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Abstract

Summary

Background. Health disparities have emerged with the COVID-19 epidemic be-
cause the risk of exposure to infection and the prevalence of risk factors for
severe outcomes given infection vary within and between populations. How-
ever, estimated epidemic quantities such as rates of severe illness and death, the
case fatality rate (CFR), and infection fatality rate (IFR), are often expressed
in terms of aggregated population-level estimates due to the lack of epidemio-
logical data at the refined subpopulation level. For public health policy makers
to better address the pandemic, stratified estimates are necessary to investigate
the potential outcomes of policy scenarios targeting specific subpopulations.

Methods. We develop a framework for using available data on the prevalence
of COVID-19 risk factors (age, comorbidities, BMI, smoking status) in sub-
populations, and epidemic dynamics at the population level and stratified by
age, to estimate subpopulation-stratified probabilities of severe illness and the
CFR (as deaths over observed infections) and IFR (as deaths over estimated
total infections) across risk profiles representing all combinations of risk factors
including age, comorbidities, obesity class, and smoking status. A dynamic epi-
demic model is integrated with a relative risk model to produce time-varying
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subpopulation-stratified estimates. The integrated model is used to analyze
dynamic outcomes and parameters by population and subpopulation, and to
simulate alternate policy scenarios that protect specific at-risk subpopulations
or modify the population-wide transmission rate. The model is calibrated to
data from the Los Angeles County population during the period March 1 -
October 15 2020.

Findings. We estimate a rate of 0.23 (95% CI: 0.13,0.33) of infections observed
before April 15, which increased over the epidemic course to 0.41 (0.11,0.69).
Overall population-average IFR(t) estimates for LAC peaked at 0.77% (0.38%,1.15%)
on May 15 and decreased to 0.55% (0.24%,0.90%) by October 15. The population-
average IFR(t) stratified by age group varied extensively across subprofiles rep-
resenting each combination of the additional risk factors considered (comorbidi-
ties, BMI, smoking). We found median IFRs ranging from 0.009%-0.04% in the
youngest age group (0-19), from 0.1%-1.8% for those aged 20-44, 0.36%-4.3%
for those aged 45-64, and 1.02%-5.42% for those aged 65+. In the group aged
65+ for which the rate of unobserved infections is likely much lower, we find
median CFRs in the range 4.4%-23.45%. The initial societal lockdown period
avoided overwhelming healthcare capacity and greatly reduced the observed
death count. In comparative scenario analysis, alternative policies in which the
population-wide transmission rate is reduced to a moderate and sustainable level
of non-pharmaceutical interventions (NPIs) would not have been sufficient to
avoid overwhelming healthcare capacity, and additionally would have exceeded
the observed death count. Combining the moderate NPI policy with stringent
protection of the at-risk subpopulation of individuals 65+ would have resulted
in a death count similar to observed levels, but hospital counts would have
approached capacity limits.

Interpretation. The risk of severe illness and death of COVID-19 varies tremen-
dously across subpopulations and over time, suggesting that it is inappropriate
to summarize epidemiological parameters for the entire population and epi-
demic time period. This includes variation not only across age groups, but also
within age categories combined with other risk factors analyzed in this study
(comorbidities, obesity status, smoking). In the policy analysis accounting for
differences in IFR across risk groups in comparing the control of infections and
protection of higher risk groups, we find that the strict initial lockdown period
in LAC was effective because it both reduced overall transmission and protected
individuals at greater risk, resulting in preventing both healthcare overload and
deaths. While similar numbers of deaths as observed in LAC could have been
achieved with a more moderate NPI policy combined with greater protection
of individuals 65+, this would have come at the expense of overwhelming the
healthcare system. In anticipation of a continued rise in cases in LAC this win-
ter, policy makers need to consider the trade offs of various policy options on the
numbers of the overall population that may become infected, severely ill, and
that die when considering policies targeted at subpopulations at greatest risk of
transmitting infection and at greatest risk for developing severe outcomes.
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Research in Context

Evidence Before This Study

For public health policy makers to address the COVID-19 pandemic, strat-
ified estimates are necessary to investigate the potential outcomes of policy
scenarios targeting specific subpopulations. However, estimated epidemic quan-
tities such as rates of severe illness and death, the case fatality rate (CFR) and
the infection fatality rate (IFR) have been expressed in terms of aggregated
population-level estimates or estimates by age groups alone, due to the lack of
epidemiological data at the refined subpopulation level. We searched PubMed
for articles published in English from inception to November 25, 2020 with the
keywords “covid-19” AND “ifr” OR “infection fatality risk” OR “infection fatal-
ity rate” AND “age” AND “obesity” OR “comorbidity” OR “smoking”, which
identified 31 results. We found a few estimates of odds ratios and hazard ra-
tios for each potential risk factor controlling for other risk factors, but found
no estimates of case fatality rate or infection fatality rate by age and another
moderator.

Added Value of This Study

Conventionally, estimates of risk effects and outcomes given combinations of
conditions for refined subpopulations are obtained through access to individual-
level data and the application of multiple regression techniques. At the time of
this study, individual-level COVID-19 data were not widely available nor sam-
pled in an appropriate manner to avoid substantial bias. In the absence of access
to appropriate individual-level data, we develop a framework for using available
data on the prevalence of COVID-19 risk factors (age, comorbidities, BMI,
smoking status) in subpopulations, and epidemic dynamics at the population-
level and stratified by age, to estimate subpopulation-stratified probabilities
of severe illness and the CFR and IFR (accounting for estimated total infec-
tions) across multiple combinations of risk factors. A dynamic epidemic model
is integrated with a relative risk modeling approach to produce time-varying
subpopulation-stratified estimates. The integrated model allows analyzing dy-
namic outcomes and parameters by population and subpopulation, and simu-
lating alternate policy scenarios that protect specific at-risk subpopulations and
modify the population-wide transmission rate. The model is calibrated to data
from Los Angeles County from the period March 1 - October 15, 2020.

