Chemistry–A European Journal

Supporting Information

Concatenating Suzuki Arylation and Buchwald–Hartwig Amination by A Sequentially Pd-Catalyzed One-Pot Process—Consecutive Three-Component Synthesis of C,N-Diarylated Heterocycles

Laura Mayer, Regina Kohlbecher, and Thomas J. J. Müller*^[a]

Supporting Information

Table of contents 1. General considerations	2
2. Optimization	3
3. General Procedures for the One-pot coupling-amination-sequence	5
General procedure 1 (GP1) for the synthesis of the 3,10-diaryl 10 <i>H</i> -phenothiazines 4	5
Spectroscopic data of 3,10-diaryl phenothiazines 4	9
General procedure 2 (GP2) for the synthesis of the 3,9-diaryl 9H-carbazoles 7 1	7
Spectroscopic data of 3,9-diaryl carbazoles 71	9
General procedure 3 (GP3) for the synthesis of the 1,5-diaryl 1 <i>H</i> -indoles 82	22
Spectroscopic data of 1,5-diaryl indoles 82	26
4. NMR spectra 3	33
4.1 ¹ H and ¹³ C NMR spectra of 3,10-diaryl phenothiazines 4	33
4.2 ¹ H and ¹³ C NMR spectra of 3,9-diaryl carbazoles 7 4	19
4.3 ¹ H and ¹³ C NMR spectra of 1,5-diaryl indoles 85	55
Literature7	'0

1. General considerations

All reactions were carried out in oven dried Schlenk glassware using septa and syringes under nitrogen atmosphere. 3-bromo-10*H*-phenothiazine 1,^[1] 3-bromo-9*H*-carbazole 5,^[2] 4,4,5,5-tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane 2e,^[3] 4,4,5,5-tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane 2f,^[4] 3-Bromo-10-hexyl-10*H*-phenothiazine 3i,^[5] were known compounds and were synthesized according to literature procedures. The other reagents and catalyst were purchased reagent-grade and used without purification. Dry solvents were dried by a solvent purification system.

The purification of the products was performed on silica gel 60 M (0.04-0.063 mm) from MACHEREY-NAGEL GmbH & Co. KG using flash technique under pressure of 2 bar. The crude mixtures were absorbed on Celite[®] 545 form Carl Roth GmbH & Co. KG before chromatographic purification.

The reaction progress was monitored qualitatively using TLC Silica gel 60 F234 aluminum sheets obtained from MACHEREY-NAGEL GmbH & Co. KG. The spots were detected with UV light at 254 and 366 nm.

¹H, ¹³C and 135-DEPT ¹³C NMR spectra were recorded on Bruker AVIII-300 and AVIII-600. Acetone-d₆ and CD₂Cl₂ were used as deuterated solvents. The resonances of the solvents were locked as internal standard (acetone-d₆: ¹H δ 2.05, ¹³C δ 29.84, 206.26; CD₂Cl₂: ¹H δ 5.32, ¹³C δ 54.00). The multiplicities of the signals were abbreviated as follows: s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet of doublet; td: triplet of doublets; ddd: doublet of doublet of doublets; m: multiplet. The type of carbon atoms was determined on the basis of 135-DEPT ¹³C NMR spectra. For the description of the ¹³C NMR spectra primary carbon atoms are abbreviated with CH₃, secondary carbon atoms with CH₂, tertiary carbon atoms with CH and quaternary carbon atoms with C_{quat}.

El mass spectra were measured on Finnigan MAT TSQ 7000.

IR spectra were obtained on Shimadzu IR Affinity-1 which works with the attenuated total reflection (ATR) method. The intensity of signals is abbreviated as follows: s (strong), m (medium), w (weak).

The melting points (uncorrected) were measured on Büchi Melting Point B-540.

Combustion analyses were carried out on Perkin Elmer Series II Analyser 2400 in the micro analytical laboratory of the Institut für Pharmazeutische und Medizinische Chemie der Heinrich-Heine-Universität Düsseldorf.

2. Optimization

Table S1: Optimization of the catalyst system for the synthesis of 3-(4-methoxyphenyl)-10H-phenothiazine.

entry	[Pd]	ligand	yield [%] ^[a]
1	Pd(PPh ₃) ₄		75
2	PdCl ₂	dppf	69
3	PdCl ₂	[^t Bu ₃ PH]BF ₄	45
4	PdCl ₂	SPhos	31
5	PdCl ₂	PCy ₃	37
6	Pd(dba) ₂	dppf	75
7	Pd(dba) ₂	[^t Bu ₃ PH]BF ₄	71
8	Pd(dba)₂	SPhos	91
ð [p]	Pd(dba) ₂	SPhos	72
10	Pd(OAc) ₂	[[#] Bu ₃ PH]BF ₄	33

^[a] Yields after flash chromatography on silica gel. ^[b] 3.00 equiv of CsF were used.

Table S2: Optimization of the catalyst system for the synthesis of 3,10-Bis(4-methoxyphenyl)-10*H*-phenothiazine.

Table S3: Optimization of the coupling-amination-sequence.

3. General Procedures for the One-pot coupling-amination-sequence

General procedure 1 (GP1) for the synthesis of the 3,10-diaryl 10H-phenothiazines 4

Under argon in a Schlenk tube with magnetic stir bar 3-bromo-10*H*-phenothiazine (1) (138 mg, 0.500 mmol), aryl boronic acid or ester **2** (0.500 mmol), Pd(dba)₂ (14 mg, 5.0 mol%), tri-*tert*-butylphosphane tetrafluoroborate (8 mg, 5.0 mol%) and cesium fluoride (455 mg, 3.00 mmol) were dissolved in dry 1,4-dioxane (3 mL). The solution was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 16 h. After cooling to room temperature, aryl bromide **3** (0.550 mmol) and sodium *tert*-butoxide (55.0 mg, 0.575 mmol) were added and the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 16 h. After cooling to room temperature, aryl bromide **3** (0.550 mmol) and sodium *tert*-butoxide (55.0 mg, 0.575 mmol) were added and the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 20 h. After cooling to room temp deionized water (50 mL), saturated Na₂SO₃ solution (15 mL) and dichloromethane (50 mL) were successively added. The aqueous phase was extracted with dichloromethane (3 x 10 mL). The combined organic phases were dried with anhydrous magnesium sulfate and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel and by recrystallization from *n*-hexane/acetone to give compound **4** as a solid.

entry	arylboronic acid or ester 2	aryl bromide 3	yield of product 4 ^[a]
1	B(OH) ₂ OMe 2b , 76 mg	Br OMe 3b , 103 mg	OMe N OMe
			4a , 157 mg (76%)
2	B(OH) ₂ OMe 2b , 76 mg	Br 3c , 86 mg	OMe

Table S4: Experimental details for the synthesis of 3,10-diaryl 10H-phenothiazines 4.

entry	arylboronic acid or ester 2	aryl bromide 3	yield of product 4
3	B(OH) ₂ OMe 2b , 76 mg	Br CN 3f , 100 mg	OMe
4	B(OH) ₂ 2c , 61 mg	Br OMe 3b , 103 mg	S N OMe 4d, 185 mg (97%)
5	B(OH) ₂ 2c , 61 mg	Br J 3c, 86 mg	4e , 118 mg (67%)
6	B(OH) ₂ 2c , 61 mg	Br CN 3e , 100 mg	S N CN 4f, 117 mg (62%)
7	$F(OH)_2$ CF_3 2d , 95 mg	Br OMe 3b , 103 mg	CF ₃ CF ₃
8	$ \begin{array}{c} B(OH)_2 \\ \overleftarrow{CF}_3 \\ \mathbf{2d}, 95 \text{ mg} \end{array} $	Br JC, 86 mg	4h , 137 mg (65%)

entry	arylboronic acid or ester 2	aryl bromide 3	yield of product 4
9	$ \begin{array}{c} B(OH)_2 \\ \overleftarrow{CF}_3 \\ \mathbf{2d}, 95 \text{ mg} \end{array} $	Br CN 3f , 100 mg	4i 105 mg (47%)
10	[Bpin 2e , 105 mg	Br OMe 3b , 103 mg	4j, 72 mg (37%)
11	B(OH) ₂ OMe 2b , 76 mg	3g , 113 mg	OMe N 4k, 128 mg (67%)
12	Bpin 2 f, 127 mg	Br OMe 3b , 103 mg	S N OMe 4I, 164 mg (76%)
13	B(OH) ₂ OMe 2b , 76 mg	Br J h , 114 mg	OMe S V V V V V V V V V V V V V
14	B(OH) ₂ 2g , 68 mg	Br OMe 3b , 103 mg	S N OMe

Table S4: Experimental details for the synthesis of 3,10-diaryl 10*H*-phenothiazines **4**.

^[a] Yields after flash chromatography on silica gel.

Table S4: Experimental	details for the synthesis	of 3,10-diaryl	10H-phenothiazines 4.

Spectroscopic data of 3,10-diaryl phenothiazines 4

3,10-Bis(4-methoxyphenyl)-10*H*-phenothiazine (4a)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **4a** (157 mg, 0.382 mmol, 76%) was isolated as yellow crystals. Mp 160 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.81 (s, 3 H), 3.92 (s, 3 H), 6.18-6.27 (m, 2 H), 6.79-6.93 (m, 2 H), 6.90-7.02 (m, 2 H), 7.00-7.05 (m, 1 H), 7.13 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.2 Hz, 1 H), 7.20 7.27 (m, 3 H), 7.31-7.43 (m, 2 H), 7.45-7.54 (m, 2 H). ¹³C NMR (125 MHz, acetone-d₆): δ 55.6 (CH₃), 55.9 (CH₃), 115.1 (CH), 116.6 (CH), 116.9 (CH), 120.1 (Cquat), 120.9 (Cquat), 123.2 (CH), 124.9 (CH), 125.8 (CH), 127.3 (CH), 127.9 (CH), 128.0 (CH), 132.8 (Cquat), 133.0 (CH), 134.0 (Cquat), 135.9 (Cquat), 144.2 (Cquat), 145.4 (Cquat), 160.1 (Cquat), 160.5 (Cquat). EI MS (70 eV): *m*/*z* (%): 412 (28), 411 ([M]⁺, 100), 396 ([C₂₅H₁₈NO₂S]⁺, 28), 206 (24). IR: $\tilde{\nu}$ [cm⁻¹] = 3036 (w). 2953 (w), 2907 (w), 2833 (w), 1578 (w), 1508 (m), 1491 (m), 1460 (s), 1439 (m), 1425 (w), 1389 (w), 1308 (m), 1292 (m), 1283 (m), 1238 (s), 1184 (m), 1177 (m), 1165 (m), 1152 (w), 1130 (w), 1115 (m), 1080 (w), 1049 (m), 1024 (m), 1009 (w), 912 (w), 883 (w), 835 (s), 804 (s), 795 (m), 768 (w), 746 (s), 727 (m), 704 (w), 679 (w), 646 (m). Anal. calcd. for C₂₆H₂₁NO₂S [411.5]: C 75.89, H 5.14, N 3.40, S 7.79; Found: C 75.82, H 5.06, N 3.43, S 7.77.

3-(4-Methoxyphenyl)-10-phenyl-10*H*-phenothiazine (4b)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **4b** (144 mg, 0.377 mmol, 76%) was isolated as yellow crystals. Mp 209 °C. ¹H NMR (300 MHz, acetone-d₆): δ . 3.81 (s, 3 H), 6.20-6.28 (m, 2 H), 6.82-6.93 (m, 2 H), 6.94-7.00 (m, 2 H), 7.04-7.09 (m, 1 H), 7.15 (dd, ³*J* = 8.6, ⁴*J* = 2.2 Hz, 1 H), 7.28 (d, ⁴*J* = 2.1 Hz, 1 H), 7.42-7.53 (m, 4 H), 7.55-7.62 (m, 1 H), 7.66-7.75 (m, 2 H). ¹³C NMR (75 MHz, acetone-d₆): δ 55.6 (CH₃), 115.1 (CH), 117.0 (CH), 117.3 (CH), 120.7 (C_{quat}), 121.4 (C_{quat}), 123.5 (CH), 125.1 (CH), 125.8 (CH), 127.5 (CH), 128.0 (CH), 128.1 (CH), 129.3 (CH), 131.6 (CH), 131.9 (CH), 132.8 (C_{quat}), 136.1 (C_{quat}), 141.9 (C_{quat}), 143.8 (C_{quat}), 145.0 (C_{quat}), 160.2(C_{quat}). EI MS (70 eV): *m*/*z* (%): 382 (25), 381 ([M]⁺, 100), 366 ([C₂₄H₁₆NOS]⁺, 27), 338 (10), 304 (14), 261 (14), 191 (19). IR: $\tilde{\nu}$ [cm⁻¹] = 3645 (w), 3069 (w), 3057 (w), 2990 (w), 2968 (w), 2893 (w), 2839 (w), 2818 (w), 1605 (w), 1591 (m), 1578 (m), 1518 (w), 1491 (m), 1460 (s), 1437 (m), 1422 (m), 1387 (m), 1362 (w), 1339 (w), 1304 (m), 1283 (m), 1254 (s), 1240 (s), 1153 (m), 1125 (w), 1113 (m), 1047 (s), 1022 (m), 1005 (m), 961 (w), 937 (w), 925 (w), 903 (w), 876 (m), 837 (m), 808 (s), 781 (w), 746 (s), 719 (m), 698 (m), 662 (m), 633 (s), 621 (m). Anal. calcd. for C₂₅H₁₉NOS [381.5]: C 78.71, H 5.02, N 3.67, S 8.40, Found: C 78.49, H 5.11, N 3.53, S 8.35.

4-(3-(4-Methoxyphenyl)-10H-phenothiazin-10-yl)benzonitrile (4c)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **4c** (110 mg, 0.270 mmol, 54%) was isolated as colorless crystals.

