

Supporting Information

A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar-SOF₃ Compounds

Lin Wang and Josep Cornella*

anie_202009699_sm_miscellaneous_information.pdf

Table of Contents

1. General experimental considerations	
2. Arylsulfur(II) precursors candidates	
3. Oxyfluorination reactivity of arylsulfur(II) precursor candidates	
4. Optimization of Ph-S-Phth from phenyl halides	6
5. Preparation of Ar-S-Phth	7
5.1 Preparation of 1M THF solution of ZnCl2	7
5.2 General method for preparation of organozinc halides from aryl halides	7
5.3 General method for synthesis of Phth-S-Cl	7
5.4 General method for the synthesis of Ar-S-Phth	
6. Optimization of oxyfluorination step	
7. General method for the synthesis of ArSOF ₃	
8. Scope of ArSOF ₃	
9. Analysis of the structure of ArSOF ₃	
10. General method for the synthesis of ArSO ₂ F	
11. Scope of ArSO ₂ F	
12. General method for the synthesis of ArSF ₄ Cl	
13. Scope of ArSF ₄ Cl	
14. Study on the mechanism for the oxidation step toward ArSOF ₃ , ArSO ₂ F and ArSF ₄ Cl	
14.1 ¹⁹ F NMR monitor of the reaction for ArSOF ₃	
14.2 The reaction for the formation of ArSO ₂ F in the presence of H ₂ ¹⁸ O	
14.3 ¹⁹ F NMR monitoring of the reaction for ArSF ₄ Cl	69
14.4 Possible mechanism for the divergent formation of ArSOF3, ArSO2F and ArSF4Cl	
15. General method on synthesis of ArS(O)(NR)F	
16. Scope for synthesis of ArS(O)(NR)F	
17. References	
18. NMR Spectra	

1. General experimental considerations

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under dry argon in flame-dried glassware. Anhydrous solvents were distilled from appropriate drying agents and were transferred under Argon: THF (Mg/anthracene), CH₂Cl₂ (CaH₂), CH₃CN (CaH₂), hexane (Na/K), EtOH, MeOH (Mg), Et₃N (MS). Aryl halides, amines and phthalimide were purchased from Sigma-Aldrich, Alpha Aesar and TCI and used without prior drying or purification. Mg powder was activated with diluted hydrochloric acid followed by washing with water (3 times) and hexane (3 times). The active Mg powder was dried under vacuum (10^{-3} mbar) and stored under argon. Turbo Grignard reagent (iPrMgCl·LiCl, 1.3 M in THF) was purchased from Sigma-Aldrich. Trichloroisocyanuric acid (TCICA, powder) was purchased from Alpha Aesar and transferred in an argon-filled glovebox before usage. Potassium fluoride (KF, powder) was purchased from Sigma-Aldrich, rigorously dried under high vacuum (10⁻⁶ mbar) at 120 °C for 24 h and stored under argon. Flash chromatography: Merck silica gel 60 (40-63 µm). GC-MS (FID): GC-MS-QP2010 equipped (Shimadzu Europe Analytical Instriuments). MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ 3000 (Bruker). Accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). NMR spectra were recorded using a Bruker Avance VIII-300, Bruker Avance III HD 400 MHz spectrometer, Bruker Avance III 500MHz spectrometer equipped with a 5mm BBFO probe. ¹H NMR spectra (300.13 MHz, 400.1 MHz, or 500 MHz) were referenced to the residual protons of the deuterated solvent used. All ¹⁹F NMR spectra were acquired on either a 300, 400, or 500 MHz spectrometer. For ¹⁹F NMR yield determination, α , α , α -trifluorotoluene was used as internal standard (¹⁹F, d = -63.10 in CD₃CN). ¹³C{¹H} NMR spectra (75.47 MHz. 101 MHz, or 125 MHz) were referenced internally to the D-coupled ¹³C resonances of the NMR solvent. All compounds purified by column chromatography are shown with the isomerized product in the same spectra. Chemical shifts (δ) are given in ppm, relative to deuterated solvent residual peak, and coupling constants (J) are provided in Hz.

2. Arylsulfur(II) precursors candidates

SP-1 to SP-5 were prepared according to the literature procedures:

3. Oxyfluorination reactivity of arylsulfur(II) precursor candidates

Conditions C: To produce Ph-SF₄Cl, TCICA (18 eq.), KF (32 eq.), TFA (10 mol%) in CH₃CN at r.t. 24 h

Inspired by the recent developments reported from Togni *en route* to fluorinated aryl–S(VI), –Se(VI) and –Te(IV) compounds from ArCh–ChAr ^[6], we explored the oxidative fluorination of 5 phenylsulfur(II) precursors (**SP1** – **SP5**) with trichloroisocyanuric (TCICA) / potassium fluorides (KF). The results are outlined below:

Table S1. Compare of the oxyfluorination reactivity of 5 S(II) precursors (S1 - S5)

S(II) Precursor	SP1	SP2	SP3	SP4	SP5
Yield (4a+5a+6a, %)	>95	>100 (?)	14	<5	17
Ratio (4a:5a:6a)	14:<0.1<85	< 0.1:78:26	<0.1:99:<0.1	-	<0.1:99<0.1

Table S1 indicated that the Ph-S-Phth (**SP-1**, **3a**) is the most appropriate precursor for the oxyfluorination reaction, which afforded the highest yield and excellent selectivity towards **6a**. When **SP-3**, **SP-4** and **SP-5** were used as precursors, the conversion is low and no **6a** was produced. As for **SP2**, PhSO₂- played the role as the leaving group, which could be conversed to PhSO₂F under the condition (It is the reason why the yield is beyond 100%). Low selectivity and too much side-product make **SP2** inferior to **SP1**.

4. Optimization of Ph-S-Phth from phenyl halides

Typically, Ph–S–Phth is prepared from the reaction of thiophenol with phthalimide in the presence of Br_2 or SO_2Cl_2 .^[1] Yet, the synthesis of such compounds from the readily available aryl halides is virtually unknown. In order to synthesize these compounds from aryl halides, N,N'-Thiobisphthalimide (Phth-S-Phth, **Reagent A**), N,N'-Dithiobis(phthalimide) (Phth-S-S-Phth, **Reagent B**) and Phthalimidesulfenyl chloride (Phth-S-Cl, **Reagent C**) were chosen as coupling partners. The preparation of these three reagents were based on the literature (**Reagent A**^[7], **Reagent B**^[8], **Reagent C**^[9]). The optimal conditions are shown in table S2.

Table S2. Op	timization	for synthesis	of Ph-S-Phth	from arvl halides.
	ci i i i i i i i i i i i i i i i i i i	101 0 10000		monn ar ji manaeo.

Entry	Aryl-X	Reagent	Cat. (%)	Add. (eq.)	Solvent	T (°C)	t (h)	Conv. (%)	Product ratio
1		А	CuSO ₄ (20)	NaHCO ₃	DCM	60	24	trace	-
2		В	CuCl ₂ (20)	Cs_2CO_3	DMF	80	24	trace	-
3 ^a		А	CuI (20)	Bpy (20%)	DMSO/H ₂ O	80	24	54	3a'':3a' = 82:18
4 ^a	\checkmark	В	CuCl (20)	Bpy (20%)	DMF	80	24	43	3a'':3a' = 65:35
5 ^b		А	Cu(OAc) ₂	-	THF/DCM	r.t.	24	43	3a'':3a' = 3:97
			(5)						
6 ^b	∧ Br	В	Cu(OAc) ₂	-	THF/DCM	r.t.	24	51	Only 3a'
			(5)						
7°		2	Cu(OAc) ₂	-	THF	r.t.	12	trace	-
			(5)						
8°		2	-	-	Et ₂ O	r.t.	2	90	Only 3a'
9 ^b		2	Cu(OAc) ₂		THF	r.t.	2	84	3a:3a':3a'''
			(5)						= 30:54:16
10 ^b		2	-	-	THF/DCM	0 - r.t.	1	>95	3a:3a''' =95:5

Conditions: [a] Open in the air; [b] bromobenzene was transformed to zinc reagent firstly and then mixed with S(II) reagent and catalyst; [c] Bromobenzene was transformed to Grignard reagent first and then mixed with S(II) reagent and catalyst.

5. Preparation of Ar-S-Phth

5.1 Preparation of 1M THF solution of ZnCl₂

The 1M THF solution of ZnCl₂ was prepared according to the literature^[10]. ZnCl₂ powder (20 mmol) was dried at 140 °C under vacuum (10⁻³ mbar) for 6 h. After cooling to room temperature, 20 mL THF were added to dissolve the dry ZnCl₂. The suspension was kept stirring for 24 h until a clear colorless solution was obtained. The fresh-prepared ZnCl₂ should be kept over molecular sieves (4Å).

5.2 General method for preparation of organozinc halides from aryl halides

Method A: Under argon, activated Mg powder (12 mmol) and dry LiCl (10 mmol) were charged in a flame-dried 50 mL three-necked flask, which was equipped with a reflux condenser and a dropping funnel. After addition of a small amount (c.a. 2 mL) of aryl bromide solution (10 mmol in 8 mL THF), a few grains of iodine were added to initiate the reaction. The rest of aryl bromide solution was added dropwise over 0.5 h. Upon complete addition, the mixture was heated at 55 °C for 2 h. Subsequently, the ZnCl₂ (1M in THF, 12 mL) was added slowly into the mixture at 0 °C. Afterwards, the mixture was allowed to warm up to 25 °C and kept stirring for 1 h. A clear solution was obtained via filtration and the organozinc halides was titrated against iodine/LiCl before use. ^[11]

Method B: Under argon, aryl halides (3 mmol) was added into a flame-dried Schlenk flask and dissolved in dry THF (2 mL). When the reaction mixture was set to the appropriate temperature, *i*PrMgCl·LiCl (1.3 M in THF, 3.15 mmol) was added dropwise. The reaction was monitored by GC-MS (the reaction aliquots were quenched with saturated NH₄Cl aq. solution before analysis). Upon completion of the reaction, the ZnCl₂ (1M in THF, 3.6 mL) was added slowly into the mixture at 0 °C. Afterwards, the mixture was allowed to warm up to 25 °C and kept stirring for 1 h. The organozinc chlorides were titrated against iodine/LiCl before use. ^[10]

5.3 General method for synthesis of Phth-S-Cl

Phth-S-Cl (2) was prepared according to the literature^[9]. Phthalimide (20 mmol) was dissolved in 40 mL THF followed by addition of trimethylamine (30 mmol). The mixture was then cooled to 0 °C and into that sulfur monochloride (S₂Cl₂, 10 mmol) was added slowly. The mixture was stirred for 2 h and quenched with water. Upon the completion of the reaction, the resulting precipitate was filtered and washed with diethyl ether (10 mL \times 3). In order to purify the product, the resulting solid was re-dissolved in the solvent of CHCl₃/MeOH (v/v = 2:1,

25 mL) and refluxed for 1 h. After removal of the insoluble solid, the filtrate was concentrated under vacuum. The product di(1-phthalimidyl)disulfane was subsequently used for next step.

A flame-dried Schlenk flask was charged with 10 mL DCM solution of di(1-phthalimidyl)disulfane (2 mmol) and anhydrous pyridine (1.2 mmol) under argon. To the solution, fresh distilled sulfuryl chloride (SO₂Cl₂, 31 mmol) was added dropwise at room temperature. Then the mixture was stirred at the same temperature for 48 h. Upon the completion of the reaction, the solvent and excess SO₂Cl₂ were removed under vacuum, the resulting solid was collected, which is the desired Phth-S-Cl (two-step total yield: 63%). This reagent should be stored under argon.

5.4 General method for the synthesis of Ar-S-Phth

A flame-dried Schlenk flask was charged with Phth-S-Cl (102.2 mg, 0.48 mmol) and 2.5 mL DCM under argon. The mixture was subsequently cooled to 0 °C followed by addition of the THF solution of arylzinc chloride (0.4 mmol) over 10 min. The reaction was stirred at the same temperature for another 10 min and then allowed to warm up to 25 °C. The mixture was stirred for 30 min. During that time, the reaction was monitored by TLC. Upon the completion of reaction, the solvent was removed and the corresponding Ar-S-Phth was purified through a short silica column chromatography (Pentane/EtOAc: 3:1).

Synthesis of N-(benzenesulfenyl)phthalimide (3a). The phenyl zinc chloride was prepared according to the **Method A** from bromobenzene **1a**. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol phenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3a** as a white solid (82.6 mg, two-step yield 81%). NMR data are in accordance with the literature report ^[12].

¹H NMR (300 MHz, CDCl₃) δ 7.93 (dd, J = 5.5, 3.1 Hz, 2H), 7.78 (dd, J = 5.5, 3.1 Hz, 2H), 7.59 – 7.62 (m, 2H), 7.30 – 7.35 (m, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 167.7, 135.0, 134.7, 132.0, 130.9, 129.3, 124.1, 123.6.

