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Supplementary Note 1: The perceptron forgetting curve

As described in the main text, we wish to train a perceptron having N, = N inputs and subject to the
update rule (1) to map P random input patterns onto randomly chosen binary outputs. The question that
we seek to answer is, after P patterns have been trained using the update rule in (1), what will be the
probability of misclassification if we then test the output produced by a particular pattern v without any
further learning? Clearly, the most recently learned patterns are likely to produce correct outputs, while
those learned long in the past are more likely to produce errors due to accumulated changes in the weights
w during subsequent learning. In general, the probability of an error when testing on pattern v is, using the

Heaviside step function O(-), given by
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In this equation, we have, without loss of generality, redefined x* — Z#x*, so that the target output becomes
z# =1 for every pattern. We have also set the classification margin x = 1, which amounts to a choice for
scaling the overall magnitude |w|. In this equation, the weight vector just before training pattern v is
assumed to come from a distribution p(w"), which we shall derive below. The first line in (6) counts the
cases in which the classification using this weight vector is initially incorrect or correct with margin less
than k =1 (so 1 — w” - x > 0) and in which, after making the initial update w” — w” + Aw”, the weight
vector evolves through P — v successive updates into the final weight vector w’, which leads to incorrect
classification when pattern v is again tested (—w? - x” > 0). Similarly, the second line of (6) counts the
cases in which the classification is initially correct with a sufficiently large margin and in which, after making
successive weight updates, the final weight vector w’ again leads to incorrect classification.

At this stage, the probability distributions p(w”) and p(w”|w") in (6) are unknown. For the latter
distribution, however, we can track its evolution step by step using the update rule (1). Because x is a
random variable, we first seek to find the distribution p(Aw|w) by averaging over x. In fact, it will be
sufficient just to calculate the first two moments of this distribution. Let x = x/l + x*, where x/l is the
component along w, and the index v has been dropped for simplicity. In this case the weight update (1), in

the case where an update occurs, can be written as
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Using (7), in the case where a weight update occurs, the first moment is given by
pi(w) = (Aw;)x
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Similarly, the second moment of the distribution is
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Together, (8)-(10) describe a drift-diffusion process. If we neglect higher-order moments, then the single-step
probability distribution is given by

P(AW|W) = N (p(w), Z(w)) + (1 - )5 (Aw), (11)

where ¢ (to be calculated below) is the probability that a weight update occurs in a given step, and N (-, -) is
the multinormal distribution. The time evolution of the probability distribution of the weights is then given
by the Fokker-Planck equation (Risken, 1996):
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where the initial condition from (6) is either p(w) = §(w—w") or p(w) = d(w—w” —Aw"), and 7 = q(P—v)
is the effective time variable.

Because the coeflicients in (12) depend on |w7|, the full solution is not known in general. However, it is
straightforward to calculate the time evolution of the moments of p(w™) by multiplying both sides by powers
of w” and using integration by parts (Risken, 1996). Denoting the first two moments (not to be confused
with the moments of Aw defined above) as
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the time evolution is given by
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In the N — oo limit, we can assume (to be checked below) that |[w™| is constant. In this case, (14) has the

solutions
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where terms ~ O(1/N?) in the second equation have been dropped in the large-N limit (while the first term
is kept because 7 may be ~ O(N)).
With (15), the solution to the Fokker-Planck equation (12) when just the first two moments are kept is
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where “®” denotes the outer product (i.e. [w ® w|;; = w;w;), and we have defined

v = e PN, (17)
In the N — oo limit, the anisotropic term can be ignored, giving
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which is the probability density evolution corresponding to an Ornstein-Uhlenbeck stochastic process (Risken,
1996). After a long time, v — 0 and p(w?|w") from (16) approaches the steady-state distribution

1 N
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Thus, the deterministic update rule (1) leads to a bounded steady-state weight distribution p(w) after a
large number of classifications have been learned. This differs somewhat from previous models of sequential
learning with random synaptic weight updates, such a bounded distribution as P/N — oo was achieved
either by requiring that the synaptic weights should be bounded (Fusi, 2007) or that that they should decay
slightly at each step (Benna, 2016).

