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S1 Data extraction from the CSD

The procedures to collect cocrystal data from the CSD are the same as those presented in Refs. 1

and 2. Entries containing two distinct chemical residues that were organic, not ionic or polymeric,

error-free and had their three-dimensional coordinates determined (including disorder) were

searched in the CSD (v5.40). The individual constituents of the entries were then found by

converting their structure data files (SD) to canonical SMILES strings with OpenBabel [3].

These molecular representations are unique, take aromaticity and chirality into account, and are

easily converted into circular fingerprint vectors and molecular graphs. Cocrystals were filtered

by comparing each constituent to a predefined list of common solvents and gasses (lists are

made available in Ref. 2). In the case of racemic cocrystals (i.e. a cocrystal containing an

achiral coformer and a pair of enantiomers of a chiral coformer), a single enantiomer is retained

to prevent potential overfitting and unfair reprediction in later stages of model developement.

The data set was further restricted to cocrystals with correctly determined explicit valencies of

both coformers, as this was a necessary requirement for further processing to fingerprints and

molecular graphs. Furthermore, only coformers with up to 60 heavy atoms (approx. 75% of

coformers) were included, easing the conversion to the proposed data formats and focusing the

set on cocrystals with directed interactions between relatively small molecules. These procedures

resulted in a dataset of 8050 cocrystals, formed by 5334 unique coformers.

Prior to selecting the coformers on the basis of their explicit valencies and size, the cocrystals

were converted to a physical network and stored in an adjacency matrix A, for which the row and

column indices correspond to the coformers. Combinations of coformers for which a cocrystal

is known in the CSD are labeled in A as 1, and 0 if undetermined. Such a matrix may be used

to predict missing cocrystals with link-prediction algorithms [2], assigning large score values to

combinations likely to interact based on network principles. Conversely, combinations that are

highly unlikely are given smaller score values, which is exploited here to generate an invalid

cocrystal set.

For coformers in the valid cocrystal set (5334 coformers), having more than five determined

cocrystals in the CSD, all possible combinations were evaluated with the bipartite resource

allocation index (detailed explanation in Ref. 2), storing those for which the score ≡ 0, cor-

responding to invalid coformer combinations. 8050 random samples were taken from this set,

forming the invalid cocrystal set.
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S2 Coformer featurization

When applying deep learning to molecular data, the input (in this case a pair of coformers)

should be provided in the form of a chemical representation. A wide variety of such representa-

tions exist [4], including SMILES strings [5], molecular descriptor vectors [6], key-based [7] and

circular [8] (i.e. extended-connectivity) fingerprint vectors, and molecular graphs [9]. Extended-

connectivity (or radial; Morgan-type) fingerprints were generated from canonical SMILES strings

of the coformers using a DeepChem [10] wrapper-function for RDKit [11] (DeepChem v2.3.0 with

GPU-enabled support, installed for Python v3.5.6). The radius and length of the fingerprints

were not a priori set to fixed values but assumed to be configurational parameters of the model,

meaning that the featurization to fingerprints is different per FP-model.

Similarly, the canonical SMILES of the coformers were transformed to molecular graphs with

DeepChem. Molecules are characterized by an Natoms×Natoms adjacency matrix, containing the

connectivities between the atoms, and an Natoms×Nfeatures feature matrix (Figure 2) describing

the features of each atom. As features are mostly categorical of nature (Table S1), the feature

vector is one-hot encoded to allow for their further processing with machine learning techniques.

Therefore, each feature is transformed into an array with a length equal to its number of choices.

Each option is given its own bit in the array, which is set to 1 when present. For example, if one

desires to encode the atom type and has three options (e.g. carbon, oxygen or nitrogen), then

carbon corresponds to [1, 0, 0], oxygen to [0, 1, 0] and nitrogen to [0, 0, 1]. Finally, the one-hot

encoded bit vectors of all properties are joined together, forming the atomic feature vector (of

length 78).

