
Artificial intelligence predicts the immunogenic landscape of

SARS-CoV-2 leading to universal blueprints for vaccine designs

Brandon Malone*2, Boris Simovski*1, Clément Moliné*1, Jun Cheng2, Marius Gheorghe1, Hugues Fontenelle1,

Ioannis Vardaxis1, Simen Tennøe1, Jenny-Ann Malmberg1, Richard Stratford1, Trevor Clancy¶1

1NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo, Norway

2NEC Laboratories Europe GmbH Kurfuersten-Anlage 36, 69115 Heidelberg, Germany
*These authors contributed equally
¶Corresponding author (Email: trevor@oncoimmunity.com)

Supplementary methods

The digital twin simulation framework

Step 1. Select a set of candidate vaccine elements

Each identified hotspot is a candidate element of a vaccine. Each candidate vaccine element

𝑣𝑖 is associated with a cost 𝑐𝑖
𝑣, while a total budget b is available for including elements in

the vaccine. The description of the budget and costs depend on the vaccine platform.

Some vaccine platforms are mainly restricted to a fixed number of vaccine elements; in this

case, each cost 𝑐𝑖
𝑣 will be 1, and the budget will indicate the total number of elements which

can be included.

Some other vaccine platforms are restricted to a maximum length of included elements. In

this case, each cost 𝑐𝑖
𝑣 will be the length of the vaccine element, and the budget will indicate

the maximum length of elements which can be included.

Step 2. Create a set of “digital twin” citizens

Our approach is based on simulating a set of “digital twin” citizens. In this work, we focus on

vaccine elements whose effects are determined, in part, by the HLAs of each citizen. Thus,

each digital twin corresponds to a set of HLA alleles.

It is known1 that citizens from different regions of the world tend to have different sets of

HLA alleles; further, some combinations of HLA alleles are more common than others. We

use full HLA genotypes from actual citizens available from high-quality samples in the Allele

Frequency Net Database2 (AFND) to accurately model these relationships.

Creating a distribution over genotypes for each region. In particular, AFND assigns each

sample to a region based on where the sample came from (e.g., “Europe” or “Sub-Saharan

1 Cao, K.; JillHollenbach; Shi, X.; Shi, W.; Chopek, M. & Fernández-Viña, M. A. Analysis of the
frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the
United States reveals high levels of diversity in these loci and contrasting distribution patterns in
these populations. Human Immunology, 2001, 62, 1009-1030.
2 http://www.allelefrequencies.net/

http://www.allelefrequencies.net/

Africa”). In a first step, we create a posterior distribution over genotypes in each region

based on the observations and an uninformative (Jeffreys) prior distribution.

Specifically, we collect all genotypes observed at least once across all regions; we assign an

index g to each genotype, and we call the total number of unique genotypes as G. Second,

we specify a prior distribution over genotypes. We use a symmetric Dirichlet distribution

with concentration parameter of 0.5 because this distribution is uninformative in an

information theoretic sense and does not reflect strong prior beliefs that any particular

genotypes are more likely to appear in any specific region. For each region, we then

calculate a posterior distribution over genotypes as a Dirichlet distribution as follows.

𝜃1, … , 𝜃𝐺|𝑥1, … , 𝑥𝐺 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼1 + 𝑥1, … , 𝛼𝐺 + 𝑥𝐺)

where 𝛼𝑔 is the (prior) concentration parameter for the 𝑔𝑡ℎ genotype (always 0.5 here) and

𝑥𝑔 is the number of times the 𝑔𝑡ℎ genotype was observed in the region.

We can now use this distribution to sample genotypes from a region using a two-step

process.

𝜃1, … , 𝜃𝐺 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼1 + 𝑥1, … , 𝛼𝐺 + 𝑥𝐺)

𝑦1, … , 𝑦𝐺 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃1, … , 𝜃𝐺; 𝑛)

where n is the desired number of genotypes to sample from the region, and 𝑦1, … , 𝑦𝐺 are

the counts of each genotype in the sample.