Mp 228 °C. ¹H NMR (500 MHz, acetone-d₆): δ 3.85 (s, 3 H), 7.01-7.05 (m, 2 H), 7.23-7.28 (m, 3 H), 7.29-7.34 (m, 2 H), 7.38 (ddd, ³*J* = 8.0 Hz, 7.3 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.50 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.59 (dd, ³*J* = 8.3 Hz, ⁴*J* = 2.1 Hz, 1 H), 7.62-7.65 (m, 2 H), 7.67-7.71 (m, 3 H). ¹³C NMR (125 MHz, acetone-d₆): δ 55.7 (CH₃), 106.1 (C_{quat}), 115.3 (CH), 119.6 (CH), 119.6 (C_{quat}), 126.1 (CH), 126.3 (CH), 126.6 (CH), 127.0 (CH), 127.0 (CH), 128.6 (CH), 128.8 (CH), 129.5 (CH), 132.3 (C_{quat}), 132.6 (C_{quat}), 132.9 (C_{quat}), 134.7 (CH), 139.7 (C_{quat}), 140.9 (C_{quat}), 142.4 (C_{quat}), 149.7 (C_{quat}), 160.8 (C_{quat}). EI MS (70 eV): *m/z* (%): 407 (28), 406 ([M]⁺, 100), 391 ([C₂₅H₁₅N₂OS]⁺, 24), 363 ([C₂₅H₁₇NS]⁺, 10), 304 (15), 261 (17), 203 (16). IR: $\tilde{\nu}$ [cm⁻¹] = 3049 (w), 2992 (w), 2961 (w), 2930 (w), 2901 (w), 2837 (w), 1605 (m), 1591 (m), 1520 (w), 1503 (m), 1483 (m), 1466 (m), 1443 (m), 1418 (w), 1387 (w), 1362 (w), 1312 (m), 1290 (m), 1265 (m), 1248 (m), 1238 (m), 1184 (m), 1173 (m), 1126 (m), 1111 (m), 1074 (w), 1065 (w), 1045 (m), 1026 (m), 1007 (w), 984 (w), 943 (w), 920 (w), 897 (m), 866 (w), 847 (m), 820 (s), 808 (m), 781 (w), 768 (m), 756 (s), 721 (w), 700 (w), 681 (m), 667 (w). Anal. calcd. for C₂₆H₁₈N₂OS [406.5]: C 76.82, H 4.46, N 6.89, S 7.89, Found: C 76.56, H 4.49, N 6.72, S 7.78.

10-(4-Methoxyphenyl)-3-phenyl-10*H*-phenothiazine (4d)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 50:1), **4d** (185 mg, 0.485 mmol, 97%) was isolated as yellow crystals.

Mp 169 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.93 (s, 3 H), 6.22 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.27 (d, ³*J* = 8.6 Hz, 1 H), 6.83 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.3 Hz, 1 H), 6.91 (ddd, ³*J* = 8.3 Hz, 7.4 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.03 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.19 (dd, ³*J* = 8.5 Hz, ⁴*J* = 2.2 Hz, 1 H), 7.23-7.27 (m, 2 H), 7.27-7.32 (m, 2 H), 7.36-7.42 (m, 4 H), 7.57 (dd, ³*J* = 8.4 Hz, ⁴*J* = 1.3 Hz, 2 H). ¹³C NMR (150 MHz, acetone-d₆): 55.9 (CH₃), 116.6 (CH), 116.9 (CH), 117.0 (CH), 120.1 (C_{quat}), 120.9 (C_{quat}), 123.3 (CH), 125.4 (CH), 126.3 (CH), 126.9 (CH), 127.4 (CH), 127.9 (CH), 127.9 (CH), 129.7 (CH), 133.0 (CH), 133.9 (C_{quat}), 136.0 (C_{quat}), 140.4 (C_{quat}), 144.8 (C_{quat}), 145.3 (C_{quat}), 160.6 (C_{quat}). EI MS (70 eV): *m*/*z* (%): 382 (26), 381 ([M]⁺, 100), 366 ([C₂₄H₁₆NOS]⁺, 15), 274 ([C₁₈H₁₂NS]⁺, 13), 272 (10), 191 (11), 152 (10). IR: $\tilde{\nu}$ [cm⁻¹] = 3010 (w), 2953 (w), 2930 (w), 2897 (w), 2833 (w), 1611 (w), 1574 (w), 1512 (m), 1485 (w), 1460 (s), 1437 (m), 1418 (w), 1389 (w), 1362 (w), 1302 (m), 1279 (m), 1242 (s), 1188 (w), 1169 (w), 1159 (w), 1128 (w), 1105 (w), 1076 (w), 1038 (m), 968 (w), 961 (w), 932 (w), 912 (w), 880 (w), 836 (m), 808 (w), 766 (s), 746 (s), 741 (m), 694 (m), 658 (w). Anal. calcd. for C₂₅H₁₉NOS [381.5]: C 78.71, H 5.02, N 3.67, S 8.40; Found: C 78.51, H 5.06, N 3.53, S 8.69.

3,10-Diphenyl-10*H*-phenothiazine (4e)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **4e** (118 mg, 0.338 mmol, 67%) was isolated as yellow crystals. Mp 196 °C. ¹H NMR (600 MHz, acetone-d₆): δ 6.86 (td, ³*J* = 7.4 Hz, ⁴*J* = 1.3 Hz, 1 H), 6.89-6.95 (m, 1 H), 7.07 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.20 (dd, ³*J* = 8.5 Hz, ⁴*J* = 2.2 Hz, 2 H), 7.28-7.32 (m, 1 H), 7.34 (d, ⁴*J* = 2.2 Hz, 1 H), 7.40 (t, ³*J* = 7.8 Hz, 2 H), 7.45- 7.50 (m, 2 H), 7.55-7.61 (m, 3 H), 7.72 (t, ³*J* = 7.8 Hz, 2 H). ¹³C NMR (150 MHz, acetone-d₆): 117.0 (CH), 117.2 (CH), 120.5 (C_{quat}), 121.4 (C_{quat}), 123.6 (CH), 125.5 (CH), 126.3 (CH), 127.0 (CH), 127.5 (CH), 127.9 (CH), 128.0 (CH), 129.4 (CH), 129.7 (CH), 131.7 (CH), 131.9 (CH), 136.3 (C_{quat}), 140.4 (C_{quat}), 141.8 (C_{quat}), 144.4 (C_{quat}), 144.9 (C_{quat}). EI MS (70 eV): *m*/*z* (%): 352 (27), 351 ([M]⁺, 100), 350 (20), 319 (18), 274 ([C₁₈H₁₂NS]⁺, 22), 273 (13). IR: $\tilde{\nu}$ [cm⁻¹] = 3061 (w), 3030 (w), 3005 (w), 2951 (w), 1589 (w), 1574 (w), 1506 (w), 1489 (m), 1464 (s), 1439 (m), 1418 (w), 1389 (w), 1362 (w), 1306 (s), 1279 (m), 1256 (m), 1242 (m), 1223 (w), 1190 (w), 1157 (w), 1130 (w), 1070 (w), 1043 (w), 1022 (w), 966 (w), 918 (w), 901 (w), 887 (w), 843 (m), 822 (m), 808 (w), 768 (s), 750 (s), 723 (m), 689 (m), 673 (m), 660 (w), 635 (m). Anal. calcd. for C₂₄H₁₇NS [351.5]: C 82.02, H 4.88, N 3.99, S 9.12; Found: C 82.30, H 4.91, N 3.75, S 9.15.

4-(3-Phenyl-10*H*-phenothiazin-10-yl)benzonitrile (4f)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **4f** (117 mg, 0.311 mmol, 62%) was isolated as colorless crystals.

Mp 119 °C. ¹H NMR (500 MHz, acetone-d₆): δ 7.24 (dtd, ³*J* = 7.8 Hz, ⁴*J* = 3.7 Hz, 1.3 Hz, 2 H), 7.27-7.31 (m, 3 H), 7.33-7.40 (m, 2 H), 7.44-7.49 (m, 3 H), 7.61 (dd, ³*J* = 8.3 Hz, ⁴*J* = 2.1 Hz, 1 H), 7.66-7.70 (m, 2 H), 7.70-7.73 (m, 3 H).¹³C NMR (125 MHz, acetone-d₆): 106.6 (C_{quat}), 119.5 (C_{quat}), 120.5 (CH), 125.5 (CH), 125.7 (CH), 126.8 (CH), 127.1 (CH), 127.4 (CH), 127.7 (CH), 128.6 (CH), 128.6 (CH), 129.4 (CH), 129.9 (CH), 131.5 (C_{quat}), 132.3 (C_{quat}), 134.8 (CH), 139.7 (C_{quat}), 140.3 (C_{quat}), 141.7 (C_{quat}), 142.4 (C_{quat}), 149.4 (C_{quat}). EI MS (70 eV): *m/z* (%): 377 (28), 376 ([M]⁺, 100), 375 (22), 344 (15), 274 ([C₁₈H₁₂NS]⁺, 27), 273 (16), 188 (11), 179 (12), 149 (21), 97 (14), 83 (13), 71 (18), 69 (17), 57 (28), 56 (16), 55 (17). IR: $\tilde{\nu}$ [cm⁻¹] = 3395 (w), 3374 (w), 3061 (w), 3049 (w), 3030 (w), 3011 (w), 2990 (w), 2957 (w), 1607 (w), 1591 (m), 1574 (w), 1551 (w), 1504 (m), 1479 (s), 1464 (m), 1441 (w), 1385 (w), 1313 (m), 1279 (w), 1263 (m), 1240 (w), 1175 (m), 1128 (w), 1076 (w), 1032 (w), 897 (w), 824 (s), 804 (w), 775 (w), 756 (s), 739 (m), 698 (m), 689 (m), 658 (w). Anal. calcd. for C₂₅H₁₆N₂S [376.5]: C 79.76, H 4.28, N 7.44, S 8.52; Found: C 80.01, H 4.22, N 7.33, S 8.44.

10-(4-Methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)-10H-phenothiazine (4g)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4g** (138 mg, 0.307 mmol, 61%) was isolated as yellow crystals. Mp 153 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.92 (s, 3 H), 6.22 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.1 Hz, 1 H), 6.29 (d, ³*J* = 8.6 Hz, 1 H), 6.80-6.88 (m, 1 H), 6.91 (td, ³*J* = 7.8 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.03 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.22-7.28 (m, 3 H), 7.33-7.42 (m, 3 H), 7.73 (d, ³*J* = 8.2 Hz, 1 H), 7.79 (d, ³*J* = 8.1 Hz, 1 H).¹³C NMR (150 MHz, acetone-d₆): 56.0 (CH₃), 116.8 (CH), 116.9 (CH), 117.0 (CH), 119.9 (C_{quat}), 121.2 (C_{quat}), 123.6 (CH), 125.5 (C_{quat}, q, ¹*J* = 271.2 Hz), 125.7 (CH), 126.5 (CH, q, ³*J* = 3.8 Hz), 126.7 (CH), 127.4 (CH), 127.5 (CH), 128.0 (CH), 129.1 (C_{quat}, q, ²*J* = 32.1 Hz,) 132.9 (CH), 133.7 (C_{quat}), 134.1 (C_{quat}), 144.2 (C_{quat}), 145.0 (C_{quat}), 145.6 (C_{quat}), 160.6 (C_{quat}). EI MS (70 eV): *m*/*z* (%): 450 (27), 449 ([M]⁺, 100), 434 ([C₂₅H₁₅F₃NOS]⁺, 16), 342 ([C₁₉H₁₁F₃NS]⁺, 17), 305 (17). IR: $\tilde{\nu}$ [cm⁻¹] = 3069 (w). 3051 (w), 2837 (w), 1607 (w), 1574 (w), 1510 (w), 1495 (w), 1464 (s), 1439 (m), 1070 (m), 1040 (m), 1013 (m), 961 (w), 932 (w), 916 (w), 885 (w), 837 (m), 824 (m), 812 (w), 756 (s), 739 (m), 716 (w), 629 (m), 610 (w). Anal. calcd. for C₂₆H₁₈F₃NOS [449.5]: C 69.48, H 4.04, N 3.12, S 7.13; Found: C 69.24, H 4.04, N 3.07, S 7.28.

10-Phenyl-3-(4-(trifluoromethyl)phenyl)-10H-phenothiazine (4h)

The synthesis was performed by GP1. After chromatography on silica gel (n-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4h** (137 mg, 0.327 mmol, 65%) was isolated as yellow crystals. Mp 125 °C. ¹H NMR (600 MHz, acetone-d₆): δ 6.20 (dd, ³J = 8.3 Hz, ⁴J = 1.3 Hz, 1 H), 6.28 (d, ${}^{3}J$ = 8.6 Hz, 1 H), 6.86 (td, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.3 Hz, 1 H), 6.89-6.94 (m, 1 H), 7.06 (dd, ${}^{3}J$ = 7.5 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.27 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.2 Hz, 1 H), 7.41 (d, ⁴*J* = 2.2 Hz, 1 H), 7.45-7.49 (m, 2 H), 7.58-7.62 (m, 1 H), 7.70-7.75 (m, 4H), 7.80 (d, ${}^{3}J$ = 8.2 Hz, 2H).¹³C NMR (150 MHz, acetone-d₆): 117.0 (CH), 117.1 (CH), 120.2 (Cquat), 121.5 (Cquat), 123.7 (CH), 125.5 (Cquat, q, ¹J = 271.0 Hz,), 125.8 (CH), 126.5 (CH, q, ³J = 3.9 Hz), 126.7 (CH), 127.5 (CH), 127.5 (CH), 128.1 (CH), 129.1 (C_{quat}, q, ²J = 32.1 Hz,), 129.6 (CH) 131.7 (CH), 132.0 (CH), 134.3 (C_{quat}), 141.6 (C_{quat}), 144.2 (C_{quat}), 144.7 (Cquat), 145.3 (Cquat). EI MS (70 eV): m/z (%): 420 (24), 419 ([M]+, 100), 387 (18), 342 $([C_{19}H_{11}F_3NS]^+, 23), 275 (34), 274 ([C_{18}H_{12}NS]^+, 12), 273 ([C_{18}H_{11}NS]^+, 13), 243 (12), 241 (13).$ IR: $\tilde{\nu}$ [cm⁻¹] = 3061 (w). 3040 (w), 2955 (w), 1614 (w), 1591 (w), 1574 (w), 1495 (m), 1468 (s), 1439 (m), 1418 (w), 1387 (w), 1325 (s), 1312 (s), 1287 (m), 1260 (s), 1244 (m), 1159 (s), 1107 (s), 1070 (s), 1040 (m), 1015 (m), 1005 (w), 885 (w), 847 (s), 812 (s), 771 (m), 748 (s), 696 (s), 640 (m), 629 (m). Anal. calcd. for C₂₅H₁₆F₃NS [419.5]: C 71.59, H 3.84, N 3.34, S 7.64; Found: C 71.73, H 4.02, N 3.20, S7.52.

