Supplementary materials

Table of contents

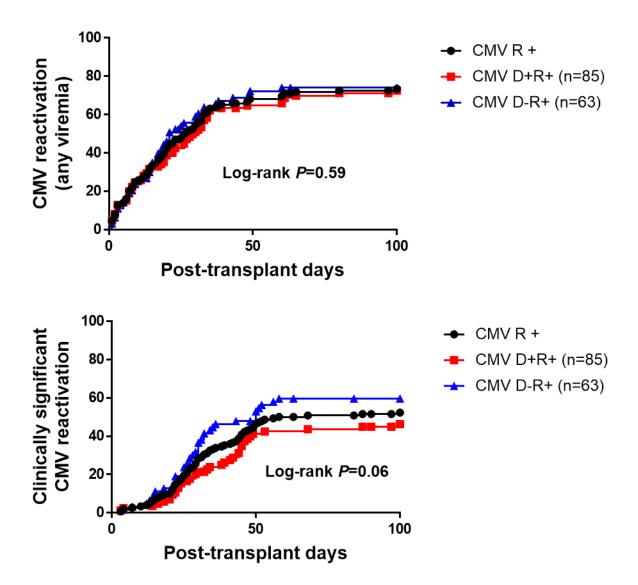
- 1. **Supplementary Table 1**. Characteristics of study subjects
- 2. **Supplementary Figure 1.** 100-day CMV reactivation (any viremia) and cs-CMVi by donor serostatus among CMV-seropositive recipients.
- 3. Supplementary Figure 2. Antibiotic exposure by day +14 following allogeneic HCT
- 4. **Supplementary Figure 3** 100-day cumulative incidence of CMV reactivation (any viremia) by antibiotic use by day +14
- Supplementary Figure 4 100-day cumulative incidence of clinically significant
 CMV reactivation by antibiotic use by day +14
- 6. **Supplementary Figure 5** One-year cumulative incidence of all-cause mortality by antibiotic use by day +14
- 7. **Supplementary Figure 6** One-year cumulative incidence of non-relapse mortality by antibiotic use by day +14
- 8. **Supplementary Figure 7.** Increased mortality in patients exposed to anaerobic antibiotics.

Supplementary table 1. Characteristics of study subjects	
Characteristic	Number of patients
	(%)
Age, median (IQR), years	52 (43-61)
Male sex	80 (54)
Follow-up, median (IQR), posttransplant	441 (225-833)
days	
Initial CMV viremia, median (IQR),	137 (96-181)
IU/mL [®]	
Peak CMV viremia, median (IQR), IU/mL	842 (185-3,962)
CMV viremia preceding therapy, median	685 (320-1,449)
(IQR), IU/mL [†]	
Duration of CMV viremia, median (IQR),	38 (24-48)
days^	
CMV	
Asymptomatic	91 (85)
CMV syndrome	12 (11)
Tissue-invasive disease	4 (4)
Underlying diagnosis	
Leukemia	90 (60)
Lymphoma	19 (13)
MDS/MPN	34 (23)
Other	6 (4)

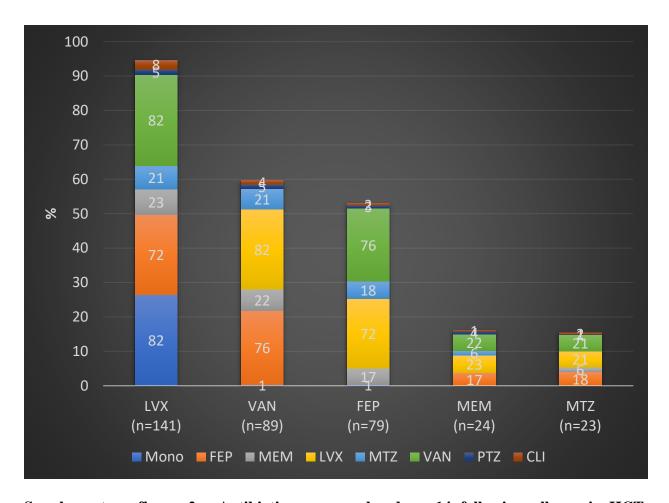
Conditioning regimen	
Myeloablative	49 (33)
ATG^{∞}	90 (60)
Stem cell source	
Peripheral blood	135 (91)
Bone marrow	11 (7)
Umbilical cord	3 (2)
Type of donor	
Unrelated or HLA-mismatched	100 (67)
Time to engraftment, median (IQR), days*	11 (10-14)
aGVHD (grade 3-4)	12 (8)
CD34+ cells infused (1×10 ⁶), median (IQR)	7.8 (6.1-12)
Charlson Comorbidity Score, median (IQR)	3 (2-4)
Lymphoid malignancy	46 (31)