Synthesis of N-(3-flourophenylsulfenyl)phthalimide (3b). The 3-fluorophenyl zinc chloride was prepared according to the **Method B** (the halogen-magnesium exchange underwent at r.t.) from 1-bromo-3-fluorobenzene **1b**. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 3-fluorophenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3b** as a white solid (87.3 mg, two-step yield 80%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.96 (dd, J = 5.5, 3.1 Hz, 2H), 7.81 (dd, J = 5.5, 3.1 Hz, 2H), 7.28 – 7.31 (m, 2H), 7.2 (d, J = 7.5 Hz, 1H), 6.95 – 7.03 (m, 1H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -110.8 (s, 1F) ¹³**C NMR** (75 MHz, CDCl₃) δ 167.4, 162.7 (d, J = 250.4 Hz), 137.3 (d, J = 7.5 Hz), 134.9, 131.9, 130.7 (d, J = 8.3 Hz), 125.0 (d, J = 3.2 Hz), 124.2, 116.4 (d, J = 23.2 Hz), 116.0 (d, J = 21.2 Hz). **HRMS (ESI):** Calc'd for C₁₄H₈FNO₂S⁺ [M]⁺ 273.02543; found 273.02582

Synthesis of N-(4-Cl-phenylsulfenyl)phthalimide (3c). The 4-chlorophenyl zinc chloride was prepared according to the **Method A** from 1-bromo-4-chlorobenzene **1c**. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-chlorophenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3c** as a white solid (93.2 mg, two-step yield 81%). NMR data are in accordance with the literature report ^[10].

¹H NMR (300 MHz, CDCl₃) δ 7.93 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.79 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H).
¹³C NMR (75 MHz, CDCl₃) δ 167.5, 135.8, 134.8, 133.3, 132.8, 131.9, 129.5, 124.1.

Synthesis of N-(4-Br-phenylsulfenyl)phthalimide (3d). The 4-bromophenyl zinc chloride was prepared according to the Method A (the addition of ZnCl₂ solution at -20 °C) from 1-bromo-4-bromobenzene 1d. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-bromophenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded 3d as a white solid (113.2 mg, two-step yield 85%). NMR data are in accordance with the literature report ^[10].

¹H NMR (300 MHz, CDCl₃) δ 7.94 (dd, J = 5.5, 3.0 Hz, 2H), 7.79 (dd, J = 5.5, 3.0 Hz, 2H), 7.43 – 7.51 (m, 4H).
¹³C NMR (75 MHz, CDCl₃) δ 167.5, 134.8, 134.0, 132.8, 132.5, 131.9, 124.1, 124.0.

Synthesis of N-(4-methylphenylsulfenyl)phthalimide (3e). The 4-methylphenyl zinc chloride was prepared according to the **Method A** from 4-bromotoluene **1e.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-methylphenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3e** as a pale yellow solid (92.5 mg, two-step yield 86%). NMR data are in accordance with the literature report ^[13].

¹H NMR (300 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.68 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.52 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 2H), 3.24 (s, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 167.8, 140.3, 134.5, 132.6, 132.0, 131.4, 130.0, 123.9, 21.2.

Synthesis of N-(2-methylphenylsulfenyl)phthalimide (3f). The 2-methylphenyl zinc chloride was prepared according to the **Method A** from 2-bromotoluene **1f.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 2-methylphenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3f** as a pale yellow solid (90.3 mg, two-step yield 83%). NMR data are in accordance with the literature report ^[14].

¹H NMR (300 MHz, CDCl₃) δ 7.93 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.19 – 7.21 (m, 2H), 7.10 – 7.14 (m, 1H), 2.62 (s, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 166.8, 137.3, 133.6, 133.1, 131.0, 129.7, 129.6, 128.0, 125.8, 123.0, 19.1.

Synthesis of N-(4-methoxyphenylsulfenyl)phthalimide (3g). The 4-methoxyphenyl zinc chloride was prepared according to the **Method A** from 4-bromoanisole **1g.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-methoxyphenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3g** as a white solid (86.6 mg, two-step yield 76%). NMR data are in accordance with the literature report ^[13].

¹H NMR (300 MHz, CDCl₃) δ 7.89 (dd, J = 5.5, 3.0 Hz, 2H), 7.76 – 7.79 (m, 2H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 6.85 (d, J = 8.9 Hz, 1H), 3.78 (s, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 167.8, 161.5, 136.6, 134.5, 132.1, 125.4, 123.9, 114.7, 55.4.

Synthesis of N-(4-nitrophenylsulfenyl)phthalimide 3h. The 4-nitrophenyl zinc chloride was prepared according to the **Method A** from 1-bromonitrobenzene **1h.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-nitrophenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3h** as a pale brown solid (73.2 mg, two-step yield 61%). NMR data are in accordance with the literature report ^[13].

¹H NMR (300 MHz, CDCl₃) δ 8.14 – 8.19 (m, 2H), 8.01 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.87 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.39 – 7.43 (m, 2H).
¹³C NMR (75 MHz, CDCl₃) δ 167.0, 147.0, 144.6, 135.3, 131.7, 125.9, 124.5, 124.4.

Synthesis of N-(3-trifluoromethylphenylsulfenyl)phthalimide (3i). The 3-CF₃-phenyl zinc chloride was prepared according to the Method B (the halogen-magnesium exchange and addition of ZnCl₂ solution underwent at -20 °C) from 1-iodo-3-trifluoromethylbenzene 1i. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 3-CF₃-phenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded 3i as a pale yellow solid (96.9 mg, two-step yield 75%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.96 (br, 2H), 7.81 (br, 3H), 7.72 (d, J = 7.3 Hz, 1H), 7.56 (d, J = 7.3 Hz, 1H), 7.46 (t, J = 7.3 Hz, 1H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -62.85 (s, 3F) ¹³**C NMR** (75 MHz, CDCl₃) δ 167.3, 136.5, 134.9, 133.1, 131.8, 131.7 (d, $J_{C-F}= 32.2$ Hz), 129.8, 126.6 (q, $J_{C-F}= 3.5$ Hz), 125.8 (q, $J_{C-F}= 3.5$ Hz), 124.2, 123.3 (d, $J_{C-F}= 271.5$ Hz).

HRMS (ESI): Calc'd for C₁₅H₈F₃NO₂SNa⁺ [M+Na]⁺ 346.01201; found 346.01188

Synthesis of N-(3-trifluoromethylphenylsulfenyl)phthalimide (3j). The 4-CF₃-phenyl zinc chloride was prepared according to the **Method B** (the halogen-magnesium exchange underwent at r.t.) from 1-bromo-4-trifluoromethylbenzene **1j.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-CF₃-phenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3j** as a white solid (98.2 mg, two-step yield 76%). NMR data are in accordance with the literature report ^[14].

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (dd, J = 5.5, 3.1 Hz, 2H), 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.50 – 7.58 (m, 4H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -62.83 (s, 3F) ¹³**C NMR** (75 MHz, CDCl₃) δ 167.3, 140.2 (d, $J_{C-F} = 1.5$ Hz), 135.0, 131.8, 130.4 (d, $J_{C-F} = 32.8$ Hz), 128.0, 126.2 (q, $J_{C-F} = 3.7$ Hz), 124.3, 123.6 (d, $J_{C-F} = 270.8$ Hz).

Synthesis of N-(3-nitrilphenylsulfenyl)phthalimide (3k). The 3-CN-phenyl zinc chloride was prepared according to the **Method B** (the halogen-magnesium exchange underwent at 0 °C) from 3-bromobenzonitrile **1k.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-

CN-phenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3k** as a white solid (88.5 mg, two-step yield 79%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.98 (dd, J = 5.5, 3.1 Hz, 2H), 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.72 – 7.75 (m, 2H), 7.57 (dt, J = 7.8 Hz, 1.3 Hz, 1H), 7.45 (t, J = 8.5, 1H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -62.83 (s, 3F) ¹³**C NMR** (75 MHz, CDCl₃) δ 167.2, 137.4, 135.1, 133.2, 132.12, 132.09, 131.8, 130.0, 124.4, 117.7, 113.8. **HRMS (EI):** Calc'd for C₁₅H₈N₂O₂S⁺ [M]⁺ (m/z) 280.03010; found 280.03053

Synthesis of N-((methyl4-benzoate)sulfenyl)phthalimide (3l). The 4-COOMe-phenyl zinc chloride was prepared according to the **Method B** (the halogen-magnesium exchange and addition of ZnCl₂ solution underwent at -30 °C) from 4-(carbomethoxy)iodobenzene **1l.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 4-COOMe-phenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3l** as a white solid (100.1 mg, two-step yield 80%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.95 – 8.00 (m, 4H), 7.83 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.38 – 7.42 (m, 2H), 3.89 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.3, 166.2, 141.4, 135.0, 131.8, 130.4, 129.6, 126.5, 124.3, 52.2. HRMS (ESI): Calc'd for C₁₆H₁₁NO₄SNa⁺ [M+Na]⁺ 336.03010; found 336.03016

Synthesis of N-((2-fluoro[1,1'-biphenyl]-4-yl)sulfenyl)phthalimide (3m). The 2-fluoro[1,1'-biphenyl]-4-yl zinc chloride was prepared according to the **Method A** from 4-bromo-2-fluoro1,1'-biphenyl **1m.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 2-fluoro[1, 1'-biphenyl]-4-yl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3m** as a white solid (101.9 mg, two-step yield 73%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.89 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.24 – 7.41 (m, 8H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ -115.5 (s, 1F)

¹³**C NMR** (75 MHz, CDCl₃) δ 167.4, 159.5 (d, *J*_{C-F}= 252.4 Hz), 135.8 (d, *J*_{C-F}= 7.8 Hz), 134.8, 134.3, 131.9, 131.4 (d, *J*_{C-F}= 4.0 Hz), 130.0 (d, *J*_{C-F}= 13.7 Hz), 128.9 (d, *J*_{C-F}= 3.0 Hz), 128.5, 128.1, 125.8 (d, *J*_{C-F}= 3.6 Hz), 124.2, 117.6 (d, *J*_{C-F}= 24.9 Hz).

HRMS (EI): Calc'd for C₂₀H₁₂FNO₂S⁺ [M]⁺ 349.05728; found 349.05718

Synthesis of N-(([1,1'-biphenyl]-4-yl)sulfenyl)phthalimide (3n). The [1,1'-biphenyl]-4-yl zinc chloride was prepared according to the Method A from 4-bromo-1,1'-biphenyl 1n. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 1,1'-biphenyl]-4-yl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded 3n as a white solid (100.7 mg, two-step yield 77%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.94 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.55 (m, 4H), 7.32 – 7.44 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.7, 142.5, 139.9, 134.7, 133.8, 132.0, 131.8, 128.8, 128.0, 127.8, 127.1, 124.0. HRMS (ESI): Calc'd for C₂₀H₁₃NO₂SNa⁺ [M+Na]⁺ 354.05592; found 354.05575

Synthesis of N-(2-pyridinylsulfenyl)phthalimide (30). The 2-pyridinyl zinc chloride was prepared according to the **Method B** (the halogen-magnesium exchange underwent at r.t.) from 2-bromopyridine **10.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 2-pyridinyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **30** as a white solid (74.7 mg, two-step yield 73%). NMR data are in accordance with the literature report ^[15].

¹**H** NMR (300 MHz, CDCl₃) δ 8.30 (d, *J* = 4.8 Hz, 1H), 8.00 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.56 (t, *J* = 8.4 Hz, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 7.02 (dd, *J* = 7.2, 4.8 Hz, 1H). ¹³**C** NMR (75 MHz, CDCl₃) δ 167.6, 156.4, 150.0, 136.8, 134.7, 132.2, 124.2, 121.0, 118.1.

Synthesis of N-(6-bromo-2-pyridinylsulfenyl)phthalimide (3p). The 6-bromo-2-pyridinyl zinc chloride was prepared according to the Method B (the halogen-magnesium exchange underwent at 0 °C) from 2,6-dibromopyridine 1p. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 6-bromo-2-pyridinyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded 3p as a pale yellow solid (106.5 mg, two-step yield 80%).

¹H NMR (300 MHz, CDCl₃) δ 8.02 (dd, J = 5.4, 3.0 Hz, 2H), 7.85 (dd, J = 5.4, 3.0 Hz, 2H), 7.40 (t, J = 7.8 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H).
¹³C NMR (75 MHz, CDCl₃) δ 167.3, 157.6, 142.0, 139.0, 135.0, 132.1, 125.2, 124.3, 116.5.
HRMS (ESI): Calc'd for C₁₃H₇BrN₂O₂SNa⁺ [M+Na]⁺ 356.93039; found 356.93032

Synthesis of N-(5-bromo-3-pyridinylsulfenyl)phthalimide (3q). The 5-bromo-3-pyridinyl zinc chloride was prepared according to the **Method B** (the halogen-magnesium exchange underwent at 0 °C) from 3,5-dibromopyridine **1q.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 5-bromo-3-pyridinyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3q** as a pale yellow solid (94.5 mg, two-step yield 71%).

