Supplemental Information

Genomic Heterogeneity in

Core-Binding Factor Acute Myeloid Leukemia and its Clinical Implication

Nikolaus Jahn,¹ Tobias Terzer,² Eric Sträng,³ Anna Dolnik,³ Sibylle Cocciardi,¹ Ekaterina Panina,¹ Andrea Corbacioglu,¹ Julia Herzig,¹ Daniela Weber,¹ Anika Schrade,¹ Katharina Götze,⁴ Thomas Schröder,⁵ Michael Lübbert,⁶ D. Wellnitz,⁷ Elisabeth Koller,⁸ Richard F. Schlenk,⁹ Verena I. Gaidzik,¹ Peter Paschka,¹ Frank G. Rücker,¹ Michael Heuser,¹⁰ Felicitas Thol,¹⁰ Arnold Ganser,¹⁰ Axel Benner,² Hartmut Döhner,¹ Lars Bullinger,^{3,*} Konstanze Döhner^{1,*}

*LB and KD shared senior authorship

¹Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany; ²Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany; ³Department of Hematology, Oncology, Tumor Immunology, Charité University Medicine, Berlin, Germany; ⁴Department of Internal Medicine III, University Hospital Klinikum Rechts der Isar, Munich, Germany; ⁵Department of Hematology, Oncology, and Clinical Immunology, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany; ⁶Department of Internal Medicine I, University Hospital of Freiburg, Freiburg, Germany; ⁷Department of Internal Medicine II, University Hospital of Schleswig-Holstein, Kiel, Germany; ⁸Department of Internal Medicine III, Hanuschkrankenhaus Wien, Wien, Austria; ⁹National Center of Tumor Diseases (NCT), German Cancer Research Center, Heidelberg, Germany; ¹⁰Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany

TABLE OF CONTENTS

SUPPLEMENTAL METHODS	3
Library Enrichment and Sequencing	3
Variant calling	4
Curation of oncogenic variants	4
SUPPLEMENTAL TABLES	6
SUPPLEMENTAL FIGURES	15
SUPPLEMENTAL RESULTS	20
SUPPLEMENTAL CLINICAL TRIALS	

SUPPLEMENTAL METHODS

Library Enrichment and Sequencing

The library enrichment was performed using the commercially available SureSelectXT in-solution capture technology from Agilent Technologies (Santa Clara, CA, USA). The library comprised the entire coding region of 230 candidate genes involved in hematological malignancies. For library design Agilent's online tool SureDesign was used. Only exons with a consensus annotation in the RefSeq, Ensembl, CCDS, Gencode, and SNP databases were considered relevant. The UCSC human genome 19 (H. sapiens, hg19, GRCh37, February 2009) served as reference genome for design and determination of genomic coordinates. All probes were tiled with 50% overlap. To enhance uniformity of the capture and thus evenness in coverage the number of copies of 'orphan' and GC-rich baits was increased as the corresponding target regions are methodically underrepresented. No probes were tiled to repetitive and low complexity DNA regions identified and masked by RepeatMasker and NCBI Window Masker plus/minus Duke Uniqueness Track to avoid unspecific probe annealing. Using this approach 34,256 probes with a total size of 1.359 Mbp were generated, covering approximately 96% of the regions of interest. Only very few regions were theoretically missed but practically covered by contiguous probes without any dropout. Assay design and subsequent bioinformatic analysis thus allowed for sensitive detection of single nucleotide variants (SNV) and small insertions/deletions (indels) whereas structural aberrations (copy number alterations and chromosomal rearrangements) as well as large indels were not captured.

Genomic DNA (200ng per sample) extracted from diagnostic bone marrow (81%) or peripheral blood (19%) specimens was used for molecular screening. For samples in which not enough DNA was available, genomic DNA was amplified using REPLI-g Mini Kit (Qiagen, Hilden, Germany). SureSelect library preparation and indexing were performed following the manufacturer's instructions for Illumina paired-end sequencing. Samples were then transferred to a cBot (Illumina, San Diego, CA, USA) to create clonal clusters on a flow cell by bridge amplification (Illumina reagent kit: TruSeq PE Cluster Kit v3-cBot-HS). Finally, 2x 100 bp paired-end sequencing by synthesis was carried out on a HiSeq2000 (Illumina, San Diego, CA, USA) using Illumina's TruSeq SBS Kit v3-HS reagents.

Variant calling

The sequencing quality of each sample was assessed using the NGS QC toolkit (2.3.3) and, where necessary, adapter and read end trimming were performed using cutadapt (1.8.3) and in-house scripting respectively.

Paired-end reads were then aligned to the hg19 reference using BWA-MEM (0.7.10). Alignments are sorted and indexed by Picard (1 .138) and locally realigned using GATK (3.4.46). For each sample, coverage statistics were calculated using BEDTools (2.24.0) and processed by SAMtools (0.1.19). VarScan2 (2.3.9) was then used for variant calling within the target regions sequenced. All variants were annotated by Annovar (release 22Mar2015) but only non-synonymous mutations affecting exons or splice sites were retained. These were further filtered to remove calls within known regions of segmental duplication, variants annotated in dbSNP (138) but not COSMIC (70) and variants with a minor allele frequency (MAF) above 0.01 in either the 1000 Genomes Project or the Exome Sequencing Project (ESP 6500).