Data are presented as absolute number (percentage), unless specified otherwise.

aGVHD, acute graft-versus-host disease; ATG, anti-thymocyte globulin; CMV, cytomegalovirus; IQR, interquartile range; MDS/MPN, myelodysplastic syndrome/myeloproliferative neoplasm.

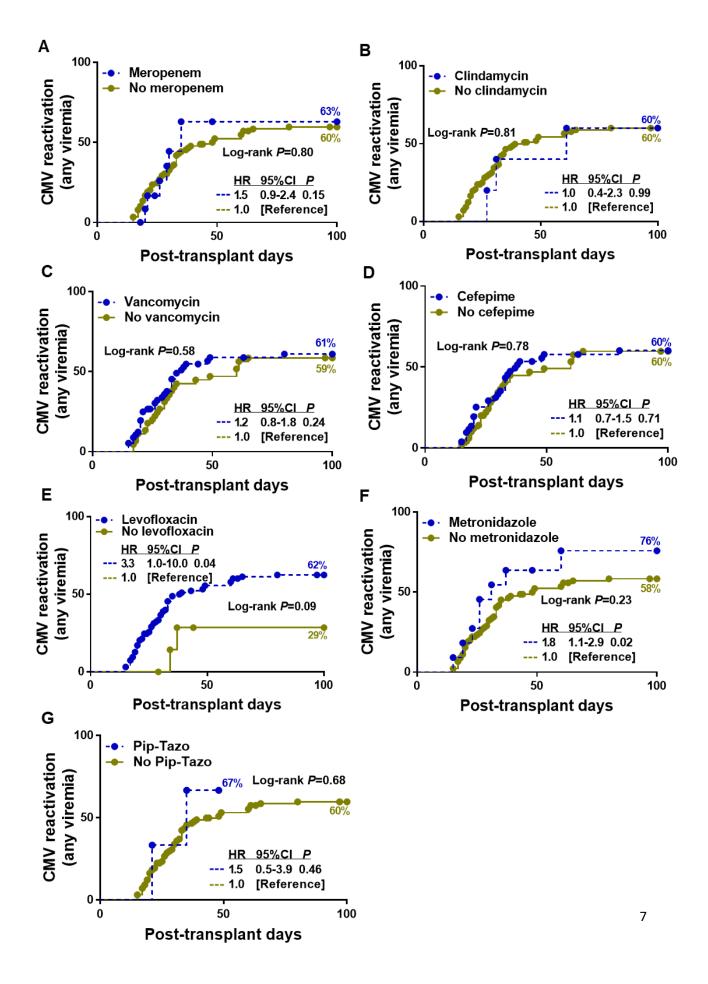