Although these two representations are technically two-dimensional in the sense that no

atomic coordinates are taken into account, the inclusion of for example the hybridization state

of the atoms and optionally their chirality results in the subtle presence of three-dimensional

information. Therefore, these molecular representations seem to be very suitable for the purpose

of cocrystal prediction.
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Table S1: Atom features that are encoded in the feature matrix. The length corresponds to the
number of bits occupied by the specific one-hot encoded feature in the final feature vector (of
length 78). Only a single bit is required for boolean properties (e.g. aromatic).
Feature Options Length
Element type C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As,

Al, I, B, V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se,
Ti, Zn, H, Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr,
Cr, Pt, Hg, Pb, Unknown

44

Degree 0, 1, 2, ..., 9, 10 11
Implicit valence 0, 1, 2, ..., 5, 6 7
Formal charge 0 or 1 1
Number of radical electrons 0 or 1 1
Hybridization sp, sp2, sp3, sp3d or sp3d2 5
Aromatic True or False 1
Number of hydrogens 0, 1, 2, 3, 4 5
Chirality R, S 2
Chirality possible True or False 1

Σ = 78

S3 Model implementation and selection

S3.1 Implementation details

Both model types (Figure 1a and 1b) were implemented in Python (v3.5.6) with Keras [12] and

DeepChem [10], and are divided into 4 modules (Table S2). Each model first preprocesses the

two coformers in a shared manner (modifying each coformer in the same way) and afterwards

merges them into a learnable, united cocrystal vector. The latter is then further processed

through a sequence of hidden layers and used for the final prediction. In fact, each hidden layer

consists of a sequence of a fully-connected (or dense) layer, a batch normalization layer [13] and

a dropout layer [14]. Several of such layer sequences may be present within the module.

Fully-connected (or dense) layers receive as input a weighted linear combination of the output

from all nodes in the previous layer. After subtraction of a bias term, the input is passed though

a non-linear activation function and a single outcome is, after being processed through the batch

normalization layer, transmitted to the next layer sequence, repeating the same computation.

During the training phase, the model is initialized with random weights and bias terms, and is

subsequently exposed to batches of labeled (or known) training data, for which predictions are

generated. The error on these predictions contributes to a loss function, which is simultaneously

minimized by adjusting (or learning) the model’s weights while cycling over the available training

data (supervised learning). The model weights are adjusted in the direction opposite to the loss

gradients with the backpropagation algorithm [15].
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For the preprocessing module of the molecular graph-based model type, the fully-connected

layer is swapped for a graph convolutional layer (open-source implementations of Altae-Tran

et al. [16]). The molecular graphs are passed through a series of learnable convolution layers,

updating their node features with those of their local chemical environment with each convo-

lutional pass. This creates both a tunable and hierarchical representation of the molecule [17],

which, after transformation into a one-dimensional array, is combined into a cocrystal vector

and used as input for the abovementioned neural networks containing only hidden layers. In

unreported results, dropout for such layers did not appear to affect the training outcome and

was therefore omitted. Also, after a batch normalization layer, the feature vector of each node

of the graph is pooled, updating the features with the maximum activation across itself and its

neighbors. At the end of the preprocessing, the molecular graph of each coformer is condensed

into a one-dimensional array by passing it through a graph gathering layer, after which both

coformers are merged.

Both model types process through batches of training data and are optimized with Adam

optimizer [18] (learning rate=0.001, β1=0.9, β2=0.999). The model training was performed on

an Intel© Core™ i9-7940X (CPU) and an NVIDIA GeForce© RTX 2080 SUPER™ (GPU). The

training of one FP model took approximately one minute and that of a GCN model around ten

minutes, resulting in a total training time of a little less than one hour for the ten-membered

ensemble.

S3.2 Selection of the model configurations

The number of configurational parameters for both model types that are adjustable is quite

large (Table S2). As each parameter is variable and modules can consist of multiple layers, each

with independently defined sizes, the space of possible model configurations becomes too large

to manually search for an optimum. Therefore, sequential model-based optimization techniques

such as Bayesian optimization [19] provide a convenient tool to explore the large parameter

space for the best model configurations. For this purpose, we used the Python package Hyperopt

[20, 21].