Curation of oncogenic variants

All calls yielded by the computational annotation workflow were subject to further curation. Only variants considered oncogenic were included in the subsequent analyses. The algorithm for mutation reporting is as follows:

 a) Removal of all variants that are annotated in SNP databases and occur with a minor allele frequency (MAF) >0.001 in the 1000 Genomes Project, dbSNP150 or the Exome Sequencing Project (ESP 6500).

- b) Removal of variants present within regions prone to sequence context specific artifacts, including regions of high depth, enriched for reads of low mapping quality that harbor multiple mismatches
- c) Removal of all one bp insertions or deletions present adjacent to regions of more than 5 homopolymer bases (for example insG adjacent to GGGGG) and a variant allele frequency of ≤ 0.1
- d) Removal of all missense variants with a variant allele frequency between ≥0.45 and ≤0.55 or ≥0.9 and 1.0, indicative of polymorphisms, unless they are present with ≥5 counts in COSMIC database (v85) and with ≥1 confirmed somatic.
- e) Retention of all frameshift, nonsense or splicing variants with a variant allele frequency ≥0.05
- f) Retention of all missense variants with a variant allele frequency between 0.05 and <0.45 or >0.55 and <0.9, indicative of (likely) oncogenic variants.

SUPPLEMENTAL TABLES

ABCA12	CHEK2	EP300	IDH2	NEK2	PTPN11	SMC1A
ABL1	CLTCL1	EPHA6	IKZF2	NF1	PTPRF	SMC3
ACIN1	CNNM2	ETNK1	INPP5D	NF2	PTPRT	SMG1
ACSS3	COPRS	ETV6	IRF1	NFE2	PXDN	SPI1
ADGRV1	CREBBP	EVI2A	IRF4	NFE2L1	RAB11FIP4	SPRED2
ALK	CSF1R	EVI2B	IRF8	NFE2L2	RAC1	SRCAP
ARHGEF10	CSF2RB	EWSR1	JAK1	NIPBL	RAD21	SRSF2
ARID1A	CSF3R	EZH1	JAK2	NOTCH1	RAD50	STAG1
ARID2	CSMD1	EZH2	JAK3	NOTCH2	RAD51	STAG2
AS3MT	CSMD2	FAM175A	JARID2	NPM1	RASA2	STAT3
ASXL1	CSNK1A1	FAM5C	КАТ6А	NRAS	RASA3	STAT5A
ASXL2	CTCF	FAT4	KDM5C	NRXN1	RASEF	SUZ12
ATRX	CTNNB1	FBXW7	KDM6A	NRXN3	RASGRF1	SYNE1
BAP1	CUX1	FGFR2	KIF27	NSD1	RB1	TERT
BCL10	DCC	FLG	КІТ	NT5C2	RBBP5	TET1
BCL2	DDX23	FLT3	KMT2A	NUMA1	RBMX	TET2
BCOR	DDX4	FOXP1	KMT2D	NUP98	RHOA	TP53
BCORL1	DDX41	FRMD3	KRAS	NXF1	RMI1	ТТСЗ9А
BCR	DDX54	GALNT11	LAMA1	OBSCN	ROBO1	U2AF1
BRAF	DHX15	GALNTL5	LAMC3	OMG	ROBO2	U2AF2
BRCC3	DHX33	GATA1	LUC7L2	PAX5	RPS6KA6	UBQLN1
С6	DICER1	GATA2	MAP3K4	PDGFB	RRAS	UBXN11
C9orf103	DIS3	GFI1	MGA	PHF6	RUNX1	WAC
CALR	DNAH9	GKAP1	MLL3	PHIP	RYR2	WHSC1
CBL	DNAJB8	GNAS	MLL5	РІКЗСА	SAMHD1	WT1
CCND2	DND1	GNB1	MN1	PLEKHH1	SETBP1	YLPM1
CDHR1	DNM2	H3F3A	MPL	PLEKHS1	SETD2	ZBTB33
CDK4	DNMT3A	H3F3B	МҮС	PPM1D	SETDB1	ZBTB7A
CDKN1B	DNMT3B	HCN1	МҮН9	PRKAG2	SF1	ZMYM3
CDKN2A	DYNC1H1	НІРК2	MYLK2	PRPF40A	SF3A1	ZNF318
CDKN2B	EED	HNRNPK	MYO1F	PRPF40B	SF3B1	ZNF687
CDKN2C	EEFSEC	HRAS	NCOA7	PRPF8	SH2B3	ZRSR2
СЕВРА	EGFR	IDH1	NDE1	PTEN	SMARCB1	