[∞] Typical dose of ATG at our center is 4 mg/kg total

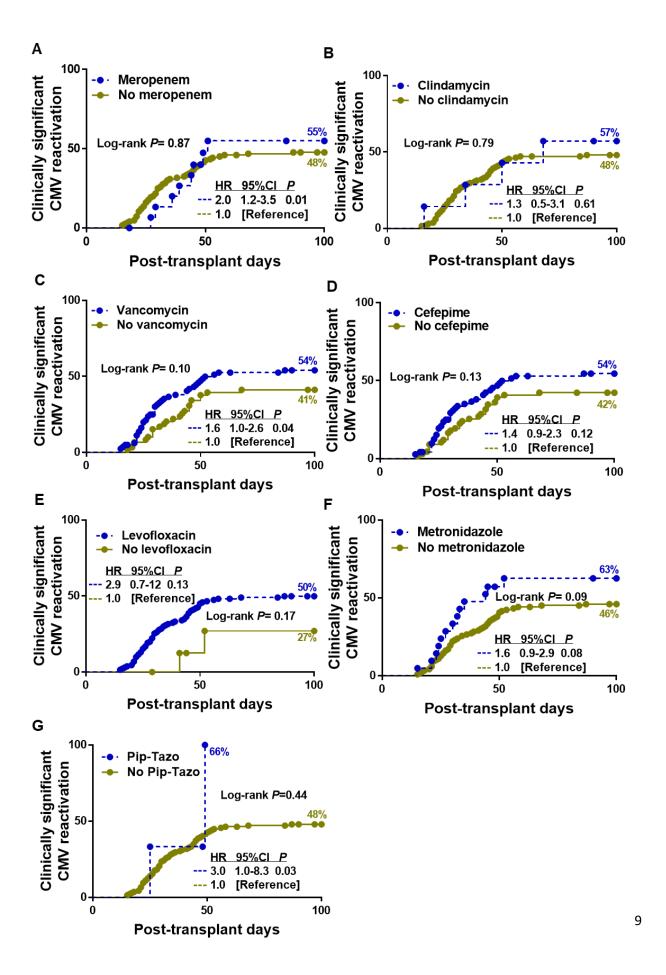
Among 107 patients with CMV reactivation


[†] Among 77 treated patients

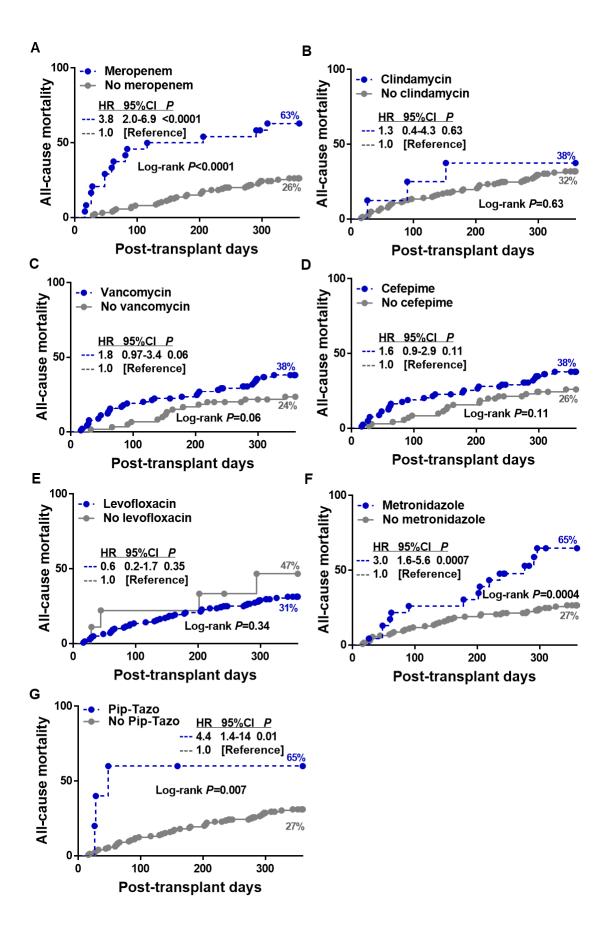
[^] Among 94 patients who achieved resolution of viremia