Creating a set of “digital twin” citizens. We create a set of digital twin citizens using a two-

step approach. Our method must be given the population size p, as well as a distribution

over regions. Concretely, the input is a Dirichlet distribution over the regions, as well as p.

(We note that this Dirichlet is completely independent of those over genotypes discussed in

the previous section.) The number of citizens from each region is sampled using the same

two-step sampling process described above.

Second, the genotypes for each region are sampled using the posterior distributions over

genotypes discussed above.

Step 3. Create a tripartite graph

We next use the vaccine elements and digital twins to construct a tripartite graph that will

form the basis of the optimization problem for vaccine design. The graph has three sets of

nodes:

1. All candidate vaccine elements identified in Step 1

2. All HLA alleles in all digital twin genotypes

3. All digital twins

The graph also has two sets of weighted edges:

1. An edge from each vaccine element 𝑣𝑖 to each HLA allele 𝑎𝑘. The weight of this edge
is log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘), that is, the likelihood of no response for the allele from that
particular vaccine element. (We describe below an approach for calculating this
value for short peptides.)

2. An edge from each allele to each citizen which has that allele in its genotype. The
weight of these edges is always 1.

As an intuition, we call the edges from a vaccine element to an allele (and, then, from the

allele to each patient with that allele) as “active” when the vaccine element is selected.

Then, the log likelihood of response for a citizen is the sum of all active incoming edges. That

is, the flow from selected vaccine elements to the citizens gives the likelihood of no

response for that citizen.

∑ ∑ log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘)

𝑎𝑘∈𝐴(𝑐𝑗)𝑣𝑖∈𝑉

This definition does not include V in the conditioning set of the likelihood. Thus, it does not

account for interactions among vaccine elements, such as immunodominance.

Calculating the likelihood of no response for a given digital twin and vaccine elements. We

now describe example approaches for calculating log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘) for three types of

vaccine elements. Our vaccine design approach is applicable for any approach which assigns

a value for log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘).

1. Short peptide sequences. Most short peptide prediction engines3 compute some sort
of a score that a peptide will result in some immune response (e.g., binding,
presentation, cytokine release, etc.), and this score generally takes into account a
specific HLA allele. In some cases, this is already a probability, and in others, it can
be converted into a probability using a transformation function, such as a logistic
function.

Thus, the prediction engines give 𝑃(𝑅 = +|𝑣𝑖 , 𝑎𝑘), where 𝑣𝑖 is the peptide and 𝑎𝑘 is
the allele. We then take log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘) = log[1 − 𝑃(𝑅 = +|𝑣𝑖 , 𝑎𝑘)].

2. Long peptide sequences. Longer peptide sequences may include multiple short
peptide sequences with different scores from the prediction engine. An example
approach to calculate log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘), where v is the long peptide sequence, is
to take the minimum (i.e., best) log 𝑃(𝑅 = −|𝑝, 𝑎𝑘), where p is any short peptide
contained in 𝑣𝑖.

3 Jensen, K. K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J. A.; Yan, Z.; Sette, A.; Peters, B. &
Nielsen, M. Improved methods for predicting peptide binding affinity to MHC class II molecules.
Immunology, 2018, 154, 394-406.

3. Longer amino acid sequences. Longer amino acid sequences may contain even more
short peptide sequences, and the same approach used for long peptide sequences
can be used here.

Step 4. Selecting a set of vaccine elements

Finally, we pose the vaccine design problem as a type of network flow problem through the

graph defined in Step 3. In particular, the minimization problem can be posed as an integer

linear program (ILP); thus, it can be provably, optimally solved using conventional ILP

solvers.