¹**H NMR** (300 MHz, CDCl₃) δ 8.68 (d, J = 2.0 Hz, 1H), 8.55 (d, J = 2.0 Hz, 1H), 8.01 (t, J = 2.0 Hz, 1H), 7.89 (dd, J = 5.5, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.1 Hz, 2H). ¹³**C NMR** (75 MHz, CDCl₃) δ 167.1, 156.7, 151.5, 149.4, 140.9, 135.0, 133.4, 131.8, 124.3. **HRMS (ESI):** Calc'd for C₁₃H₈BrN₂O₂S⁺ [M+H]⁺ 334.94845; found 334.94873

Synthesis of N-(5-trifluoromethyl-2-pyridinylsulfenyl)phthalimide (3r). The 5-trifluoromethyl-2-pyridinyl zinc chloride was prepared according to the Method B (the halogen-magnesium exchange underwent at - 60 °C) from 2-iodo-5-(trifluoromethyl)pyridine 1r. The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 5-trifluoromethyl-2-pyridinyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded 3r as a white solid (89.4 mg, two-step yield 69%). NMR data are in accordance with the literature report ^[13].

¹H NMR (300 MHz, CDCl₃) δ 8.55 (dt, *J* = 2.3, 0.9 Hz, 1H), 8.02 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.86 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.79 (ddd, *J* = 8.4, 2.3, 0.9 Hz, 1H), 7.27 (dt, *J* = 8.4, 0.9 Hz, 1H).
¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ -62.4 (s, 3F)
¹³C NMR (75 MHz, CDCl₃) δ 167.2, 161.1, 146.9 (q, *J* = 4.2 Hz), 134.9, 133.8 (q, *J* = 3.4 Hz), 132.1, 124.3, 124.2 (d, *J* = 33 Hz), 123.3 (d, *J* = 270 Hz), 117.6.

Synthesis of N-(2,4,6-trimethyl-phenylsulfenyl)phthalimide (3v). The 2,4,6-trimethyl-phenyl zinc chloride was prepared according to the **Method A** from 2-bromo-1,3,5-trimethylbenzene **1v.** The title compound was prepared according to the general method for synthesis of Ar-S-Phth using 0.4 mmol 2,4,6-trimethyl-phenyl zinc chloride (solution in THF) and 0.48 mmol Phth-S-Cl in DCM. After the reaction, purification through a column chromatography afforded **3v** as a white solid (103.3 mg, two-step yield 87%).

¹H NMR (300 MHz, CDCl₃) δ 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.72 (dd, J = 5.5, 3.1 Hz, 2H), 6.94 (s, 2H), 2.72 (s, 6H), 2.25 (s, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 168.0, 144.2, 141.1, 134.4, 132.1, 129.4, 128.6, 123.6, 22.2, 21.1.
HRMS (GC-EI): Calc'd for C₁₇H₁₅NO₂S⁺ [M]⁺ (m/z): 297.08180; found 297.08199

6. Optimization of oxyfluorination step

Entry	TCICA	KF	Additive	Time	Yield (%)	Ratio	Note
	(eq.)	(eq.)	(eq.)	(h)	(4a+5a+6a)	(4a:5a:6a)	
1	9	16	TFA (2)	24	>95	96:4:<0.1	Optimized condition for
							synthesis of ArSOF ₃
2	9	16	TFA (1)	24	71	65:28:17	
3	9	16	TFA (0.5)	24	58	34:28:38	
4	9	16	TFA (0.2)	24	60	35:<0.1:65	
5	9	16	TFA (0.1)	24	72	21:<0.1:79	
6	9	16	-	24	35	44:3:53	18% PhSF ₃ formed
7	9	16	-	48	51	43:1:56	12% PhSF ₃ formed
8	9	16	AcOH (2)	24	64	<0.1:99:<0.1	
9	9	16	H ₂ O (2)	24	56	<0.1:99:<0.1	
10	9	16	MeOH (2)	24	>95	2:98:<0.1	Optimized condition for
							synthesis of ArSO ₂ F
11	9	16	EtOH (2)	24	>95	2:98:<0.1	
12	9	16	$\operatorname{ZnCl}_2(0.1)$	24	44	50:6:44	42% PhSF ₃ formed
13	4.5	8	TFA (0.1)	9	24	32:<0.1:68	15% PhSF ₃ formed
14	18	32	TFA (0.1)	24	87	18:<0.1:82	
15	18	32	TFA (0.1)	24	>95	12:2:85	With 0.2 mmol SM.
							Optimized condition for
							synthesis of ArSF ₄ Cl
16	18	32	TFA (2)	24	76	92:8:<0.1	
17	9*	16	TFA (0.1)	24	0	-	*Cyanuryl chloride instead of
							TCICA
18	-	-	TFA (0.1)	24	0	-	2 bar SF ₆ gas was used
19	9	16	TFA (2)	24	24	14:86:<0.1	DCM was used as solvent
20	9	16	TFA(2)	24	0	-	THF was used as solvent

Reaction conditions: **3a** (0.1 mmol), TCICA, KF and additives in 1 mL MeCN at room temperature; ¹⁹F NMR yields, α, α, α-trifluorotoluene as the internal standard.

7. General method for the synthesis of ArSOF₃

In a glovebox under Argon, the Ar-S-Phth precursor (**3**, 0.1 mmol, 1 equiv.), trichloroisocyanuric acid (TCICA, 210 mg, 0.9 mmol, 9 equiv.) and rigorously dried KF (93 mg, 16 mmol, 16 equiv.) was added to an oven-dried 12 mL round-bottom reaction vial equipped with a stir bar. Under vigorous stirring, 1 mL dry and degassed MeCN was added to the mixture followed by addition of TFA solution (1M in MeCN, 0.2 mL). Then the vial was sealed with a tight cap and the reaction was stirred at the room temperature in the glovebox for 24 h. Upon the completion of reaction, the atmosphere in the vial was vented carefully and the internal standard α , α , α -trifluorotoluene was added into the mixture. After 10 min stirring, an aliquot of the resulting solution was filtered under argon. The NMR sample was prepared with 0.4 mL of the filtered aliquot and 0.1 mL CD₃CN for ¹⁹F NMR yield determination.

Please note, the ArSOF₃ is extremely sensitive to the moisture and even glass. All reaction vials, flasks and NMR tubes used for the reaction and work-up process should be dried rigorously. Solvent, including deuterated solvent, should be ultra-dry (water content should be at least below 15 ppm). The reaction and work-up process should be handled always under argon. Interestingly, the ArSOF₃ can remain stable in the resulting solution after reaction for at least 4 days.

8. Scope of ArSOF₃

Phenylsulfur(VI) trifluoridoxide 4a was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 100.6 (d, *J* = 157.9 Hz, 2F), 64.5 (t, *J* = 157.9 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in section 9.)

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 11.1 mg, 0.076 mmol), ¹⁹F NMR yield: 85%. In combination with the yield for **3a**, the three-step total yield: 70%. Singlet at 64.52 ppm is the signal of PhSO₂F (**5a**); Singlet at -75.93 ppm is the signal of excess TFA.

3-Flourophenylsulfur(VI) trifluoridoxide 4b was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 101.6 (d, *J* = 160.5 Hz, 2F), 65.4 (t, *J* = 160.5 Hz, 1F), -109.5 (s, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 10.6 mg, 0.073 mmol), ¹⁹F NMR yield: 90%. In combination with the yield for **3b**, the three-step total yield: 72%. Singlet at 64.36 ppm is the signal of 3-F-PhSO₂F; Singlet at -76.03 ppm is the signal of excess TFA.

¹⁹F NMR spectra (282 MHz)

4-chlorophenylsulfur(VI) trifluoridoxide **4c** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 100.5 (d, *J* = 159.5 Hz, 2F), 66.2 (t, *J* = 159.5 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in section 9).

-63.18 56.64 100.89 100.75 100.32 100.19 - 5000 X g -1000 101 100 f1 (ppm) 66 65 f1 (ppm) 3.61-≖ 2.00-1 0.92-I - -1000 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 -380 f1 (ppm) -40 -100 -20 -60 -80

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 14.2 mg, 0.097 mmol), ¹⁹F NMR yield: 81%. In combination with the yield for **3c**, the three-step total yield: 65%. Singlet at 64.87 ppm is the signal of 4-Cl-PhSO₂F (**5c**); Singlet at -75.98 ppm is the signal of excess TFA.

4-bromophenylsulfur(VI) trifluoridoxide 4d was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 100.6 (d, *J* = 159.5 Hz, 2F), 65.9 (t, *J* = 159.5 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.20 ppm, 10.2 mg, 0.070 mmol), ¹⁹F NMR yield: 90%. In combination with the yield for **3d**, the three-step total yield: 77%. Singlet at 64.77 ppm is the signal of 4-Br-PhSO₂F (**5b**); Singlet at -75.68 ppm is the signal of excess TFA.

4-methylphenylsulfur(VI) trifluoridoxide **4e** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 99.3 (d, *J* = 156.7 Hz, 2F), 65.6 (t, *J* = 156.7 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

-63.18 99.55 99.00 66.10 65.55 65.54 64.99 64.98 150000 Ì 140000 - 64.99 - 64.98 - 66.10 - 65.55 - 65.54 00.66 99.56 99.55 130000 20000 15000 120000 15000 110000 10000 10000 100000 5000 5000 90000 80000 0 0 70000 g 65.5 6 f1 (ppm) 66.5 66.0 65.0 64.5 64.0 100.0 99.8 99.6 99.4 99.2 f1 (ppm) 99.0 98.8 98.6 98.4 60000 50000 40000 30000 20000 10000 0 -10000 **=**-66.0 4.38 2.00--20000 -20 140 20 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm) 120 100 80 60 40 0 -40 -60

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 12.3 mg, 0.084 mmol), ¹⁹F NMR yield: 58%. In combination with the yield for **3e**, the three-step total yield: 50%. Singlet at 64.98 ppm is the signal of 4-Me-PhSO₂F (**5d**); Singlet at -75.89 ppm is the signal of excess TFA.

2-methylphenylsulfur(VI) trifluoridoxide 4f was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 103.4 (d, *J* = 158.8 Hz, 2F), 69.0 (t, *J* = 156.7 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum should show AB₂ pattern. But because of the small amount of product, the peak became broad).

Note. Based on internal standard α,α,α -trifluorotoluene (at -63.16 ppm, 10.3 mg, 0.071 mmol), ¹⁹F NMR yield: 41%. In combination with the yield for **3f**, the three-step total yield: 34%. Singlet at 59.6 ppm is the signal of 2-Me-PhSO₂F; Singlet at -75.90 ppm is the signal of excess TFA.

4-methoxyphenylsulfur(VI) trifluoridoxide 4g was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 97.7 (d, *J* = 158.3 Hz, 2F), 68.2 (t, *J* = 158.3 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum should show AB₂ pattern. But because of the small amount of product, the peak became broad).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 8.3 mg, 0.057 mmol), ¹⁹F NMR yield: 36%. In combination with the yield for **3g**, the three-step total yield: 27%. Other signals are complicated; Singlet at -75.51 ppm is the signal of excess TFA.

4-nitrophenylsulfur(VI) trifluoridoxide **4h** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 102.8 (d, *J* = 162.3 Hz, 2F), 65.2 (t, *J* = 162.3 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. Based on internal standard α,α,α -trifluorotoluene (at -63.19 ppm, 9.8 mg, 0.067 mmol), ¹⁹F NMR yield: 78%. In combination with the yield for **3h**, the three-step total yield: 48%. Singlet at 135.0 ppm is the signal of 4-NO₂-PhSF₄Cl; Singlet at 64.4 ppm is the signal of NO₂PhSO₂F (**5f**); Singlet at -75.64 ppm is the signal of excess TFA.

3-(trifluoromethyl)phenylsulfur(VI) trifluoridoxide **4i** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 101.6 (d, *J* = 161.2 Hz, 2F), 65.8 (t, *J* = 161.2 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9), -63.5 (s, 3F).

101.89 101.32 -63.21 -63.47 55.84 55.83 55.26 54.51 -63.21 -63.47 101.89 101.88 101.32 101.31 66.39 65.83 65.83 0.99 3.15 -50 -100 f1 (ppm) -100 -150 -200 -250 -300 -350 -50 -100 -150 -200 -250 -300 -350 f1 (ppm) 3.15 2.00-1 0.92 -10000 -20 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm) -40 -60

Note. Based on internal standard α,α,α -trifluorotoluene (at -63.21 ppm, 16.0 mg, 0.110 mmol), ¹⁹F NMR yield: 81%. In combination with the yield for **3i**, the three-step total yield: 61%. Singlet at 64.5 ppm is the signal of 3-CF₃PhSO₂F (**5g**).

4-(trifluoromethyl)phenylsulfur(VI) trifluoridoxide **4j** was prepared according to the general method in section 7.

¹⁹**F**{¹**H**} **NMR** (282 MHz, CH₃CN/CD₃CN) δ 102.1 (d, *J* = 161.0 Hz, 2F), 64.9 (t, *J* = 161.2 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9), -64.0 (s, 3F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 15.4 mg, 0.105 mmol), ¹⁹F NMR yield: 80%. In combination with the yield for **3j**, the three-step total yield: 61%. Singlet at 64.1 ppm is the signal of 4-CF₃-PhSO₂F (**5h**); Singlet at -75.58 ppm is the signal of excess TFA.