The procedure for finding the optimal configurations is iterative and identical for both model

types. At the start of each iteration, the available cocrystal data set is randomly split into a

training (90%) and validation (10%) set. Next, a model (defined by the combination of a model

type and set of configurational parameters) is initialized with a configuration chosen by the
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Table S2: Configurational parameters and their possible values for both model types.
Model FP model GCN model
Fingerprint size (2x) x ∈ {7, 8, ..., 11, 12} -
Fingerprint radius (r) r ∈ {1, 2, 3} -
Batch size (2b) b ∈ {6, 7, 8} 7

Preprocessing module
Layer type Dense Graph Convolution
Layer size (2x) x ∈ {7, 8, 9, 10, 11} x ∈ {6, 7, 8}
Layer activation function ReLU, ELU or Tanh ReLU, ELU or Tanh
Layer dropout (d) d ∈ [0, 0.75] 0
Number of layers 1,2 or 3 1,2 or 3
Graph gathering activation function - ReLU, ELU or Tanh

Merging module
Vector operation Add or Concatenate Add or Concatenate

Feedforward module
Layer type Dense Dense
Layer size (2x) x ∈ {7, 8, 9, 10, 11} x ∈ {6, 7, 8, 9, 10}
Layer activation function ReLU, ELU or Tanh ReLU, ELU or Tanh
Layer dropout (d) d ∈ [0, 0.75] d ∈ [0.1, 0.6]
Number of layers 1,2 or 3 1,2 or 3

Predictive module
Layer type Dense Dense
Layer size 1 2
Layer activation function Sigmoid Softmax
Loss function Binary cross entropy Softmax cross entropy
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Figure S1: Example of training a GCN model. (left) The loss on both the training and validation
set quickly decreases with an increasing number of epochs. (right) Evolution of the model’s
accuracy.

Bayesian optimizer, and is trained on the provided training set. The so-called loss metric of

the model, related to how well training samples are being classified, is recorded during training

for both the training and validation set, the latter containing data that remains unseen by the

model during training. This loss metric (i.e. average log loss or cross-entropy loss) is defined as

L = − 1
N

[∑N
i=1 ti log oi + (1− ti) log (1− oi)

]
, where ti is the truth or true label (i.e. 0 or 1) of

sample i and oi is the output of the classifier (∈ [0, 1]). FP models were allowed to train over

30 epochs (i.e. the number of times the entire training data set is worked through) and GCN

models over 75.

An example of such a training cycle is shown in Figure S1, illustrating the evolution of

a GCN model’s loss to near zero for the training set (blue dots; perfect classification) as the

number of epochs increases. Likewise, the model’s training accuracy evolves to near 100%. The

model thus consistently improves itself in discriminating true cocrystals from invalid ones in the

training set. This behavior is also reflected in the performance metrics on the validation set,

which the model is also able to classify well. Unlike the training set, the improvement stagnates

around 40 epochs, indicating the onset of overfitting. The excellent classification performance

on the external validation set is only possible if the training set covers characteristic patterns

for cocrystallization in the validation set (and thus the entire data set) and if these patterns are

effectively encoded in the neural network’s internal parameters. Hence, it is confirmed that the

proposed data set forms an adequate basis for cocrystal prediction.

When the training cycle is finished, the minimum loss on the validation set is returned to

the Bayesian optimizer (epoch 36 in Figure S1), which repeatedly selects the next configuration
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Figure S2: Performance metrics of the ensemble models over a ten-fold cross-validation exper-
iment. The height of the bars shows the average value on the ten validation sets. The black
error bars correspond to ± one unit of standard deviation.

to be tested based on previous evaluations by optimizing the Expected Improvement with the

Tree-structured Parzen Estimator approach (TPE) [22]. Initially, this procedure is run for three

random configurations from the space, which the optimizer uses as a starting point. After 50

iterations, a ranked list of possible model configurations and their associated performance on

data set aside is produced for each model type, which was used to select the five best models for

each type (Tables S3 and S4). These models were placed in their individual model ensembles

and a combined model ensemble, containing all ten models.

S4 Model validation

S4.1 Cross-validation

The performance of the FP, GCN, and FP + GCN model ensembles was validated on the

available cocrystal data by ten-fold cross-validation. The data set was first randomly divided

in ten equal parts or folds. Each fold is used once for validation and nine times for training,

and the performance on each of the validation sets is recorded while training on the data from

residual nine sets. To prevent overfitting, the FP models and GCN models were trained for 30

and 50 epochs, respectively. The average precision, accuracy and loss values over ten folds were

computed for the model ensembles and are shown in Figure S2.
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Figure S3: Score histogram (left) and cumulative distribution function (right) of the 71 invalid
combinations for carbamazepine.