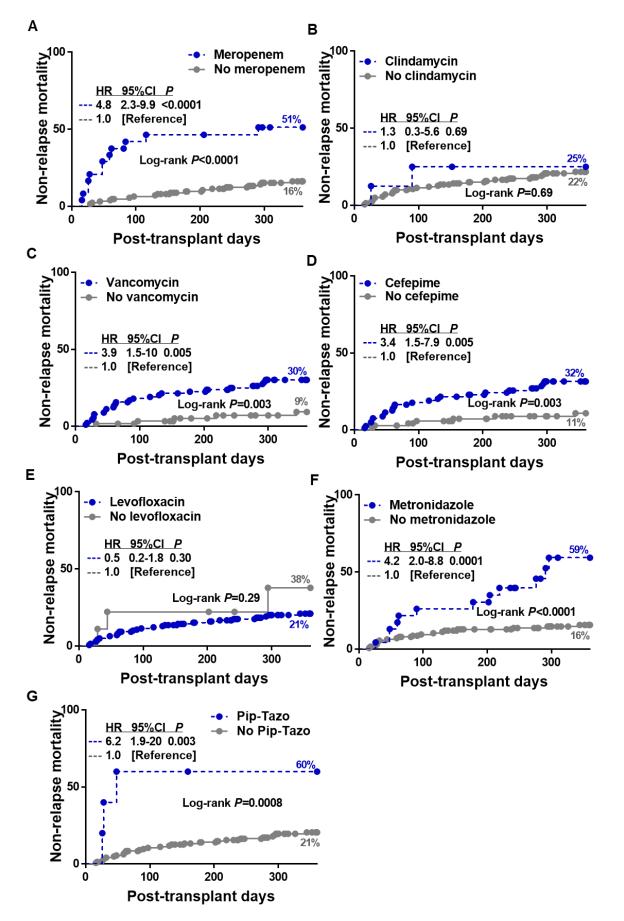
^{*} Among 142 patients who engrafted


Supplementary figure 1. Incidence of CMV among CMV-seropositive recipients. 100-day CMV reactivation any viremia (top) and clinically significant CMV infection (bottom) are shown. The 100-day incidence of CMV reactivation was dependent on the donor/recipient (D/R) CMV serostatus as follows: 74, 73, 20 and 5% for any CMV viremia (*P*<0.0001); and 60, 46, 20 and 5% for cs-CMVi (*P*=0.003), in D-/R+, D+/R+, D+/R- and D-/R- groups respectively. Only data for seropositive donors (n=149) are shown in the figure. There was one donor in whom the CMV serology was equivocal, therefore the sum of D+/R+ and D-/R+ only adds to 148. D, donor. R, recipient.

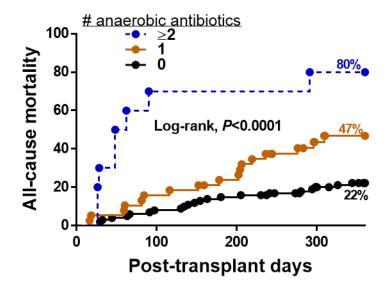

Supplementary figure 2. Antibiotic exposure by day +14 following allogeneic HCT.

Exposures for the five most common antibiotics are shown. For vancomycin, only intravenous vancomycin exposure was considered in the present study. Each column corresponds to a single antibiotic. Monotherapy or concurrent exposures by day +14 are shown in color code within each column and numbers in the insert correspond to a given specific antibiotic combination. For example, 141 (94%) of the patients were exposed to levofloxacin during the first 14 days post-transplant; 82 of them received it as monotherapy, while 72 of them were subsequently exposed to cefepime and 23 to meropenem within the same period. Fifty-six (38%) patients received antibiotics as prophylaxis only; others underwent antibiotic escalation for culture-negative neutropenic fever in 67 (45%), bacteremia in 18 (12%) and other reason in 8 (5%) cases. Causes

