^{3.39}$ (<i>n</i> = 3, N	JD)
	E_{max}	pEC ₅₀	EC50 (nM)	E_{max}	pEC ₅₀	EC50 (nM)
Dopamine	57.2 ± 1.3	6.77 ± 0.02	170	NA ⁵	NA	NA
	рКв	K _B (pM)	$\Delta p K_{\rm B}$	рКв	K _B (pM)	$\Delta p K_{\rm B}$
Spiperone	10.62 ± 0.08	24	$\textbf{-0.93} \pm 0.18$	ND ⁶	ND	ND

Supplementary Table 3. Antagonist activities of spiperone against the wild-type (WT) and mutant dopamine 2 receptors.

	L1:	$23W^{3.41}$ (<i>n</i> = 10)	0, 6)	$S121K^{3.39}/L123W^{3.41}$ (<i>n</i> = 3, ND)		
	Emax	pEC ₅₀	EC50 (nM)	Emax	pEC50	EC50 (nM)
Dopamine	40.4 ± 3.3	9.09 ± 0.04	0.81	NA	NA	NA
	рКв	K _B (pM)	$\Delta p K_{\rm B}$	pK _B	K _B (pM)	ΔрКв
Spiperone	11.71 ±0.13	1.9	0.37 ± 0.16	ND	ND	ND
	I1	$83A^{45.51}$ (<i>n</i> = 9	, 5)	I18	$4A^{45.52}$ (<i>n</i> = 10	, 6)
	Emax	pEC50	EC50 (nM)	Emax	pEC50	EC50 (nM)
Dopamine	55.3 ± 1.0	8.16 ± 0.03	6.9	60.1 ± 1.0	5.93 ± 0.03	1200
	рКв	K _B (pM)	$\Delta p K_{\rm B}$	pКв	K _B (pM)	$\Delta p K_{\rm B}$
Spiperone	12.35 ±0.11	0.44	0.76 ± 0.11	9.73 ± 0.06	190	-1.83 ± 0.20
Risperidone	10.52 ± 0.09	30	0.47 ± 0.11	9.60 ± 0.04	250	$\textbf{-0.44} \pm 0.15$
	W	$386L^{6.48}$ (<i>n</i> = 8	3, 4)	T4	$12N^{7.39}$ (<i>n</i> = 9,	, 5)
	Emax	pEC ₅₀	EC50 (nM)	Emax	pEC50	EC50 (nM)
Dopamine	49.6 ± 2.1	5.08 ± 0.03	8300	56.4 ± 1.1	6.73 ± 0.03	180
	pК _в	K _B (pM)	$\Delta p K_B$	pК _В	K _B (pM)	$\Delta p K_{\rm B}$
Spiperone	NA	NA	NA	10.01 ± 0.05	98	-1.59 ± 0.15
	T ²	T412A ^{7.39} ($n = 9, 5$)				
	Emax	pEC ₅₀	EC ₅₀ (nM)		<	
Dopamine	56.5 ± 1.5	6.74 ± 0.04	180			
	рКв	K _B (pM)	$\Delta p K_{\rm B}$	1		
Spiperone	10.15 ±0.10	71	$\textbf{-1.45}\pm0.19$	1		

Data represent mean \pm SEM of the indicated numbers of independent experiments.

¹ (n = 16, 10) indicates that the experiments were repeated 16 and 10 times to determine the pEC₅₀ and pK_B values, respectively.

² E_{max} : %AP-TGF α release.

 3 EC $_{50}$ and K_B were calculated from the mean pEC_{50} and pK_B values, respectively.

 $^{4}\Delta pK_{B} = pK_{B(mutant)}$ - $pK_{B(WT)}$, which was calculated for each experiment performed in parallel.

⁵ NA: no detectable activity.

⁶ ND: not determined because of lack of detectable dopamine response.