S4.2 Additional invalid coformer pairs for carbamazepine

Besides the four invalid cocrystal combinations that were already in our data set for carba-

mazepine, we found an additional 67 eligible couples according to the procedures mentioned

in section S1. The models were again trained on all data points except for the carbamazepine

combinations, and the prediction values for all invalid pairs are shown in Figure S3. Clearly,

most combinations (approx. 78%) are scored below the 0.5 threshold, and are therefore assumed

to be non-existing. Although our set of invalid cocrystals is to a certain degree artificial and

lacks real experimental evidence, its usefulness is thus demonstrated by Figure S3, as well as by

the high precision values (and therefore small occurence of false positives) presented in Figure

S2.

S5 Coformer clustering

The clustering of the coformers was done with Ward’s hierarchical clustering method [23], ac-

cording to the procedures described in Ref. 1. The adjacency matrix of the coformer network

(see section S1), which essentially contains all determined cocrystals in the CSD, is transformed

into a similarity matrix, where coformer similarity for a pair of coformers i and j is defined with

the Jaccard index [24]:

si,j =
ni ∩ nj
ni ∪ nj

, (1)
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where the neighbors ni of coformer i can be found from the set of nodes (or coformers) N as:

ni = {jεN |Ai,j = 1}. (2)

For the purpose of hierarchical clustering, the similarity matrix was converted into dissim-

ilarity matrix (di,j = 1 − si,j) and was resized to include only the 75 most popular coformers.

These were determined based on their degree (= |ni|) in the adjacency matrix. Ward’s clustering

method works in an agglomerative fashion, repeatedly merging coformers or clusters thereof that

are least dissimilar (or closest/most similar) in larger clusters. The method starts by placing all

coformers in separate clusters or singletons, which were subsequently agglomerated into clusters.

The distance to a cluster p containing multiple coformers is calculated as:

d(p, q) =

√
|q|+ |s|

|q|+ |s|+ |t|
d(q, s)2 +

|q|+ |t|
|q|+ |s|+ |t|

d(q, t)2 − |q|
|q|+ |s|+ |t|

d(s, t)2 (3)

where p is the cluster as a result from merging clusters s and t, and q is one of the remaining

clusters. The distances at which two clusters were joined were recorded and illustrated as a

dendrogram (Figure 4).

S6 Experimental procedures for cocrystal synthesis and charac-

terization

RS-ketoprofen (50 mg; TCI Europe NV, > 98% pure) and carbamazepine (51 mg; Aldrich, ≤

100% pure) were ground in the presence of 40 µL acetonitrile (i.e. liquid-assisted grinding,

LAG) for 30 minutes at 25 Hz with a Retsch MM 400. The same procedure was followed for

S-ketoprofen (48 mg; Sigma Aldrich, 99% pure) and carbamazepine (53 mg). White powders

were harvested, which were subsequently analyzed by powder X-ray diffraction (PXRD). For

powder diffraction analysis, samples were sealed in a 0.3 mm soda lime glass capillary. The

diffractograms were measured in capillary mode on a Panalytical Empyrean diffractometer with

CuKα radiation from a sealed LFF tube and a PIXcel3D 1x1 detector. The powder patterns

of the obtained mixtures (shown in Figures S4 and S5) were different from their constituents

and known polymorphs in the CSD, indicating the formation of two new phases. Both patterns

are extremely similar, indicating that the racemic and enantiopure cocrystal are likely to have

quasi-identical unit cell parameters.
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Figure S4: Powder diffraction patterns of RS-ketoprofen (red), carbamazepine (blue), and the
co-ground powder (green). The simulated PXRD pattern of the cocrystal structure (black)
confirms that the phase obtained by LAG is the cocrystal.

Approximately 10 mg of the co-ground powder with racemic ketoprofen was dissolved in 1

mL of methanol and left to slowly evaporate, yielding colourless block-like crystals suitable for

single-crystal X-ray diffraction after 4 days. Single crystals of the enantiopure cocrystal were

obtained by slow evaporating a solution containing 45 mg of a 1:1 mixture of carbamazepine

and S-ketoprofen (95% pure, Fluorochem), and 1 mL of ethanol:ethyl acetate (3:7 v/v). The

latter were found together with crystals of pure carbamazepine and a glue-like liquid.

The structures of the two cocrystals are presented in Figure S6 and S7. The simulated powder

diffraction patterns of these structures, corrected for thermal expansion at room temperature,

are also displayed in Figures S4 and S5, confirming that the phases obtained by LAG are indeed

the discovered cocrystals. Hydrogen bonding details (Tables S5 and S6) and the crystallographic

data (Table S7) of the cocrystal structures are presented below.