3-nitrilphenylsulfur(VI) trifluoridoxide **4k** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 101.6 (d, *J* = 161.8 Hz, 2F), 66.0 (t, *J* = 161.8 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at - 63.18 ppm, 13.6 mg, 0.093 mmol), ¹⁹F NMR yield: 80%. In combination with the yield for **3k**, the three-step total yield: 67%. Singlet at 64.5 ppm is the signal of 3-CN-PhSO₂F; Singlet at –75.69 ppm is the signal of excess TFA.

Methyl 4-benzoatesulfur(VI) trifluoridoxide 4l was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 101.7 (d, *J* = 160.1 Hz, 2F), 64.5 (t, *J* = 160.1 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

-63.20 75.85 02.02 02.01 02.01 01.45 01.45 65.17 64.60 64.59 64.21 64.03 130000 -- 64.03 65.17 64.60 101.45 101.44 102.01 120000 30000 30000 110000 100000 20000 20000 90000 10000 10000 80000 70000 0 0 ģ 0.97-60000 66.0 65.5 65.0 64.5 64.0 63.5 63.0 102.5 102.0 101.5 101.0 103.0 100.5 100.0 f1 (ppm) f1 (ppm) 50000 40000 30000 20000 10000 0 -10000 2.00-≖ 0.97-2.24--80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm) 140 120 100 80 60 -20 -60 40 20 0 -40

Note. Based on internal standard α , α , α -trifluorotoluene (at -63.20 ppm, 9.7 mg, 0.066 mmol), ¹⁹F NMR yield: 89%. In combination with the yield for **3l**, the three-step total yield: 75%. Singlet at 64.2 ppm is the signal of 4-COOMe-PhSO₂F; Singlet at -75.85 ppm is the signal of excess TFA.

4m

(2-Fluoro[1,1'-biphenyl]-4-yl)sulfur(VI) trifluoridoxide **4m** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 100.7 (d, *J* = 160.2 Hz, 2F), 66.4 (t, *J* = 160.2 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9), -114.0 (s, 1F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.20 ppm, 7.0 mg, 0.048 mmol), ¹⁹F NMR yield: 94%. In combination with the yield for **3m**, the three-step total yield: 70%. Singlet at 64.78 ppm is the signal of (3-F)(4-Ph)-PhSO₂F (**5j**); Singlet at -75.62 ppm is the signal of excess TFA.

([1,1'-biphenyl]-4-yl)sulfur(VI) trifluoridoxide **4n** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 99.8 (d, *J* = 157.8 Hz, 2F), 65.8 (t, *J* = 157.8 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.19 ppm, 8.0 mg, 0.054 mmol), ¹⁹F NMR yield: 85%. In combination with the yield for **3n**, the three-step total yield: 65%. Singlet at 65.06 ppm is the signal of (4-Ph)-PhSO₂F (**5i**); Singlet at -75.55 ppm is the signal of excess TFA.

2-Pyridinylsulfur(VI) trifluoridoxide **40** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 92.8 (d, J = 161.4 Hz, 2F), 57.2 (t, J = 160.1 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.20 ppm, 5.2 mg, 0.036 mmol), ¹⁹F NMR yield: 71%. In combination with the yield for **30**, the three-step total yield: 52%. Singlet at 54.0 ppm is the signal of 2-PySO₂F (**5k**); Singlet at -75.60 ppm is the signal of excess TFA.

6-Bromo-2-pyridinylsulfur(VI) trifluoridoxide **4p** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 93.8 (d, *J* = 164.9 Hz, 2F), 59.2 (t, *J* = 164.9 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.18 ppm, 14.6 mg, 0.100 mmol), ¹⁹F NMR yield: 54%. In combination with the yield for **3p**, the three-step total yield: 43%. Singlet at 124.1 ppm is the signal of 6-Br-2-PySF₄Cl (**6i**); Singlet at 54.7 ppm is the signal of 6-Br-2-PySO₂F; Singlet at -75.89 ppm is the signal of excess TFA.

5-Bromo-3-pyridinylsulfur(VI) trifluoridoxide 4q was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 102.3 (d, *J* = 164.8 Hz, 2F), 69.6 (t, *J* = 164.8 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.20 ppm, 13.7 mg, 0.094 mmol), ¹⁹F NMR yield: 48%. In combination with the yield for **3q**, the three-step total yield: 34%. Other signals are complicated; Singlet at -75.86 ppm is the signal of excess TFA.

4-(Trifluoromethyl)-2-pyridinylsulfur(VI) trifluoridoxide **4r** was prepared according to the general method in section 7.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 93.7 (d, J = 164.2 Hz, 2F), 58.1 (t, J = 164.2 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9), -63.4 (s, 3F).

Note. Based on internal standard α,α,α -trifluorotoluene (at -63.20 ppm, 7.4 mg, 0.050 mmol), ¹⁹F NMR yield: 61%. In combination with the yield for **3r**, the three-step total yield: 42%. Singlet at 123.1 ppm is the signal of 4-CF₃-2-PySF₄Cl; Singlet at 54.0 ppm is the signal of 4-CF₃-2-PySO₂F; Singlet at -75.64 ppm is the signal of excess TFA.

Note. The sulfur(II) precursor was prepared from the reaction of N-chlorophthalimide with 2-pyrimidinethiol according to the literature ^[15] because the attempt to synthesize the 2-pyrimidinyl zinc halide is failed.

The preparation of 2-pyrimidinylsulfur(VI) trifluoridoxide 4s is based on the procedure described below:

In a glovebox under Argon, the 2-pyrimidinyl-S-Phth precursor (**3s**, 0.1 mmol, 1 equiv.) and anhydrous ZnCl₂ (0.2 mmol, 2 equiv.) were added to an oven-dried 12 mL round-bottom reaction vial equipped with a stir bar. Subsequently, 0.5 mL dry and degassed MeCN was added to dissolve the mixture. The suspension was stirred for 10 min followed by addition of trichloroisocyanuric acid (TCICA, 210 mg, 0.9 mmol, 9 equiv.), rigorously dried KF (93 mg, 16 mmol, 16 equiv.), 0.5 mL MeCN and TFA solution (1M in MeCN, 0.2 mL). Then the vial was sealed with a septum-pad cap and the reaction was stirred at the room temperature in the glovebox for 24 h. Upon the completion of reaction, the atmosphere in the vial was vented carefully and the internal standard α , α , α -trifluorotoluene was added into the mixture. After 10 min stirring, an aliquot of the resulting solution was filtered under argon. The NMR sample was prepared with 0.4 mL of the filtered aliquot and 0.1 mL CD₃CN for ¹⁹F NMR yield determination.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 87.8 (d, *J* = 159.1 Hz, 2F), 51.5 (t, *J* = 159.1 Hz, 1F) (due to the (pseudo) trigonal-bipyramidal coordination, ¹⁹F NMR spectrum shows AB₂ pattern, which will be discussed in detail in the section 9).

Note. With the general method, the desired product **4s** was obtained only in the yield of 3 - 6% (ArSF₄Cl is the major product). With the above-mentioned procedure, based on internal standard α, α, α -trifluorotoluene (at -63.20 ppm, 6.9 mg, 0.047 mmol), ¹⁹F NMR yield: 15%. In addition of **4s**, the signal of 2-pyrimidinyl-SF₃ [51.0 ppm (d, J = 90.2 Hz, 2F) and -51.9 ppm (t, J = 90.2 Hz, 1F)] was found in the ¹⁹F NMR spectrum; Other signals are complicated; Singlet at -75.95 ppm is the signal of excess TFA.

9. Analysis of the structure of ArSOF₃

Some molecules which contain three spin systems while two of the nuclei are magnetically equivalent could show AX_2 or AB_2 patterns in the NMR spectra. For AB_2 patterns, the spectrum depends only on the ratio of $\Delta v/J$. If the $\Delta v/J$ is large enough, the system is usually AX_2 , which consists of an A triplet and a B doublet. However, as $\Delta v/J$ becomes smaller, the double-intensity middle line of A and both B lines split into two lines. ^[16] According to our results, all the ¹⁹F NMR spectra of ArSOF₃ showed typical AB₂ patterns. ^[17] Furthermore, we measured one sample (**4d**) at different NMR machines. As a result, we found that at 43 MHz or 300 MHz NMR machines, the splitting of AB₂ patterns is pretty obvious (Figure S1 & S2). However, at 500 MHz or 600 MHz NMR machines, the solution became inconspicuous (Figure S3 & S4). This may be due to the general fact that the linewidth on the 600 and 500 MHz NMR is not as good as on the 43 or 300 MHz. Another possible explanation is the Δv is much larger at 600 and 500 MHz NMR than the one at 43 or 300 MHz machines.

Figure S1. The ¹⁹F NMR spectrum of 4d at 43 MHz NMR machine.

Figure S2. The ¹⁹F NMR spectrum of 4d at 300 MHz NMR machine.

Figure S3. The ¹⁹F NMR spectrum of 4d at 500 MHz NMR machine.

Figure S4. The ¹⁹F NMR spectrum of 4d at 600 MHz NMR machine.

Moreover, spin simulations have been made at 43, 300 and 600 MHz machines. The measured results were found to match the simulated results perfectly (Figure S5). And the VT ¹⁹F NMR (-30 °C to 60 °C) showed the temperature did not influence the splitting or the stability of ArSOF₃ compound in solution (Figure S6).

Figure S5. The spin simulations of **4d** at 43, 300 and 600 MHz NMR machines (Red line is the simulation result, black is the measured one).

19F,-1D

Figure S6. VT 19 F NMR of 4d (from -30 °C to 60 °C).

The AB₂ multiplicity pattern in the ¹⁹F NMR spectrum of **4d** indicates the formation of rigid (pseudo)trigonalbipyramidal coordination with one equatorial and two apical fluorine atoms. Based on the VSEPT theory and the previous literature ^{[17], [19]}, a *trans*-structure with two F in the axial could be speculated.

Finally, an ESI-MS of **4d** was measured (Figure S7). Although the exact mass of **4d** was not found due to the sensitivity of **4d** towards moisture, a signal of key fragment (4-BrC₆H₄SOF₂⁺) was detected.

Figure S7. ESI-MS of 4d.

10. General method for the synthesis of ArSO₂F

In a glovebox under Argon, the Ar-S-Phth precursor (**3**, 0.1 mmol, 1 equiv.), trichloroisocyanuric acid (TCICA, 210 mg, 0.9 mmol, 9 equiv.) and rigorously dried KF (93 mg, 16 mmol, 16 equiv.) was added to an oven-dried 12 mL round-bottom reaction vial equipped with a stir bar. Under vigorous stirring, 1 mL dry and degassed MeCN was added to the mixture followed by addition of MeOH solution (1M in MeCN, 0.2 mL). *Note: methanol should be dried over magnesium in advance*. Then the vial was sealed with a septum-pad cap and the reaction was stirred at the room temperature in the glovebox for 24 h. Upon the completion of reaction, the atmosphere in the vial was vented carefully. The resulting suspension was filtered while the precipitate was washed by MeCN (2 mL \times 3). The crude product was then concentrated and further purified through a silica column chromatography (Pentane/EtOAc = 10:1).

Synthesis of benzenesulfonyl fluoride (5a). The title compound was prepared from Ph-S-Phth (3a, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product. In combination with the yield for 3a, the three-step total yield: 80%. NMR data are in accordance with the literature report. ^[20]

¹**H** NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 7.4 Hz, 2H), 7.79 (t, *J* = 7.2 Hz, 1H), 7.64 (t, *J* = 8.1 Hz, 2H). ¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 65.8 (s, 1F) ¹³C NMR (75 MHz, CDCl₃) δ 135.5, 133.1 (d, *J* = 24.4 Hz), 129.6, 128.4. GC-MS (EI) [M]⁺ 160.0

Synthesis of 4-bromophenylsulfonyl fluoride (5b). The title compound was prepared from 4-Br-Ph-S-Phth (3d, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for 3d, the three-step total yield: 81%. NMR data are in accordance with the literature report.^[21]

¹**H** NMR (300 MHz, CDCl₃) δ 7.86 – 7.90 (m, 2H), 7.76 – 7.81 (m, 2H). ¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 66.4 (s, 1F) ¹³C NMR (75 MHz, CDCl₃) δ 133.1, 132.0 (d, *J* = 25.8 Hz), 131.3, 129.8. GC-MS (EI) [M]⁺ 237.9

Synthesis of 4-chlorophenylsulfonyl fluoride (5c). The title compound was prepared from 4-Cl-Ph-S-Phth (**3c**, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a

column chromatography. White solid was obtained as the desired product. In combination with the yield for 3c, the three-step total yield: 72%. NMR data are in accordance with the literature report.^[21]

¹H NMR (300 MHz, CDCl₃) δ 7.94 – 7.98 (m, 2H), 7.59 – 7.64 (m, 2H).
¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 66.4 (s, 1F)
¹³C NMR (75 MHz, CDCl₃) δ 142.6, 131.6 (d, *J* = 26.0 Hz), 130.1, 129.8.
GC-MS (EI) [M]⁺ 194.0

Synthesis of 4-methylphenylsulfonyl fluoride (5d). The title compound was prepared from 4-Me-Ph-S-Phth (3e, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for 3e, the three-step total yield: 75%. NMR data are in accordance with the literature report.^[21]

¹**H** NMR (300 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.40 – 7.44 (m, 2H), 2.49 (s, 3H). ¹⁹**F**{¹**H**} NMR (282 MHz, CDCl₃) δ 66.2 (s, 1F) ¹³**C** NMR (75 MHz, CDCl₃) δ 147.0, 130.2, 131.1 (d, *J* = 24.0 Hz), 129.8, 128.4. **GC-MS** (EI) [M]⁺ 174.0

Synthesis of 3-chloro-2,4,6-trimethylphenylsulfonyl fluoride (5e). The title compound was prepared from 2,4,6-triMe-Ph-S-Phth (3v, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product. In combination with the yield for 3v, the three-step total yield: 58%.