Supplemental Table S1: List of all genes targeted by custom sequencing panel

Supplemental Table S2 Incidence and comparison of recurrent mutations in each CBF cohort

	t(8	;21)	inv	(16)	Total o	ohort	
	n=190	patients	n=160	patients	n=350 p	oatients	
	n	%	n	%	n	%	<i>p</i> -value
NRAS	31	16	62	39	93	27	< 0.0001
КІТ	48	25	42	26	90	26	0.9024
FLT3	25	13	33	21	58	17	0.0827
FLT3-ITD	9	5	4	3	13	4	0.0597
ZBTB7A	36	19	1	1	37	11	< 0.0001
ASXL1	27	14	2	1	29	8	< 0.0001
KRAS	3	2	26	16	29	8	< 0.0001
ASXL2	27	14	0	0	27	8	< 0.0001
TET2	20	11	5	3	25	7	0.011
WT1	8	4	16	10	24	7	0.0358
RAD21	20	11	0	0	20	6	< 0.0001
CCND2	19	10	1	1	20	6	< 0.0001
KDM6A	16	8	3	2	19	5	0.0081
SMC1A	17	9	0	0	17	5	< 0.0001
SRCAP	8	4	8	5	16	5	0.8001
EZH2	12	6	2	1	14	4	0.0251
SYNE1	10	5	4	3	14	4	0.2742
MGA	10	5	3	2	13	4	0.154
NF1	3	2	10	6	13	4	0.0248
DNMT3A	11	6	1	1	12	3	0.0076
DNM2	11	6	0	0	11	3	0.0012
DHX15	10	5	1	1	11	3	0.0136
CSF3R	9	5	2	1	11	3	0.0719
CBL	9	5	1	1	10	3	0.0242
OBSCN	4	2	6	4	10	3	0.522
DNAH9	4	2	6	4	10	3	0.522
BCORL1	1	1	9	6	10	3	0.0066
ZNF318	4	2	5	3	9	3	0.7372
SMC3	8	4	0	0	8	2	0.0088
BRCC3	8	4	0	0	8	2	0.0088
JAK2	7	4	1	1	8	2	0.0752
BCOR	4	2	4	3	8	2	1
STAG2	6	3	1	1	7	2	0.1309
RYR2	5	3	2	1	7	2	0.4606
LAMA1	3	2	4	3	7	2	0.7068
JAK3	6	3	0	0	6	2	0.0333
SETD2	5	3	1	1	6	2	0.2251
CREBBP	5	3	1	1	6	2	0.2251
MPL	4	2	2	1	6	2	0.6918
KMT2D	2	1	4	3	6	2	0.4182
FOXP1	0	0	6	4	6	2	0.0087
PHIP	4	2	1	1	5	1	0.3807
PHF6	3	2	2	1	5	1	1
CSMD1	3	2	2	1	5	1	1

Genomic Heterogeneity in Core-Binding Factor AML Supplemental Information

КМТ2С	2	1	3	2	5	1	0.6635
CSMD2	2	1	3	2	5	1	0.6635
FAT4	2	1	3	2	5	1	0.6635
ALK	2	1	3	2	5	1	0.6635
KDM5C	4	2	0	0	4	1	0.1284
EP300	3	2	1	1	4	1	0.6284
MYO1F	3	2	1	1	4	1	0.6284
SH2B3	0	0	4	3	4	1	0.0428
NIPBL	3	2	0	0	3	1	0.2534
GNAS	3	2	0	0	3	1	0.2534
EGFR	3	2	0	0	3	1	0.2534
CLTCL1	3	2	0	0	3	1	0.2534
FBXW7	3	2	0	0	3	1	0.2534
IDH2	3	2	0	0	3	1	0.2534
IDH1	3	2	0	0	3	1	0.2534
ARHGEF10	2	1	1	1	3	1	1
МҮН9	2	1	1	1	3	1	1
TP53	2	1	1	1	3	1	1
GPR98	2	1	1	1	3	1	1
RUNX1	2	1	1	1	3	1	1
МҮС	2	1	1	1	3	1	1
NRXN3	1	1	2	1	3	1	0.5945
ROBO2	1	1	2	1	3	1	0.5945
НІРК2	1	1	2	1	3	1	0.5945
ETV6	1	1	2	1	3	1	0.5945
NOTCH1	1	1	2	1	3	1	0.5945
CUX1	1	1	2	1	3	1	0.5945
ROBO1	1	1	2	1	3	1	0.5945
PTPN11	0	0	3	2	3	1	0.0946
CEBPA	0	0	3	2	3	1	0.0946
NRXN1	0	0	3	2	3	1	0.0946
PXDN	2	1	0	0	2	1	0.5023
JAK1	2	1	0	0	2	1	0.5023
SUZ12	2	1	0	0	2	1	0.5023
ATRX	2	1	0	0	2	1	0.5023
GATA2	2	1	0	0	2	1	0.5023
BRINP3	2	1	0	0	2	1	0.5023
NUMA1	2	1	0	0	2	1	0.5023
DCC	2	1	0	0	2	1	0.5023
HCN1	1	1	1	1	2	1	1
EPHA6	1	1	1	1	2	1	1
PRPF8	1	1	1	1	2	1	1
PRPF40A	1	1	1	1	2	1	1
NT5C2	1	1	1	1	2	1	1
RPS6KA6	1	1	1	1	2	1	1
KMT2E	1	1	1	1	2	1	1
FGFR2	1	1	1	1	2	1	1
OMG	1	1	1	1	2	1	1
SAMHD1	1	1	1	1	2	1	1