Implications of All the Available Evidence

Results highlight the value of strata-specific estimates in anticipating dispar-
ities in the impact of the epidemic and the efficacy of targeted subpopulation-
level policy interventions. The risk of severe illness given infection and the CFR
and IFR vary tremendously across subgroups within a population and have
changed over time, suggesting that it may be inappropriate to reduce the vari-
ation in risk to static, single summary measures for the entire population. This
includes variation not only across age groups, but also within age categories
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combined with other risk factors analyzed in this study (comorbidities, obesity
status, smoking). The fact that the risk of severe illness and the CFR and
IFR vary tremendously across subpopulations raises the question of whether
protecting certain subpopulations would have achieved similar results in infec-
tions, hospitalizations, and deaths as policies applied population-wide to reduce
transmission, including the initial lockdown period from March 19 to May 8.
We investigated this question through counter-factual simulation, comparing
observed trends with alternate policy scenarios modifying the population-wide
transmission rate or protecting specific at-risk subpopulations. We find the strict
initial lockdown period in LAC was effective because it both reduced overall
transmission and protected individuals at greater risk, preventing both health-
care overload and deaths. While similar numbers of deaths as observed in LAC
could have been achieved while avoiding initial societal lockdown through the
implementation of a more moderate policy with regard to transmission reduc-
tion through non-pharmaceutical interventions (NPIs) combined with greater
protection of individuals 65+, this would have come at the potential expense of
overwhelming the healthcare system. These results illustrate the value in policy
analysis of a reproducible model-based method for producing subpopulation-
level disease severity and IFR estimates without access to individual data, which
can be applied in other locations and policy settings such as the evaluation of
vaccination policy focused on targeting at-risk sub-groups.

1. Introduction

Health disparities have emerged with the COVID-19 epidemic because the
risk of exposure to infection and the prevalence of risk factors for severe out-
comes given infection vary within and between populations and over time [1, 2,
3, 4, 5, 6, 7]. For public health policy makers to better address the pandemic,5

models reporting stratified estimates are necessary to investigate the potential
outcomes of policy scenarios targeting specific subpopulations. However, esti-
mated epidemic quantities such as rates of severe illness and death, the case
fatality rate (CFR), and the infection fatality rate (IFR) are often expressed
in terms of aggregated population-level estimates or by age group alone due10

to the lack of epidemiological data at the refined subpopulation level [8, 9, 10].
While data may be available for single risk factor strata such as by age [11], data
on subpopulations representing individuals with combinations of risk factors are
not reported or available. Conventionally, estimates of risk effects and outcomes
given combinations of conditions are obtained through access to individual-level15

data and the application of multiple regression techniques [12, 5]. At the time
of this study, individual-level COVID-19 data were not widely available nor
sampled in an appropriate manner to avoid substantial bias [13].

In this paper we develop a model that produces stratified estimates of illness
severity and death for subpopulations representing individuals with combina-20

tions of risk factors from available dynamic epidemiological data at the aggre-
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gated population level [11]. In the absence of access to individual-level data, we
apply a statistical technique developed for conditional analysis of marginal sum-
mary statistics [14] to obtain estimates of the conditional effects of combinations
of risk factors for COVID-19 on the probability of severe illness and death us-25

ing data from published studies reporting the marginal effects of individual risk
factors [3, 2]. We consider the risk factors age, existing comorbidities, obesity,
and smoking. Separately, we develop a stochastic epidemic model that esti-
mates time-varying probabilities of hospitalization, ICU admission, and death
given infection at the population level. We integrate the conditional risk effects30

and the population-level probabilities, together with available dynamic data on
the prevalence of infections stratified by age, in a framework that estimates the
probability of advancing to each stage of disease, CFRs, and IFRs, stratified
across all plausible combinations of the modeled risk factors.

The integrated model allows the analysis of dynamic outcomes and parame-35

ters by population and subpopulation. Focusing on Los Angeles County (LAC),
the most populous and one of the most diverse counties in the United States,
we analyze the estimated overall and risk-stratified time-varying illness sever-
ity probabilities, CFRs, and IFRs in relation to the epidemic timecourse and
implemented policy decisions. We focus on the time period March 1 through40

October 15, marking the end of what we characterize as a second wave of the
epidemic and before a third wave of rising infection began. Through simulation,
we compare observed trends with alternate policy scenarios protecting specific
at-risk subpopulations or modifying the level of non-pharmaceutical intervention
(NPIs) implementation. Results highlight the value of strata-specific estimates45

in understanding disparities in the impact of the epidemic, and the efficacy of
targeted subpopulation-level policy interventions in LAC.

2. Methods

We first developed a single-population stochastic dynamic epidemic model
that accounts for observed and unobserved transmission of COVID-19 and tra-50

jectories through the healthcare system with hospitalization, ICU admission,
and death. Using Bayesian methods for parameter estimation and uncertainty
quantification, we estimated the population-average time-varying probabilities
of transitions between the infected, hospitalized, ICU, mechanical ventilation,
death, and recovery compartments, and the resulting population-average time-55

varying case fatality rate (CFR, defined as deaths over observed infections) and
infection fatality rate (IFR, defined as deaths over all infections) (Section 2.1).
In parallel, we used available data from published studies on the marginal ef-
fects of individual risk factors (age, existing comorbidities, obesity, smoking) to
calculate conditional risk effects estimates for three models: (1) hospitalization60

given infection, (2) ICU admission given hospitalization, and (3) death given
hospitalization. The conditional risk estimates were integrated with the corre-
sponding probability estimates from the dynamic epidemic model to create a
risk model (Section 2.2). The risk model enables us to estimate, stratified across
39 combinations of modeled risk factors (i.e. risk profiles), the probability of65
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each stage of disease given infection within LAC. Furthermore, we integrate
the time-varying stratified probability of each stage of disease with the time-
series of observed infections, estimated total infections including observed and
unobserved, deaths, together with available data on the prevalence of infections
stratified by age, to estimate the risk profile-stratified CFR and IFR across time.70

2.1. Epidemic model

Figure 1: Epidemic model structure and key estimated parameters. Model compart-
ments with available data are represented as square compartments

.We develop a model of COVID-19 transmission in a single, homogeneously-
mixed population divided into nine compartments representing different disease
states (Figure 1). Compartments relating to the transmission of infection are the
widely-used susceptible, exposed (latent but not yet infectious), infectious and75

observed (I), and recovered classes. We also include a compartment representing
unobserved and/or unconfirmed infections (A). We model healthcare utilization
and outcome at a more granular level by including compartments representing
individuals that are in hospital (H), in ICU care (Q), undergoing mechanical
ventilation support (V ), and that die (D). Each individual can only be in one80

state at each point in time with the exception of the mechanical ventilation
support class, which is viewed as a proxy with error for the in-ICU class. We
assume that new infections are created only by individuals in the infected classes
(I and A), and that individuals in all other compartments, including in hospital,
do not contribute to transmission.85