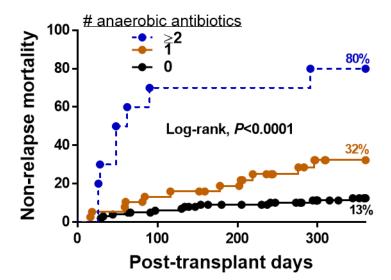

of bacteremia were as follows: *Escherichia coli* (n=10), *Pseudomonas aeruginosa* (n=2), *Streptococcus mitis* (n=2), *Propionibacterium acnes* (n=1), *Klebsiella pneumoniae* (n=1), *Fusobacterium spp.* (n=1), *coagulase-negative Staphylococcus* (n=1). Median duration of antibiotic exposure was as follows: levofloxacin (94%; median 7 days, range 1-14), intravenous vancomycin (60%; median 5 days, range 1-14), cefepime (53%; median: 7 days, range 1-14), meropenem (16%; median: 7 days, range 1-14), metronidazole (15%; median: 9 days, range 1-14), clindamycin (5%; median: 2 days, range 2-5), and piperacillin-tazobactam (3%; median: 3 days, range 1-6). Mono, monotherapy; LVX, levofloxacin; VAN, vancomycin; FEP, cefepime; MEM, meropenem; MTZ, metronidazole; piperacillin-tazobactam; CLI, clindamycin.


Supplementary figure 3. 100-day cumulative incidence of CMV reactivation (any viremia) by antibiotic use by day +14. Number of subjects in Log-rank analysis was as follows: meropenem (n=13), no meropenem (n=89); clindamycin (n=5), no clindamycin (n=97); vancomycin (n=57), no vancomycin (n=45); cefepime (n=52), no cefepime (n=50); levofloxacin (n=94), no levofloxacin (n=8); metronidazole (n=11), no metronidazole (n=91); piperacillintazobactam (n=3), no piperacillintazobactam (n=99). Insert corresponds to hazard ratios estimated by using Cox regression. CMV, cytomegalovirus.

Supplementary figure 4. 100-day cumulative incidence of clinically significant CMV reactivation by antibiotic use by day +14. Number of subjects in Log-rank analysis was as follows: meropenem (n=16), no meropenem (n=124); clindamycin (n=7), no clindamycin (n=133); vancomycin (n=81), no vancomycin (n=59); cefepime (n=73), no cefepime (n=67); levofloxacin (n=131), no levofloxacin (n=9); metronidazole (n=21), no metronidazole (n=119); piperacillintazobactam (n=3), no piperacillintazobactam (n=137). Insert corresponds to hazard ratios estimated by using Cox regression. CMV, cytomegalovirus.



Supplementary figure 5. One-year cumulative incidence of all-cause mortality by antibiotic use by day +14. Number of subjects in Log-rank analysis was as follows: meropenem (n=24), no meropenem (n=125); clindamycin (n=8), no clindamycin (n=141); vancomycin (n=89), no vancomycin (n=60); cefepime (n=79), no cefepime (n=70); levofloxacin (n=140), no levofloxacin (n=9); metronidazole (n=23), no metronidazole (n=126); piperacillin-tazobactam (n=5), no piperacillin-tazobactam (n=144). Insert corresponds to hazard ratios estimated by using Cox regression.



Supplementary figure 6. One-year cumulative incidence of non-relapse mortality by antibiotic use by day +**14.** Number of subjects in Log-rank analysis was as follows: meropenem (n=24), no meropenem (n=125); clindamycin (n=8), no clindamycin (n=141); vancomycin (n=89), no vancomycin (n=60); cefepime (n=79), no cefepime (n=70); levofloxacin (n=140), no levofloxacin (n=9); metronidazole (n=23), no metronidazole (n=126); piperacillin-tazobactam (n=5), no piperacillin-tazobactam (n=144). Insert corresponds to hazard ratios estimated by using Cox regression.

Α

В

Supplementary figure 7. Increased mortality in patients exposed to anaerobic antibiotics.

Panel A corresponds to one-year cumulative incidence of all-cause mortality by anaerobic antibiotic use by day +14. Panel B corresponds to one-year cumulative incidence of non-relapse mortality by anaerobic antibiotic use by day +14. Number of subjects in Log-rank analysis was as follows: >2 (n=10), 1 (n=38) or 0 (n=101) anaerobic antibiotics.