* : Reflections were measured on a Bruker D8 Quest diffractometer with sealed tube and

Triumph monochromator (λ = 0.71073 Å). Software package used for the intensity integration

was Saint (v8.38a, Bruker AXS Inc., Madison, Wisconsin, USA). Absorption correction was per-

formed with SADABS [25]. The structures were solved with direct methods using SHELXT [26].
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Figure S5: Powder diffraction patterns of S-ketoprofen (red), carbamazepine (blue), and the
co-ground powder (green). Comparison of the experimental pattern to that of the structure
(black) confirms that obtained material is the binary cocrystal.

Table S5: H-bonding details of the racemic cocrystal (p2033a). Besides the interaction between
the acid and amide groups on the coformers, involving one hydrogen (H21A) of the amide group,
the ketone group of ketoprofen (C13 = O03) forms a hydrogen bond to the second hydrogen
(H21B) on the amide.

Donor — H ....Acceptor ARU D - H H...A D...A D - H...A
O01 –H01 ..O20A 1555.02 0.972(17) 1.598(17) 2.5572(14) 168.7(13)
N21A –H21A ..O02 1555.01 0.88 2.14 2.9823(16) 161
N21A –H21B ..O03 4565.01 0.88 2.32 3.1454(15) 156

Table S6: H-bonding details of the enantiopure cocrystal (p2059a).
Donor — H ....Acceptor ARU D - H H...A D...A D - H...A
O03 –H03 ..O04 1555.04 0.97(4) 1.60(4) 2.557(3) 172(4)
O06 –H06 ..O01 1555.03 0.81(5) 1.82(5) 2.613(3) 168(4)
N11 –H11A ..O02 1555.01 0.89(4) 2.12(4) 2.995(3) 168(3)
N11 –H11B ..O08 1555.02 0.91(3) 2.24(3) 3.120(3) 162(3)
N12 –H12A ..O07 1555.02 0.88(4) 2.06(4) 2.928(3) 168(3)
N12 –H12B ..O05 1454.01 0.89(3) 2.30(4) 3.141(3) 157(3)
C74 –H74C ..O02 2656.01 0.98 2.60 3.489(4) 151
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Figure S6: ORTEP plot of the racemic cocrystal (p2033a). As the structure is disordered, only
the major conformation (’A’) of carbamazepine is shown.

Figure S7: ORTEP plot of the enantiopure cocrystal (p2059a).
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Table S7: Crystallographic data* of the cocrystals containing RS-ketoprofen and carbamazepine
(racemic), and S-ketoprofen and carbamazepine (enantiopure).

Racemic (p2033a) Enantiopure (p2059a)
Crystal data
CCDC no. 2010395 2010396
Chemical Formula C16H14O3 ·C15H12N2O C16H14O3 ·C15H12N2O
Mr 490.54 490.54
Crystal system, space group Monoclinic, P21/n Monoclinic, P21
Temperature (K) 150 150
a, b, c (Å) 16.9943 (7), 7.7147 (3),

19.6426 (8)
17.0106 (9), 7.7191 (5),
19.7334 (12)

β (°) 97.9814 (16) 98.375 (2)
V (Å3) 2550.32 (18) 2563.5 (3)
Z 4 4
Radiation type MoKα MoKα
µ (mm-1) 0.09 0.09
Crystal size (mm) 0.33× 0.30× 0.10 0.39× 0.26× 0.08

Data collection
Diffractometer Bruker D8 Quest Apex3

Absorption correction Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R.,
Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax 0.712, 0.746 0.715, 0.747
No. of measured, independent
and observed [I > 2σ(I)] re-
flections

37024, 6340, 5535 122742, 19508, 17490

Rint 0.024 0.036
(sin θ/λ)max(Å-1) 0.667 0.770
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.110, 1.05 0.062, 0.168, 1.05
No. of reflections 6340 19508
No. of parameters 392 687
No. of restraints 48 1

H-atom treatment H atoms treated by a mixture of independent and
constrained refinement

∆ρmax,∆ρmin (eÅ-3) 0.26, -0.24 0.73, -0.33
Special remarks Carbamazepine is disorded.
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Least-squares refinement was performed with SHELXL-2014 [27] against |F 0
h |2 of all reflections.

Non-hydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen

atoms were placed on calculated positions or located in difference Fourier maps. All calculated

hydrogen atoms were refined with a riding model.
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