Given the steady-state distribution (19), we can assume that @ = |w| is constant in the large-N limit and
let g = g(w). Then, with g = g, (19) can be used to calculate the variance of w, leading to the self-consistent
equation w? = g, which, using the definition of g(Jw|) from (10), has the solution @? = § = 1. This is close
to but differs somewhat from the steady-state norm found in numerical simulations, from which @ ~ 1.19.
The reason for this is presumably because of the decision to approximate p(Aw|w) using only the first two
moments of the distribution in (12). In general, the higher-order moments do not vanish, and these will
contribute higher-order derivative terms in the Fokker-Planck equation (13). In turn, such terms will lead
to nonvanishing higher-order moments in the distribution p(w), beyond the two that were calculated in
(13)-(15). Presumably, it is these higher-order terms which cause the discrepancy between the simulated
result and the self-consistent calculation. In the theoretical curves shown in the Results section, we use the
value of w obtained from simulations. Using (19), we can also calculate the probability of making a weight

update in a given step, which is given by
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and evaluates to g ~ 0.798.

(20)

With the preceding points in mind, and making use of the probability distributions (18) and (19), we

can proceed to evaluate the integrals in (6) to obtain the probability of incorrect classification when testing



pattern v. In order to factorize the arguments of the Heaviside step functions, we make use of the following

identity:
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Beginning with I, the integral over w’ can be performed, which, after simplification and using x> = N in

the N — oo limit, leads to
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Finally, the integrals over v and v’ can be performed exactly, then those over u and u’ can be evaluated

using the complementary error function, yielding the final result
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In a similar manner, the integrals in (24) can be evaluated to get
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After performing the integrals over v, v/, and ', then changing variables for the u integral, the final result is
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where the final integral in this case must be performed numerically.
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As a check, we can evaluate these results in their extreme limits. In the case v = 1, which corresponds
to testing the most recently learned pattern, we have Iy ~ Iy ~ erfc(oo) — 0, so that there is perfect
classification for very recently learned patterns. In the opposite limit of v = 0, which Corresponds to testing
patterns learned in the distant past, we obtain Iy + Iy = [erfc(—1/1/g) + erfc(1/4/g)] = 1, which means

that very old patterns are completely overwritten and so are classified at chance level.

Supplementary Note 2: The two-pathway forgetting curve

Let us introduce a second source of input to the downstream units, so that z# = ¢(w - x* 4+ v - y*), where
' yt" ~ N(0,1). Though it is not necessary, we will assume for notational simplicity that the numbers of
units in the two input layers are the same, so that N, = N, = N. The weights w are again trained using

supervised learning:
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The second set of weights, meanwhile, is updated using the following rule:
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This Hebbian update rule defines an N-dimensional Ornstein-Uhlenbeck stochastic process with time-

dependent coefficients. The evolution of the probability distribution p(v, At) is given by the master equation:
p(v,t + At) = /dAvp(Av|v — Av)p(v — Av,t), (32)

where
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We can further note that, since the components of v are not coupled to one another in (31), we can, without

loss of generality, consider the evolution of just a single component v;. In this case the two sides of (32) can



be expanded to obtain
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Then, using (33) to obtain (Av;) and ((Awv;)?), (34) leads to the Fokker-Planck equation, which describes

the evolution of the probability distribution p(v) as new patterns are learned:
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In this equation, we have taken the continuous-time limit by letting At = 1/N and ¢t = (u — v)/N, where
(> v, the number of repetitions to be n(t) = n,, and the initial condition to be given by the distribution
(to be calculated below) p(v”).