-		0 1		
D ₂ R	D ₃ R	D ₄ R	5-HT _{2A} R	5-HT _{2C} R
W90 ^{2.60}	W85	L90	V130	L109
V91 ^{2.61}	V86	F91	S131	S110
L94 ^{2.64}	L89	S94	T134	A113
F110 ^{3.28}	F106	L111	W151	W130
V111 ^{3.29}	V107	M112	I152	I131
C182 ^{45.50}	C181	C185	C227	C207
I183 ^{45.51}	S182	R186	L228	V208
I184 ^{45.52}	I183	L187	L229	L209
D114 ^{3.32}	D110	D115	D155	D134
T412 ^{7.39}	T369	T434	V366	V354
Y416 ^{7.43}	Y373	Y438	Y370	Y358
V115 ^{3.33}	V111	V116	V156	V135
F389 ^{6.51}	F345	F410	F339	F327
C118 ^{3.36}	C114	C119	S159	S138
T119 ^{3.37}	T115	T120	T160	T139
I122 ^{3.40}	I118	I123	I163	I142
S197 ^{5.46}	S196	S200	S242	A222
F198 ^{5.47}	F197	F201	F243	F223
F382 ^{6.44}	F338	F403	F332	F320
W386 ^{6.48}	W342	W407	W336	W324
F390 ^{6.52}	F346	F411	F340	F328

Supplementary Table 4. Residues within 4.5 Å from spiperone in D_2R_{spi} and their equivalents in the related aminergic receptors.

Oligonucleotides primer	Forward	Reverse		
D ₂ R_W90L	ATGCCCCTGGTTGTCTACCTGGAGGTG	GACAACCAGGGGCATGACCAGTGTGGC		
D ₂ R_V91A	CCCTGGGCCGTCTACCTGGAGGTGGTA	GTAGACGGCCCAGGGCATGACCAGTGT		
D ₂ R_L94A	GTCTACGCCGAGGTGGTAGGTGAGTGG	CACCTCGGCGTAGACAACCCAGGGCAT		
D ₂ R_W100A	GGTGAGGCCAAATTCAGCAGGATTCAC	GAATTTGGCCTCACCTACCACCTCCAG		
D ₂ R_F110A	GACATCGCCGTCACTCTGGACGTCATG	AGTGACGGCGATGTCACAGTGAATCCT		
D ₂ R_F110W	GACATCTGGGTCACTCTGGACGTCATGATGTGC	AGTGACCCAGATGTCACAGTGAATCCTGCTGAA		
D ₂ R_V111A	ATCTTCGCCACTCTGGACGTCATGATG	CAGAGTGGCGAAGATGTCACAGTGAAT		
D ₂ R_V115A	CTGGACGCCATGATGTGCACGGCGAGC	CATCATGGCGTCCAGAGTGACGAAGAT		
D_2R_S121K	ACGGCGAAGATCCTGAACTTGTGTGCCATCAGC	CAGGATCTTCGCCGTGCACATCATGACGTCCAG		
D ₂ R_L123W	AGCATCTGGAACTTGTGTGCCATCAGCATCGAC	CAAGTTCCAGATGCTCGCCGTGCACATCATGAC		
D ₂ R_S121K/L123W	ACGGCGAAGATCTGGAACTTGTGTGCCATCAGCATCGAC	CAAGTTCCAGATCTTCGCCGTGCACATCATGACGTCCAG		
D ₂ R_I183A	GAGTGCGCCATTGCCAACCCGGCCTTC	GGCAATGGCGCACTCGTTCTGGTCTGC		
D ₂ R_I184A	TGCATCGCCGCCAACCCGGCCTTCGTG	GTTGGCGGCGATGCACTCGTTCTGGTC		
D ₂ R_W386L	ATCTGCCTGCTGCCCTTCTTCATCACA	GGGCAGCAGGCAGATGATGAACACGCC		
D ₂ R_T412N	GCCTTCAACTGGCTGGGCTATGTCAAC	CAGCCAGTTGAAGGCGCTGTACAGGAC		
D ₂ R_T412A	GCCTTCGCCTGGCTGGGCTATGTCAAC	CAGCCAGGCGAAGGCGCTGTACAGGAC		

Supplementary Table 5. Primers for site-directed mutagenesis