To model this dynamical state system we employ a discrete-time approxima-
tion to the corresponding stochastic continuous-time Markov process in which
transitions of individuals between disease stages are seen as stochastic move-
ments between the corresponding population compartments with random tran-
sition rates [15, 16]. This model keeps track of the number of individuals in90
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each compartment and the flows of individuals transitioning between compart-
ments through a set of coupled discrete-time multinomial counting processes
with transmission rates defined by Poisson processes. To simulate from this
system we employ a Euler numerical scheme for Markov process models [15].
For more details see appendix pp 1-6.95

The basic reproductive number, R0, defined as the mean number of sec-
ondary cases generated by a typical infectious individual on each day in a full
susceptible population [17], is a function of model parameters including the
transmission rate β(t) [18] (appendix pp 7-8), defined as the average number of
individuals that an infected individual will infect per day. We introduce an ad-100

ditional time-varying parameter, µ(t), representing modification to the original
β0 and equivalently R0, which we call the transmission reduction factor. The
transmission reduction factor allows us to estimate changes in the transmission
rate over time and to explicitly model changes in the transmission rate to simu-
late different policy scenarios. We define the time-varying effective reproductive105

number as R(t) = µ(t)R0, i.e. the initial value of the basic reproductive number
at the beginning of the pandemic period before interventions multiplied by the
time-varying transmission reduction factor (appendix p 6).

2.1.1. Parameter Estimation

All transition rate parameters (e.g., the time between exposure and infec-110

tiousness) are modeled as fixed values taken directly from published literature
(appendix p 3). The model has six unknown parameters, θ = {β(t), r(t), αt, κt, δt, pV },
which we estimate using Approximate Bayesian Computation (ABC) techniques
using multiple data sources to specify informative prior parameter distribu-
tions. The prior distribution for R0 is informed by values estimated from other115

published studies on COVID-19 [19, 20]. We use geolocation trace data from
smartphones, i.e. mobility data, to inform both the magnitude and the timing
of inflection points in the transmission reduction factor µ(t). We incorporate
data for LAC provided by Unacast [21] on reductions in distances travelled and
encounter rates [22]. The prior distribution for the fraction of observed cases120

out of all infections, r(t), was informed by results of a CDC study reporting
seroprevalence surveys across 10 communities in March - early May for dates
within that time period, and was allowed to vary more widely for dates beyond
that time period [23] (appendix pp 8-11).

Changes in the probabilities of each disease stage over time are determined by125

the changing risk profile of the infected population. The only available infection
data for LAC by risk factor was for age [11]. We therefore used the distribution
of infections by age to inform the timescale and shape of the linear function
modeling αt, κt, and δt over time. Prior distributions for each probability on
key dates were modeled as normal distributions with means informed by the130

ratios of the observed numbers of infections, hospitalizations, and deaths in
LAC (appendix p 11).

The model was fit to the daily and cumulative count of infections (observed),
hospitalizations, individuals undergoing ventilation support, and deaths in LAC
from a data set from the LACDPH, updated daily by the COVID-19 Outbreak135
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Data Coordination Team [11](appendix p 12). Using ABC on multiple parame-
ters simultaneously produces joint posterior estimates over all parameters. The
CFR(t) and IFR(t) were calculated as estimated deaths over estimated cumu-
lative observed infections or estimated cumulative total infections, respectively.
To provide uncertainty estimates, we simulate trajectories with parameter val-140

ues coming from the joint posterior distribution and aggregate simulations from
1000 jointly estimated parameter sets. For each parameter set, we aggregate
simulations for 100 stochastic epidemic model realizations. We pool together
all simulations and report their median and 95% credible intervals (CI) as the
2.5th/97.5th quantiles of realizations. This procedure quantifies uncertainty145

from two sources: variability due to joint estimated parameter values, and vari-
ability due to the stochastic variability between model runs with the same pa-
rameter values.

2.2. Risk model

Using studies reporting the risk of severe COVID-19 outcomes given indi-150

vidual risk factors [3, 2], we construct a logistic regression model to estimate
the probability of infection for individuals with combinations of risk factors.
Specifically, we estimate three models for: (1) the probability that an individ-
ual is admitted to hospital given acquired (observed) infection Pt(H|I), (2) the
probability the individual is admitted to the ICU given admittance to hospital155

Pt(Q|H), and (3) the probability that the individual dies given being admitted
to the ICU Pt(D|Q). These probabilities correspond to the epidemic model es-
timated parameters αt, κt, and δt, respectively. Each of these regression models
includes indicator variables for the presence or absence of specific risk factors.

The risk factors included in our analysis are age, body mass index (BMI),160

smoking status, and any comorbidity. The comorbidities included are diabetes,
hypertension, chronic obstructive pulmonary disease (COPD), hepatitis B, coro-
nary heart disease, stroke, cancer and chronic kidney disease. We modeled age
and BMI as an ordinal variable and assume an additive effect of both age and
BMI on the three outcomes. Age was categorized within four groups: 0 − 19,165

20 − 44, 45 − 64, and 65+, and BMI was categorized in three groups accord-
ing to obesity classes: Class 1 (no obesity) BMI < 30 kg

m2 ; Class 2 (obesity),

30 ≤ BMI ≤ 40 kg
m2 ; Class 3 (severe obesity), BMI > 40 kg

m2 . Any comorbidity
and smoking status were modeled as binary variables.

We estimate the conditional risk effects corresponding to each factor for each170

risk model using marginal effects estimates available from reported studies and
a method called the joint analysis of marginal summary statistics (JAM) [14].
JAM uses two pieces of information: (i) the marginal effect estimates between
risk factors and the outcome and (ii) a reference correlation structure between
the risk factors. For information informing (i) we obtain the marginal log RR be-175

tween individual risk factors and COVID-19 illness severity from peer-reviewed
published COVID-19 studies [3, 2] (left column of Table 2). For (ii), we use
data from The National Health and Nutrition Examination Survey (NHANES)
from 2017-2018 [24] (details in appendix pp 13-14).
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To construct a model to estimate Pt(H|I), Pt(Q|H), and Pt(D|Q), we com-180

bine in a logistic model the 39 risk profiles representing all plausible linear
combinations of the risk factors specified in a mean centered design matrix,
X; and their corresponding conditional log RR obtained from JAM, ψ̂; with
specified intercepts set to the estimated probabilities from the epidemic model
(Section 2.1) for α̂t, κ̂t, δ̂t, respectively (appendix pp 16-17). For example, to185

estimate the vector of probabilities of hospitalization given infection for all risk

profiles we use ̂Pt(H|I) = expit(α̂t +Xψ̂). The reference profile are individuals

age 0− 19 with no comorbidity, BMI < 30 kg
m2 , and non-smoking. The specifi-

cation of the frequency of each risk profile at each stage of disease for the mean
centered design matrix is obtained from available LAC data on the prevalence190

of each age group in infections [11] and an estimate of the frequency of each risk
profile within the overall population based on prevalence data for individual
risk factors [25, 26], updated at each stage of disease (appendix pp 14-16). We
report estimates at three time points: May 15, August 1, and October 15, 2020.