4-(3-(4-(Trifluoromethyl)phenyl)-10H-phenothiazin-10-yl)benzonitrile (4i)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4i** (105 mg, 0.236 mmol, 47%) was isolated as yellow crystals. Mp 183 °C. ¹H NMR (600 MHz, acetone-d₆): δ 7.13 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.2 Hz, 1 H), 7.20-7.24 (m, 2 H), 7.32 (td, ³*J* = 7.8 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.34-7.39 (m, 2 H), 7.44 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.65 (dd, ³*J* = 8.4, ⁴*J* = 2.2 Hz, 1 H), 7.76-7.83 (m, 5 H), 7.91 (d, ³*J* = 8.1 Hz, 2 H).¹³C NMR (150 MHz, acetone-d₆): 107.4 (Cquat), 119.4 (Cquat), 121.9 (CH), 124.5 (CH), 124.8 (CH), 126.3 (Cquat, q, ¹*J* = 271.3 Hz), 126.6 (CH), 126.7 (CH, q, ³*J* = 3.9 Hz), 127.3 (CH), 127.6 (CH), 128.3 (CH), 128.6 (CH), 129.2 (CH), 129.8 (Cquat, q, ²*J* = 32.2 Hz), 130.0 (Cquat), 131.3 (Cquat), 135.0 (CH), 137.5 (Cquat), 142.4 (Cquat), 142.7 (Cquat), 144.1 (Cquat), 148.7 (Cquat), EI MS (70 eV): *m*/*z* (%): 445 (23), 444 ([M]⁺, 100), 412 (15), 342 ([C19H11F3NS]⁺, 37), 273 ([C18H11NS]⁺, 13), 272 (11), 102 ([C7H4N]⁺, 36), 75 (13). IR: \tilde{v} [cm⁻¹] = 3044 (w). 1609 (m), 1591 (m), 1580 (w), 1506 (m), 1481 (m), 1464 (m), 1445 (w), 1435 (w), 1418 (w), 1381 (w), 1319 (s), 1314 (s), 1278 (m), 1263 (m), 1238 (w), 1177 (m), 1161 (m), 1123 (s), 1107 (s), 1068 (m), 1030 (w), 1015 (m), 968 (w), 947 (w), 920 (w), 893 (w), 881 (w), 864 (w), 847 (m), 822 (s), 764 (m), 750 (m), 737 (m), 727 (m), 700 (w), 692 (m), 667 (m), 650 (w), 631 (m). Anal. calcd. for C₂₆H₁₅F₃N₂S [444.5]: C 70.26, H 3.40, N 6.30, S 7.21; Found: C 70.23, H 3.46, N 6.19, S 7.43.

10-(4-Methoxyphenyl)-3-(thiophen-2-yl)-10H-phenothiazine (4j)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4j** (72 mg, 0.186 mmol, 37%) was isolated as yellow crystals. Mp 161 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.92 (s, 3 H), 6.18-6.26 (m, 2H), 6.84 (td, ³*J* = 7.4 Hz, ⁴*J* = 1.3 Hz, 1 H), 6.91 (ddd, ³*J* = 8.5 Hz, 7.4 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.03 (dd, ³*J* = 7.6 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.06 (dd, ³*J* = 5.1 Hz, 3.6 Hz, 1 H), 7.17 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.2 Hz, 1 H), 7.22-7.26 (m, 2 H), 7.29-7.33 (m, 2 H), 7.34-7.39 (m, 3 H). ¹³C NMR (150 MHz, acetone-d₆): 55.9 (CH₃), 116.7 (CH), 116.9 (CH), 117.0 (CH), 119.8 (C_{quat}), 121.1 (C_{quat}), 123.3 (CH), 123.4 (CH), 124.2 (CH), 125.1 (CH), 125.3 (CH), 127.4 (CH), 128.0 (CH), 129.0 (CH), 129.8 (C_{quat}), 132.9 (CH), 133.8 (C_{quat}), 143.7 (C_{quat}), 144.8 (C_{quat}), 145.1 (C_{quat}), 160.6 (C_{quat}). EI MS (70 eV): *m/z* (%): 389 (12), 388 (26), 387 ([M]+, 100), 372 ([C₂₂H₁₄NOS₂]+, 10), 355 (11), 280 ([C₁₆H₁₀NS₂]+, 20). (14), 200 (16). IR: $\tilde{\nu}$ [cm⁻¹] = 3051 (w), 2963 (w), 2930 (w), 2893 (w), 1607 (w), 1506 (w), 1489 (w), 1464 (m), 1456 (w), 1429 (m), 1398 (w), 1346 (w), 1310 (m), 1288 (m), 1269 (w), 1242 (m), 1217 (w), 1192 (w), 1179 (w), 1165 (w), 1128 (w), 1101 (w), 1080 (w), 1028 (m), 1009 (w), 988 (w), 914 (w), 883 (w), 849 (w), 826 (w), 808 (s), 800 (w), 772 (w), 754 (m), 739 (s), 698 (s), 648 (w), 621 (w). Anal. calcd. for C₂₃H₁₇NOS₂ [387.5]: C 71.29, H 4.42, N 3.61, S 16.55; Found: C 71.32, H 4.54, N 3.54, S 16.28.

3-(4-Methoxyphenyl)-10-(pyridin-4-yl)-10*H*-phenothiazine (4k)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and precipitation from *n*-hexane, **4k** (128 mg, 0.335 mmol, 67%) was isolated as brown crystals.

Mp 162 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.85 (s, 3 H), 6.89 (dd, ³*J* = 4.8 Hz, ⁴*J* = 1.6 Hz, 2 H), 7.01-7.08 (m, 2 H), 7.35 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.48 (td, ³*J* = 7.7 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.56-7.63 (m, 3 H), 7.63-7.66 (m, 1 H), 7.66-7.71 (m, 2 H), 7.78 (d, ⁴*J* = 2.1 Hz, 1 H), 8.23-8.26 (m, 2 H). ¹³C NMR (150 MHz, acetone-d₆): 55.8 (CH₃), 110.0 (CH), 115.4 (CH), 126.6 (CH), 127.4 (CH), 127.7 (CH), 128.2 (CH), 128.4 (CH), 128.6 (CH), 129.0 (CH), 129.8 (CH), 132.6 (C_{quat}), 135.1 (C_{quat}), 135.7 (C_{quat}), 139.8 (C_{quat}), 140.4 (C_{quat}), 141.4 (C_{quat}), 151.4 (CH), 152.6 (C_{quat}), 160.9 (C_{quat}), EI MS (70 eV): *m/z* (%): 383 (27), 382 ([M]⁺, 100), 367 ([C₂₃H₁₅N₂OS]⁺,24), 304 ([C₁₉H₁₄NOS]⁺, 30), 289 ([C₁₈H₁₁NOS]⁺, 10), 261 ([C₁₇H₁₁NS]⁺, 31), 260 (14), 191 (12), 51 (13). IR: $\hat{\nu}$ [cm⁻¹] = 3975 (w), 3798 (w), 3082 (w), 3009 (w), 2957 (w), 2932 (w), 2901 (w), 2833 (w), 1601 (m), 1577 (m), 1545 (w), 1520 (w), 1485 (m), 1464 (s), 1437 (m), 1423 (m), 1327 (m), 1312 (w), 1283 (m), 1265 (m), 1250 (m), 1225 (s), 1175 (m), 1163 (w), 1150 (w), 1130 (w), 1109 (w), 1076 (w), 1065 (w), 1040 (m), 0118 (m), 1009 (w), 989 (m), 953 (w), 926 (w), 880 (w), 806 (s), 758 (s), 743 (s), 723 (w), 789 (m), 687 (m), 656 (s), 631 (s), 621 (m). Anal. calcd. for C₂₄H₁₈N₂OS [382.5]: C 75.37, H 4.74, N 7.32, S 8.38; Found: C 75.19, H 4.72, N 7.21, S 8.16.

10-(4-Methoxyphenyl)-3-(naphthalen-1-yl)-10*H*-phenothiazine (41)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4I** (164 mg, 0.380 mmol, 76%) was isolated as yellow crystals. Mp 152 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.93 (s, 3 H), 6.23-6.29 (m, 1 H), 6.35 (d, ³*J* = 8.4 Hz, 1 H), 6.85 (td, ³*J* = 7.4 Hz, ⁴*J* = 1.4 Hz, 1 H), 6.93 (ddd, ³*J* = 8.2 Hz, 7.4 Hz, ⁴*J* = 1.8 Hz, 1 H), 6.99-7.06 (m, 2 H), 7.13 (d, ⁴*J* = 2.0 Hz, 1H), 7.22-7.30 (m, 2 H), 7.36-7.56 (m, 6 H), 7.87-7.97 (m, 3 H). ¹³C NMR (75 MHz, acetone-d₆): δ 55.9 (CH₃), 116.5 (CH), 116.7 (CH), 117.0 (CH), 120.2 (C_{quat}), 120.6 (C_{quat}), 123.4 (CH), 126.4 (CH), 126.4 (CH), 126.7 (CH), 127.0 (CH), 127.4 (CH), 127.5 (CH), 128.0 (CH), 128.5 (CH), 129.2 (CH), 129.5 (CH), 132.4 (C_{quat}), 133.1 (CH), 133.9 (C_{quat}), 134.9 (C_{quat}), 135.7(C_{quat}), 139.7 (C_{quat}), 144.8 (C_{quat}), 145.4 (C_{quat}), 160.6 (C_{quat}), El MS (70 eV): *m/z* (%): 432 (29), 431 ([M]⁺, 100), 324 ([C₂₂H₁₄NS]⁺, 11), 322 (16), 291 (15), 290 (19), 202 (11). IR: $\hat{\nu}$ [cm⁻¹] = 3059 (w), 2968 (w), 2930 (w), 2891 (w), 2827 (w), 1607 (w), 1576 (w), 1506 (m), 1497 (m), 1468 (s), 1456 (m), 1439 (m), 1391 (m), 1362 (w), 1315 (m), 1288 (m), 1238 (s), 1177 (w), 1163 (w), 1126 (w), 1103 (w), 1078 (m), 1028 (m), 1007 (w), 893 (w), 849 (w), 829 (m), 820 (m), 800 (m), 779 (s), 742 (s), 723 (w), 679 (w), 621 (w). Anal. calcd. for C₂₉H₂₁NOS [431.6]: C 80.71, H 4.91, N 3.25, S 7.43; Found: C 80.51, H 5.16, N 3.16, S 7.23.

3-(4-Methoxyphenyl)-10-(naphthalen-1-yl)-10*H*-phenothiazine (4m)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4m** (121 mg, 0.280 mmol, 56%) was isolated as colorless crystals.

Mp 166 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.80 (s, 3 H), 6.04-6.13 (m, 2 H), 6.74-6.87 (m, 2 H), 6.92-6.98 (m, 2 H), 7.02 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.2 Hz, 1 H), 7.06-7.11 (m, 1 H), 7.30 (d, ⁴*J* = 2.2 Hz, 1 H), 7.45-7.50 (m, 2 H), 7.51-7.65 (m, 2 H), 7.73-7.85 (m, 2 H), 8.08-8.19 (m, 3 H). ¹³C NMR (75 MHz, acetone-d₆): δ 55.6 (CH₃), 115.1 (CH), 116.6 (CH), 117.0 (CH), 120.2 (C_{quat}), 120.9 (C_{quat}), 123.5 (CH), 124.0 (CH), 125.0 (CH), 125.9 (CH), 127.4 (CH), 127.6 (CH), 127.8 (CH), 128.0 (CH), 128.3 (CH), 129.8 (CH), 130.1 (CH), 130.8 (CH), 132.1 (C_{quat}), 132.7 (C_{quat}), 136.2 (C_{quat}), 136.8 (C_{quat}), 137.8 (C_{quat}), 143.4 (C_{quat}), 144.6 (C_{quat}), 160.2 (C_{quat}). EI MS (70 eV): *m/z* (%): 432 (28), 431 ([M]⁺, 100), 416 ([C₂₈H₁₈NOS]⁺, 21), 304 ([C₁₉H₁₄NOS]⁺, 19), 288 ([C₁₈H₁₁NOS]⁺, 12), 261 (37), 260 (27), 215 (18), 127 ([C₁₀H₇]⁺, 60), 126 (17). IR: $\tilde{\nu}$ [cm⁻¹] = 3049 (w), 3020 (w), 1574 (w), 1489 (m), 1456 (s), 1436 (m), 1383 (w), 1292 (m), 1248 (m), 1234 (m), 1202 (w), 1175 (m), 1150 (w), 1128 (w), 1098 (w), 1047 (m), 1024 (m), 1007 (w), 905 (w), 880 (w), 824 (m), 800 (m), 781 (s), 764 (m), 750 (s), 741 (m), 719 (w), 708 (w), 681 (w), 654 (w), 627 (w). Anal. calcd. for C₂₉H₂₁NOS [431.6]: C 80.71, H 4.91, N 3.25, S 7.43; Found: C 80.73, H 4.94, N 3.14, S 7.17.

10-(4-Methoxyphenyl)-3-(o-tolyl)-10H-phenothiazine (4n)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4n** (107 mg, 0.270 mmol, 54%) was isolated as colorless crystals.