NXF1	1	1	1	1	2	1	1
ACSS3	1	1	1	1	2	1	1
DDX41	1	1	1	1	2	1	1
C6	1	1	1	1	2	1	1
ACIN1	1	1	1	1	2	1	1
PRKAG2	0	0	2	1	2	1	0.2083
CDHR1	0	0	2	1	2	1	0.2083
PPM1D	0	0	2	1	2	1	0.2083
ABCA12	0	0	2	1	2	1	0.2083
SETDB1	0	0	2	1	2	1	0.2083
EEFSEC	0	0	2	1	2	1	0.2083

Supplemental Table S3 Incidence and comparison of recurrent additional chromosomal aberrations in each CBF cohort; abbreviation: NA, not assessed

	t(8; n=190 p	21) atients	inv(n=160 p	16) atients	Total c n=350 p	c ohort Datients	
	n	%	n	%	n	%	<i>p</i> -value
del(9q)	26	14	2	1	28	9	< 0.0001
del(7q)	5	3	17	12	22	7	0.0016
+8	16	9	14	10	30	9	0.8486
+22	0	0	25	17	25	8	< 0.0001
-X	31	17	0	0	31	9	< 0.0001
-Y	54	30	1	1	55	17	< 0.0001
NA	8	-	14	-	22	-	-

Supplemental Table S4 Association with RTK/RAS signaling. Signaling group: NRAS, KIT, FLT3, KRAS, NF1, DNM2, CSF3R, CBL, JAK2, JAK3, PTPN11.

	RTK.RAS 0	RTK.RAS 1	
	(n=99)	(n=234)	pval
Age			0.49024 (wilcox.)
Median	50.52	48.72	
Range	18.2 to 79.76	18.05 to 75.68	
NA	0	0	
Hemoglobin			0.37039 (wilcox.)
Median	9.3	9	
Range	4.2 to 15.5	3.5 to 17	
NA	6	7	
Platelets			0.99681 (wilcox.)
Median	33	35	
Range	6 to 314	2 to 382	
NA	6	7	
Wbc			< 0.0001 (wilcox.)
Median	5.11	18.7	
Range	0.7 to 138.85	1.15 to 222.7	
NA	6	7	
Bone Marrow Blasts			0.16987 (wilcox.)

Genomic Heterogeneity in Core-Binding Factor AML Supplemental Information

	RTK.RAS 0	RTK.RAS 1	
	(n=99)	(n=234)	pval
Median	60	68	
Range	5 to 99	13 to 100	
NA	9	32	
Peripheral Blood Blasts			0.00948 (wilcox.)
Median	29	38	
Range	0 to 86	0 to 95	
NA	10	19	
CBF.Type			< 0.0001 (fisher)
inv(16)	26 (26.26 %)	129 (55.13 %)	
t(8;21)	73 (73.74 %)	105 (44.87 %)	

Supplemental Table S5 Association with chromatin. Chromatin group: ASXL1, ASXL2, SRCAP,

KDM6A, EZH2, SETD2, KMT2D.

	Chromatin 0	Chromatin 1	
	(n=239)	(n=94)	pval
Age			0.93147 (wilcox.)
Median	48.9	49.11	
Range	18.05 to 75.68	18.2 to 79.76	
NA	0	0	
Hemoglobin			0.50928 (wilcox.)
Median	9.195	8.8	
Range	3.5 to 17	4.7 to 15.5	
NA	9	4	
Platelets			0.60483 (wilcox.)
Median	36.5	32	
Range	2 to 262	5 to 382	
NA	9	4	
Wbc			0.00566 (wilcox.)
Median	14.135	8.15	
Range	1.2 to 222.7	0.7 to 102	
NA	9	4	
Bone Marrow Blasts			0.35453 (wilcox.)
Median	65	65	
Range	5 to 100	13 to 95	
NA	32	9	
Peripheral Blood Blasts			0.23171 (wilcox.)
Median	36	33	
Range	0 to 92	0 to 95	
NA	20	9	
CBF.Type			< 0.0001 (fisher)
inv(16)	139 (58.16 %)	16 (17.02 %)	
t(8;21)	100 (41.84 %)	78 (82.98 <u>%</u>)	