2.3. Calculating Risk Profile Stratified CFR(t) and IFR(t)195

To calculate the time-varying CFR(t) and IFR(t) for each risk profile, the
estimated frequency of each profile in the infected population and in the deceased
population (obtained from the risk model) are multiplied by each value of the
estimated cumulative number of observed infections (I) or total infections (A),
and deaths (D), respectively. We find the CFR(t) and IFR(t) for each model200

realization as the number of deaths over observed infections, and number of
deaths over total infections, respectively. Repeating across the 1000 model
realizations achieves the 95% CI (appendix pp 18-19).

2.4. Scenario Analysis

We implement scenarios modeling the protection of at-risk populations and205

changes to the population-wide transmission rate at different times. We increase
or decrease the value of the reproductive number R(t) to reflect different levels
of non-pharmaceutical interventions (NPIs), which could include measures such
as physical distancing and/or mask adherence. Specifically, we model three lev-
els of population-wide transmission rates: (1) NPIs=Observed implements the210

observed (epidemic model-estimated) R(t) throughout the epidemic in LAC.(2)
NPIs=Moderate implements an R(t) equal to the estimated maximum value
reached in LAC after the initial lockdown restrictions were eased (Section 3.1).
Although this maximum value for R(t) was reached on May 15, in this sce-
nario we decrease R(t) from the initial R0 to this maximum R(t) value between215

March 12 and March 27 to reflect no community lockdown implemented. (3)
NPIs=None implements R(t) = R0 throughout the time interval March - Oc-
tober 2020, representing a baseline scenario in which no actions or behaviors
reduce the native R0. The trend of R(t) modeled for the three levels is shown
in Figure 4a.220

To simulate scenarios protecting at-risk populations we focus on the shield-
ing of individuals aged 65+ and calculate values of the probabilities of each
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stage of disease given infection (αProtect
t , κProtect

t , and δProtect
t ) over time with

the subpopulation of individuals 65+ removed. We isolate a fraction of individ-
uals 65+ above the observed prevalence of this subpopulation in the infected225

population. We model three levels: (1) Protect=Observed models the trend in
the probabilities of severe illness estimated by the epidemic model. We call this
the “Protect=Observed” rather then “Protect=None” level because it follows
the natural behaviorally-adapted reduction of individuals 65+ in the infected
population (see Section ??). (2) Protect=High isolates all individuals 65+, ap-230

proximately 11% of the LAC population, from infection and subsequent stages
of disease. We implement this scenario by calculating the population-average
αProtect.100
t , κProtect.100

t , and δProtect.100
t with individuals 65+ removed along

the same timeline as the observed trend in αt, κt, and δt. The frequency of each
risk profile in infections is made to reflect the age distribution over infections as235

observed in LAC data (following the approach described in Section 2.2), renor-
malized after profiles including individuals 65+ are removed. With the renor-
malized frequency distribution of each profile over infections, we use the risk
model (Section 2.2) to find the population-average adjusted values. The time-
line follows that for the observed trend in αt, κt, and δt. (3) Protect=Moderate240

isolates 50% of individuals 65+ from community transmission and subsequent
stages of disease from the observed distribution of each age group over infec-
tions on each date and calculates the population-average adjusted αProtect.50

t ,
κProtect.50
t , and δProtect.50

t , following the approach for the Protect=High sce-
nario. The trend of the probabilities of each stage of disease given infection245

modeled for the three levels is shown in Figure 4b (full details in appendix pp
19-21).

We implement nine scenarios representing all combinations of the three NPI
and three Protect settings. For each scenario, we simulate the model with the
estimated parameter values for R0, r(t), pV , and starting time t0 with the250

remaining parameters implemented as described above.

2.5. Role of the funding source

Funders had no role in study design, data collection, data analysis, data
interpretation, writing of the report, or the decision to submit for publication.
The corresponding author had full access to all of the data and the final respon-255

sibility to submit for publication.

3. Results

3.1. Model estimates and epidemic trends in LAC

Model fits. Figure 2 summarizes the epidemic model fit with COVID-19 data
for LAC from March 1 through October 15 2020 for all disease states across mul-260

tiple views: New cases, representing new daily incidence; the current number
in a compartment at a specific date, relevant for understanding current preva-
lence rates and comparing with healthcare capacity limitations; and cumulative
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Figure 2: Summary of the epidemic model fit with COVID-19 data for Los Angeles,
for all state variables, across multiple views: New cases, representing new daily inci-
dence, current number in a compartment at a specific date, and cumulative counts.
Available observed data (for new and cumulative counts)are plotted as black dots.
Estimates are shown as the median number in compartments over time, with the 50%
(darker) and 95% (lighter) CI.

counts until a specific date. Observed data for available compartments are plot-
ted as black dots. The figure demonstrates that good model fits are achieved in265

all compartments across time.

Epidemic timecourse in LAC. The LA City Mayor’s Office distinguishes be-
tween three stages of the COVID-19 epidemic in LA City and County relating
to policy response measures implemented following the orders of the County
Health Officer: Stage I, March 19 - May 7: the initial shutdown; Stage II, May270

8 - June 11: the first steps towards reopening; Stage III, June 12 - October 15
(and beyond): greater reopening followed by “modifications” closing higher risk
settings (including bars and indoor seating in restaurants) [27, 28]. The start
of the school year on August 18, although virtual, marked a change in activity
level and is also depicted. We characterize three waves of the epidemic occur-275

ring across these stages: a first wave, March 1 - May 6, occurring between Stage
I and the beginning of Stage II and peaking on April 1; a second and much
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Figure 3: Timeseries of model-estimated parameters and compartmental variables
relative to COVID-19 policy decisions in LAC. Model-estimated median curves are
plotted along with the 50th% (dark shading) and 95% CI (light shading). Data is not
available for current numbers but is plotted for the variable available (new deaths).
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larger wave, May 7 - October 14, beginning with Stage II and peaking during
Stage III on July 30; and a third wave that began on October 15 and which is
outside the scope of this paper. Figures 3a-3f characterize the epidemic course280

and estimated model parameters relative to these policy stages and epidemic
waves. A full time course of the epidemic and policy decisions in LAC can be
found at [29].