Rf (Pentane/EtOAc = 10:1): 0.54 ¹**H NMR** (300 MHz, CDCl₃) δ 7.12 – 7.14 (m, 1H), 2.75 (d, *J* = 2.2 Hz, 3H), 2.63 (dd, *J* = 1.9, 0.6 Hz, 3H), 2.44 (s, 3H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 68.7 (s, 1F) ¹³C NMR (75 MHz, CDCl₃) δ 143.5, 141.4 (d, J = 22.7 Hz) 137.8, 137.7 (d, J = 1.4 Hz), 132.9 (d, J = 2.0 Hz), 131.8 (d, J = 1.4 Hz), 22.6 (d, J = 1.4 Hz), 21.6, 19.1 (d, J = 3.1 Hz).
HRMS (ESI): Calc'd for C₉H₁₀ClFO₂S⁺ [M]⁺ 236.00686; found 236.00688

Synthesis of 4-nitrophenylsulfonyl fluoride (5f). The title compound was prepared from 4-NO₂-Ph-S-Phth (3h, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for 3h, the three-step total yield: 63%. NMR data are in accordance with the literature report.^[22]

¹**H NMR** (300 MHz, CDCl₃) δ 8.47 – 8.52 (m, 2H), 8.22 – 8.27 (m, 2H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 66.2 (s, 1F) ¹³**C NMR** (75 MHz, CDCl₃) δ 151.8, 138.4 (d, *J* = 27.2 Hz), 130.0, 124.8. **GC-MS** (EI) [M]⁺ 174.0

Synthesis of 3-(trifluoromethyl)phenylsulfonyl fluoride (5g). The title compound was prepared from 3-CF₃-Ph-S-Phth (3i, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for 3i, the three-step total yield: 71%. NMR data are in accordance with the literature report. ^[23]

¹H NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 7.4 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H).
¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 66.2 (s, 1F), -63.1 (s, 3F).
¹³C NMR (75 MHz, CDCl₃) δ 134.3 (d, *J* = 26.7 Hz), 132.2 (q, *J* = 3.6 Hz), 131.6, 130.6, 125.6 (q, *J* = 3.6 Hz), 124.5, 119.0 (d, *J* = 272.9 Hz).
GC-MS (EI) [M]⁺ 228.0

5h, 68%

Synthesis of 4-(trifluoromethyl)phenylsulfonyl fluoride (5h). The title compound was prepared from 4-CF₃-Ph-S-Phth (**3j**, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for **3j**, the three-step total yield: 68%. NMR data are in accordance with the literature report. ^[21]

¹**H** NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 8.3 Hz, 2H), 7.85 (d, *J* = 8.3 Hz, 2H).

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 65.8 (s, 1F), -63.6 (s, 3F).

¹³**C NMR** (75 MHz, CDCl₃) δ 137.2 (d, *J* = 33.7 Hz), 136.6 (d, *J* = 27.5 Hz), 129.1, 126.9 (q, *J* = 3.7 Hz), 122.7 (d, *J* = 273.4 Hz).

GC-MS (EI) [M]⁺ 228.0

5i

Synthesis of 4-Biphenylsulfonyl fluoride 5i. The title compound was prepared from 4-Ph-Ph-S-Phth (3n, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for 3n, the three-step total yield: 53%. NMR data are in accordance with the literature report.^[22]

¹**H NMR** (300 MHz, CDCl₃) δ 8.05 – 8.10 (m, 2H), 7.80 – 7.84 (m, 2H), 7.60 – 7.64 (m, 2H), 7.43 – 7.54 (m, 3H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 66.4 (s, 1F).

¹³C NMR (75 MHz, CDCl₃) δ 148.6, 138.5, 131.4 (d, *J* = 24.6 Hz), 129.2, 129.1, 129.0, 128.2, 127.4.

5j

Synthesis of 2-fluoro-[1,1'-biphenyl]-4-sulfonyl fluoride (5j). The title compound was prepared from 2-fluoro-[1,1'-biphenyl]-4-S-Phth (3m, 0.1 mmol) according to the general method in section 10. After the reaction, the

product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for **3m**, the three-step total yield: 60%.

Rf (Pentane/EtOAc = 10:1): 0.55 ¹**H NMR** (300 MHz, CDCl₃) δ 7.88 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.82 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.45 – 7.59 (m, 5H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 66.3 (s, 1F), -112.6 (s, 1F). ¹³**C NMR** (75 MHz, CDCl₃) δ 160.5, 158.3 (d, *J* = 73.8 Hz), 137.0 (d, *J* = 13.5 Hz), 133.2, 132.1 (d, *J* = 3.7 Hz), 129.4, 129.0 (d, *J* = 3.1 Hz), 128.9, 124.5 (d, *J* = 4.0 Hz), 116.8 (d, *J* = 27.6 Hz). **HRMS (GC-EI):** Calc'd for C₁₂H₈F₂O₂S⁺ [M]⁺ 254.02076; found 254.02101.

Synthesis of 2-pyridinylsulfonyl fluoride (5k). The title compound was prepared from 2-Py-S-Phth (3o, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product. In combination with the yield for 3o, the three-step total yield: 63%. NMR data are in accordance with the literature report.^[24]

¹**H NMR** (300 MHz, CDCl₃) δ 8.96 (d, *J* = 4.6 Hz, 1H), 8.15 (d, *J* = 7.7 Hz, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.73 (dd, *J* = 7.7, 4.6 Hz, 1H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 55.8 (s, 1F). ¹³**C NMR** (75 MHz, CDCl₃) δ 151.5 (d, *J* = 30.4 Hz), 151.0 (d, *J* = 1.1 Hz), 138.6, 129.1, 124.1 (d, *J* = 2.1 Hz). **GC-MS** (EI) [M]⁺ 161.0

Synthesis of 5-(trifluoromethyl)-2-pyridinesulfonyl fluoride (5l). The title compound was prepared from 5-CF₃-2-Py-S-Phth (**3r**, 0.1 mmol) according to the general method in section 10. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solid was obtained as the desired product. In combination with the yield for **3r**, the three-step total yield: 61%.

Rf (Pentane/EtOAc = 10:1): 0.55 ¹**H NMR** (300 MHz, CDCl₃) δ 9.11 (s, 1H), 8.27 – 8.35 (m, 2H). ¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 55.7 (s, 1F), 62.9 (s, 3F).

¹³**C NMR** (75 MHz, CDCl₃) δ 154.2 (d, *J* = 32.4 Hz), 148.0 (qd, *J* = 3.8, 1.1 Hz), 136.3 (q, *J* = 3.5 Hz), 131.7

(q, J = 34.4 Hz), 124.0 (d, J = 2.2 Hz), 122.1 (d, J = 273.7 Hz).

HRMS (ESI): Calc'd for C₆H₄F₄NO₂S⁺ [M+H]⁺ 229.98934; found 229.98655

12. General method for the synthesis of ArSF4Cl

In a glovebox under Argon, the Ar-S-Phth precursor (**3**, 0.2 mmol, 1 equiv.), trichloroisocyanuric acid (TCICA, 840 mg, 3.6 mmol, 18 equiv.) and rigorously dried KF (372 mg, 64 mmol, 32 equiv.) was added to an oven-dried 12 mL round-bottom reaction vial equipped with a stir bar. Under vigorous stirring, 2 mL dry and degassed MeCN was added to the mixture followed by addition of TFA solution (0.1 M in MeCN, 0.2 mL). Then the vial was sealed with a septum-pad cap and the reaction was stirred at the room temperature in the glovebox for 24 h. Upon the completion of reaction, the atmosphere in the vial was vented carefully and the internal standard α , α , α -trifluorotoluene was added into the mixture. After 10 min stirring, an aliquot of the resulting solution was filtered under argon. The NMR sample was prepared with 0.4 mL of the filtered aliquot and 0.1 mL CD₃CN for ¹⁹F NMR yield determination.

Please note, although the ArSF₄Cl is not so sensitive to the moisture (for example, **6i** remained untouched even in 'wet MeCN' with 10% water), dry reaction vials, dry solvent, experiment and work-up process under the argon benefited the reaction. Unfortunately, these compounds are still not stable enough for column chromatography isolation.

13. Scope of ArSF4Cl

Phenyltetrafluoro- λ^6 -sulfanyl chloride **6a** was prepared according to the general method in section 12. The product is consistent with previously reported characterization data.^[6] ¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 136.7 (s, 4F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.10 ppm, 16.9 mg, 0.116 mmol), ¹⁹F NMR yield: 85%. In combination with the yield for **3a**, the three-step total yield: 69%. Doublet at 100.6 ppm and triplet at 64.6 ppm belong to the signal of PhSOF₃ (**4a**, yield from **3a**, 12%); Singlet at 64.6 ppm is the signal of PhSO₂F (**5a**, yield from **3a**, yield 2%).

3-Fluorophenyltetrafluoro- λ^6 -sulfanyl chloride **6b** was prepared according to the general method in section 12. The product is consistent with previously reported characterization data.^[6] ¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 136.0 (s, 4F), -111.4 (s, 1F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.16 ppm, 12.0 mg, 0.082 mmol), ¹⁹F NMR yield: 87%. In combination with the yield for **3b**, the three-step total yield: 71%. Doublet at 101.5 ppm and triplet at 65.5 ppm belong to the signal of 3-F-PhSOF₃ (**4b**, yield from **3b**, 7%); Doublet at 59.3 ppm and triplet at -41.9 ppm belong to the signal of 3-F-PhSF₃ (yield from **3b**, 5%).

4-Methylphenyltetrafluoro- λ^6 -sulfanyl chloride **6c** was prepared according to the general method in section 12. The product is consistent with previously reported characterization data.^[25] ¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 137.7 (s, 4F).

Note. For the substrates with electron-donating substituent groups (–Me as well as –OMe) at para-position, an interesting phenomenon was observed. For both of the desired product (Ar-SF₄Cl) and byproducts (ArSOF₃ and ArSF₃), the signals of an isomer were found very close to the signals of major product. The ratios of major product to isomer are **6c** (at 137.7 ppm) : **6c'** (at 136.7 ppm) = 12.5:1. However, the structure of isomer and the reason leading to this phenomenon is still unclear. Based on internal standard α, α, α -trifluorotoluene (at –63.11 ppm, 18.1 mg, 0.124 mmol), ¹⁹F NMR yield of **6c**: 52%. In combination with the yield for **3e**, the three-step total yield: 44%. The yield of 4-Me-PhSOF₃ (99.3 ppm, d, 2F; 65.6 ppm, t, 1F) and its isomer (101.6 ppm, d, 2F; 65.2 ppm, t, 1F) from **3e** is 24% (7:1). The signals at 65.0 (s), 56.0 (d) & –39.3 (t) and 57.8 (d) & –41.6 (t) belong to 4-Me-SO₂F, 4-Me-PhSF₃ and its isomer, respectively.

4-Methoxyphenyltetrafluoro- λ^6 -sulfanyl chloride **6d** was prepared according to the general method in section 12.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 137.7 (s, 4F).
 ¹⁹F NMR spectra (282 MHz)

Note. For the substrates with electron-donating substituent groups (–OMe as well as –Me) at para-position, an interesting phenomenon was observed. For both of the desired product (Ar-SF₄Cl) and byproducts (ArSOF₃ and ArSF₃), the signals of an isomer were found very close to the signals of major product. The ratios of major product to isomer are **6d** (at 138.7 ppm) : **6d'** (at 136.8 ppm) = 9.3:1. However, the structure of isomer and the reason leading to this phenomenon is still unclear. Based on internal standard α, α, α -trifluorotoluene (at –63.12 ppm, 20.5 mg, 0.140 mmol), ¹⁹F NMR yield of **6d**: 48%. In combination with the yield for **3g**, the three-step total yield: 37%. The yield of 4-MeO-PhSOF₃ (97.7 ppm, d, 2F; 68.2 ppm, t, 1F) and its isomer (101.6 ppm, d, 2F; 67.8 ppm, t, 1F) from **3g** is 8% (3.25:1). The singlet at 66.1 is the signal of 4-MeOPhSO₂F; The signals of 56.0 (d) & –39.3 (t) and 57.8 (d) & –41.6 (t) belong to 4-Me-PhSF₃ and its isomer with the yield of 15%.