	Methylation 0	Methylation 1	
	(n=297)	(n=36)	pval
Age			0.04561 (wilcox.)
Median	48.53	53.895	
Range	18.05 to 79.76	20.61 to 71.54	
NA	0	0	
Hemoglobin			0.85913 (wilcox.)
Median	9.145	8.95	
Range	3.5 to 17	4.8 to 13.3	
NA	11	2	
Platelets			0.0633 (wilcox.)
Median	36	27	
Range	2 to 382	7 to 200	
NA	11	2	
Wbc			0.58166 (wilcox.)
Median	12.8	10.05	
Range	0.7 to 222.7	1.2 to 117.5	
NA	11	2	
Bone Marrow Blasts			0.76626 (wilcox.)
Median	65	68	
Range	5 to 100	20 to 99	
NA	38	3	
Peripheral Blood Blasts			0.10563 (wilcox.)
Median	34	47.5	
Range	0 to 95	0 to 89	
NA	23	6	
CBF.Type			0.00014 (fisher)
inv(16)	149 (50.17 %)	6 (16.67 %)	
t(8;21)	148 (49.83 %)	30 (83.33 %)	

Supplemental Table S6 Association with methylation. Methylation group: *TET2*, *DNMT3A*, *IDH1*, *IDH2*.

Supplemental Table S7 Association with transcription. Transcription group: ZBTB7A, WT1, BCOR,

BCORL1, FOXP1.

Transcription 0	Transcription 1	
(n =242)	(n = 68)	pval
		0.633 (wilcox.)
49.5	48.4	
18.1 to 79.8	18.07 to 73.1	
0	0	
		0.769 (wilcox.)
9.1	9.1	
3.8 to 15	3.5 to 14	
15	7	
		0.703 (wilcox.)
34.5	32.5	
2 to 535	6 to 247	
15	7	
		0.075 (wilcox.)
13.1	8.6	
	49.5 18.1 to 79.8 0 9.1 3.8 to 15 15 34.5 2 to 535 15 13.1	Transcription 0 (n = 242)Transcription 1 (n = 68)49.548.4 18.1 to 79.818.1 to 79.818.07 to 73.1 0009.19.1 3.5 to 14 1534.532.5 6 to 247 1513.18.6

Genomic Heterogeneity in Core-Binding Factor AML Supplemental Information

	Transcription 0	Transcription 1	
	(n =242)	(n = 68)	pval
Range	1.1 to 222.7	1.5 to 209.9	
NA	15	7	
Bone Marrow Blasts			0.450 (wilcox.)
Median	65	67	
Range	10 to 100	5 to 97	
NA	42	9	
Peripheral Blood Blasts			0.803 (wilcox.)
Median	37.5	33.0	
Range	0 to 95	0 to 90	
NA	27	12	
CBF.Type			0.428 (fisher)
inv(16)	123 (47.9 %)	32 (42.7 %)	
t(8;21)	134 (52.1 %)	43 (57.3 %)	

Supplemental Table S8 Association with cohesion. Cohesin group: RAD21, SMC1A, SMC3, STAG2,

NIPBL.

	Cohesin 0	Cohesin 1	
	(n = 283)	(n = 50)	pval
Age			0.95616 (wilcox.)
Median	48.9	49.38	
Range	18.05 to 79.76	18.2 to 73.2	
NA	0	0	
Hemoglobin			0.01839 (wilcox.)
Median	9.2	8.8	
Range	3.5 to 17	4.2 to 12.4	
NA	10	3	
Platelets			0.00747 (wilcox.)
Median	37	24	
Range	2 to 382	6 to 212	
NA	10	3	
Wbc			0.00438 (wilcox.)
Median	13.3	7.8	
Range	1.15 to 222.7	0.7 to 59.7	
NA	10	3	
Bone Marrow Blasts			0.96795 (wilcox.)
Median	65	69	
Range	5 to 100	13 to 100	
NA	34	7	
Peripheral Blood Blasts			0.06668 (wilcox.)
Median	33.5	39	
Range	0 to 90	0 to 95	
NA	25	4	
CBF.Type			< 0.0001 (fisher)
inv(16)	154 (54.42 %)	1 (2 %)	
t(8;21)	129 (45.58 %)	49 (98 %)	

	Exp(coef)	Lower 95% Cl	Upper 95% Cl	pvalue
Age	1.03	1.00	1.05	.056
Female gender	0.72	0.35	1.49	.374
tAML	2.97	1.08	8.16	.035
WBC	1.08	1.01	1.16	.027
Platelets	1.03	0.95	1.11	.467
Hemoglobin	0.84	0.68	1.05	.129

Supplemental Table S9 Cox model with endpoint relapse-free survival in inv(16) AML cohort

Supplemental Table S10 Cox model with endpoint relapse-free survival in t(8;21) AML

cohort

	Exp(coef)	Lower 95% Cl	Upper 95% Cl	pvalue
Age	1.02	1.00	1.04	.081
Female gender	1.27	0.72	2.24	.407
tAML	0.25	0.03	1.88	.177
WBC	1.08	0.96	1.21	.213
Platelets	1.00	0.96	1.05	.851
Hemoglobin	0.92	0.80	1.06	.235

Supplemental Table S11 Cox model with endpoint overall survival in inv(16) AML cohort

	Exp(coef)	Lower 95% Cl	Upper 95% Cl	pvalue
Age	1.06	1.02	1.09	.001
Female gender	0.94	0.40	2.18	.880
tAML	1.72	0.55	5.39	.350
WBC	1.07	0.98	1.18	.145
Platelets	1.03	0.94	1.14	.503
Hemoglobin	0.79	0.61	1.03	.080