We estimate that for most of Stage I, the overall observation rate was r(t) =
0.23 (95% CI: (0.13,0.33) of all infections observed. Beginning in mid-April, the285

observation rate began to steadily increase until levelling off at a value of r(t)
= 0.41 (0.11,0.69) by August 15. In the initial period of the outbreak before
public behavior began to change and policy interventions were implemented,
we estimate the basic reproduction number was R0=3.675 (3.627,3.729). Dur-
ing the period from March 12 to March 27, beginning just before Stage I was290

implemented, we estimate a reduction to an R(t) of 0.859 (0.758,0.947). The
corresponding reduction in transmission led to a levelling off at 30 127 (39 039,
58 842) estimated current total infections on April 1 and subsequent decrease
until May 6, followed by hospitalizations, ICU admissions, and deaths. No-
tably, R(t) began to rise again following increasing mobility behavior on April295

27, almost two weeks before the Stage II reopening policy was implemented,
portending the increase in infections to follow.

Throughout Stage II and the beginning of Stage III, we estimate an in-
creasing trend in R(t), reaching 1.264 (1.052,1.378) around the time that the
“modifications” (re-closures) were implemented at the beginning of July. The300

increasing R(t) during this period was followed by a second exponential growth
phase in infections, hospitalizations, ICU admissions, and deaths. R(t) began to
decrease following the implementation of the “modifications,” and by the start
of the school year in mid-August (virtually) had returned to the Stage I value
where it plateaued until a new rise at the beginning of October. Estimated305

current total infections continued to increase until a peak of 93 720 (34 404,
184 084) on July 30, reflecting the expected delay between reductions in R(t)
and the infection rate. Current total infections followed a decreasing trend until
October 15, marking the beginning the third wave of the epidemic. Hospitaliza-
tions and ICU admissions followed the infection rate and reached much larger310

second peaks in late July before decreasing again until reaching new minimums
in mid-October. Importantly, even at upper 95%CI of the peak, the current
census of cases in hospital, ICU, and undergoing ventilation support remain
well below the capacity limits of approximately 4 000 hospital beds and 2 245
ICU beds in LAC [11].315

Although current and new hospitalizations and ICU admissions reached lev-
els during the second wave of more than double that of the first wave, new
deaths in the second wave only marginally surpassed values in the first, and the
rate of all three decreased relative to increasing infections. We identify three
phases of the probabilities of severe illness reflecting this behavior: the highest320

values observed during an initial phase from the beginning of the epidemic until
May 1, a decreasing trend between May 1 and August 1, and stabilized reduced
values following August 1. Specifically, we estimate that between May 1 and
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Table 1: Profile-stratified Pt(H|I), Pt(Q|H), and Pt(D|Q): Risk profiles (charac-
terized by unique combination of age group, BMI range, smoking status, and any
comorbidity), risk group (1-5), model-estimated population prevalence, the frequency
of each profile in the infected population, and the median probability of hospitaliza-
tion given infection, ICU admission given hospitalization, and death given admission
to the ICU on May 15, August 1, and October 15 2020. Only profiles with a population
prevalence > 1% are shown.

August 1, the population-average probability of hospitalization given infection
αt decreased from 0.138 (0.125,0.15) to 0.048 (0.04,0.055); the probability of325

ICU admission given hospitalization κt decreased from 0.597 (0.593,0.603) to
0.543 (0.537,0.549); and the probability of death given ICU admission δt de-
creased from 0.561 (0.557,0.567) to 0.503 (0.49,0.52). The population-average
CFR(t) and IFR(t) followed the same trend; we estimate the CFR(t) was 0.0243
(0.021,0.028) on April 15 (corresponding to the first phase values for αt, κt, and330

δt), reached a peak on May 15 of 0.0342 (0.030,0.039), and had dropped to an
almost-stable value of 0.0237 (0.02,0.0292) by August 1 (representing the second
phase of values for αt, κt, and δt), although a slight downward trend still con-
tinued until a value of 0.0211 (0.0176,0.0251) on October 15. The IFR(t) was
0.0055 (0.0028,0.0082) on April 15, peaked at 0.0077 (0.0038,0.0115) on May335

15, decreased to 0.0055 (0.0024,0.0090) by August 1 and 0.0051 (0.0023,0.0078)
by October 15.

3.2. Risk-stratified probabilities of severe illness and death for LAC

Table 2 displays the marginal relative risks (RR) extracted from the litera-
ture (left column) and conditional RR estimated by the risk model for each risk340

factor considered by our model on the rates of hospitalization given infection,
(H|I), ICU admission given hospitalization, (Q|H), and death given ICU ad-
mission, (D|Q). We find that the independent effect of age is stronger than from
having any comorbidities. The independent effect of comorbidities and obesity
attenuate with increasing severity of disease, while that of age and smoking345

increase.
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Risk Factors Marginal RR (95% CI) Conditional RR (95% CI)

(H|I)
Ordinal Age 2.11 (1.88, 2.37) 1.7 (0.67, 4.28)
Ordinal BMI 2.98 (2.61, 3.39) 1.82 (1.06, 3.15)
Smoker 1.40 (0.90, 2.17) 1.76 (0.21, 14.52)
Any comorbidity 3.18 (2.42, 4.18) 1.50 (0.59, 3.84)

(Q|H)
Ordinal Age 1.71 (1.40, 2.08) 1.54 (1.23, 1.92)
Ordinal BMI 1.01 (0.86, 1.18) 1.05 (0.65, 1.69)
Smoker 1.71 (0.87, 3.38) 1.61 (1.45, 1.79)
Any comorbidity 1.34 (0.87, 2.06) 1.02 (0.86, 1.20)
(D|Q)
Ordinal Age 4.29 (2.50, 7.34) 2.42 (1.70, 3.44)
Ordinal BMI 1† 1.12 (0.73, 1.71)
Smoker 1† 1.96 (1.33, 2.89)
Any comorbidity 1.64 (0.81, 3.32) 1.05 (0.78, 1.43)

Table 2: The marginal relative risk collected from published studies on COVID-19
and conditional relative risk estimated by the risk model for each risk factor on rates
of hospitalization given infection, (H|I), ICU admission given hospitalization, (Q|H)
and death given ICU admission, (D|Q) (95% credible interval).
†We set the marginal RR for ordinal BMI and smoker to 1 because we did not find the
association between obesity class, smoking status, and the likelihood of death given
ICU admission D|Q due to COVID-19 in the published literature.
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Table 3: Profile-stratified CFR(t) and IFR(t): Risk profiles (characterized by unique
combination of age group, BMI range, smoking status, and any comorbidity), risk
group (1-5), model-estimated population prevalence, the frequency of each profile in
the infected population, and the median of the CFR(t) and IFR(t) on May 15, August
1, and October 15 2020. Only profiles with a population prevalence > 1% are shown.