The Fokker-Planck equation (35) can be solved using the Fourier transform (Risken, 1996)
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With this, (35) becomes
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This equation can be solved by making the following ansatz:

(k) = exp (—z‘k ‘m(t) — %k S(t) - k)) , (38)

which, by substituting into (37) and requiring that the terms at each order in k vanish, leads to the following

equations for the time-dependent coefficients:
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These equations then have the solutions
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With this, and letting ¢ = (P — u)/N, we can take the inverse Fourier transform of (38) to obtain the
distribution of the final weight vector given the weights at pattern v:
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and we have also identified m;(t) = v¥ p(P,v), with

P
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In what follows below, in order to keep expressions compact, we shall write 0% = 0%(P,v) and p = p(P,v).
Further, though it is not strictly necessary, these expressions can be considerably simplified if we make the
simplifying assumption that the average of n, in (43) over the last P — v patterns is equal to its average n
over the full set of P patterns (or, in the case of (42), that n’, can be replaced by 7?). In this case, (43)
becomes p(P,v) = e~ *P=/N wwhile (42), after performing the summation, becomes 0% = 32(1 — p?)/av.

Returning to the distribution (41), we can see that it begins as a § function at v and, as more patterns
are introduced and p — 0, evolves to the following steady-state distribution:

p(v) = Wemz/%? (44)

This is the distribution from which v” will be drawn in order to calculate the error rate for pattern v below.
In addition to driving a drift-diffusion process for the weights v, the updates to v also affect the evolution of
the distribution of weights w due to the appearance of v in the update rule (30). In order to account for this
change, the first two moments of the update Aw must be reevaluated as in (8)-(9), but now averaging over
the random variable y in addition to averaging over x. Because (y;) = 0, the first moment in (8) remains
unchanged. As for the second moment, (9) generalizes to

Eij (W,V) = <Aw7;ij>x7y — /Ll(W),LLJ (W)
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As before, we will assume that |w|? and |v|? can be replaced by their average values in the N — oo
limit. Noting from (44) that (v?) = 3%/a, we have the diffusion tensor ¥;; = 2[j§d;; + }Alwiwj]/Nz, where
g = g() + B?/2a, where, as before, 1 = /(|w|?) is taken from numerical simulations. From this result, we
see that the equations (18)-(19) determining the evolution of w can also be applied in the two-pathway case
by making the substitution g — g.

As in the previous section, our goal is to calculate the probability of incorrect classification when testing
pattern v after training P patterns in sequence. Including the second input pathway, this quantity is given
by
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As before, we have absorbed all Z* into the definition of the input activity vectors x* and y* by letting
xH — ZExH and y* — ZHy*, effectively setting all Z2# = 1. The first term in the integrand corresponds to
cases in which the classification of pattern v is initially incorrect, so that the weights w and v are both

updated. The second term corresponds to cases in which the initial classification is correct, so that only the



weights v are updated. In both cases, the weight distributions for w and v evolve according to drift-diffusion
processes, as new patterns are learned up until pattern P, at which time, the classification of pattern v is
tested using the final weights w’ and v (the first © function appearing in the integrand).

Again using the trick (21) to represent the Heaviside step functions, the two terms in (46) can be written

as
p(z" #2) = Ji+ Ja, (47)
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Beginning with J;, we can shift the integration variable w¥ — wt — ~(v” - y)x/N and use x? = N in the
N — oo limit to obtain
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Where the Hebbian decay term ~ av”/N was dropped in the first line because it vanishes as N — oo, and
the integration variable v was shifted in the third line. Using this result, and noting that the integrals over

x, w”, and w’ are the same as those appearing in (23) (with § — ), (50) becomes
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As in the case without the Hebbian pathway, the last remaining integral in (52) must be performed numeri-

(54)

cally.
Equation (49) for Jy can be evaluated in a similar manner. To begin, we express it as
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Using this result, and noting that the integrals over x, w”, and w’ are the same as those appearing in (24)
(with ¢ — g), (55) becomes
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where we have defined
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It is straightforward to check that, in the limit 8 — 0, which corresponds to shutting off the Hebbian input
pathway, we recover J; 9 — I 2 from the simple perceptron result.
Finally, we can calculate the probability of making a weight update in a given step, which in the two-

pathway case is given by
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In the case where 32 /a = 0, this evaluates to the earlier result ¢ ~ 0.798. For nonzero 3, on the other hand,
q decreases and approaches 0.5 as 32/a — oo.
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Supplementary Figures

Learning with gradient descent

0.14 = Perceptron learning
Gradient descent \

(P—v)/N,
Supplemental Figure 1: Training with gradient descent yields a forgetting curve similar to the perceptron case.