Hemoglobin

0.95

.497

Exp(coef) p.-value Lower 95% Cl Upper 95% Cl 1.03 1.01 1.06 .009 Age Female gender 0.97 0.52 1.78 .914 tAML 0.85 0.24 2.98 .799 WBC 1.06 0.93 1.20 .387 Platelets 1.00 0.95 1.05 .963

1.10

0.82

Supplemental Table S12 Cox model with endpoint overall survival in t(8;21) AML cohort

SUPPLEMENTAL FIGURES

Supplemental Figure S1: Median coverage (sequencing reads) per gene for 230 genes

Supplemental Figure S2: Incidence of recurrent mutations in A) inv(16) AML and B) t(8;21) AML

Supplemental Figure S3: Boxplot showing the median, 25%-quantile (gray box), and 75%-quantile (green/black box) of the variant allele fraction (VAF) for recurrently mutated genes in A) inv(16) AML and B) t(8;21) AML cohorts. VAF was corrected for patient specific chromosomal aberrations and sex. For *FLT3* no internal tandem duplication (ITD) mutations were included.

17

Supplemental Figure S4: Molecular pattern stratified by functional genetic subgroups in t(8;21) AML: A) chromatin modification, B) Cohesin complex and C) methylation. Each box represents a single patient. Wildtype cases are illustrated in white, indels in purple, nonsense mutations in blue, missense mutations in green, and splice site mutations in pink. Gray bars indicate the mutational incidence in the entire t(8;21) AML (n=190) cohort.

Supplemental Figure S5: Pattern of RTK/RAS-signaling mutations stratified by A) inv(16) AML and B) t(8;21) AML cohorts. Each box represents a single patient. Wildtype cases are illustrated in white, indels in purple, nonsense mutations in blue, missense mutations in green, and splice site mutations in pink. Gray bars indicate the mutational incidence in each cohort.

SUPPLEMENTAL RESULTS

Supplemental Figure S6: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival according to CBF subtype.

Supplemental Figure S7: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to age.

Supplemental Figure S8: Kaplan-Meier estimates for overall survival in CBF cohort according to A) *KIT*, B) *KIT* exon 17, C) *KIT* variant allele fraction (VAF), and D) *KIT* exon 8 mutation status as well as E) in subgroup of *KIT* mutated (*KIT*^{mut}) patients according to treatment with dasatinib.

Supplemental Figure S9: Kaplan-Meier estimates for relapse-free survival in CBF cohort according to A) *KIT*, B) *KIT* exon 17, C) *KIT* variant allele fraction (VAF), and D) *KIT* exon 8 mutation status as well as E) in subgroup of *KIT* mutated (*KIT*^{mut}) patients according to treatment with dasatinib.

Supplemental Figure S10: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to trisomy 8 presence.

Supplemental Figure S11: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to *FLT3* mutational status. All *FLT3* mutations were included.

Supplemental Figure S12: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to *FLT3*-ITD status.

Supplemental Figure S13: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to *NRAS* mutational status.

Supplemental Figure S14: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to *WT1* mutational status.

Supplemental Figure S15: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to *TET2* mutational status.

Supplemental Figure S16: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to *DNMT3A* mutational status.

Supplemental Figure S17: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in t(8;21) AML cohort according to *BRCC3* mutations.

Supplemental Figure S18: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to heterogeneity status. 'Heterogeneous' (red line) is defined as presence of ≥ 2 mutations with significantly different variant allele fractions (VAF) by Pearson Goodness-of-fit test reflecting distinct co-occurring leukemic clones; 'homogenous' (light blue line) as multiple mutations with multiple mutations with similar variant allele fractions or with only a single mutation.

Supplemental Figure S19: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to the number of mutations.

Supplemental Figure S20: Kaplan-Meier estimates for overall survival according to the number of secondary chromosomal aberrations (A), number of mutations (B), and number of total aberrations (C) of total CBF-AML cohort.

Supplemental Figure S21: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival

in CBF cohort according to signaling group mutations. Signaling group: NRAS, KIT, FLT3, KRAS, NF1,

Supplemental Figure S22: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to cohesin group mutations. Cohesin group: *RAD21, SMC1A, SMC3, STAG2, NIPBL*.

Supplemental Figure S23: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to transcription group mutations. Transcription group: *ZBTB7A*, *WT1*, *BCOR*, *BCORL1*, *FOXP1*.

Supplemental Figure S24: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in CBF cohort according to chromatin group mutations. Chromatin group: *ASXL1, ASXL2, SRCAP, KDM6A, EZH2, SETD2, KMT2D*.

Supplemental Figure S25: Kaplan-Meier estimates for A) overall survival and B) relapse-free survival in

CBF cohort according to methylation group mutations. Methylation group: TET2, DNMT3A, IDH1, IDH2.