Table 1 shows the model-estimated population prevalence, the frequency
in the infected population, and the median Pt(H|I), Pt(Q|H), and Pt(D|Q)
for each profile with an estimated population prevalence greater than 1% (see
appendix p 18 for all profiles). Probabilities are provided for the dates May 15,350

representing the peak value for the overall CFR(t) and IFR(t) (Figures 3e, 3f),
August 1, representing the value of the probabilities after the overall Pt(H|I),
Pt(Q|H), and Pt(D|Q) had completed their descent but while the CFR(t) and
IFR(t) were still decreasing, and October 15, the most recent date.

The probability of hospitalization given infection, ICU admission given hos-355

pitalization, and death given ICU admission vary extensively across the risk
profiles. Notably, the risks within specific marginal factor groups also vary
extensively. For example, within the age group 65+, the probability of hospital-
ization given infection is approximately five times greater for individuals with at
least one comorbidity, a smoking history, and severe obesity then for individuals360

that have no comorbidities, do not smoke, and have a healthy BMI.

3.3. Risk-stratified CFR and IFR for LAC

Table 3 shows the frequency in the infected population and the median of
the CFR(t) and IFR(t) on May 15, August 1, and October 15 2020 for each
risk profile with a model-estimated population prevalence > 1% (see appendix365

p 20 for all 39 profiles). The probability of death given infection varies tremen-
dously across populations. While the overall median CFR(t) ranged from a
high of 0.0342 (0.030,0.039) on May 15 to a low of 0.0211 (0.0176,0.0251) on
October 15, the profile-stratified median CFR(t) ranged from 0.0004 to 0.23
across the profiles. The overall median IFR(t) ranged from a high of 0.0077370

(0.0038,0.0115) on May 15 to a low of 0.0051 (0.0023,0.0078) on October 15,
but ranged from 0.0001 to 0.052 across the profiles. To facilitate interpretation
of the probabilities and variability across risk profiles, we group the profiles into
five Risk Groups based on similar within-group CFR(t) on May 15, with Risk
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1 being composed of individuals with CFR(t) > 0.16; 0.08 < CFR(t) < 0.16 in375

Risk 2; 0.04 < CFR(t) < 0.08 in Risk 3; 0.01 < CFR(t) < 0.04 in Risk 4; and
CFR(t) < 0.01 in Risk 5 (risk groups are indicated for each profile in Table 3).
Notably, profiles including individuals 65+ are found in Groups 1, 2, and 3, and
profiles for individuals aged 45-64 are found in Groups 1-4 (appendix p 20).

3.4. Scenario analysis380

Figure 4a shows the three levels of NPI policies implemented (NPIs=None,
Moderate, Observed) and Figure 4b shows the three levels of isolating the 65+
population implemented (Protect=Observed, 50%, 100% ) to create the nine sce-
narios. Figure 5 shows the results of scenarios that include the three Protect
levels, NPI=Observed and NPI=Moderate; the results of all scenarios includ-385

ing NPI=Moderate are shown in appendix p 22. Results for each scenario by
CFR(t), IFR(t), cumulative deaths, current in hospital, current observed in-
fections, and current total infections are pictured. The “Do Nothing” scenario
(Scenario 1) results in a median of approximately 75 000 deaths by October 15,
exceeding the observed death count in LAC by approximately 11 times the ob-390

served median value of 6 855, as well as excessively surpassing hospital capacity
for two months with a peak of 40 000 individuals requiring daily hospital care.
Combining a stringent protection policy that isolates 100% of individuals 65+
with the “Do Nothing” to reduce community transmission policy (Scenario 3)
averts approximately 50% of deaths estimated in the “Do Nothing” Scenario,395

however surpasses observed deaths in LAC by a factor of 5.5 and exceeds hospi-
tal capacity for one month at peak levels 6.5 times as large as maximum capacity.
Implementing a moderate NPI policy with no additional measures to protect
at-risk populations (Scenario 4) greatly reduces deaths from the scenarios in
which no community transmission reduction takes place although still leads to400

more than 16 000 deaths by October 15, a factor of 2.5 greater than observed.
When the moderate NPI policy is combined with additional measures to

protect 100% of individuals 65+ (Scenario 6), the number of deaths accrued is
much closer to the observed death toll in LAC by October 15, while hospital
demand would have still approached levels exceeding capacity for two months.405

If only 50% of individuals 65+ had been protected (Scenario 5), the death count
would have doubled the observed count and hospital demand would have come
closer to exceeding capacity.

Comparing Scenarios 7-9 in which the observed trend in community trans-
mission is implemented (strict initial lockdown followed by a gradual reopening410

and stabilization at an R(t) of approximately 1.26), deaths could have been
halved if 100% of individuals 65+ had been protected (Scenario 9) or 1 500
deaths if 50% of individuals 65+ had been protected above the observed self-
protection that occurred (Scenario 8). Hospitalization demand would not have
decreased appreciably.415

The overall population average CFR(t) and IFR(t) are more strongly deter-
mined by the implemented protection level; by October 15 these approximate
0.03 and 0.003, respectively, across three scenarios in which 100% of individuals
65+ are protected. Still, much larger absolute numbers of infected individuals,
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(a) Three levels of non-pharmaceutical-intervention (NPI) poli-
cies implemented: In NPIs=None no adaptations are made to R0;
in NPIs=Moderate R(t) quickly adapts from R0 to the observed
R(t) during Stage III; in NPIs=Observed the observed R(t) is
implemented.