The perceptron learning rule, according to which synaptic weights are adjusted to produce the correct
output in a single step, is mathematically convenient but biologically questionable. In order to address
this, we simulated the forgetting curve using gradient descent learning, a widely used supervised learning
algorithm in which small updates are accumulated over many repetitions to minimize the readout error.

In this case the output of the neuron is z# = sgn(w* - x* + g§,), where &, ~ N (0,1) is drawn randomly
for step a. The number of steps for each pattern was chosen to be Ngteps = 100, and the learning rate
7 = 0.01 and the noise amplitude ¢ = 0.2 were chosen by grid search to maximize the area between the
forgetting curve and chance performance. The noise is not strictly necessary in gradient descent learning,
but is included here so that a finite classification margin will be obtained, as in the case of the perceptron
learning rule (Figure 1b). In this case, the synaptic weights were updated according to the gradient-descent
update rule Aw! = S2Nters 5yt

i.qa» Where

Swt = l[A“ — zF)at.

i,a Nw i

As shown in Supplemental Figure 1, the forgetting curve obtained for the perceptron with this alternative

learning rule is similar to that obtained using the perceptron learning rule.
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Two-pathway forgetting curves depend on Hebbian learning and decay rates

d ;5. b C

0.4 1
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(P = V)/(Nx + Ny) (P=v)(Nx + Ny) (P = )/(Nx + Ny)

Supplemental Figure 2: Forgetting curves in the two-pathway model with each pattern trained once. (a) The
forgetting curve for different values of the Hebbian learning rate 8, with o = 1 and N, = N, (dotted line shows the
case with no second pathway). (b) The forgetting curve for different values of N,/N,, with « = 8 = 1. (c) The
forgetting curve for different values of the Hebbian weight decay rate a, with 8 =1 and N, = Ny. In (b)-(d), solid

lines are theoretical results; points are simulations with N, = N, = 1000.

In the two-pathway model, we kept n, = n constant for all patterns and investigated the dependence of
the forgetting curve (4) on its other parameters. Starting with the Hebbian learning rate, we found that
nonzero values of 3 shifted the forgetting curve slightly downward, modestly reducing the error rate for
all patterns (Supplemental Figure 2a). Whether this qualifies as a true improvement, however, depends
somewhat on bookkeeping. For a fixed total number of synapses N, + N, the error rate can be reduced
by allowing for Hebbian learning. However, the error rate is reduced even more by eliminating the Hebbian
synapses entirely (dotted curve in Supplemental Figure 2a), which decreases the denominator N, + N, by
setting Ny, = 0. Stated differently, if the goal is to minimize the error rate for a fixed total number of
synapses, this is accomplished most effectively by letting all of the synapses be updated with supervised
learning rather than with Hebbian learning (Supplemental Figure 2b). If, on the other hand, the goal is
to minimize the error rate for a fixed number N, of supervised synapses, then a benefit is obtained from
including additional synapses with Hebbian learning. The exception to these conclusions occurs for small
values of the Hebbian decay rate «, in which case very old memories can persist for longer with error rates
below chance level (Supplemental Figure 2c¢). In this case, there is a benefit to adding Hebbian synapses
even if they are counted against the total N, + N,,.
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Optimal forgetting rate and memory capacity
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Supplemental Figure 3: Error tolerance determines the optimal forgetting rate and memory capacity. (a) Given
a threshold pg of incorrect classification probability, the memory capacity is defined as the area above the forgetting
curve and below the threshold, normalized by ps. (b) For each value of py, the memory capacity is optimized with
respect to the Hebbian forgetting rate . (For all curves, 8 = 1 is fixed, N, = Ny, and n, = 7 for all patterns.)
(¢) The optimal forgetting rate from (b) as a function of pg. (d) The memory capacity from (b) as a function of
the classification threshold pg. Dashed line shows the capacity with a second pathway with no learning (N, = Ng,
B = 0); Dotted line shows the capacity with no second pathway (N, = 0).