Supplemental Figure S26: Kaplan-Meier estimates for overall (A,C) and relapse-free (B,D) survival according to the number of *NRAS* (A,B) and *KIT* (C,D) mutations of the entire CBF-AML cohort.

Jahn et al.

Supplemental Figure S27: Kaplan-Meier estimates for A) overall and B) relapse-free survival according to the variant allele fraction (VAF) in the signaling gene group. Maximally selected LogRank statistics were used for VAF cut-off determination. Kaplan-Meier estimators were derived for the cut point providing the best separation into two groups.

Supplemental Figure S28: Swimmer plots based on 5-fold cross validation of optimized lasso models of relapse-free (A) and overall survival (B) according to clinical features, mutational status and chromosomal aberrations in the entire CBF-AML cohort. A higher linear predictor is associated with a higher risk of death as indicated by clustering of events in the upper half of plots. Each bar represents one patient, the length of the bar the observation time since diagnosis, the color of the bar the corresponding linear predictor of the model and the light blue dots indicate death.

Supplemental Figure S29: Swimmer plots based on 5-fold cross validation of optimized lasso models of relapse-free (A) and overall survival (B) according to clinical features, functional groups and chromosomal aberrations in the entire CBF-AML cohort. A higher linear predictor is associated with a higher risk of death as indicated by clustering of events in the upper half of plots. Each bar represents one patient, the length of the bar the observation time since diagnosis, the color of the bar the corresponding linear predictor of the model and the light blue dots indicate death.

Supplemental Figure S30: Validation of somatic origin of *SRCAP* variants in two randomly selected patients.

A) *SRCAP* p.S338fs (VAF: 39%) mutation (reference sequence NM_006662) of patient CBF_270 (NGS sequence) and B) corresponding Sanger sequence (read direction flipped) at diagnosis. C) Corresponding wildtype sequence (read direction flipped) of the same patient at molecular remission as germline control (molecular remission determined by RQ-PCR analysis of CBF fusion transcripts).

D) *SRCAP* p.E304X (c.G910T; VAF 9%) of patient CBF_34 (NGS sequence) and E) corresponding reverse Sanger sequence at diagnosis. Right dashed box: magnification of altered region. Green arrow indicates substitution of C by A, corresponding to T on forward strand (smaller peaks background noise) F) Corresponding wildtype reverse Sanger sequence of the same patient at molecular remission as germline control (molecular remission determined by RQ-PCR analysis of CBF fusion transcripts).

Genomic Heterogeneity in Core-Binding Factor AML Supplemental Information

Supplemental Figure S31: Validation of somatic origin of *DNM2* variants in two randomly selected patients.

A) *DNM2* p.S755fs (VAF 12%) mutation (reference sequence NM_004945) of patient CBF_69 (NGS sequence) and B) corresponding Sanger sequence at diagnosis. C) Corresponding wildtype sequence of the same patient at molecular remission as germline control (molecular remission determined by RQ-PCR analysis of CBF fusion transcripts).

D) *DNM2* p.738fs (VAF 7%) mutation (reference sequence NM_004945) of patient CBF_61 (NGS sequence) and E) corresponding Sanger sequence at diagnosis. F) Corresponding wildtype sequence of the same patient at molecular remission as germline control (molecular remission determined by RQ-PCR analysis of CBF fusion transcripts).

AML HD93

Risk adapted Consolidation II

*low risk: t(8;21), inv(16); +intermediate risk: normal karyotype; °high risk: all other chromosomal abnormalities

ICE: idarubicin 12 mg/m² d1,3,5; cytarabine 100 mg/m² d1-7; etoposide 100 mg/m² d1-3 HAM: cytarabine 3 g/m²/12h d1-3; mitoxantrone 12 mg/m² d2-3 S-HAM: cytarabine 3 g/m²/12h, d1, 2, 8,9; mitoxantrone 10 mg/m² d 3,4,10,11

Abbreviations: alloSCT, allogeneic transplant; autoSCT, autologous transplant; CR, complete remission; MRD, matched related donor, R, randomization

Supplemental Figure S33: AML HD98A trial

AML HD98A

NCT00146120

Risk adapted

*low risk: t(8;21), t(15;17); +intermediate risk: normal karyotype, inv(16), t(11q23), other (< 3 aberrations); °high risk: abn(3q), -5/5q-, -7/7q-, abn(12p), ≥3 aberrations, RD

ICE: idarubicin 12 mg/m² d1,3,5; cytarabine 100 mg/m² d1-7; etoposide 100 mg/m² d1-3 / HAM: cytarabine 3 g/m²/12h d1-3; mitoxantrone 12 mg/m² d2-3 / A-HAM: HAM plus all-trans retinoic acid 45 mg/m² d3-5, 15 mg/m² d6-28

Abbreviations: alloSCT, allogeneic transplant; autoSCT, autologous transplant; CR, complete remission; MRD, matched related donor; MUD, matched unrelated donor; NK, normal karyotype; RAEB-t, refractory anemia with excess of blasts in transformation; R, randomization; RD, refractory disease; RIC, reduced intensity conditioning