Methyl 4-benzoatetetrafluoro- λ^6 -sulfanyl chloride **6e** was prepared according to the general method in section 12.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 135.5 (s, 4F).

Note. Based on internal standard α , α , α -trifluorotoluene (at –63.14 ppm, 14.9 mg, 0.102 mmol), ¹⁹F NMR yield: 77%. In combination with the yield for **3l**, the three-step total yield: 65%. Doublet at 101.7 ppm and triplet at 64.7 ppm belong to the signal of 4-MeOOC-PhSOF₃ (**4l**, yield from **3l**, 15%); Doublet at 59.5 ppm and triplet at –44.4 ppm belong to the signal of 4-MeOOC-PhSF₃ (yield from **3l**, 5%).

3-Nitrilphenyltetrafluoro- λ^6 -sulfanyl chloride **6f** was prepared according to the general method in section 12.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 135.3 (s, 4F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.14 ppm, 18.0 mg, 0.124 mmol), ¹⁹F NMR yield: 70%. In combination with the yield for **3k**, the three-step total yield: 55%. Doublet at 101.6 ppm and triplet at 66.0 ppm belong to the signal of 3-CN-PhSOF₃ (**4k**, yield from **3k**, 18%); Doublet at 59.0 ppm and triplet at -42.4 ppm belong to the signal of 3-CN-PhSF₃ (yield from **3k**, 8%).

4-Chlorophenyltetrafluoro- λ^6 -sulfanyl chloride **6g** was prepared according to the general method in section 12. The product is consistent with previously reported characterization data.^[6]

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 136.8 (s, 4F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.10 ppm, 14.9 mg, 0.102 mmol), ¹⁹F NMR yield: 67%. In combination with the yield for **3c**, the three-step total yield: 55%. Doublet at 100.5 ppm and triplet at 66.1 ppm belong to the signal of 4-Cl-PhSOF₃ (**4c**, yield from **3c**, 20%); Doublet at 57.6 ppm and triplet at -40.5 ppm belong to the signal of 4-Cl-PhSF₃ (yield from **3c**, 12%).

4-Bromophenyltetrafluoro- λ^6 -sulfanyl chloride **6h** was prepared according to the general method in section 12. The product is consistent with previously reported characterization data.^[6]

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 136.6 (s, 4F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.12 ppm, 15.2 mg, 0.104 mmol), ¹⁹F NMR yield: 76%. In combination with the yield for **3d**, the three-step total yield: 65%. Doublet at 100.6 ppm and triplet at 66.0 ppm belong to the signal of 4-Br-PhSOF₃ (**4d**, yield from **3d**, 13%); Doublet at 57.7 ppm and triplet at -41.0 ppm belong to the signal of 4-Br-PhSF₃ (yield from **3d**, 7%).

6-Bromo-2-pyridinyltetrafluoro- λ^6 -sulfanyl chloride **6i** was prepared according to the general method in section 12. The product is consistent with previously reported characterization data.^[26]

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 124.2 (s, 4F).

Note. Based on internal standard α,α,α -trifluorotoluene (at -63.08 ppm, 10.2 mg, 0.070 mmol), ¹⁹F NMR yield: 90%. In combination with the yield for **3p**, the three-step total yield: 72%. Doublet at 93.8 ppm and triplet at 59.7 ppm belong to the signal of 6-Br-2-PySOF₃ (**4p**, yield from **3p**, 5%); Doublet at 57.7 ppm and triplet at -50.2 ppm belong to the signal of 6-Br-2-PySF₃ (yield from **3p**, 4%).

5-Bromo-3-pyridinyltetrafluoro- λ^6 -sulfanyl chloride **6j** was prepared according to the general method in section 12.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 137.1 (s, 4F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.13 ppm, 17.8 mg, 0.122 mmol), ¹⁹F NMR yield: 82%. In combination with the yield for **3q**, the three-step total yield: 58%. Doublet at 102.3 ppm and triplet at 69.7 ppm belong to the signal of 5-Br-3-PySOF₃ (**4q**, yield from **3q**, 7%); Doublet at 57.8 ppm and triplet at -41.4 ppm belong to the signal of 6-Br-3-PySF₃ (yield from **3q**, 6%).

5-(trifluoromethyl)-2-pyridinyltetrafluoro- λ^6 -sulfanyl chloride **6k** was prepared according to the general method in section 12.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 123.2 (s, 4F), -63.22 (s, 3F).

Note. Based on internal standard α, α, α -trifluorotoluene (at -63.08 ppm, 22.2 mg, 0.152 mmol), ¹⁹F NMR yield: 85%. In combination with the yield for **3r**, the three-step total yield: 59%. Doublet at 93.7 ppm and triplet at 58.2 ppm belong to the signal of 5-CF₃-2-PySOF₃ (**4r**, yield from **3r**, 7%); Doublet at 57.7 ppm and triplet at -51.8 ppm belong to the signal of 5- CF₃-2-PySF₃ (yield from **3r**, 8%).

Note. The sulfur(II) precursor was prepared from the reaction of N-chlorophthalimid with 2-Pyrimidinethiol according to the literature ^[10] because the attempt to synthesize the 2-pyrimidinyl zinc halide is failed.

In addition to the general method, the preparation of 2-pyrimidinyltetrafluoro- λ^6 -sulfanyl chloride **61** was also based on the procedure described below:

Method B: In a glovebox under Argon, the 2-pyrimidinyl-S-Phth precursor (**3s**, 0.1 mmol, 1 equiv.), trichloroisocyanuric acid (TCICA, 210 mg, 0.9 mmol, 9 equiv.) and rigorously dried KF (93 mg, 16 mmol, 16 equiv.) was added to an oven-dried 12 mL round-bottom reaction vial equipped with a stir bar. Under vigorous stirring, 1 mL dry and degassed MeCN was added to the mixture followed by addition of TFA solution (1 M in MeCN, 0.2 mL). Then the vial was sealed with a septum-pad cap and the reaction was stirred at the room temperature in the glovebox for 24 h. Upon the completion of reaction, the atmosphere in the vial was vented carefully and the internal standard α , α , α -trifluorotoluene was added into the mixture. After 10 min stirring, an aliquot of the resulting solution was filtered under argon. The NMR sample was prepared with 0.4 mL of the filtered aliquot and 0.1 mL CD₃CN for ¹⁹F NMR yield determination.

Method B gave the comparable yield of desired product (61%) to the general method (65%), even with more TFA (3 eq. TFA led to the yield of 58%). Unlike other substrates which were transformed to $ArSOF_3$ in the presence of 2 eq. TFA, the loading of acid did not influence the yield of **6l** so significantly. In contrast, in order to obtain 2-pyrimidinylsulfur(VI) trifluoridoxide **4s**, a special method should be used with the assistance of ZnCl₂. The detailed method have been described in section 8.

¹⁹F{¹H} NMR (282 MHz, CH₃CN/CD₃CN) δ 117.8 (s, 4F).

¹⁹F NMR spectra (via Method B)

14. Study on the mechanism for the oxidation step toward ArSOF3, ArSO₂F and ArSF₄Cl

Based on our experimental results, when 2 equiv. of TFA are used as additive, Ar–SOF₃ is obtained in excellent yields; however, when 2 equiv. of AcOH, H₂O or alcohol are used instead, Ar–SO₂F becomes the main product (MeOH or ethanol lead to the best yield). On the other hand, the amount of TFA added has a profound effect on the outcome of the reaction: When 2 equiv are used, Ar–SOF₃ is obtained in very high yields; by contrast, when only 10 mol% TFA is used instead, the major product of the reaction becomes the Ar–SF₄Cl. In order to understand the mechanism of the reaction for selective formation of different arylsulfur(VI) fluorides, several supporting experiments were explored.

14.1 ¹⁹F NMR monitor of the reaction for ArSOF₃

Firstly, the reaction for generation of 4-Br–C₆H₄-SOF₃ (**4d**) was monitored by ¹⁹F NMR to search the key intermediates and to follow the changing trend of each components. As shown in Figure S8, the starting material **3d** was found to be almost completely converted to 4-Br–C₆H₄–SOF (intermediate **E**, at 6.36 ppm^[19] in ¹⁹F NMR spectrum) in 1 h. Afterwards, the amount of intermediate **E** decreased with the increasing yield of **4d**. When the reaction was completed, nearly all intermediate **E** was transformed to the desired product.

-80 -100 -120 f1 (ppm) -200 -220 -240 -260 -280 -300 -320 -340 140 120 100 80 60 40 20 0 -20 -40 -60 -140 -160 -180

Figure S8. Monitor of the reaction for generation of **4d** by *in-situ* ¹⁹F NMR, (A) ¹⁹F NMR spectra; (B) changing trend of the yields of intermediate **E** and **4d**.

14.2 The reaction for the formation of ArSO₂F in the presence of H₂¹⁸O

Comparing the results with MeOH/H₂O and TFA (2 equiv), it is reasonable to propose that the formation of Ar–SO₂F is the result of hydrolysis of the parent Ar–SOF₃. In order to understand where the O comes, labelling experiment with H₂¹⁸O have been performed. As a result, we observed 85% 4-Br–C₆H₄–S¹⁸O₂F and 13.7 % 4-Br–C₆H₄–S¹⁸O¹⁶OF (Figure S9). This result implies that the most O of parent Ar–SOF₃ comes from the additive (in the presence of TFA, the best part of O comes from TFA) while a small amount of O of Ar–SOF₃ comes from other sources, such as glass.

Figure S9. The reaction for 4-Br– C_6H_4 –SO₂F in the presence of $H_2^{18}O$ and the HRMS of product.

14.3 ¹⁹F NMR monitoring of the reaction for ArSF₄Cl

At last, the reaction for generation of 4-Br–C₆H₄–SF₄Cl (**6h**) was monitored by ¹⁹F NMR (Figure S10). Unlike the result in section 14.1, the desired product **6h** was generated as the main product from the beginning. According to the literature from Togni^[6], Ar–SF₃ was identified as the intermediate to Ar–SF₄Cl formation. Indeed, we also found the signal of 4-Br–C₆H₄–SF₃ (doublet at 57.7 ppm and triplet at -41.0 ppm, intermediate **G**) during the reaction. Similar to the result using diphenyl sulfide^[6] as the starting material, 4-Br–C₆H₄-SOF₃ (**4d**) and 4-Br– C₆H₄–SF₃ (intermediate **G**) were found as the by-products after the reaction completing. Notably, in this case, the main effect of TFA is to activate the TCICA. However, it plays the role on formation of **4d** as well.

1	۸	1
(А	J

Time	Yield of 6h	Yield of 4d	Yield of G	
1 h	32%	3%	7%	
2 h	74%	9%	8%	
3 h	80%	10%	9%	
(B)				

Figure S10. Monitoring of the reaction for the generation of **6h** by *in-situ* ¹⁹F NMR, (A) ¹⁹F NMR spectra; (B) changing trend of the yields of **6h**, **4d** and intermediate **G**.

14.4 Possible mechanism for the divergent formation of ArSOF3, ArSO₂F and ArSF₄Cl

Based on the above observations and literature, a possible mechanism for selective formation of different arylsulfur(VI) fluorides is proposed (Scheme S1).

Scheme S1. A possible mechanism for selective formation of different arylsulfur(VI) fluorides.

The starting material **3** is firstly oxidized by activated TCICA to afford intermediate **A**, which undergoes F exchange with either Phth or Cl (Phth depicted in the Scheme), leading to intermediate **B**. In the presence of TFA, the sulfur center interacts with the O of additive. After electron transfer, the key intermediate **E** is formed. Afterwards, this intermediate is further oxidized to intermediate **F**. On one hand, with the Cl-F exchange and nucleophilic attack of KF, the Ar–SOF₃ (**4**) is obtained; On the other hand, after hydrolysis the reaction finally gives Ar–SO₂F (**5**) as the major product. However, if the loading of TFA is just 10 mol%, the intermediate B undergoes the Cl-F exchange step to generate intermediate **G** followed by second-step oxidation and nucleophilic attack of KF. As a result, the Ar–SF₄Cl (**6**) becomes the main product. It is important to mention that in the case of electron-donating groups in the Ar, intermediate F might not undergo Cl/F exchange leading to **4**, and formation of **5** is preferred.

15. General method on synthesis of ArS(O)(NR)F

The ArSOF₃ was synthesized according to the general method described in section 7. Upon the completion of reaction, the atmosphere in the vial was vented carefully and the suspension was transfored to a flame-dried Schlenk tube under argon. Then the solvent and other volatile constituent was evaporated under the vacuum. To the residue, dry and degassed Hexane/DCM (3:1) mixed solvent was added to extract the ArSOF₃ compound (4 mL \times 3). The resulting solution was filtered under argon followed by the concentration of the filtrate under the vacuum. The crude product of ArSOF₃ was used immediately for the next step.

(Please note, the ArSOF₃ is extremely sensitive to the moisture and even glass. All reaction vials, flasks and NMR tubes used for the reaction and work-up process should be dried rigorously. Solvent should be ultra-dry (water content should be at least below 10 ppm). The reaction and work-up process should be handled always under argon and the work-up process should be handled in the above described order. For example, if the suspension upon the completion of reaction was filtered firstly and then the filtrate was concentrated under the vaccum, 37% to 70% ArSOF₃ will be destroyed and transformed to ArSO₂F.)