(b) Three levels of protection of individuals 65 years and older im-
plemented in scenario analysis: In Protect=Observed the observed
αt,κt, and δt are implemented; in Protect=100 and Protect=50,
respectively 100% and 50% of individuals 65+ are removed from
the observed infection distribution and the population-average
αProtect
t ,κProtect

t , and δProtect
t are recalculated.

Figure 4: Implemented policies in scenario analysis.
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Figure 5: Scenarios implemented and results by CFR(t), IFR(t), cumulative deaths,
current in hospital, current observed infections, and current total infections.
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as in the scenario with NPI=Nothing, result in much larger absolute numbers420

of deaths.

4. Discussion

This work has developed a framework for using available data on COVID-19
epidemic dynamics and prevalences of COVID-19 risk factors at the population
level to estimate time-varying subpopulation-stratified probabilities of severe425

illness and the case fatality rate (CFR(t)) and infection fatality rate (IFR(t))
across multiple combinations of risk factors. In the absence of individual-level
data, the technical contribution of this work was to integrate a dynamic epidemic
model with a risk modeling approach to estimate conditional effects from avail-
able marginal data and to subsequently produce time-varying subpopulation-430

stratified estimates for LAC. To reflect the uncertain knowledge of many pa-
rameters and the understanding that in non-linear systems small variations to
specific parameters can result in large impacts in outputs [30], we account for
uncertainty in all results through the use of a stochastic epidemic model and a
Bayesian approach to parameter estimation. On its own, the risk model esti-435

mates the conditional effects of each risk factor and therefore the overall effect
of risk factors in combination. These adjusted effects have not been typically
reported in observational studies on COVID-19, yet help to understand which
individuals are at highest risk of advancing to each stage of disease. Integrated
together with the epidemic model, the modeling framework allows the analy-440

sis of dynamic outcomes and parameters relating to each stage of disease by
population and subpopulation.

Analyses demonstrate that the risk of severe illness and death has decreased
over time and moreover varies tremendously across subpopulations, suggesting
that it is inappropriate to summarize epidemiological parameters for the entire445

population and epidemic time period. This includes variation not only across
age groups, but also within age categories combined with other risk factors
analyzed in this study (comorbidities, obesity status, smoking). Across the risk
profiles we found median IFRs ranging from 0.0095%-0.04% in the youngest age
group (0-19), IFRs ranging from 0.1%-1.8% for those aged 20-44, 0.36%-4.3%450

for those aged 45-64, and 1.02%-5.42% for those aged 65+ (noting that the
95%CI varied beyond these ranges of median values). The highest IFR for each
age strata come from profiles also including comorbidities, obesity Class 2 or 3,
and except for the youngest age group, current smoking status.

Our age-stratified IFR are comparable to those found in a recent meta-455

analysis using results from seroprevalence studies in North America and Eu-
rope [8], a model-based analysis for estimating IFR for China [9], and a model-
based analysis for estimating IFR in New York City during the time period
March 1 through June 6th [10], with the exception that we do not account
for further substrata above 65 years of age. This can be seen as a limitation460

of our analysis of IFR for profiles including age strata above age 65+, since
the risk of severe outcomes is known to strongly increase with age. A second
limitation of our model-based analysis for older risk strata is that we assume

20

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.11.20209627doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.11.20209627
http://creativecommons.org/licenses/by-nd/4.0/


unobserved infections are equally distributed across all risk profiles, whereas
there are likely to be far fewer unobserved or asymptomatic infections for those465

at higher risk of severe outcomes. For risk profiles including individuals age
65+, our IFRs are therefore underestimated and our CFR estimates are likely
to be a better approximation of the true IFRs; we find median CFRs in the
range 4.4%-23.45% across profiles including individuals 65+, comparable to the
range of 2%-22% for IFRs in age groups 65+ found in the meta-analysis [8]. At470

the same time, the NYC study found IFRs for individuals age 65-74 of 4.87%
(3.37%–6.89%), comparable to our median IFR estimate for the 65+ age group,
and 14.2% (10.2%–18.1%) for those aged 75 years and older. More generally, in
interpreting our results for policy implications, emphasis should be placed on
the relative differences in IFR across risk profiles and the understanding that475

the IFR for a specific age strata represents an average across a wide variation
given the presence or absence of other risk factors.

Our overall population-average IFR(t) estimates for Los Angeles County,
which ranged from a peak of 0.77% (0.38%,1.15%) on May 15 down to 0.55%
(0.24%,0.90%) by October 15, are similar to the overall IFR estimated by a480

model-based analysis for China of 0.66% (95%CI: 0.39%,1.33%), but lower than
the overall IFR estimated for NYC as of June 6 of 1.39% (1.04%–1.77%), or
1.10% if only confirmed COVID-19-related deaths were included [10]. This
could be explained by the larger outbreak experienced by NYC in the spring,
which led to healthcare capacity overload in some parts of the city and larger485

probabilities of fatality. Our IFR estimates could also be lower since we account
only for underascertainment of infections and not of deaths [31, 32]. Even at
the lowest overall IFR estimated for LAC as of October 15, a key finding is
that COVID-19 is substantially more deadly than seasonal Influenza with a
population-average IFR of approximately 0.05% [8, 33].490

The time-varying population-average risk probabilities over time provide in-
sights into the changing dynamics of the epidemic in LAC. The decrease in the
probability of hospitalization given infection (αt) by almost 200% between the
value before May 1 and after August 1 suggests substantive changes in risk
of severe illness in the infected population. This follows from the decrease in495

the prevalence of the age group 65+ in (observed) infections between April 15
and July 15 from approximately 23% to 12% [11], but may also reflect other
changes in the demographic composition of infected individuals including other
at-risk subpopulations for which LAC data is not available (e.g., individuals
with comorbidities), or increases in the prevalence of individuals without ac-500

cess to healthcare [34, 35]. The decrease in the probability of ICU admission
given hospitalization (κt) and death given ICU admission (δt) between May 1
and August 1 both by approximately 10% suggests a potential effect of better
treatment in the healthcare setting [36, 37], as well as seasonal effects [38, 39],
but may also result from changes in the infected population making it through505

to critical illness.
The fact that the risk of severe illness and the CFR(t) and IFR(t) vary

tremendously across populations raises the question of whether protecting cer-
tain subpopulations would have achieved similar results in infections, hospital-
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izations, and deaths as policies applied population-wide to reduce transmission,510