Supplemental Figure S34: AML HD98B trial

*Aida + HAM+ AID Apo in case of APL with t(15;17)

ICE: idarubicin 12 mg/m² d1,3; cytarabine 100 mg/m² d1-5; etoposide 100 mg/m² d1,3 / A-ICE: ICE plus plus all-trans retinoic acid 45 mg/m² d3-5, 15 mg/m² d6-28 HAM: cytarabine 0.5 g/m²/12h d1-3; mitoxantrone 10 mg/m² d2-3 / A-HAM: HAM plus all-trans retinoic acid 45 mg/m² d3-5, 15 mg/m² d6-28 IE i.v.: idarubicin 12mg/m² d1,2; etoposide 100 mg/m² d1-5 / IE p.o.: idarubicin 5 mg d1,4,7,10,13; etoposide 100mg d1,13 A-HAE: cytarabine 0.5 g/m²/12h d1-3; etoposide 250 mg/m² d4,5; all-trans retinoic acid 45 mg/m² d3-5, 15 mg/m² d6-28

Abbreviations: CR, complete remission; RAEB-t, refractory anemia with excess of blasts in transformation; PR, partial remission; R; randomization; RD, refractory disease

AMLSG 06-04 NCT00151255

A-IC: idarubicin 12 mg/m² d1,3; cytarabine 100 mg/m² d1-5; all-trans retinoic acid 45 mg/m² d4-6, 15 mg/m² d7-28
A-HAM: cytarabine 1 g/m²/12h d1-3; mitoxantrone 10 mg/m² d2-3; all-trans retinoic acid 15 mg/m² d4-28
A-IE: idarubicin 12 mg/m² d1,3; etoposide 100 mg/m² d1-5; all-trans retinoic acid 15 mg/m² d4-28

Abbreviations: alloSCT, allogeneic transplant; CR, complete remission; PR, partial remission; RD, refractory disease; t-AML, therapy-related AML

+favorable risk :CBF AML: inv(16), t(8;21); "standard risk: cytogenetic abnormalities not classified as favorable or adverse; "high risk: *FLT3*-ITD, inv(3) or t(3;3), t(6;9); t(v;11), -5/5q-, -7/7q-, abn(17p), ≥3 aberrations, RD

ICE: idarubicin 12 mg/m² d1,3; cytarabine 100 mg/m² d1-5; etoposide 100 mg/m² d1,3 / A-ICE: ICE plus all-trans retinoic acid 45mg/m² d6-8, 15 mg/m² d9-21 C: cytarabine 3 g/m²/12h, days 1-3 / A-C: C plus all-trans retinoic acid 15 mg/m² d4-21, *only pat. previously randomized to A-ICE arm

Abbreviations: CR, complete remission; MRD, matched related donor; MUD, matched unrelated donor; PR, partial remission; R; randomization; RD, refractory disease; t-AML, therapy-related

AMLSG 11-08

NCT00850382

DAS-DC: daunorubicin 60 mg/m² d1–3; cytarabine 200 mg/m² d 1–7; dasatinib 100 mg p.o. d8-21 **DAS-C**: cytarabine 3000 mg/m²/12h d 1,3,5 (>60 years: 1000 mg/m²); dasatinib 100 mg p.o. d6-21 **DAS**: dasatinib 100 mg p.o. for one year

Abbreviations: CR, complete remission; CBF: corebinding-factor AML [inv(16), t(8;21)]

AMLSG 21-13 NCT02013648

DC: daunorubicin 60 mg/m² d1–3; cytarabine 200 mg/m² d 1–7 / DAS-DC: DC plus dasatinib 100 mg p.o. d8-21
*pat achieving PR after cycle 1: 2nd induction cycle with daunorubicin 50 mg/m² d1-3; cytarabine 200 mg/m²d1-5; dasatinib 100 mg d6-21
C: cytarabine 3000 mg/m²/12h d 1-3 (>60 years: 1000 mg/m²) / DAS-C: C plus dasatinib 100 mg p.o. d4-21
DAS: dasatinib 100 mg p.o. for one year

Abbreviations: CR, complete remission; CBF: corebinding-factor AML [inv(16), t(8;21)], PR, partial remission; R, randomization

RATIFY

NCT00651261

P-DC: daunorubicin 60 mg/m² d1–3; cytarabine 200 mg/m² d 1–7; placebo bid d8-21 / M-DC: daunorubicin 60 mg/m² d1–3; cytarabine 200 mg/m² d 1–7; midostaurin 50 mg bid d8-21 * pat achieving PR after cycle 1: 2nd induction cycle with daunorubicin 60 mg/m² d1-3; cytarabine 200 mg/m²d1-5; plus M or P
P-C: cytarabine 3000 mg/m²/12h d 1,3,5; placebo bid d8-21 / M-C: cytarabine 3000 mg/m²/12h d 1,3,5; midostaurin 50 mg bid d8-21
P: placebo bid for one year / M: midostaurin 50 mg bid for one year

Abbreviations: alloSCT, allogeneic transplant; bid, twice daily; CR, complete remission, PR, partial remission; R, randomization