The crude product of $ArSOF_3$ (ca. 0.1 mmol, 1 equiv.) was dissolved in 1 mL dry and degassed MeCN followed by addition of Et_3N (0.3 mmol, 3 equiv., dry over 4Å molecular sieves) and amines (0.25 mmol, 2.5 equiv.) under argon. The mixture was stirred at room temperature for 18 h. Upon the completion of reaction, the resulting solution was then concentrated and further purified through a silica column chromatography (Pentane/EtOAc = 10:1).

Please note, although the desired product could be purified through silica column, ArS(O)(NR)F is still sensitive to the moisture. In the air, the product will be transformed slowly to corresponding sulfonamide [$ArS(O)_2(NR)$]. So the product should be restored under argon.

16. Scope for synthesis of ArS(O)(NR)F

Synthesis of 4-bromo-N-(2-fluorophenyl)benzenesulfonimidoyl fluoride (8a). The title compound was prepared from reaction of 4d (0.1 mmol) and 2-fluorobenzeneamine 7a according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Pale yellow oil was obtained as the desired product (20 mg, 63% yield)

Rf (Pentane/EtOAc = 10:1): 0.56

¹**H NMR** (300 MHz, CDCl₃) δ 7.98 – 8.02 (m, 2H), 7.68 – 7.73 (m, 2H), 7.22 – 7.28 (m, 1H), 7.00 - 7.07 (m, 3H).

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 84.5 (d, J = 7.8 Hz, 1F), -123.1 (d, J = 7.8 Hz, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 161.38 (d, *J* = 265.5 Hz), 137.3, 132.9 (d, *J* = 27.0 Hz), 132.7, 131.2 (d, *J* = 3.7 Hz), 130.0 (d, *J* = 22.5 Hz), 129.4, 125.8 (d, *J* = 4.8 Hz), 125.6 (d, *J* = 7.2 Hz), 124.4 (d, *J* = 4.1 Hz). **HRMS (GC-EI):** Calc'd for C₁₂H₈BrF₂NOS⁺ [M]⁺ 330.94727; found 330.94781

Synthesis of 4-bromo-N-(4-iodophenyl)benzenesulfonimidoyl fluoride (8b). The title compound was prepared from reaction of 4d (0.1 mmol) and 4-iodobenzeneamine 7b according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Pale yellow oil was obtained as the desired product (30 mg, 70% yield)

Rf (Pentane/EtOAc = 10:1): 0.56

¹**H NMR** (300 MHz, CDCl₃) δ 8.02 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.74 – 7.79 (m, 2H), 7.60 – 7.65 (m, 2H), 6.98 – 7.03 (m, 2H).

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 82.9 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.0 (d, *J* = 6.0 Hz), 138.3, 134.1 (d, *J* = 26.6 Hz), 133.1, 132.7, 130.2, 129.3, 125.9 (d, *J* = 4.4 Hz).

HRMS (**GC-EI**): Calc'd for C₁₂H₈BrFINOS⁺ [M]⁺438.85334; found 438.85402.

Synthesis of 4-bromo-N-(2-(prop-1-en-2-yl)phenyl)benzenesulfonimidoyl fluoride (8c). The title compound was prepared from reaction of 4d (0.1 mmol) and 2-(1-methylethenyl)-benzeneamine 7c according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (24 mg, 68% yield).

Rf (Pentane/EtOAc = 10:1): 0.54

¹**H NMR** (300 MHz, CDCl₃) δ 8.01 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.73 – 7.78 (m, 2H), 7.36 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.21 - 7.26 (m, 2H), 7.11 (tdd, *J* = 8.9, 8.3, 1.3 Hz, 1H), 5.16 – 5.19 (m, 1H), 5.00 – 5.01 (m, 1H), 2.10 (dd, *J* = 1.5, 0.9 Hz, 3H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 84.8 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 144.5, 139.0 (t, *J* = 5.0 Hz), 135.8 (d, *J* = 6.0 Hz), 134.8 (d, *J* = 27.8 Hz), 132.6, 129.8, 129.4, 129.3, 127.9, 124.6 (d, *J* = 1.1 Hz), 123.8 (d, *J* = 4.0 Hz), 115.3, 23.6.

HRMS (ESI): Calc'd for C₁₅H₁₃BrFNOSNa⁺ [M+Na]⁺ 375.97776; found 375.97771.

Synthesis of 4-bromo-N-(4-fluorobenzyl)benzenesulfonimidoyl fluoride (8d). The title compound was prepared from reaction of 4d (0.1 mmol) and 4-fluorobenzylamine 7d according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (27 mg, 80% yield).

Rf (Pentane/EtOAc = 10:1): 0.56

¹**H** NMR (300 MHz, CDCl₃) δ 7.87 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.61 – 7.65 (m, 2H), 7.26 – 7.31 (m, 2H), 6.96 (tt, *J* = 8.9, 2.8 Hz, 2H), 4.46 – 4.60 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 86.8 (s, 1F), -115.5 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 162.0 (d, J = 245.1 Hz), 134.9 (d, J = 28.6 Hz), 132.5, 129.5, 129.1, 129.1,

129.0, 115.3 (d, *J* = 21.5 Hz), 45.8 (d, *J* = 3.6 Hz).

HRMS (GC-EI): Calc'd for C₁₃H₁₀BrF₂NOS⁺ [M]⁺ 344.96292; found 344.96295.

Synthesis of 4-bromo-N-(4-methoxybenzyl)benzenesulfonimidoyl fluoride (8e). The title compound was prepared from reaction of **4d** (0.1 mmol) and 4-methoxybenzylamine **7e** according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (28 mg, 78% yield). NMR data are in accordance with the literature report. ^[27]

¹**H NMR** (300 MHz, CDCl₃) δ 7.86 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.59 – 7.64 (m, 2H), 7.22 – 7.27 (m, 2H), 6.81 (dt, *J* = 8.9, 2.8 Hz, 2H), 4.44 – 4.57 (m, 2H), 3.73 (s, 3H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 87.0 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 158.8, 135.0 (d, *J* = 28.9 Hz), 132.4, 131.2 (d, *J* = 5.0 Hz), 129.3, 129.1, 128.7, 113.9, 55.3, 46.0 (d, *J* = 3.5 Hz).

Synthesis of 4-bromo-N-(cyclopropylmethy)benzenesulfonimidoyl fluoride (8f). The title compound was prepared from reaction of 4d (0.1 mmol) and (cyclopropylmethyl)amine 7f according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (23 mg, 81% yield).

Rf (Pentane/EtOAc = 10:1): 0.66

¹**H NMR** (300 MHz, CDCl₃) δ 7.92 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.67 – 7.71 (m, 2H), 3.25 – 3.43 (m, 2H), 1.10 – 1.20 (m, 1H), 0.53 – 0.59 (m, 2H), 0.28 – 0.33 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 88.0 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 135.4 (d, *J* = 29.5 Hz), 132.3, 129.1, 129.0, 48.4 (d, *J* = 3.8 Hz), 12.8 (d, *J* = 5.3 Hz), 3.84 (d, *J* = 15.1 Hz).

HRMS (ESI): Calc'd for C₁₀H₁₂BrFNOS⁺ [M+H]⁺ 291.98016; found 291.97998.

Synthesis of 4-bromo-N-(cyclohexyl)benzenesulfonimidoyl fluoride (8g). The title compound was prepared from reaction of 4d (0.1 mmol) and cyclohexanamine 7g according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (24 mg, 76% yield).

Rf (Pentane/EtOAc = 10:1): 0.60

¹**H** NMR (300 MHz, CDCl₃) δ 7.90 (dt, J = 8.9, 2.8 Hz, 2H), 7.65 – 7.70 (m, 2H), 3.71 – 3.82 (m, 1H), 1.91 – 2.00 (m, 2H), 1.74 – 1.81 (m, 2H), 1.46 – 1.60 (m, 2H), 1.22 – 1.44 (m, 4H). ¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 91.0 (s, 1F). ¹³C NMR (75 MHz, CDCl₃) δ 135.8 (d, J = 29.7 Hz), 132.3, 129.1, 128.9, 54.1 (d, J = 4.0 Hz), 35.6 (d, J = 2.9 Hz), 35.4 (d, J = 5.9 Hz), 25.5, 24.6 (2C).

HRMS (**ESI**): Calc'd for C₁₂H₁₆BrFNOS⁺ [M+H]⁺ 320.01146; found 320.01113.

Synthesis of 4-bromo-N-((R)-1-phenylethyl)benzenesulfonimidoyl fluoride (8h). The title compound was prepared from reaction of 4d (0.1 mmol) and (R)-1-phenylethylamine 7h according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (22 mg, 64% yield, d.r. = 1.0:1.1).

Rf (Pentane/EtOAc = 10:1): 0.54

¹**H** NMR (300 MHz, CDCl₃) δ 7.97 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.72 – 7.75 (m, 0.53 × 2H, diastereomer A), 7.68 – 7.72 (m, 0.47 × 2H, diastereomer B), 7.25 – 7.48 (m, 5H), 5.06 – 5.18 (m, 1H), 1.68 (d, *J* = 6.7 Hz, 0.53 × 3H, diastereomer A), 1.63 (d, *J* = 6.7 Hz, 0.47 × 3H, diastereomer B).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 90.6 (s, 0.47 × 1F, diastereomer B), 86.6 (s, 0.53 × 1F, diastereomer A). ¹³C NMR (75 MHz, CDCl₃) δ 145.1 (d, J = 3.9 Hz, diastereomer A), 145.0 (d, J = 3.9 Hz, diastereomer B), 135.7 (d, J = 29.8 Hz), 132.7, 129.43 (diastereomer A), 129.38 (diastereomer B), 128.78 (diastereomer A), 128.74 (diastereomer B), 127.49 (diastereomer A), 127.41 (diastereomer B), 126.29 (diastereomer A), 126.24 (diastereomer B), 54.4 (d, J = 3.3 Hz, diastereomer A), 54.2 (d, J = 4.2 Hz, diastereomer B), 26.7 (d, J = 3.8 Hz, diastereomer B), 26.6 (d, J = 7.5 Hz, diastereomer A). **HRMS (ESI):** Calc'd for C₁₄H₁₃BrFNOSNa⁺ [M+Na]⁺ 363.97776; found 363.97751.

Synthesis of 4-bromo-N-((R)-1-(2-methoxyphenyl)ethyl)benzenesulfonimidoyl fluoride (8i). The title compound was prepared from reaction of 4d (0.1 mmol) and 1-(2-methoxyphenyl)ethylamine 7i according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (22 mg, 64% yield, d.r. = 1.0:1.07).

Rf (Pentane/EtOAc = 10:1): 0.52

¹**H** NMR (300 MHz, CDCl₃) δ 7.92 – 7.97 (m, 2H), 7.67 – 7.71 (m, 2H), 7.53 – 7.57 (m, 1H), 7.20 – 7.27 (m, 1H), 6.93 – 7.00 (m, 1H), 6.88 (dd, *J* = 4.5, 1.1 Hz, 0.52 × 2H, diastereomer A), 6.85 (dd, *J* = 4.5, 1.1 Hz, 0.48 × 2H, diastereomer B), 5.45 – 5.54 (m, 1H), 3.87 (s, 0.52 × 3H, diastereomer A), 3.87 (s, 0.48 × 3H, diastereomer B), 1.58 (d, *J* = 6.7 Hz, 0.52 × 3H, diastereomer A), 1.54 (d, *J* = 6.7 Hz, 0.48 × 3H, diastereomer B).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 90.9 (s, 0.48 × 1F, diastereomer B), 86.3 (s, 0.52 × 1F, diastereomer A). ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 139.2 (d, *J* = 25.1 Hz), 132.3, 129.11 (diastereomer A), 129.05 (diastereomer B), 128.4, 127.99 (diastereomer A), 127.89 (diastereomer B), 126.39 (diastereomer A), 126.29 (diastereomer B), 120.6, 110.33 (diastereomer A), 110.31 (diastereomer B), 55.32 (diastereomer A), 55.31 (diastereomer B), 48.26 (d, *J* = 4.3 Hz, diastereomer B), 47.93 (d, *J* = 3.3 Hz, diastereomer A), 25.17 (d, *J* = 2.9 Hz, diastereomer A), 24.84 (d, *J* = 6.8 Hz, diastereomer B).

HRMS (ESI): Calc'd for C₁₅H₁₅BrFNO₂SNa⁺ [M+Na]⁺ 393.98832; found 393.98816.

Synthesis of 4-bromo-N-(1,1-dimethyl-2-propynyl)benzenesulfonimidoyl fluoride (8j). The title compound was prepared from reaction of 4d (0.1 mmol) and 1,1-dimethyl-2-propynylamine 7j according to the general

method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (20 mg, 68% yield).