Handling the minimax problem. As previously described, our goal is to choose the set of

vaccine elements which minimize the log likelihood of no response for each patient.

min
𝑉

max
𝑐∈𝐶

∑ ∑ log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘, 𝑉)

𝑎𝑘∈𝐴(𝑐𝑗)𝑣𝑖∈𝑉

We ignore any interactions among vaccine elements, so the minimax problem simplifies as

follows.

min
𝑉

max
𝑐∈𝐶

∑ ∑ log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘)

𝑎𝑘∈𝐴(𝑐𝑗)𝑣𝑖∈𝑉

In practice, we can remove V from the conditioning set. Thus, the terms inside the

summation are exactly those calculated in Step 3 as the weights on the edges in the graph.

Standard ILP solvers cannot directly solve this minimax problem; however, we use the

standard approach of a set of surrogate variables to address this problem. In particular, we

define 𝑥𝑗
𝑐 to be the log likelihood of no response for citizen 𝑐𝑗. That is, 𝑥𝑗

𝑐 ≔

∑ ∑ log 𝑃(𝑅 = −|𝑣𝑖 , 𝑎𝑘)𝑎𝑘∈𝐴(𝑐𝑗)𝑣𝑖∈𝑉 . Further, we define 𝑧 ≔ max
𝑐𝑗∈𝐶

𝑥𝑗
𝑐 ; that is, z is the

maximum log likelihood that any citizen does not respond to the vaccine (or, alternatively,

the minimum log likelihood that any citizen will respond to the vaccine). Finally, then, our

aim is to minimize z.

ILP formulation. Our ILP formulation consists of three types of variables:

• 𝑥𝑖
𝑣 : one binary indicator variable for each vaccine element which indicates whether

it is included in the vaccine for the given population. We usually index vaccine
elements with i.

• 𝑥𝑗
𝑐 : one continuous variable for each citizen in the population which gives the log

likelihood of no response for that citizen. We always index citizens with j.

• 𝑥𝑘
𝑎: one continuous variable for each HLA allele which gives the log likelihood of no

response for that allele. We always index alleles with k.

• 𝑧: one continuous variable which gives the maximum log likelihood that any citizen
does not respond to the vaccine. (Our goal will be to minimize this value.)

Additionally, the ILP uses the following constants:

• 𝑝𝑖,𝑘: the log likelihood that vaccine element 𝑣𝑖 does not cause a response for allele
k.

• 𝑐𝑖
𝑣: the “cost” of vaccine element 𝑣𝑖.

• 𝑏: the maximum cost of vaccine elements which can be selected.

Finally, the ILP uses the following constraints:

• 𝑥𝑘
𝑎 = ∑ 𝑝𝑖,𝑘 ⋅𝑖 𝑥𝑖

𝑣: one constraint for each allele which gives the log likelihood that at
least one selected peptide results in a positive response for that allele

• 𝑥𝑗
𝑐 = ∑ 𝑥𝑘

𝑎
𝑎𝑘∈𝐴(𝑐𝑗) : one constraint for each citizen which gives the log likelihood

that at least one selected peptide results in a positive response for at least one allele
for that citizen. (That is, this is the likelihood of a positive response for this citizen.)

• 𝑏 ≥ ∑ 𝑐𝑖
𝑣

𝑖 ⋅ 𝑥𝑖
𝑣 : the vaccine elements we select cannot exceed the budget

• 𝑧 ≥ 𝑥𝑗
𝑐 : as discussed above, we use z as an approach to solve the minimax problem.

These constraints imply that z is the minimum log likelihood that any individual
patient will respond to the vaccine.

Objective: The objective of the ILP is to minimize z.

The setting of the binary 𝑥𝑖
𝑣 variables corresponds to the optimal choice of vaccine elements

for the given population.

Relationships to max-flow and other problems with provably efficient solutions. This is

highly-related to a number of efficiently solvable network flow problems. Our problem is

essentially a min-flow problem with multiple sinks, where each citizen is a sink; however,

our aim is to minimize the flow to each individual sink rather than the flow to all sinks. In

particular, rather than the “sum” operator typically used to transform multiple sink flow

problems into a single-sink problem, we would need a (non-linear) “min” operator. Thus,

efficient min-flow formulations are not applicable in this setting.