Mp 194 °C. ¹H NMR (300 MHz, acetone-d₆): δ 2.24 (s, 3 H), 3.92 (s, 3 H), 6.16-6.32 (m, 3 H), 6.78-6.95 (m, 3 H), 6.98 (d, ⁴*J* = 2.1 Hz, 1 H), 7.01-7.06 (m, 1 H), 7.10-7.33 (m, 6 H), 7.36-7.43 (m, 2 H). ¹³C NMR (75 MHz, acetone-d₆): δ 20.6 (CH₃), 55.9 (CH₃), 116.3 (CH), 116.6 (CH), 117.0 (CH), 120.2 (C_{quat}), 120.3 (C_{quat}), 123.3 (CH), 126.7 (CH), 127.4 (CH), 127.7 (CH), 128.0 (CH), 128.1 (CH), 128.7 (CH), 130.3 (CH), 131.2 (CH), 133.1 (CH), 134.0 (C_{quat}), 135.9 (C_{quat}), 137.1 (C_{quat}), 141.4 (C_{quat}), 144.3 (C_{quat}), 145.5 (C_{quat}), 160.6 (C_{quat}). EI MS (70 eV): *m*/*z* (%): 396 (26), 395 ([M]⁺, 100), 380 ([C₂₅H₁₈NOS]⁺, 12), 305 (22), 273 ([C₁₈H₁₁NS]⁺, 12), 254 (23), 197 ([C₁₂H₇NS]⁺, 25). IR: $\tilde{\nu}$ [cm⁻¹] = 3061 (w), 3012 (w), 2955 (w), 2926 (w), 2835 (w), 1607 (w) 1574 (w), 1508 (m), 1464 (s), 1439 (m), 1418 (w), 1391 (w), 1306 (m), 1296 (m), 1238 (s), 1234 (m), 1190 (w), 1179 (w), 1163 (m), 1128 (w), 1119 (w), 1105 (m), 1078 (w), 1035 (m), 1010 (w), 970 (w), 914 (w), 891 (w), 843 (m), 822 (m), 797 (w), 752 (m), 721 (w), 704 (w), 656 (w). HR-MS (ESI) (m/z) calcd. for [C₂₆H₂₁NO]⁺: 395.1344; Found: 395.1343. HPLC (acetone): 98% (RT = 7.2 min)

2-(10-(4-Methoxyphenyl)-10*H*-phenothiazin-3-yl)benzaldehyde (40)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4o** (96 mg, 0.234 mmol, 47%) was isolated as yellow crystals. Mp 112 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.93 (s, 3 H), 6.24 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.32 (d, ³*J* = 8.4 Hz, 1 H), 6.86 (td, ³*J* = 7.5, ⁴*J* = 1.3 Hz, 1 H), 6.91-6.97 (m, 2 H), 7.04 (dd, ³*J* = 7.5, ⁴*J* = 1.6 Hz, 1 H), 7.11 (d, ⁴*J* = 2.2 Hz, 1 H), 7.21–7.28 (m, 2 H), 7.37-7.42 (m, 2 H), 7.46-7.49 (m, 1 H), 7.52 (tt, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, 1 H), 7.69 (td, ³*J* = 7.6 Hz, ⁴*J* = 1.5 Hz, 1H), 7.89-7.93 (m, 1 H), 10.00 (d, ⁴*J* = 0.9 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): δ 56.0 (CH₃), 116.3 (CH), 116.8 (CH), 117.0 (CH), 119.9 (Cquat), 120.9 (Cquat), 123.6 (CH), 127.4 (CH), 128.1 (CH), 128.2 (CH), 128.5 (CH), 128.5 (CH), 130.0 (CH), 131.5 (CH), 132.8 (Cquat), 133.0 (CH), 133.7 (Cquat), 134.5 (CH), 134.6 (Cquat), 145.2(Cquat), 145.3 (Cquat), 160.6 (Cquat), 192.0 (Cquat). EI MS (70 eV): *m/z* (%): 410 (29), 409 ([M]⁺, 100), 376 (22), 273 ([C₁₈H₁₁NS]⁺, 12), 272 (11), 268 (15), 167 (11), 150 (14), 136 (12). IR: \tilde{v} [cm⁻¹] = 3057 (w), 2953 (w), 1690 (m), 1605 (w), 1595 (w), 1574 (w), 1508 (s), 1460 (s), 1439 (m), 1387 (w), 1306 (m), 1244 (s), 1192 (m), 1183 (w), 1163 (w), 1128 (w), 1103 (w), 1080 (w), 1030 (m), 1011 (w), 829 (m), 762 (m), 745 (m), 640 (w). Anal. calcd. for C₂₆H₁₉NO₂S [409.5]: C 76.26, H 4.68, N 3.42, S 7.83; Found: C 76.12, H 4.65, N 3.40, S 7.73.

3-(4-Methoxyphenyl)-10-(o-tolyl)-10*H*-phenothiazine (4p)

The synthesis was performed by GP1. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane/acetone, **4o** (150 mg, 0.379 mmol, 76%) was isolated as yellow crystals. Mp 143 °C. ¹H NMR (600 MHz, acetone-d₆): δ 2.22 (s, 3 H), 3.81 (s, 3 H), 6.03 (d, ³*J* = 8.2 Hz, 1 H), 6.06 (d, ³*J* = 8.6 Hz, 1 H), 6.81 (dd, ³*J* = 8.1 Hz, 6.7 Hz, 1 H), 6.87 (td, ³*J* = 8.0 Hz, ³*J* = 1.4 Hz, 1 H), 6.93-6.97 (m, 2 H), 6.99-7.01 (m, 1 H), 7.10 (dd, ³*J* = 8.6 Hz, ⁴*J* = 2.2 Hz, 1 H), 7.23 (d, ⁴*J* = 2.2 Hz, 1 H), 7.37-7.42 (m, 1 H), 7.46-7.54 (m, 4 H), 7.55-7.59 (m, 1 H). ¹³C NMR (150 MHz, acetone-d₆): δ 17.7 (CH₃), 55.6 (CH₃), 115.1 (CH), 115.8 (CH), 116.1 (CH), 119.5 (C_{quat}), 120.3 (C_{quat}), 123.3 (CH), 124.9 (CH), 125.9 (CH), 127.3, 128.0, 128.1, 129.3, 129.9, 132.4, 132.8, 133.4, 135.9, 139.0, 139.8, 142.3, 143.5, 160.1. EI MS (70 eV): *m/z* (%): 396 (27), 395 ([M]⁺, 100), 380 ([C₂₅H₁₈NOS]⁺, 26), 304 ([C₁₉H₁₄NOS]⁺, 14), 289 ([C₁₈H₁₁NOS], 12), 261 (16), 197 ([C₁₂H₇NS]⁺, 25). IR: $\tilde{\nu}$ [cm⁻¹] = 3055 (w), 3001 (w), 2947 (w), 2918 (w), 1603 (m), 1574 (m), 1491 (m), 1464 (s), 1437 (m), 1422 (w), 1383 (w), 1364 (w), 1306 (m), 1290 (m), 1254 (m), 1240 (s), 1204 (w), 1177 (m), 1161 (m), 1128 (w), 1113 (w), 1043 (m), 1024 (m), 989 (w), 955 (w), 916 (w), 889 (w), 816 (s), 802 (m), 779 (s), 748 (s), 733 (m), 658 (m), 632 (m). Anal. calcd. for C₂₆H₂₁NOS [395.5]: C 78.96, H 5.35, N 3.54, S 8.11; Found: C 78.83, H 5.53, N 5.53, S 7.97.

General procedure 2 (GP2) for the synthesis of the 3,9-diaryl 9H-carbazoles 7

Under argon in a Schlenk tube with magnetic stir bar 3-bromo-9*H*-carbazole (**5**) (123 mg, 0.500 mmol), aryl boronic acid **2** (0.500 mmol), Pd(dba)₂ (14 mg, 5.0 mol%), tri-*tert*-butylphosphane tetrafluoroborate (8 mg, 5.0 mol%) and cesium fluoride (227 mg, 1.50 mmol) were dissolved in dry 1,4-dioxane (3 mL). The solution was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 4 h. After cooling to room temperature, aryl bromide **3** (0.550 mmol) and potassium carbonate (207 mg, 1.50 mmol) were added and the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 20 h. After cooling to room temp deionized water (50 mL), saturated Na₂SO₃ solution (15 mL) and dichloromethane (50 mL). The combined organic phases were dried with anhydrous magnesium sulfate and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel and by recrystallization to give compound **7** as a solid.

Table S5: Experimental details for the synthesis of 3,9-diaryl 9H-carbazoles 7.

entry	arylboronic acid 2	aryl bromide 3	yield of product 7
3	B(OH) ₂ OMe 2b , 76 mg	Br OMe 3b , 103 mg	7c 182 mg (96%)
4	B(OH) ₂ 2c , 61 mg	Br NMe ₂ 3a , 110 mg	7 c , 162 mg (90%)
5	B(OH) ₂ 2c , 61 mg	Br J 3c, 86 mg	7e , 158 mg (99%)
6	B(OH) ₂ 2c , 61 mg	Br CN 3f , 100 mg	7f , 162 mg (94%)

Table S5: Experimental details for the synthesis of 3,9-diaryl 9*H*-carbazoles 7.

Spectroscopic data of 3,9-diaryl carbazoles 7

4,4'-(9H-Carbazole-3,9-diyl)bis(N,N-dimethylaniline) (7a)

The synthesis was performed by GP2. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **7a** (134 mg, 0.330 mmol, 66%) was isolated as colorless crystals.

Mp 165 °C. ¹H NMR (300 MHz, acetone-d₆): δ 2.98 (s, 6 H), 3.07 (s, 6 H), 6.82-6.91 (m, 2 H), 6.93-7.05 (m, 2 H), 7.20-7.34 (m, 3 H), 7.35-7.44 (m, 3 H), 7.58-7.68 (m, 3 H), 8.26 (ddd, ³*J* = 7.8 Hz, ⁴*J* = 1.3 Hz, 0.7 Hz, 1 H), 8.40 (dd, ⁴*J* = 1.9 Hz, 0.7 Hz, 1 H). ¹³C NMR (75 MHz, acetone-d₆): δ 40.7 (CH₃), 40.7 (CH₃), 110.6 (CH), 110.7 (CH), 113.8 (CH), 114.0 (CH), 118.2 (CH), 120.2 (CH), 121.2 (CH), 124.1 (C_{quat}), 124.4 (C_{quat}), 125.4 (CH), 126.7 (CH), 126.7 (C_{quat}), 128.3 (CH), 128.7 (CH), 130.8 (C_{quat}), 134.1 (C_{quat}), 141.3 (C_{quat}), 142.9 (C_{quat}), 150.6 (C_{quat}), 151.1 (C_{quat}). EI MS (70 eV): *m/z* (%): 406 (28), 405 ([M]⁺, 100), 390 ([C₂₇H₂₄N₃]⁺, 10), 389 (14), 203 (28), 202 (23), 194 (16), 180 (12). IR: $\tilde{\nu}$ [cm⁻¹] = 3042 (w), 3030 (w), 2913 (w), 2886 (w), 2849 (w), 1609 (m), 1522 (s), 1506 (m), 1476 (m), 1456 (m), 1461 (m), 1418 (w), 1348 (m), 1333 (m), 1315 (w), 1306 (w), 1275 (w), 1258 (m), 1233 (s), 1190 (m), 1165 (m), 1150 (w), 1128 (w), 1103 (w), 1063 (w), 1024 (w), 1009 (w), 995 (w), 939 (w), 907 (w), 887 (w), 827 (w), 808 (s), 766 (m), 754 (m), 745 (s), 725 (m), 704 (w), 648 (m). Anal. calcd. for C₂₈H₂₇N₃ [405.6]: C 82.93, H 6.71, N 10.36; Found: C 83.13, H 6.52, N 10.09.

4-(3-(4-(Dimethylamino)phenyl)-9H-carbazol-9-yl)benzonitrile (7b)

The synthesis was performed by GP2. After chromatography on silica gel (*n*-hexane/acetone 50:1) and recrystallization from *n*-hexane/acetone, **7b** (123 mg, 0.317 mmol, 63%) was isolated as colorless crystals.

Mp 170 °C. ¹H NMR (300 MHz, acetone-d₆): δ 2.98 (s, 6 H), 6.80-6.91 (m, 2 H), 7.33 (ddd, ³*J* = 8.1 Hz, 7.1 Hz, ⁴*J* = 1.1 Hz, 1 H), 7.46 (ddd, ³*J* = 8.3 Hz, 7.0 Hz, ⁴*J* = 1.3 Hz, 1 H), 7.50-7.57 (m, 2 H), 7.58-7.70 (m, 3 H), 7.85-7.95 (m, 2 H), 8.03-8.14 (m, 2 H), 8.30 (ddd, ³*J* = 7.8 Hz, ⁴*J* = 1.3 Hz, 0.7 Hz, 1 H), 8.42 (dd, ³*J* = 1.9 Hz, 0.7 Hz, 1 H). ¹³C NMR (75 MHz, acetone-d₆): δ 40.7 (CH₃), 110.6 (CH), 110.8 (CH), 111.2 (C_{quat}), 113.8 (CH), 118.4 (CH), 119.0 (C_{quat}), 121.5 (CH), 121.7 (CH), 125.1 (C_{quat}), 125.4 (C_{quat}), 125.8 (CH), 127.3 (CH), 128.0 (CH), 128.3 (CH), 130.1 (C_{quat}), 135.0 (CH), 135.5 (C_{quat}), 139.6 (C_{quat}), 141.2 (C_{quat}), 142.8 (C_{quat}), 150.8 (C_{quat}). EI MS (70 eV): *m*/*z* (%): 388 (25), 387 ([M]⁺, 100), 372 ([C₂₆H₁₈N₃]⁺, 11), 371 (12), 193 (34). IR: $\tilde{\nu}$ [cm⁻¹] = 2972 (w), 2886 (w), 2853 (w), 1599 (m), 1510 (m), 1476 (m), 1456 (s), 1445 (m), 1410 (w), 1354 (m), 1333 (m), 1315 (m), 1298 (w), 1275 (w), 1258 (w), 1229 (m), 1202 (w), 1184 (w), 1169 (m), 1155 (m), 1128 (w), 1109 (w), 1063 (m), 1028 (w), 1011 (w), 951 (w) 916 (w), 889 (w), 854 (w), 839 (m), 800 (s), 768 (m), 748 (s), 685 (w), 638 (m). Anal. calcd. for C₂₇H₂₁N₃[387.5]: C 83.69, H 5.46, N 10.84; Found: C 83.88, H 5.40, N 10.64.

3,9-Bis(4-methoxyphenyl)-9H-carbazole (7c)

The synthesis was performed by GP2. After chromatography on silica gel (*n*-hexane/acetone 50:1), **7c** (182 mg, 0.479 mmol, 96%) was isolated as colorless crystals.