Rf (Pentane/EtOAc = 10:1): 0.58 ¹**H NMR** (300 MHz, CDCl₃) δ 7.86 – 7.92 (m, 2H), 7.65 – 7.70 (m, 2H), 2.46 (s, 1H), 1.73 (s, 3H), 1.72 (s, 3H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 88.0 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 134.9 (d, *J* = 27.8 Hz), 131.3, 128.1, 128.0, 86.8 (d, *J* = 5.4 Hz), 68.6, 50.7 (d, *J* = 3.2 Hz), 31.7 (d, *J* = 4.2 Hz), 31.8 (d, *J* = 2.7 Hz).

HRMS (ESI): Calc'd for C₁₁H₁₁BrFNOSNa+ [M+Na]⁺ 325.96211; found 325.96249.

Synthesis of 4-chloro-N-(4-(trifluoromethyl)benzyl)benzenesulfonimidoyl fluoride (8k). The title compound was prepared from reaction of 4c (0.1 mmol) and 4-(trifluoromethyl)benzylamine 7k according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (26 mg, 73% yield).

Rf (Pentane/EtOAc = 10:1): 0.56

¹**H NMR** (300 MHz, CDCl₃) δ 8.03 (dt, *J* = 8.9, 2.8 Hz, 2H), 7.59 – 7.63 (m, 2H), 7.56 – 7.58 (m, 1H), 7.49 – 7.55 (m, 3H), 4.62 – 4.77 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 86.6 (s, 1F), -62.5 (s, 3F).

¹³**C NMR** (75 MHz, CDCl₃) δ 142.9, 141.1, 134.1 (d, *J* = 28.4 Hz), 130.0 (d, *J* = 18.6 Hz), 129.6, 129.0, 127.6, 125.4 (q, *J* = 3.8 Hz), 124.1 (d, *J* = 270.8 Hz), 46.0 (d, *J* = 3.6 Hz).

HRMS (**GC-EI**): Calc'd for C₁₄H₁₁ClF₄NOS⁺ [M+H]⁺ 352.01805; found 352.01818.

Synthesis of N-(4-fluorobenzyl)(2-fluoro[1,1'-biphenyl]-4-yl)sulfonimidoyl fluoride (8l). The title compound was prepared from reaction of 4m (0.1 mmol) and 4-fluorobenzylamine 7d according to the general method. After

the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (28 mg, 77% yield).

Rf (Pentane/EtOAc = 10:1): 0.55

¹**H NMR** (300 MHz, CDCl₃) δ 7.86 – 7.95 (m, 2H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.44 – 7.60 (m, 5H), 7.36 – 7.41 (m, 2H), 7.01 – 7.09 (m, 2H), 4.56 – 4.70 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 87.0 (s, 1F), -113.7 (s, 1F), -115.5 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 162.2 (d, *J* = 225.0 Hz), 158.9 (d, *J* = 232.6 Hz), 135.8 (d, *J* = 29.1 Hz), 135.4 (d, *J* = 13.6 Hz), 134.8 (d, *J* = 3.1 Hz), 134.7 (d, *J* = 2.9 Hz), 133.6 (d, *J* = 1.2 Hz), 131.5 (d, *J* = 3.7 Hz), 129.1 (d, *J* = 3.9 Hz), 129.0 (d, *J* = 3.0 Hz), 128.8, 123.5 (d, *J* = 4.0 Hz), 116.0 (d, *J* = 27.8 Hz), 115.3 (d, *J* = 21.5 Hz), 45.9 (d, *J* = 3.5 Hz).

HRMS (EI): Calc'd for $C_{19}H_{14}F_3NOS^+$ [M]⁺ 361.07482; found 361.07543.

Synthesis of N-(4-fluorobenzyl)([1,1'-biphenyl]-4-yl)sulfonimidoyl fluoride (8m). The title compound was prepared from reaction of 4n (0.1 mmol) and 4-fluorobenzylamine 7d according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (24 mg, 70% yield).

Rf (Pentane/EtOAc = 10:1): 0.53

¹**H NMR** (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 2H), 7.75 (d, *J* = 8.5 Hz, 2H), 7.57 – 7.65 (m, 2H), 7.35 – 7.53 (m, 5H), 7.04 (t, *J* = 8.5 Hz, 2H), 4.57 – 4.71 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 85.8 (s, 1F), -115.8 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 162.0 (d, J = 245.0 Hz), 147.2, 138.9, 134.7 (d, J = 34.7 Hz), 129.1, 129.0,

128.8, 128.1, 127.7, 127.4, 123.0 (d, *J* = 12.0 Hz), 115.3 (d, *J* = 21.4 Hz), 45.8 (d, *J* = 3.3 Hz).

HRMS (**GC-EI**): Calc'd for $C_{19}H_{15}F_2NOS^+$ [M]⁺ 343.08369; found 343.08397.

Synthesis of N-(cyclopropylmethy)-3-nitrilebenzenesulfonimidoyl fluoride (8n). The title compound was prepared from reaction of 4k (0.1 mmol) and (cyclopropylmethyl)amine 7f according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). White solide was obtained as the desired product (16 mg, 67% yield).

Rf (Pentane/EtOAc = 5:1): 0.49

¹**H NMR** (300 MHz, CDCl₃) δ 8.37 (s, 1H), 8.29 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.71 (t, *J* = 7.8 Hz, 1H), 3.27 – 3.45 (m, 2H), 1.17 (hept, *J* = 8.1 Hz, 1H), 0.59 (d, *J* = 8.1 Hz, 2H), 0.32 (d, *J* = 4.7 Hz, 2H). ¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ 89.6 (s, 1F).

¹³C NMR (75 MHz, CDCl₃) δ 138.0 (d, *J* = 31.6 Hz), 136.8, 133.8, 131.4, 130.1, 123.2, 116.7, 113.8, 48.6 (d, *J* = 3.9 Hz), 12.8 (d, *J* = 5.3 Hz), 4.0 (d, *J* = 14.5 Hz).

HRMS (**GC-EI**): Calc'd for C₁₁H₁₂FN₂OS⁺ [M+H]⁺ 239.06489; found 23.906476.

Synthesis of N-(4-fluorobenzyl)-3-(trifluoromethyl)pyridinylsulfonimidoyl fluoride (80). The title compound was prepared from reaction of 4r (0.1 mmol) and 4-fluorobenzylamine 7d according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Colorless oil was obtained as the desired product (16 mg, 47% yield).

Rf (Pentane/EtOAc = 10:1): 0.56

¹**H NMR** (300 MHz, CDCl₃) δ 8.96 (s, 1H), 8.25 (d, *J* = 8.3 Hz, 1H), 8.15 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.28 – 7.32 (m, 2H), 6.94 – 7.00 (m, 2H), 4.57 – 4.67 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 79.2 (s, 1F), -62.7 (s, 3F), -115.2 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 161.1 (d, *J* = 245.7 Hz), 147.4 (d, *J* = 214.1 Hz), 138.2 (d, *J* = 29.2 Hz), 134.9 (d, *J* = 7.0 Hz), 134.1, 133.7, 133.2 (d, *J* = 7.4 Hz), 128.1 (d, *J* = 8.1 Hz), 122.3, 114.4 (d, *J* = 21.6 Hz), 45.3 (d, *J* = 3.8 Hz).

HRMS (ESI): Calc'd for C₁₃H₉F₅N₂OSNa⁺ [M+Na]⁺ 359.02480; found 359.02504.

Synthesis of 6-bromo-N-(4-fluorobenzyl)-pyridinylsulfonimidoyl fluoride (80). The title compound was prepared from reaction of 4p (0.1 mmol) and 4-fluorobenzylamine 7d according to the general method. After the reaction, the product was purified through a column chromatography (Pentane/EtOAc = 10:1). Pale yellow oil was obtained as the desired product (14 mg, 41% yield).

Rf (Pentane/EtOAc = 10:1): 0.56

¹**H NMR** (300 MHz, CDCl₃) δ 8.04 (dd, J = 6.2, 2.3 Hz, 1H), 7.67 – 7.76 (m, 2H), 7.30 (dd, J = 8.4, 5.4 Hz,

2H), 8.15 (t, *J* = 8.7 Hz, 2H), 4.53 – 4.66 (m, 2H).

¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ 77.4 (s, 1F), -115.4 (s, 1F).

¹³**C NMR** (75 MHz, CDCl₃) δ 163.7 (d, *J* = 277.9 Hz), 152.5 (d, *J* = 52.5 Hz), 141.4, 139.0, 137.8 (d, *J* = 24.0 Hz), 132.0, 128.1 (d, *J* = 8.2 Hz), 121.2, 114.3 (d, *J* = 21.4 Hz), 45.3 (d, *J* = 3.8 Hz).

HRMS (ESI): Calc'd for C₁₂H₉BrF₂N₂OSNa⁺ [M+Na]⁺ 368.94792; found 368.94781.

17. References

[1] E. Carbonnel, T. Besset, T. Poisson, D. Labar, X. Pannecoucke, P. Jubault, *Chem. Commun.* **2017**, *53*, 5706-5709.

[2] J. Li, W. Rao, S. Y. Wang, S. J. Ji, J. Org. Chem. 2019, 84, 11542-11552.

[3] Y. Zheng, F. L. Qing, Y. Huang, X. H. Xu, Adv. Synth. Catal. 2016, 358, 3477-3481.

[4] Y. Huang, X. Li, X. Wang, Y. Yu, J. Zheng, W. Wu, H. Jiang, Chem. Sci. 2017, 8, 7047-7051.

[5] J. T. Reeves, K. Camara, Z. S. Han, Y. Xu, H. Lee, C. A. Busacca, C. H. Senanayake, *Org. Lett.* **2014**, *16*, 1196-1199.

[6] C. R. Pitts, D. Bornemann, P. Liebing, N. Santschi, A. Togni, Angew. Chem. Int. Ed. 2019, 58, 1950-1954.

[7] S.-J. Zhu, H.-Z. Ying, Y. Wu, N. Qiu, T. Liu, B. Yang, X.-W. Dong, Y.-Z. Hu, *RSC Adv.* **2015**, *5*, 103172-103183.

[8] W. C. Gao, Y. Z. Shang, H. H. Chang, X. Li, W. L. Wei, X. Z. Yu, R. Zhou, Org. Lett. 2019, 21, 6021-6024.

[9] J. X. Zou, J. H. Chen, T. Shi, Y. S. Hou, F. Cao, Y. Q. Wang, X. D. Wang, Z. Jia, Q. Y. Zhao, Z. Wang, *ACS Catal.* **2019**, *9*, 11426-11430.

[10] S. Graßl, C. Hamze, T. J. Koller, P. Knochel, Chem. Eur. J., 2019, 25, 3752-3755.

[11] Y. Chen, M. Tang, Y. Wu, X. Su, X. Li, S. Xu, S. Zhuo, J. Ma, D. Yuan, C. Wang, *Angew. Chem. Int. Ed.* **2019**, *58*, 14731-14739.

[12] H. M. Gillis, L. Greene, A. J. S. Thompson, Synlett. 2009, 2009, 112-116.

[13] Z. Song, Y. Wu, T. Xin, C. Jin, X. Wen, H. Sun, Q.-L. Xu, Chem. Commun. 2016, 52, 6079-6082.

[14] S. E. Denmark, E. Hartmann, D. J. Kornfilt, H. Wang, Nat. Chem. 2014, 6, 1056 - 1064.

[15] M. Tudge, M. Tamiya, C. Savarin, G. R. Humphrey, Org. Lett. 2006, 8, 565-568.

- [16] E. W. Garbisch Jr, J. Chem. Ed. 1968, 45, 402 416.
- [17] R. Braun, A. Cowley, M. Cushner, R. Lagow, Inorg. Chem. 1978, 17, 1679-1681.
- [18] R. A. Stewart, S. Fujiwara, F. Aubke, J. Chem. Phys. 1968, 49, 965-966.
- [19] I. Ruppert, Chem. Ber. 1980, 113, 1047-1052.
- [20] Y. Liu, D. Yu, Y. Guo, J. C. Xiao, Q. Y. Chen, C. Liu, Org. Lett. 2020, 22, 2281-2286.
- [21] M. Perez-Palau, J. Cornella, Eur. J. Org. Chem. 2020, 2020, 2497-2500.
- [22] T. Zhong, M. K. Pang, Z. D. Chen, B. Zhang, J. Weng, G. Lu, Org Lett 2020, 22, 3072-3078.
- [23] A. Haas, M. Spitzer, M. Lieb, Chem. Ber. 1988, 121, 1329-1340.

[24] G. Laudadio, A. d. A. Bartolomeu, L. M. Verwijlen, Y. Cao, K. T. de Oliveira, T. Noël, *J. Am. Chem. Soc.* **2019**, *141*, 11832-11836.

- [25] B. Cui, S. Jia, E. Tokunaga, N. Saito, N. Shibata, Chem. Commun. 2017, 53, 12738-12741.
- [26] P. Das, M. Takada, K. Matsuzaki, N. Saito, N. Shibata, Chem. Commun. 2017, 53, 3850-3853.

[27] B. Gao, S. Li, P. Wu, J. E. Moses, K. B. Sharpless, Angew. Chem. Int. Ed. 2018, 57, 1939-1943.

18. NMR Spectra

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

¹H Spectra (300 MHz, CDCl₃)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 fl (ppm)

-80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm) -20 -40 -60