including the initial lockdown period from March 19 to May 8. We investi-
gate this question through simulation, comparing observed trends with alternate
policy scenarios modifying the population-wide transmission rate or protecting
specific at-risk subpopulations. We implemented scenarios in which no reduc-
tions are made to the transmission rate. However, it is likely that individual515

behavior would have modified to reduce the transmission rate, as observed in
locations where formal shelter-at-home policies were not implemented, such as
in Sweden [40]. We therefore implemented a more moderate NPI policy that
reduced community transmission at the beginning of the epidemic to levels ex-
hibited during Stage III of the epidemic in LAC, which in practice reflected a520

panel of public health outreach and restriction policies including mask wear-
ing and closing indoor dining and entertainment, but were not as stringent as
the more complete community-wide lockdown of Stage I. We focused on isolat-
ing individuals aged 65+ because this was a suggested policy response for the
state of California [41], and is the suggested policy plan for initial vaccination525

distribution [42].
The main finding from the scenario analysis is that the strict initial lock-

down period in LAC was effective because it both reduced overall transmission
and protected individuals at greater risk, resulting in preventing both healthcare
overload and deaths (especially among individuals 65+). Simulation results sug-530

gest that an initial implementation of a moderate NPI policy on its own would
not have been sufficient to avoid overwhelming healthcare capacity, and addi-
tionally would have exceeded the observed death count by close to 2.5 times.
Combining the moderate NPI policy with a stringent protection of all individ-
uals 65+ would have resulted in a death count at a similar level as observed,535

however hospital capacity limits would have approached levels exceeding capac-
ity, likely resulting in more severe illnesses and deaths than accounted for by
this model. A more moderate protection scenario in which 50% of individuals
65+ are isolated would have resulted in slightly surpassing the observed death
toll and similarly threatening to exceed healthcare capacity. Thus, while similar540

numbers of deaths as observed in LAC could have been achieved while avoiding
initial lockdown through the implementation of a more moderate NPI policy
combined with greater protection of individuals 65+, this would have come at
the expense of overwhelming the healthcare system. We can therefore conclude
that the implemented lockdown was well designed, as in hindsight it appears545

to have been the minimally required course of action to protect the entire LAC
population, and particularly those at high risk of severe disease, while also pre-
venting overcapacity within the healthcare system.

The scenario analysis also has implications for future policy. In anticipation
of a continued rise in cases in LAC this winter, policy makers need to consider550

the trade offs of various policy options on the numbers of the overall population
that may become infected, severely ill, and deaths when considering policies
targeted at subpopulations at greatest risk of transmitting infection and at
greatest risk for developing severe outcomes. Furthermore, this scenario analysis
mimics potential vaccination policy related to a population-wide rollout (similar555
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to lockdowns and NPI policies applied to the population) vs. rollout first to
specific at-risk populations (similar to scenarios protecting individuals 65+).
The results of this scenario analysis suggests policies that first vaccinate only
those at greatest risk of severe illness may not be as effective as a more general
policy aimed at decreasing the size of the epidemic through vaccinating the560

overall population; this latter policy, by acting on those at greatest risk of
transmitting infection, results in decreasing the total numbers of the population
infected as well as subsequent healthcare utilization and deaths [43].

This study is prone to typical limitations occurring when modeling epidemi-
ological dynamics in the context of rapidly evolving infectious disease outbreaks.565

Data informing the conditional effect estimates within the risk model are aggre-
gated across early, retrospective studies from China (age, comorbidities, smok-
ing) [3] and NYC (BMI) [2] on the fractions of hospitalization, ICU admission,
and death by individual risk factors. While we attempt to reframe these re-
sults for the demographic composition of the LAC population through regional570

data on the prevalence of risk factors and the correlation structure between risk
factors (appendix p 14), there may be differences in the underlying study pop-
ulation or treatment setting between China, NYC, and LAC that would lead to
heterogeneity in effect estimates. However, we believe that the estimates from
the Chinese studies do represent population-based estimates as these samples575

avoid some of the biases present from other potentially available studies, but
with highly selected samples.

While this work has focused on demonstrating the substantial heterogene-
ity in risk probabilities and IFR across subpopulations, we developed a single-
population epidemic model. We accounted for differences in the infected pop-580

ulation through the observed age distribution in LAC. However, heterogeneity
in exposure to COVID-19 infection has been shown to vary extensively across a
number of factors including not only age but also race/ethnicity, neighborhood
of residence, employment, economic status, and access to PPE, among oth-
ers [7, 34, 35, 1, 4, 5]. At the time of beginning this study we did not have the585

data to formally model subpopulation-specific probabilities of exposure or the
data on hospitalization and death counts for different groups necessary to fit the
parameters of a multi-population model. The approach we developed is a way
to use commonly available population-level epidemic timeseries data to model
multiple groups in a single population, and combine these population-level es-590

timates with prevalence rates of risk factors to produce stratified estimates for
different subpopulations, specific to a given region. Future work will need to
develop multi-population models that estimate subpopulation-stratified proba-
bilities and infection rates accounting for key risk factors of both exposure to
infection and severe illness given infection. In the meantime, this framework for595

using limited available data to produce subpopulation-stratified estimates of the
severity of illness and CFR/IFR by subpopulations can be generalized to other
regional and policy contexts, provided generally-accessible data on epidemic
time series and prevalences of marginal risk factors in the overall population.
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[15] Bretó C, He D, Ionides EL, King AA, et al. Time series analysis via mech-
anistic models. The Annals of Applied Statistics 2009;3(1):319–48.

[16] Mode CJ, Sleeman CK. Stochastic processes in epidemiology: HIV/AIDS,675

other infectious diseases, and computers. World Scientific; 2000.

25

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.11.20209627doi: medRxiv preprint 

https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-healthexternal
https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-healthexternal
https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-healthexternal
https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-healthexternal
https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-healthexternal
https://github.com/AbigailHorn/COV2-LA/tree/master/data
https://github.com/AbigailHorn/COV2-LA/tree/master/data
https://github.com/AbigailHorn/COV2-LA/tree/master/data
https://doi.org/10.1101/2020.12.11.20209627
http://creativecommons.org/licenses/by-nd/4.0/


[17] Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals.
Princeton University Press; 2011.

[18] Diekmann O, Heesterbeek J, Roberts MG. The construction of next-
generation matrices for compartmental epidemic models. Journal of the680

Royal Society Interface 2010;7(47):873–85.

[19] Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of
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