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I. THE SIGN OF WINDING NUMBER
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FIG. S1. Comparison of the field distributions for opposite winding numbers of the Dirac-vortex

PCF. The intensity patterns localize on different strut joints, which are the two sub-lattices in a

honeycomb lattice.
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II. DISCRETE MODULATION USING FOUR STRUT THICKNESSES
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Discrete Dirac-vortex fiber (w=+1, four strut thicknesses) Fiber dispersion (relative frequency) 
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FIG. S2. Discrete Dirac-vortex fiber constructed by four strut thicknesses, instead of four tubes

in Fig. 5 in the main-text. The cleaner band diagram is due to the lack of extra strut thicknesses

from the tube construction of the stack-and-draw technique.
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III. HIGH-FREQUENCY DIRAC POINT
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FIG. S3. Band structure of the honeycomb primitive cell at kza/2π = 3. The two frequency-isolated

Dirac points correspond to the two topological dispersions in Fig. 6(b) in main text.
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IV. DESIGN TOLERANCE

Unlike the other topological waveguides, the Dirac-vortex fiber does not support one-way
propagation nor sharp corner turning. The stability of the Dirac-vortex PCF lies in the
design itself. First of all, this is essentially a coreless fiber [1] where the defect is not created
by adding nor removing materials locally. The topological defect of the vortex is formed
by gently perturbing the whole lattice globally, so that small local fabrication imperfection
cannot unwind the vortex nor the vortex mode. Secondly, it is well known that the fiber
drawing process will smoothen all the sharp edges, which we have not considered for the
120◦ corners between the neighboring two struts in the design. If we allow the rounded
corners in the modeling [2, 3], the thickness difference between the struts decreases, so
does the modulation amplitude responsible for the gap opening. Consequently, although
the topological gap shrinks as the curvature radius increases, it remains open for typical
curvature values, as show in Fig. S4(a). Structure in Fig. S4(b) is a discrete vortex fiber (from
four-tube construction) with curvature radius r′ = 0.3a, obtained by adding extra material to
the design in Fig. 5(b) in the main-text. The corresponding dispersion and loss performance
are shown in Fig. S4(c) and Fig. S4(d).
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FIG. S4. Design tolerance of structural curvature (r′) common in fiber drawing process. (a) Size

of common Dirac-vortex bandgap, for all ϕ at kza/2π = 2, as a function of the curvature radius

of corners. Inset: supercell with r′ = 0.3a and t0 = 0.16a. (b) Fiber structure with r′ = 0.3a

by adding corner material to the discrete fiber in Fig. 5(b) in the main-text. (c) Band diagram

with a frequency reference to the original nodal-line. The dispersion is similar to that in Fig. 5(c).

Inset shows the mode profile (ẑ ·Re[E∗ ×H]). (d) Confinement loss of the topological mode. The

wavelength range corresponds to the wave vector in (c) for kza/2π from 1.6 to 4.2.
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V. OPERATION ABOVE LIGHT LINE

One key feature of PCFs is the ability to support bandgaps above the light line for hollow-
core modes. The topological PCF can operate above the light line as well. In Fig. S5, we pick
a particular set of geometric parameters (t0 = 0.12a, ∆t = 0.01a) to push the topological
bandgap, and the topological guiding mode, into the light cone. We also calculate the modal
concentration factor in air for the topological mode. The maximum air fraction is about 75%
for this design, where the effective modal index neff < 1. In order to have more bandwidth
above the light line, we need to improve the frequency isolation of the nodal line degeneracy
for low frequencies, so the project bulk bands can remain gapped. This should be possible
by increasing the refractive index of glass or explore a different lattice structure.
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FIG. S5. Topological fiber mode above light line. (a) Band diagram of a discrete Dirac-vortex fiber

with t0 = 0.12a and ∆t = 0.01a (the discrete version of four tubes). (b) Dispersion of absolute

frequency near the light line (c) Concentration of the intensity of the mode in air. Insets: mode

intensity at kza/2π = 1.74 and 2.5.
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