Mp 122 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.70 (s, 3 H), 3.79 (s, 3 H), 6.86-6.93 (m, 2 H), 7.06-7.10 (m, 2 H), 7.11-7.15 (m, 1 H), 7.19 (dd, ${}^{3}J$ = 14.9 Hz, 8.3 Hz, 2 H), 7.27 (ddd, ${}^{3}J$ = 8.2 Hz, 7.0 Hz, ${}^{4}J$ = 1.2 Hz, 1 H), 7.34-7.41 (m, 2 H), 7.51 (dd, ${}^{3}J$ = 8.5 Hz, ${}^{4}J$ = 1.8 Hz, 1 H), 7.53-7.56 (m, 2 H), 8.14 (d, ${}^{3}J$ = 7.8 Hz, 1 H), 8.30 (d, ${}^{4}J$ = 1.8 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): δ 55.6 (CH₃), 56.0 (CH₃), 110.5 (CH), 110.7 (CH), 115.1 (CH), 116.1 (CH), 118.9 (CH), 120.6 (CH), 121.3 (CH), 124.1 (Cquat), 124.6 (Cquat), 125.8 (CH), 127.0 (CH), 128.8 (CH), 129.3 (CH), 130.9 (Cquat), 133.8 (Cquat), 135.1 (Cquat), 141.3 (Cquat), 142.6 (Cquat), 159.8 (Cquat), 160.1 (Cquat). El MS (70 eV): *m/z* (%): 380 (27), 379 ([M]⁺, 100), 365 (15), 364 ([C₂₅H₁₈NO₂]⁺, 59), 293 (10), 292 (14), 190 (20), 168 (10), 146 (14). IR: $\tilde{\nu}$ [cm⁻¹] = 3011 (w), 2965 (w), 2949 (w), 2934 (w), 2903 (w), 2835 (w), 1601 (w), 1578 (w), 1510 (m), 1476 (m), 1456 (m), 1441 (m), 1398 (w), 1366 (w), 1335 (w), 1287 (m), 1227 (s), 1177 (m), 1155 (w), 138 (w), 1103 (m), 1090 (w), 1030 (m), 1018 (m), 1001 (w), 951 (w), 934 (w), 910 (w), 876 (m), 851 (w), 831 (s), 814 (m), 795 (m), 766 (m), 746 (s), 723 (m), 714 (w), 700 (w), 660 (m), 629 (m). Anal. calcd. for C₂₆H₂₁NO₂[379.5]: C 82.30, H 5.58, N 3.69; Found: C 82.06, H 5.49, N 3.52.

N,*N*-Dimethyl-4-(3-phenyl-9*H*-carbazol-9-yl)aniline (7d)

The synthesis was performed by GP2. After chromatography on silica gel (*n*-hexane/acetone 50:1), **7d** (168 mg, 0.463 mmol, 93%) was isolated as colorless crystals.

Mp 87 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.07 (s, 6 H), 6.99 (d, ³*J* = 8.7 Hz, 2 H), 7.25-7.29 (m, 1 H), 7.30-7.35 (m, 2 H), 7.36 (d, ³*J* = 8.5 Hz, 1 H), 7.38-7.44 (m, 3 H), 7.47 (t, ³*J* = 7.8 Hz, 2 H), 7.71 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.77 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.5 Hz, 2 H), 8.30 (d, ³*J* = 7.8 Hz, 1 H), 8.50 (d, ³*J* = 1.8 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): δ 40.6 (CH₃), 110.7 (CH), 110.9 (CH), 114.0 (CH), 119.4 (CH), 120.5 (CH), 121.3 (CH), 124.0 (C_{quat}), 124.4 (C_{quat}), 126.0 (CH), 126.5 (C_{quat}), 126.9 (CH), 127.3 (CH), 127.8 (CH), 128.7 (CH), 129.7 (CH), 133.6 (C_{quat}), 142.0 (C_{quat}), 142.8 (C_{quat}), 143.0 (C_{quat}), 151.1 (C_{quat}). EI MS (70 eV): *m/z* (%): 363 (29), 362 ([M]⁺, 100), 346 ([C₂₅H₁₉N₂]⁺, 10), 287 (12), 286 ([C₂₀H₁₇N₂]⁺, 53), 243 (12), 242 (13), 241 ([C₁₈H₁₂N]⁺, 20), 201 (11), 200 (10), 199 (10), 198 (16), 197 (55), 196 (53), 181 (50), 152 (15), 143 (12), 77 ([C₆H₅]⁺, 12). IR: $\tilde{\nu}$ [cm⁻¹] = 3030 (w), 2936 (w), 2857 (w), 1610 (w), 1599 (w), 1520 (s), 1506 (m), 1472 (m), 1456 (s), 1348 (m), 1337 (m), 1325 (w), 1312 (w), 1296 (w), 1271 (w), 1256 (w), 1227 (s), 1233 (m), 1194 (m), 1165 (w), 1150 (w), 1130 (w), 1121 (w), 1063 (w), 1037 (w), 1028 (w), 1007 (w), 950 (w), 939 (w), 909 (w), 883 (w), 841 (w), 814 (m), 746 (m), 729 (m), 696 (m), 673 (w), 646 (w). Anal. calcd. for C₂₆H₂₂N₂ [362.5]: C 86.15, H 6.12, N 7.73; Found: C 85.91, H 6.19, N 7.53.

3,9-Diphenyl-9H-carbazole (7e)

The synthesis was performed by GP2. After chromatography on silica gel (*n*-hexane/acetone 50:1), **7e** (158 mg, 0.495 mmol, 99%) was isolated as colorless crystals.

Mp 139 °C^[6]. ¹H NMR (600 MHz, acetone-d₆): δ 7.29-7.37 (m, 2 H), 7.40-7.52 (m, 5 H), 7.56 (tt, ³*J* = 7.3 Hz, ⁴*J* = 1.3 Hz, 1 H), 7.64-7.68 (m, 2 H), 7.70-7.76 (m, 3 H), 7.76-7.80 (m, 2 H), 8.33 (d, ³*J* = 7.8 Hz, 1 H), 8.53 (d, ⁴*J* = 1.8 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): δ 110.6 (CH), 110.9 (CH), 119.5 (CH), 121.0 (CH), 121.4 (CH), 124.4 (C_{quat}), 124.9 (C_{quat}), 126.2 (CH), 127.2 (CH), 127.4 (CH), 127.8 (CH), 127.9 (CH), 128.6 (CH), 129.7 (CH), 131.0 (CH), 134.2 (C_{quat}), 138.4 (C_{quat}), 141.2 (C_{quat}), 142.2 (C_{quat}), 142.6 (C_{quat}). EI MS (70 eV): *m/z* (%): 320 (25), 319 ([M]⁺, 100), 318 (12), 317 (11), 241 ([C₁₈H₁₂N]⁺, 14). IR: $\tilde{\nu}$ [cm⁻¹] = 3528 (w), 3462 (w), 3269 (w), 3030 (w), 2955 (w), 2920 (w), 2872 (w), 2857 (w), 1624 (w), 1593 (w), 1497 (m), 1474 (m), 1452 (m), 1422 (w), 1362 (m), 1329 (w), 1271 (w), 1256 (w), 1236 (w), 1169 (w), 1150 (w), 1134 (w), 1072 (w), 1057 (w), 887 (w), 812 (m), 762 (s), 748 (m), 727 (m), 691 (m), 640 (m), 627 (w). Anal. calcd. for C₂₄H₁₇N [319.4]: C 90.25, H 5.36, N 4.39; Found: C 90.30, H 5.12, N 4.21.

4-(3-Phenyl-9H-carbazol-9-yl)benzonitrile (7f)

The synthesis was performed by GP2. After chromatography on silica gel (*n*-hexane/acetone 50:1), **7f** (162 mg, 0.470 mmol, 94%) was isolated as colorless crystals.

Mp 158 °C. ¹H NMR (600 MHz, acetone-d₆): δ 7.35 (t, ³*J* = 7.5 Hz, 2 H), 7.45-7.52 (m, 3 H), 7.54 (d, ³*J* = 8.2 Hz, 1 H), 7.58 (d, ³*J* = 8.6 Hz, 1 H), 7.73-7.80 (m, 3 H), 7.92 (d, ³*J* = 8.8 Hz, 2 H), 8.10 (d, ³*J* = 8.7 Hz, 2 H), 8.33 (d, ³*J* = 7.8 Hz, 1 H), 8.53 (d, ⁴*J* = 1.8 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): δ 110.7 (CH), 111.0 (CH), 111.4 (C_{quat}), 119.0 (C_{quat}), 119.6 (CH), 121.6 (CH), 121.9 (CH), 124.9 (C_{quat}), 125.4 (C_{quat}), 126.5 (CH), 127.5 (CH), 127.6 (CH), 127.9 (CH), 128.2 (CH), 129.7 (CH), 135.1 (CH), 140.3 (C_{quat}), 141.3 (C_{quat}), 142.3 (C_{quat}), 142.6 (C_{quat}). El MS (70 eV): *m/z* (%): 345 (25), 344 ([M]⁺, 100), 365 (15), 241 (11), 172 (11). IR: $\tilde{\nu}$ [cm⁻¹] = 3049 (w), 1599 (m), 1509 (s), 1474 (m), 1452 (s), 1425 (w), 1364 (m), 1341 (w), 1296 (w), 1273 (w), 1256 (w), 1234 (w), 1223 (m), 1190 (w), 1171 (m), 1153 (w), 1140 (w), 1117 (w), 1080 (w), 1067 (w), 1007 (w), 935 (w), 914 (w), 883 (m), 841 (m), 816 (m), 760 (s), 743 (s), 725 (s), 698 (s), 673 (m). Anal. calcd. for C₂₅H₁₆N₂ [344.4]: C 87.18, H 4.68, N 8.13; Found: C 87.27, H 4.77, N 7.93.

General procedure 3 (GP3) for the synthesis of the 1,5-diaryl 1H-indoles 8

Under argon in a Schlenk tube with magnetic stir bar 5-bromo-1*H*-indole (**6**) (98.0 mg, 0.500 mmol), aryl boronic acid **2** (0.500 mmol), Pd(dba)₂ (14 mg, 5.0 mol%), tri-*tert*-butylphosphane tetrafluoroborate (8 mg, 5.0 mol%) and cesium fluoride (227 mg, 1.50 mmol) were dissolved in dry 1,4-dioxane (3 mL). The solution was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 1 h. After cooling to room temperature, aryl bromide **3** (0.550 mmol) and potassium carbonate (207 mg, 1.50 mmol) were added and the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was degassed with argon for 5 min. Then, the reaction mixture was stirred at 120 °C (oil bath temperature) for 20 h. After cooling to room temp deionized water (50 mL), saturated Na₂SO₃ solution (15 mL) and dichloromethane (50 mL). The combined organic phases were dried with anhydrous magnesium sulfate and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel and by recrystallization to give compound **7** as a solid.

Table S6: Experimental details for the synthesis of 1,5-diaryl 1H-indoles 8.

Table S6: Experimental details for the synthesis of 1,5-diaryl 1H-indoles 8

entry	arylboronic acid or ester 2	aryl bromide 3	yield of product 8
8	$ \begin{array}{c} B(OH)_2 \\ \overleftarrow{CF_3} \\ \mathbf{2d}, 95 \text{ mg} \end{array} $	Br OMe 3b , 103 mg	CF_3 N OMe 8b. 134 mg (73%)
9	$ \begin{array}{c} B(OH)_2 \\ \overleftarrow{CF_3} \\ \mathbf{2d}, 95 \text{ mg} \end{array} $	Br JC, 86 mg	Bi , 136 mg (81%)
10	$F(OH)_2$ F_3 2d , 95 mg	Br CF ₃ 3e , 124 mg	CF_3 F_3 8i 142 mg (70%)
11	Бріп 2е , 105 mg	Вr ОМе 3b , 103 mg	6j , 142 mg (7076) Si OMe 8k , 90 mg (59%)
12	B(OH) ₂ OMe 2b , 76 mg	S S B B B B B B B B	n_{hexyl} N_{hexyl} $(459())$

Table S6: Experimental d	letails for the synthesis of	1.5-diarvl 1H-indoles 8.

Table S6: Experimental details for the synthesis of 1,5-diaryl 1*H*-indoles 8.

Spectroscopic data of 1,5-diaryl indoles 8

1,5-Bis(4-methoxyphenyl)-1*H*-indole (8a)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8a** (136 mg, 0.413 mmol, 83%) was isolated as colorless crystals. Mp 115 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.84 (s, 3 H), 3.89 (s, 3 H), 6.69 (dd, ³*J* = 3.2 Hz, ⁴*J* = 0.8 Hz, 1 H), 7.00-7.03 (m, 2 H), 7.12-7.17 (m, 2 H), 7.44 (dd, ³*J* = 8.6 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.46 (d, ³*J* = 3.2 Hz, 1 H), 7.50 (d, ³*J* = 8.6 Hz, 1 H), 7.49-7.52 (m, 2 H) 7.60-7.62 (m, 2 H), 7.85 (dd, ⁴*J* = 1.8 Hz, 0.7 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): 55.6 (CH₃), 55.9 (CH₃), 104.1 (CH), 111.3 (CH), 115.0 (CH), 115.7 (CH), 119.5 (CH), 122.3 (CH), 126.5 (CH), 128.8 (CH), 129.8 (CH), 130.8 (Cquat), 133.5 (Cquat), 134.0 (Cquat), 135.5 (Cquat), 136.3 (Cquat), 159.3 (Cquat), 159.7 (Cquat). EI MS (70 eV): *m*/*z* (%): 330 (24), 329 ([M]⁺, 100), 315 (13), 314 ([C₂₁H₁₆NO₂]⁺, 52), 289 (11), 165 (15), 143 (10), 122 (12). IR: \tilde{v} [cm⁻¹] = 3007 (w), 2938 (w), 2907 (w), 2835 (w), 1607 (w), 1514 (s), 1504 (m), 1439 (m), 1339 (w), 1290 (w), 1273 (m), 1246 (s), 1234 (s), 1171 (m), 1155 (m), 1119 (m), 1107 (m), 1069 (w), 1030 (s), 1016 (m), 959 (w), 945 (w), 901 (m), 880 (w), 829 (s), 802 (s), 797 (m), 781 (m), 764 (s), 733 (m), 721 (m), 644 (m), 621 (m), 602 (s). Anal. calcd. for C₂₂H₁₉NO₂ [329.4]: C 80.22, H 5.81, N 4.25; Found: C 79.98, H 5.55, N 4.37.

5-(4-Methoxyphenyl)-1-phenyl-1*H*-indole (8b)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8b** (132 mg, 0.441 mmol, 88%) was isolated as colorless crystals. Mp 130 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.84 (s, 3 H), 6.74 (d, ³*J* = 3.1 Hz, 1 H), 7.02 (d, ³*J* = 8.5 Hz, 2 H), 7.42 (t, ³*J* = 6.7 Hz, 1 H), 7.47 (td, ³*J* = 8.6 Hz, 1 H), 7.56 (d, ³*J* = 3.2 Hz, 1 H), 7.58-7.65 (m, 7 H), 7.87 (d, ⁴*J* = 1.7 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): 55.6 (CH₃), 104.8 (CH), 111.5 (CH), 115.0 (CH), 119.6 (CH), 122.5 (CH), 124.8 (CH), 127.3 (CH), 128.8 (CH), 129.49 (CH), 130.2 (CH), 131.2 (Cquat), 134.3 (Cquat), 135.4 (Cquat), 135.8 (Cquat), 140.7 (Cquat), 159.7 (Cquat). EI MS (70 eV): *m/z* (%): 300 (23), 299 ([M]⁺, 100), 285 (15), 284 ([C₂₀H₁₄NO]⁺, 67), 256 ([C₁₉H₁₄N]⁺, 25), 254 (10), 152 (11), 150 (18). IR: $\tilde{\nu}$ [cm⁻¹] = 3034 (w), 3011 (w), 2995 (w), 2957 (w), 2932 (w), 2901 (w), 1335 (w), 1315 (w), 1300 (w), 1271 (m), 1246 (m), 1229 (m), 1177 (m), 1165 (w), 1115 (w), 1080 (w), 1042 (m), 1020 (w), 951 (w), 881 (w), 837 (s), 791 (s), 758 (s), 718 (m), 702 (s), 663 (m). Anal. calcd. for C₂₁H₁₇NO [299.4]: C 84.25, H 5.72, N 4.68; Found: C 84.37, H 5.80, N 4.66.

1-(4-Chlorophenyl)-5-(4-methoxyphenyl)-1*H*-indole (8c)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8c** (48 mg, 0.144 mmol, 29%) was isolated as yellow crystals.

Mp 128 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.84 (s, 3 H), 6.76 (dd, ³*J* = 3.3 Hz, ⁴*J* = 0.8 Hz, 1 H), 6.99-7.05 (m, 2 H), 7.45-7.51 (m, 1 H), 7.55-7.58 (m, 1 H), 7.58-7.62 (m, 2 H), 7.62-7.71 (m, 5 H), 7.87 (dd, ⁴*J* = 1.8 Hz, 0.6 Hz, 1 H). ¹³C NMR (75 MHz, acetone-d₆): 55.6 (CH₃), 105.3 (CH), 111.4 (CH), 115.1 (CH), 115.2 (CH), 119.7 (CH), 122.7 (CH), 126.3 (CH), 128.3 (CH), 128.8 (CH), 129.4 (CH), 129.6 (CH), 130.7 (CH), 131.3 (Cquat), 132.1 (Cquat), 134.5 (Cquat), 135.3 (Cquat), 135.7 (Cquat), 139.5 (Cquat), 159.8 (Cquat). El MS (70 eV): *m/z* (%): 335 ([C₂₁H₁₆³⁷CINO]⁺, 34), 334 (25), 333 ([C₂₁H₁₆³⁵CINO]⁺, 100), 320 (18), 319 (12), 318 ([C₂₀H₁₃³⁵CINO], 58), 290 ([C₁₉H₁₃³⁵CIN]⁺, 22), 254 (15), 167 (10), 152 (12), 127 (13). IR: $\hat{\nu}$ [cm⁻¹] = 2953 (w), 2926 (w), 2901 (w), 1605 (w), 1578 (w), 1522 (m), 1493 (m), 1452 (s), 1437 (m), 1369 (m), 1337 (m), 1300 (m), 1275 (m), 1242 (s), 1231 (m), 1182 (m), 1136 (m), 1119 (m), 1101 (m), 1090 (m), 1070 (m), 1040 (m), 1015 (m), 955 (m), 889 (m), 874 (w), 835 (m), 804 (s), 764 (m), 746 (m), 718 (m), 613 (m). Anal. calcd. for C₂₁H₁₆CINO [333.8]: C 75.56, H 4.83, N 4.20; Found C 75.46, H 4.94, N 3.95.

5-(4-Methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)-1*H*-indole (8d)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8d** (139 mg, 0.378 mmol, 76%) was isolated as colorless crystals. Mp 152 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.84 (s, 3 H), 6.79-6.83 (m, 1 H), 6.99-7.06 (m, 2 H), 7.51 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.7 Hz, 1 H), 7.60-7.65 (m, 2 H), 7.62-7.71 (m, 1 H), 7.71-7.76 (m, 1 H), 7.85-7.91 (m, 3 H), 7.95 (d, ³*J* = 8.9 Hz, 2 H). ¹³C NMR (75 MHz, acetone-d₆): 55.7 (CH₃), 106.2 (CH), 111.8 (CH), 115.2 (CH), 119.9 (CH), 123.1 (CH), 124.9 (CH), 125.4 (C_{quat}, q, ¹*J* = 271.1 Hz), 128.2 (C_{quat}, q, ²*J* = 32.6 Hz), 128.0 (CH, q, ³*J* = 3.8 Hz), 129.0 (CH), 129.3 (CH), 131.8 (C_{quat}), 135.03 (C_{quat}), 135.3 (C_{quat}), 135.6 (C_{quat}), 144.1 (C_{quat}), 160.0 (C_{quat}). EI MS (70 eV): *m/z* (%): 368 (24), 367 ([M]⁺, 100), 353 (16), 352 ([C₂₁H₁₃F₃NO]⁺, 66), 324 ([C₂₀H₁₃F₃N]⁺, 32), 184 (19), 152 (17), 151 (10). IR: $\tilde{\nu}$ [cm⁻¹] = 3109 (w), 3065 (w), 2953 (w), 2901 (w), 2838 (w), 1609 (w), 1526 (m), 1506 (w), 1464 (m), 1443 (w), 1377 (w), 1312 (m), 1300 (m), 1288 (w), 1269 (m), 1240 (m), 1225 (m), 1163 (m), 1107 (s), 1063 (s), 1042 (m), 1009 (m), 955 (w), 883 (m), 849 (m), 831 (s), 804 (s), 764 (m), 719 (s), 617 (s). Anal. calcd. for C₂₂H₁₆F₃NO [367.4]: C 71.93, H 4.39, N 3.81; Found: C 72.05, H 4.44, N 3.72.

1-(4-Methoxyphenyl)-5-phenyl-1*H*-indole (8e)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8e** (112 mg, 0.375 mmol,75%) was isolated as yellow crystals.

Mp 110 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.90 (s, 3 H), 6.72 (dd, ³*J* = 3.2 Hz, ⁴*J* = 0.7 Hz, 1 H), 7.12-7.18 (m, 2 H), 7.28-7.34 (m, 1 H), 7.41-7.56 (m, 7 H), 7.67-7.71 (m, 2 H), 7.92 (dd, ⁴*J* = 1.7 Hz, 0.8 Hz, 1 H). ¹³C NMR (75 MHz, acetone-d₆): 55.9 (CH₃), 104.2 (CH), 111.4 (CH), 115.7 (CH), 116.9 (CH), 120.1 (CH), 122.5 (CH), 126.5 (CH), 127.2 (CH), 127.9 (CH), 129.6 (CH), 130.0 (CH), 130.8 (C_{quat}), 133.02 (CH), 133.5 (C_{quat}), 134.2 (C_{quat}), 136.7 (C_{quat}), 143.1 (C_{quat}), 159.4 (C_{quat}). EI MS (70 eV): *m/z* (%): 300 (24), 299 ([M]⁺, 100), 285 (11), 284 ([C₂₀H₁₄NO]⁺, 50), 256 ([C₁₉H₁₄N]⁺, 14), 254 (12), 150 (14), 127 (16), 125 (11), 111 (16), 97 (22), 95 (15), 85 (15), 83 (17), 81 (14), 71 (19), 69 (18), 57 (26), 55 (20). IR: $\tilde{\nu}$ [cm⁻¹] = 2959 (w), 2928 (w), 2901 (w), 2832 (w), 1597 (w), 1510 (m), 1452 (s), 1437 (m), 1373 (w), 1362 (w), 1337 (m), 1298 (m), 1244 (s), 1229 (m), 1198 (m), 1177 (m), 1169 (m), 1152 (m), 1117 (m), 1105 (m), 1078 (m), 754 (s), 737 (m), 727 (m), 716 (m), 696 (s), 652 (m), 637 (m). Anal. calcd. for C₂₁H₁₇NO [299.4]: C 84.25, H 5.72, N 4.68; Found C 84.39, H 5.94, N 4.69.

1,5-Diphenyl-1*H*-indole (8f)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8f** (106 mg, 0.394 mmol, 79%) was isolated as colorless crystals. Mp 104 °C.^[7] ¹H NMR (300 MHz, acetone-d₆): δ 6.77 (dd, ³*J* = 3.3 Hz, ⁴*J* = 0.8 Hz, 1 H), 7.28-7.35 (m, 1 H), 7.39-7.49 (m, 3 H), 7.52 (dd, ³*J* = 8.6 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.57-7.59 (m, 1 H), 7.59-7.63 (m, 2 H), 7.63-7.68 (m, 3 H), 7.68-7.70 (m, 1 H), 7.70-7.73 (m, 1 H), 7.94 (dd, ⁴*J* = 1.8 Hz, 0.7 Hz, 1 H). ¹³C NMR (75 MHz, acetone-d₆): 104.9 (CH), 111.6 (CH), 120.2 (CH), 122.7 (CH), 124.9 (CH), 127.3 (CH), 127.4 (CH), 127.9 (CH), 129.7 (CH), 130.7 (CH), 131.2 (C_{quat}), 134.5 (C_{quat}), 136.2 (C_{quat}), 140.6 (C_{quat}), 143.0 (C_{quat}). El MS (70 eV): *m*/*z* (%): 270 (20), 269 ([M]⁺, 100), 268 (14), 165 ([C₁₃H₉]⁺, 20). IR: $\tilde{\nu}$ [cm⁻¹] = 3753 (w), 3736 (w), 3258 (w), 3238 (w), 3132 (w), 3111 (w), 3053 (w), 3028 (w), 3015 (w), 2953 (w), 1558 (w), 1491 (m), 1466 (m), 1456 (m), 1433 (m), 1369 (m), 1350 (m), 1339 (m), 1327 (w), 1312 (w), 1283 (w), 1265 (w), 1229 (m), 1198 (w), 1175 (m), 1150 (w), 1117 (m), 1072 (m), 1018 (w), 955 (m), 905 (w), 889 (m), 856 (w), 812 (m), 787 (m), 752 (s), 727 (s), 694 (s), 681 (m), 662 (w), 638 (w), 627 (m). Anal. calcd. for C₂₀H₁₅N [269.4]: C 89.19, H 5.61, N 5.20; Found: C 89.15, H 5.84, N 5.01.

5-Phenyl-1-(4-(trifluoromethyl)phenyl)-1*H*-indole (8g)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8g** (135 mg, 0.400 mmol, 80%) was isolated as colorless crystals. Mp 120 °C. ¹H NMR (600 MHz, acetone-d₆): δ 6.84 (d, ³*J* = 3.3 Hz, 1 H), 7.33 (t, ³*J* = 7.4 Hz, 1 H), 7.46 (t, ³*J* = 7.7 Hz, 2 H), 7.57 (dd, ³*J* = 8.6 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.69-7.71 (m, 2 H), 7.71-7.72 (m, 1 H), 7.77 (d, ³*J* = 8.6 Hz, 1 H), 7.90 (d, ³*J* = 8.6 Hz, 2 H), 7.96 (dd, ³*J* = 5.1 Hz, 3.3 Hz, 3 H). ¹³C NMR (150 MHz, acetone-d₆): 106.2 (CH), 111.8 (CH), 120.5 (CH), 123.3 (CH), 124.9 (CH), 125.3 (C_{quat}, q, ¹*J* = 271.1 Hz), 127.5 (CH), 127.9 (CH, q, ³*J* = 3.4 Hz), 128.4 (C_{quat}, q, ²*J* = 32.7 Hz), 129.4 (CH), 129.7 (CH), 131.7 (C_{quat}), 135.3 (C_{quat}), 136.0 (C_{quat}), 142.9 (C_{quat}), 144.0 (C_{quat}). El MS (70 eV): *m/z* (%): 338 (23), 337 ([M]⁺, 100), 165 ([C₁₃H₉]⁺, 24). IR: $\tilde{\nu}$ [cm⁻¹] = 3065 (w), 3030 (w), 1609 (m), 1599 (w), 1518 (m), 1466 (m), 1452 (m), 1423 (w), 1375 (m), 1317 (s), 1298 (m), 1288 (m), 1267 (m), 1227 (m), 1157 (m), 1119 (s), 1107 (s), 1063 (s), 1036 (m), 1015 (m), 999 (w), 957 (m), 939 (w), 914 (w), 907 (w), 870 (m), 847 (m), 839 (m), 810 (m), 785 (m), 754 (s), 712 (s), 700 (s), 691 (m), 667 (w), 633 (m), 602 (m). Anal. calcd. for C₂₁H₁₄F₃N [337.4]: C 74.77, H 4.18, N 4.15; Found C 75.01, H 4.30, N 4.10.

1-(4-Methoxyphenyl)-5-(4-(trifluoromethyl)phenyl)-1*H*-indole (8h)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8h** (134 mg, 0.365 mmol, 73%) was isolated as colorless crystals. Mp 111 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.90 (s, 3 H), 6.76 (d, ³*J* = 3.2 Hz, 1 H), 7.14-7.18 (m, 2 H), 7.52 (dd, ³*J* = 6.0 Hz, ⁴*J* = 2.8 Hz, 3 H), 7.56 (s, 2 H), 7.79 (d, ³*J* = 8.2 Hz, 2 H), 7.93 (d, ³*J* = 8.1 Hz, 2 H), 8.02 (s, 1 H). ¹³C NMR (150 MHz, acetone-d₆): 56.0 (CH₃), 104.3 (CH), 111.7 (CH), 115.8 (CH), 120.6 (CH), 122.5 (CH), 125.67 (C_{quat}, q, ¹*J* = 270.9 Hz), 126.5 (CH,q, ³*J* = 3.8 Hz), 126.6 (CH), 128.4 (CH), 128.6 (C_{quat}, q, ²*J* = 32.0 Hz), 130.4 (CH), 130.8 (C_{quat}), 132.4 (C_{quat}), 133.3 (C_{quat}), 137.2 (C_{quat}), 147.0 (C_{quat}), 159.5 (C_{quat}). El MS (70 eV): *m/z* (%): 368 (23), 367 ([M]⁺, 100), 353 (12), 352 ([C₂₁H₁₃F₃NO]⁺, 59), 324 ([C₂₀H₁₃F₃N]⁺, 16), 254 (11), 184 (15). IR: $\tilde{\nu}$ [cm⁻¹] = 3215 (w), 3013 (w), 2955 (w), 2930 (w), 2893 (w), 2837 (w), 1684 (w), 1609 (w), 1512 (m), 1468 (w), 1443 (w), 1406 (w), 1371 (w), 1327 (m), 1300 (m), 1281 (m), 1273 (m), 1250 (m), 1227 (m), 1184 (m), 1157 (m), 1105 (s), 1069 (m), 1030 (m), 1011 (m), 972 (w), 955 (m), 930 (w), 910 (w), 881 (w), 835 (m), 791 (m), 760 (m), 745 (m), 729 (m), 708 (m), 692 (w), 664 (w), 642 (w), 604 (m). Anal. calcd. for C₂₂H₁₆F₃NO [367.4]: C 71.93, H 4.39, N 3.81; Found: 71.78, H 4.51, N 3.66.

1-Phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-indole (8i)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8i** (136 mg, 0.403 mmol, 81%) was isolated as colorless crystals.

Mp 113 °C. ¹H NMR (600 MHz, acetone-d₆): δ 6.81 (dd, ³*J* = 3.3 Hz, ⁴*J* = 0.8 Hz, 1 H), 7.43-7.46 (m, 1 H), 7.59 (dd, ³*J* = 8.6 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.60-7.63 (m, 2 H), 7.63-7.65 (m, 3 H), 7.69 (d, ³*J* = 8.6 Hz, 1 H), 7.79 (d, ³*J* = 8.1 Hz, 2 H), 7.93 (d, ³*J* = 8.1 Hz, 2 H), 8.04 (dd, ⁴*J* = 1.9 Hz, 0.7 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): 105.0 (CH), 111.9 (CH), 120.7 (CH), 122.7 (CH), 124.8 (C_{quat}, q, ¹*J* = 270.8 Hz), 125.0 (CH), 126.5 (CH, q, ³*J* = 3.8 Hz), 127.6 (CH), 128.4 (CH), 128.8 (C_{quat}, q, ²*J* = 32.3 Hz), 130.1 (CH), 130.7 (CH), 131.2 (C_{quat}), 132.7 (C_{quat}), 136.7 (C_{quat}), 140.4 (C_{quat}), 146.9 (C_{quat}). EI MS (70 eV): *m*/*z* (%): 338 (22), 337 ([M]⁺, 100), 165 ([C₁₃H₉]⁺, 24), 159 (11). IR: $\tilde{\nu}$ [cm⁻¹] = 3906 (w). 3736 (w), 3726 (w), 3123 (w), 3071 (w), 3044 (w), 3021 (w), 1616 (w), 1599 (w), 1514 (m), 1497 (m), 1470 (w), 1458 (w), 1406 (w), 1373 (w), 1323 (m), 1298 (w), 1267 (w), 1244 (w), 1225 (m), 1155 (m), 1107 (s), 1067 (m), 1003 (w), 953 (w), 883 (w), 843 (m), 837 (w), 806 (s), 791 (m), 733 (s), 691 (s), 638 (m), 625 (s), 608 (m). Anal. calcd. for C₂₁H₁₄F₃N [337.4]: C 74.77, H 4.18, N 4.15; Found C 74.95, H 4.12, N 3.95.

1,5-Bis(4-(trifluoromethyl)phenyl)-1H-indole (8j)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8j** (142 mg, 0.350 mmol, 70%) was isolated as colorless crystals. Mp 159 °C. ¹H NMR (300 MHz, acetone-d₆): δ 6.88 (dd, ³*J* = 3.4 Hz, ⁴*J* = 0.8 Hz, 1 H), 7.64 (dd, ³*J* = 8.7 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.74 (d, ³*J* = 3.4 Hz, 1 H), 7.78-7.84 (m, 3 H), 7.89-7.94 (m, 3 H), 7.95-8.00 (m, 3 H), 8.07 (dd, ⁴*J* = 1.8 Hz, 0.6 Hz, 1 H).¹³C NMR (75 MHz, acetone-d₆): 106.3 (CH), 112.0 (CH), 120.9 (CH), 123.2 (CH), 125.0 (CH), 125.2 (C_{quat}, q, ¹*J* = 271.0 Hz), 126.5 (CH, q, ³*J* = 3.8 Hz), 128.0 (CH, q, ³*J* = 3.8 Hz), 128.4 (CH), 128.7 (C_{quat}, q, ²*J* = 32.4 Hz), 129.8 (CH), 131.6 (C_{quat}), 133.3 (C_{quat}), 136.3 (C_{quat}), 143.7 (C_{quat}), 146.7 (C_{quat}). EI MS (70 eV): *m/z* (%): 406 (23), 405 ([M]⁺, 100), 183 ([C₁₀H₆F₃]⁺, 10), 165 ([C₁₃H₉]⁺, 15). IR: $\tilde{\nu}$ [cm⁻¹] = 3119 (w), 1611 (w), 1526 (w), 1470 (w), 1447 (w), 1427 (w), 1406 (w), 1375 (w), 1335 (m), 1321 (s), 1283 (w), 1267 (w), 939 (w), 910 (w), 883 (w), 866 (w), 845 (s), 833 (m), 804 (s), 768 (m), 733 (m), 692 (m), 613 (m). Anal. calcd. for C₂₂H₁₃F₆N [405.3]: C 65.19, H 3.23, N 3.46; Found: C 65.42, H 3.14, N 3.32.

1-(4-Methoxyphenyl)-5-(thiophen-2-yl)-1*H*-indole (8k)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8k** (90 mg, 0.295 mmol, 59%) was isolated as yellow crystals.

Mp 90 °C. ¹H NMR (600 MHz, acetone-d₆): δ 3.89 (s, 3 H), 6.70 (dd, ${}^{3}J$ = 3.2 Hz, ${}^{4}J$ = 0.8 Hz, 1 H), 7.10 (dd, ${}^{3}J$ = 5.1 Hz, 3.5 Hz, 1 H), 7.13-7.16 (m, 2 H), 7.36 (dd, ${}^{3}J$ = 5.1 Hz, ${}^{4}J$ = 1.1 Hz, 1 H), 7.39 (dd, ${}^{3}J$ = 3.6 Hz, ${}^{4}J$ = 1.2 Hz, 1 H), 7.46-7.49 (m, 2 H), 7.49-7.50 (m, 1 H), 7.50-7.53 (m, 2 H), 7.94 (dd, ${}^{4}J$ = 1.8 Hz, 0.7 Hz, 1 H). ¹³C NMR (150 MHz, acetone-d₆): 55.9 (CH₃), 104.1 (CH), 111.6 (CH), 115.8 (CH), 118.9 (CH), 121.6 (CH), 123.0 (CH), 124.6 (CH), 126.6 (CH), 127.7 (C_{quat}), 128.9 (CH), 130.3 (CH), 130.6 (C_{quat}), 133.3 (C_{quat}), 136.7 (C_{quat}), 146.5 (C_{quat}), 159.5 (C_{quat}). EI MS (70 eV): *m/z* (%): 306 (22), 305 ([M]⁺, 100), 291 (10), 290 ([C₁₈H₁₂NOS]⁺, 48), 262 ([C₁₇H₁₂NS]⁺, 15), 153 ([C₁₁H₇N]⁺, 13). IR: $\tilde{\nu}$ [cm⁻¹] = 3071 (w), 2999 (w), 2961 (w), 2930 (w), 2835 (w), 1614 (w), 1508 (m), 1472 (m), 1429 (m), 1377 (w), 1333 (m), 1296 (m), 1283 (m), 1244 (m), 1223 (m), 1204 (m), 1169 (m), 1153 (m), 1107 (m), 1078 (w), 1028 (m), 1007 (w), 982 (w), 955 (m), 930 (w), 874 (m), 826 (m), 804 (s), 777 (m), 760 (m), 725 (s), 714 (m), 698 (m), 677 (s), 627 (m). Anal. calcd. for C₁₉H₁₅NOS [305.4]: C 74.73, H 4.95, N 4.59, S 10.50; Found C 74.76, H 5.02, N 4.63, S 10.21.

10-Hexyl-3-(5-(4-methoxyphenyl)-1H-indol-1-yl)-10H-phenothiazine (8I)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8I** (114 mg, 0.226 mmol, 45%) was isolated as colorless crystals. Mp 202 °C. ¹H NMR (600 MHz, acetone-d₆): δ 0.92 (t, ³J = 7.1 Hz, 3 H), 1.35-1.40 (m, 4 H), 1.51-1.55 (m, 2 H), 1.85-1.92 (m, 2 H), 3.84 (s, 3 H), 4.00 (t, ${}^{3}J = 7.0$ Hz, 2 H), 6.66 (dd, ${}^{3}J = 3.2$ Hz, ${}^{4}J = 0.8$ Hz, 1 H), 6.95 (dd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.2 Hz, 1 H), 6.97-6.99 (m, 2 H), 7.03 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.1 Hz, 1 H), 7.13-7.16 (m, 2 H), 7.21 (ddd, ³J = 8.2 Hz, 7.3 Hz, ⁴J = 1.6 Hz, 1 H), 7.31 (d, ⁴J = 2.5 Hz, 1 H), 7.38 (dd, ${}^{3}J$ = 8.6 Hz, ${}^{4}J$ = 2.5 Hz, 1 H), 7.41 (td, ${}^{3}J$ = 3.6 Hz, ${}^{4}J$ = 1.8 Hz, 2 H), 7.53 (td, ${}^{3}J$ = 8.6 Hz, ${}^{4}J$ = 0.8 Hz, 1 H), 7.55-7.58 (m, 2 H), 7.78 (dd, ${}^{4}J$ = 1.8 Hz, 0.7 Hz, 1 H). ${}^{13}C$ NMR (150 MHz, acetone-d₆): 14.6 (CH₃), 23.6 (CH₂), 27.5 (CH₂), 27.7 (CH₂), 32.4 (CH₂), 48.1 (CH₂), 55.5 (CH₃), 104.6 (CH), 111.4 (CH), 115.0 (CH), 116.6 (CH), 117.0 (CH), 119.6 (CH), 122.5 (CH), 123.5 (CH), 123.5 (CH), 123.9 (CH), 124.9 (C_{quat}), 127.2 (C_{quat}), 128.1 (CH), 128.5 (CH), 128.8 (CH), 129.3 (CH), 130.8 (C_{quat}), 134.1 (C_{quat}), 135.3 (Cquat), 135.4 (Cquat), 135.9 (Cquat), 144.6 (Cquat), 145.8 (Cquat), 159.5 (Cquat). EI MS (70 eV): *m*/*z* (%): 505 (16), 504 ([M]⁺, 45), 420 (16), 419 ([C₂₇H₁₉N₂OS]⁺, 52), 376 (13), 329 ([C₂₁H₁₅NOS]⁺, 14), 304 (10), 179 ([C₁₃H₉N]⁺, 11), 91 (16), 84 (14), 69 ([C₄H₅O]⁺, 34), 57 ([C₄H₉]⁺, 44), 56 ([C₃H₄O]⁺, 100), 55 (35). IR: \tilde{v} [cm⁻¹] = 3555 (w), 2947 (w), 2932 (w), 2909 (w), 2868 (w), 2847 (w), 2832 (w), 1605 (w), 1499 (m), 1464 (s), 1439 (m), 1373 (w), 1333 (m), 1300 (m), 1269 (m), 1236 (m), 1223 (m), 1177 (m), 1153 (m), 1146 (m), 1105 (m), 1078 (w), 1040 (m), 1022 (m), 1007 (w), 978 (w), 910 (w), 887 (m), 843 (m), 826 (m), 799 (s), 789 (m), 758 (s), 725 (m), 704 (m), 681 (m), 627 (m). Anal. calcd. for C₃₃H₃₂N₂OS [504.7]: C 78.54, H 6.39, N 5.55, S 6.35; Found: C 78.34, H 6.12, N 5.34, S 6.11.

1-(4-Methoxyphenyl)-5-(naphthalen-1-yl)-1*H*-indole (8m)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, **8m** (50 mg, 0.143 mmol, 29%) was isolated as yellow crystals.

Mp 126 °C. ¹H NMR (300 MHz, acetone-d₆): δ 3.91 (s, 3 H), 6.75 (dd, ³*J* = 3.2 Hz, ⁴*J* = 0.8 Hz, 1 H), 7.14-7.21 (m, 2 H), 7.31 (dd, ³*J* = 8.5 Hz, ⁴*J* = 1.7 Hz, 1 H), 7.41-7.53 (m, 3 H), 7.53-7.62 (m, 5 H), 7.75 (dd, ⁴*J* = 1.7 Hz, 0.6 Hz, 1 H), 7.89-7.94 (m, 1 H), 7.95-8.00 (m, 2 H). ¹³C NMR (75 MHz, acetone-d₆): 55.9 (CH₃), 104.0 (CH), 110.9 (CH), 115.8 (CH), 123.0 (CH), 125.3 (CH), 126.3 (CH), 126.5 (CH), 126.6 (CH), 126.7 (CH), 127.0 (CH), 128.0 (CH), 128.0 (CH), 129.1 (CH), 130.0 (CH), 130.3 (C_{quat}), 133.0 (C_{quat}), 133.4 (C_{quat}), 133.5 (C_{quat}), 135.0 (C_{quat}), 136.5 (C_{quat}), 142.1 (C_{quat}), 159.4 (C_{quat}). El MS (70 eV): *m*/*z* (%): 350 (26), 349 ([M]⁺, 100), 348 (22), 334 ([C₂₄H₁₆NO]⁺, 21), 304 (10), 152 ([C₁₁H₆N]⁺, 18). IR: $\tilde{\nu}$ [cm⁻¹] = 3051 (w), 2959 (w), 2936 (w), 2905 (w), 2837 (w), 1612 (w), 1591 (w), 1516 (s), 1477 (m), 1460 (m), 1443 (m), 1429 (w), 1395 (m), 1335 (m), 1302 (m), 1279 (m), 1240 (s), 1184 (m), 1159 (m), 1144 (w), 1123 (m), 1107 (m), 1090 (w), 1024 (s), 955 (m), 905 (w), 889 (m), 866 (w), 820 (m), 799 (s), 775 (s), 762 (m), 745 (m), 721 (s), 708 (m), 683 (m), 662 (m), 648 (m), 633 (m). Anal. calcd. for C₂₅H₁₉NO [349.4]: C 85.93, H 5.48, N 4.01; Found C 86.03, H 5.64, N 4.10.

5-(4-Methoxyphenyl)-1-(naphthalen-1-yl)-1H-indole (8n)

The synthesis was performed by GP3. After chromatography on silica gel (*n*-hexane/acetone 20:1) and recrystallization from *n*-hexane, 8n (102 mg, 0.292 mmol, 58%) was isolated as colorless crystals. Mp 92 °C. ¹H NMR (600 MHz, acetone-d₆): δ 03.84 (s, 3 H), 6.83 (dd, ³J = 3.1 Hz, ⁴J = 0.8 Hz, 1 H), 6.99 (d, ${}^{3}J = 8.5$ Hz, 1 H), 7.00-7.03 (m, 2 H), 7.36 (dd, ${}^{3}J = 8.5$ Hz, ${}^{4}J = 1.8$ Hz, 1 H), 7.39 (dd, $^{3}J = 8.5$ Hz, $^{4}J = 0.7$ Hz, 1 H), 7.50 (ddd, $^{3}J = 8.1$ Hz, 6.8 Hz, $^{4}J = 1.2$ Hz, 1 H), 7.53 (d, $^{3}J = 3.1$ Hz, 1 H), 7.60-7.64 (m, 3 H), 7.66 (dd, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.2 Hz, 1 H), 7.71 (dd, ${}^{3}J$ = 8.2 Hz, 7.3 Hz, 1 H), 7.93 (d, ⁴J = 1.3 Hz, 1 H), 8.11 (dd, ³J = 8.2 Hz, 5.2 Hz, 2 H). ¹³C NMR (150 MHz, acetone-d₆): 55.6 (CH₃), 104.1 (CH), 111.6 (CH), 115.0 (CH), 119.5 (CH), 122.4 (CH), 123.8 (CH), 126.1 (CH), 126.7 (CH), 127.6 (CH), 128.0 (CH), 128.9 (CH), 129.3 (CH), 129.5 (CH), 130.2 (C_{quat}), 131.4 (CH), 131.4 (C_{quat}), 134.1 (Cquat), 135.6 (Cquat), 135.6 (Cquat), 136.8 (Cquat), 138.2 (Cquat), 159.7 (Cquat). EI MS (70 eV): m/z (%): 350 (25), 349 ([M]⁺, 100), 348 (13), 335 (11), 334 (C₂₄H₁₆NO]⁺, 39), 306 ([C₂₃H₁₆N]⁺, 18), 304 (14), 175 (11), 152 ([C₁₁H₆N]⁺, 21), 151 ([C₁₂H₇]⁺, 14), 139 ([C₁₀H₅N]⁺, 11). IR: $\tilde{\nu}$ [cm⁻¹] = 2995 (w), 2955 (w), 2903 (w), 2835 (w), 1607 (w), 1597 1271 (m), (w), 1576 (w), 1508 (m), 1474 (m), 1458 (m), 1441 (m), 1402 (m), 1335 (w), 1298 (w), 1244 (s), 1233 (m), 1180 (m), 1152 (w), 1132 (w), 1111 (w), 1088 (w), 1040 (m), 1017 (w), 1007 (w), 934 (m), 912 (w), 878 (w), 868 (w), 833 (m), 799 (s), 772 (s), 760 (m), 719 (s), 652 (m), 642 (m), 625 (w). Anal. calcd. for C₂₅H₁₉NO [349.4]: C 85.93, H 5.48, N 4.01; Found C 86.05, H 5.66, N 3.97.

4. NMR spectra

4.1 ¹H and ¹³C NMR spectra of 3,10-diaryl phenothiazines 4

¹H NMR spectrum of 3,10-Bis(4-methoxyphenyl)-10*H*-phenothiazine (4a) (acetone- d_6 , 300 MHz, 293 K)

¹³C NMR spectrum of 3,10-Bis(4-methoxyphenyl)-10*H*-phenothiazine (4a) (acetone- d_6 , 75 MHz, 293 K)

¹H NMR spectrum of 3-(4-Methoxyphenyl)-10-phenyl-10*H*-phenothiazine (4b) (acetone-d₆, 300 MHz, 293 K)

¹H NMR spectrum of 4-(3-(4-Methoxyphenyl)-10*H*-phenothiazin-10-yl)benzonitrile (4c) (acetone-d₆, 500 MHz, 293 K)

¹H NMR spectrum of 10-(4-Methoxyphenyl)-3-phenyl-10*H*-phenothiazine (4d) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 10-(4-Methoxyphenyl)-3-phenyl-10*H*-phenothiazine (4d) (acetone- d_6 , 150 MHz, 293 K)

¹H NMR spectrum of 4-(3-Phenyl-10*H*-phenothiazin-10-yl)benzonitrile (4f) (acetone-d₆, 500 MHz, 293 K)

293 K)

¹H NMR spectrum of 10-(4-Methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)-10*H*-phenothiazine (4g) (acetone-d₆, 600 MHz, 293 K)

.CF₃ ÓМе acetone-d₆ acetone-d₆ 2.02 3.00 .99 0.99 4.0 8.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 7.5 7.0

¹³C NMR spectrum of 10-(4-Methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)-10*H*-phenothiazine (4g) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 10-Phenyl-3-(4-(trifluoromethyl)phenyl)-10*H*-phenothiazine (4h) (acetone-d₆, 600 MHz, 293 K)

¹H NMR spectrum of 4-(3-(4-(Trifluoromethyl)phenyl)-10*H*-phenothiazin-10-yl)benzonitrile (4i) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 4-(3-(4-(Trifluoromethyl)phenyl)-10*H*-phenothiazin-10-yl)benzonitrile (4i) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 10-(4-Methoxyphenyl)-3-(thiophen-2-yl)-10*H*-phenothiazine (4j) (acetone-d₆, 600 MHz, 293 K)

150 MHz, 293 K)

¹H NMR spectrum of 3-(4-Methoxyphenyl)-10-(pyridin-4-yl)-10*H*-phenothiazine (4k) (acetone-d₆, 300 MHz, 293 K)

75 MHz, 293 K)

¹H NMR spectrum of 10-(4-Methoxyphenyl)-3-(naphthalen-1-yl)-10*H*-phenothiazine (4I) (acetone-d₆, 300 MHz, 293 K)

¹H NMR spectrum of 3-(4-Methoxyphenyl)-10-(naphthalen-1-yl)-10*H*-phenothiazine (4m) (acetone-d₆, 300 MHz, 293 K)

¹³C NMR spectrum of 3-(4-Methoxyphenyl)-10-(naphthalen-1-yl)-10*H*-phenothiazine (4m) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of 10-(4-Methoxyphenyl)-3-(*o*-tolyl)-10*H*-phenothiazine (4n) (acetone-d₆, 300 MHz, 293 K)

¹³C NMR spectrum of 10-(4-Methoxyphenyl)-3-(*o*-tolyl)-10*H*-phenothiazine (4n) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of 2-(10-(4-Methoxyphenyl)-10*H*-phenothiazin-3-yl)benzaldehyde (4o) (acetone- d_6 , 600 MHz, 293 K)

¹³C NMR spectrum of 2-(10-(4-Methoxyphenyl)-10*H*-phenothiazin-3-yl)benzaldehyde (4o) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of 3-(4-Methoxyphenyl)-10-(*o*-tolyl)-10*H*-phenothiazine (4p) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 3-(4-Methoxyphenyl)-10-(*o*-tolyl)-10*H*-phenothiazine (4p) (acetone-d₆, 150 MHz, 293 K)

4.2 ¹H and ¹³C NMR spectra of 3,9-diaryl carbazoles 7

¹H NMR spectrum of 4,4'-(9*H*-Carbazole-3,9-diyl)bis(*N*,*N*-dimethylaniline) (7a) (acetone-d₆, 300 MHz, 293 K)

¹³C NMR spectrum of 4,4'-(9*H*-Carbazole-3,9-diyl)bis(*N*,*N*-dimethylaniline) (7a) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of 4-(3-(4-(Dimethylamino)phenyl)-9*H*-carbazol-9-yl)benzonitrile (7b) (acetone-d₆, 300 MHz, 293 K)

 ^{13}C NMR spectrum of 4-(3-(4-(Dimethylamino)phenyl)-9*H*-carbazol-9-yl)benzonitrile (7b) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of *N*,*N*-Dimethyl-4-(3-phenyl-9*H*-carbazol-9-yl)aniline (7d) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of *N*,*N*-Dimethyl-4-(3-phenyl-9*H*-carbazol-9-yl)aniline (7d) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 3,9-Diphenyl-9*H*-carbazole (7e) (acetone-d₆, 600 MHz, 293 K)

¹H NMR spectrum of 4-(3-Phenyl-9*H*-carbazol-9-yl)benzonitrile (7f) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 4-(3-Phenyl-9*H*-carbazol-9-yl)benzonitrile (7f) (acetone-d₆, 150 MHz, 293 K)

4.3 ¹H and ¹³C NMR spectra of 1,5-diaryl indoles 8

¹H NMR spectrum of 1,5-Bis(4-methoxyphenyl)-1*H*-indole (8a) (acetone-d₆, 600 MHz, 293 K)

¹H NMR spectrum of 5-(4-Methoxyphenyl)-1-phenyl-1*H*-indole (8b) (acetone-d₆, 600 MHz, 293 K)

¹H NMR spectrum of 1-(4-Chlorophenyl)-5-(4-methoxyphenyl)-1*H*-indole (8c) (acetone-d₆, 300 MHz, 293 K)

¹³C NMR spectrum of 1-(4-Chlorophenyl)-5-(4-methoxyphenyl)-1*H*-indole (8c) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of 5-(4-Methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)-1*H*-indole (8d) (acetone-d₆, 300 MHz, 293 K)

¹³C NMR spectrum of 5-(4-Methoxyphenyl)-1-(4-(trifluoromethyl)phenyl)-1*H*-indole (8d) (acetone- d_6 , 75 MHz, 293 K)

¹H NMR spectrum of 1-(4-Methoxyphenyl)-5-phenyl-1*H*-indole (8e) (acetone-d₆, 300 MHz, 293 K)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

¹H NMR spectrum of 5-Phenyl-1-(4-(trifluoromethyl)phenyl)-1*H*-indole (8g) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 5-Phenyl-1-(4-(trifluoromethyl)phenyl)-1*H*-indole (8g) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 1-(4-Methoxyphenyl)-5-(4-(trifluoromethyl)phenyl)-1*H*-indole (8h) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 1-(4-Methoxyphenyl)-5-(4-(trifluoromethyl)phenyl)-1*H*-indole (8h) (acetone- d_6 , 150 MHz, 293 K)

S62

¹H NMR spectrum of 1-Phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-indole (8i) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 1-Phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-indole (8i) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 1,5-Bis(4-(trifluoromethyl)phenyl)-1*H*-indole (8j) (acetone- d_6 , 300 MHz, 293 K)

¹³C NMR spectrum of 1,5-Bis(4-(trifluoromethyl)phenyl)-1*H*-indole (8j) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 1-(4-Methoxyphenyl)-5-(thiophen-2-yl)-1*H*-indole (8k) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 1-(4-Methoxyphenyl)-5-(thiophen-2-yl)-1*H*-indole (8k) (acetone-d₆, 150 MHz, 293 K)

S65

¹H NMR spectrum of 10-Hexyl-3-(5-(4-methoxyphenyl)-1*H*-indol-1-yl)-10*H*-phenothiazine (8I) (acetone- d_6 , 600 MHz, 293 K)

¹³C NMR spectrum of 10-Hexyl-3-(5-(4-methoxyphenyl)-1*H*-indol-1-yl)-10*H*-phenothiazine (8I) (acetone-d₆, 150 MHz, 293 K)

¹H NMR spectrum of 1-(4-methoxyphenyl)-5-(naphthalen-1-yl)-1*H*-indole (8m) (acetone-d₆, 300 MHz, 293 K)

¹³C NMR spectrum of 1-(4-methoxyphenyl)-5-(naphthalen-1-yl)-1*H*-indole (8m) (acetone-d₆, 75 MHz, 293 K)

¹H NMR spectrum of 5-(4-methoxyphenyl)-1-(naphthalen-1-yl)-1*H*-indole (8n) (acetone-d₆, 600 MHz, 293 K)

¹³C NMR spectrum of 5-(4-methoxyphenyl)-1-(naphthalen-1-yl)-1*H*-indole (8n) (acetone-d₆, 150 MHz, 293 K)

5. HPLC of 10-(4-Methoxyphenyl)-3-(o-tolyl)-10H-phenothiazine (4n)

Literature

- [1] J. Cymerman-Craig, W. P. Rogers, G. P. Warwick, *Aust. J. Chem.* **1955**, *8*, 252-257.
- X. Chen, J. Mihalic, P. Fan, L. Liang, M. Lindstrom, S. Wong, Q. Ye, Y. Fu, J. Jaen, J.-L. Chen,
 K. Dai, L. Li, *Bioorg. Med. Chem. Lett.* **2012**, *22*, 363-366.
- [3] G. Trippé-Allard, J.-C. Lacroix, *Tetrahedron* **2013**, *69*, 861-866.
- S. Seifert, D. Schmidt, K. Shoyama, F. Würthner, *Angew. Chem.* 2017, 129, 7703-7708;
 Angew. Chem. Int. Ed. 2017, 56, 7595-7600;
- [5] M. Sailer, A. W. Franz, T. J. J. Müller, *Chem. Eur. J.* **2008**, *14*, 2602-2614.
- [6] a) W.-J. Yoo, T. Tsukamoto, S. Kobayashi, *Org. Lett.* 2015, *17*, 3640-3642; b) S. Maddala, C.-L. Chung, S.-Y. Wang, K. Kollimalayan, H.-L. Hsu, P. Venkatakrishnan, C.-P. Chen, Y. J. Chang, *Chem. Mater.* 2020, *32*, 127-138.
- P. Xu, E.-U. Würthwein, C. G. Daniliuc, A. Studer, *Angew. Chem.* 2017, *129*, 14060-14063;
 Angew. Chem. Int. Ed. 2017, *56*, 13872-13875;