We investigated the effects of the parameters @ and 3 in the two-pathway model, while still holding n"
constant for all patterns, by setting a threshold pg for the acceptable error rate, then defining the memory
capacity as the integrated area between the forgetting curve and this threshold value, normalized by py
(Supplemental Figure 3a). Because the forgetting curve was found to have relatively weak dependence on
(Figure 2b), we fixed 8 = 1 and considered the effects of « and of py on the memory capacity. For a given
choice of pg, we found the value of o that maximized the memory capacity (Supplemental Figure 3b). This
led to the conclusion that, the larger the error tolerance py, the smaller the forgetting rate « should be in
order to maximize the memory capacity (Supplemental Figure 3c). Finally, we found that the optimized
memory capacity increases as the error tolerance becomes greater (Supplemental Figure 3d). Consistent
with our observations from Figure 2, we found that the memory capacity, which is normalized by the total
number of synapses N, + N,, is improved by learning in the second pathway if N, + N, is held constant
(solid vs. dashed curve in Supplemental Figure 3d), but is even larger if the second pathway is left out
entirely (dotted curve in Supplemental Figure 3d), again indicating that adding supervised synapses is a
better strategy than adding unsupervised synapses if the goal is to optimize the forgetting curve for a fixed
total number of synapses.
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Recall performance depends on repetitions and number of repeated patterns
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Supplemental Figure 4: Recall performance depends on repetitions and number of repeated patterns. (a) In the
two-pathway model in which n. evenly spaced patterns are each repeated n,« times during training (bottom panel),
the green shaded area (top panel) provides a measure of the recall performance for the repeated patterns, while the
red shaded area (middle panel) provides a measure of the recall performance for all other patterns. (b) By repeating
the subset of patterns n. times, recall is significantly enhanced for the patterns during training (green curves) while

being slightly diminished for the nonrepeated patterns (red curves).

In Supplemental Figure 4, we illustrate the tradeoff in the two-pathway model between the enhancement
of recall for patterns that are repeated during training versus the impairment of recall for the nonrepeated
patterns. In Supplemental Figure 4a, we define the green shaded area as a metric of how well the repeated
patterns are retained, and we define the red shaded area as a metric of how well the non-repeated patterns
are retained. (The area between the dashed and dotted lines provides a baseline in which no patterns are
repeated multiple times.) As shown in Supplemental Figure 4b, the enhancement for repeated patterns
(green curves) is far greater than the impairment for nonrepeated patterns (red curves) if the number of
repeated patterns is much less than the total number of inputs (N, + N, ). However, as the number of repeated
patterns becomes comparable to the number of inputs, the impairment for the nonrepeated patterns becomes

comparable in magnitude to the enhancement of the repeated patterns.
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Forgetting curves decay exponentially
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Supplemental Figure 5: Forgetting curves exhibit approximately exponential decay. (a) Forgetting curves from
Figure 2b (left) and 2d (right) plotted on logarithmic axes, with N = N. Dotted lines are best fits with power law

decay. (b) Forgetting curves as in (a), but plotted with just one logarithmic axis. Dotted lines are best fits with
exponential decay.

Many previous studies on memory have shown that forgetting curves are well described by curves decaying
as a power law, in which the probability of correct recall has the form ~ ¢t~ where ¢ is time and a > 0.
Supplemental Figure 5a shows that such a fitting function, which appears as a straight line in a log-log

plot, does a relatively poor job of fitting the forgetting curves from the two-pathway model. In contrast,

exponentially decaying functions, in which the probability of correct recall ~ e~ and which appear as

straight lines on semilogarithmic plots, provide a good fit to the forgetting curves (Supplemental Figure 5b).
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Spaced repetition
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Supplemental Figure 6: Short training intervals during spaced repetition lead to better testing performance. (a)
The two-pathway network is trained with random sequential patterns, with one particular pattern presented twice.
(b) For any interval A¢est between the second presentation and the testing phase, the testing performance for the
repeated pattern is best when the interval between the presentations during training is short. Results are simulations
from a two-pathway network with N, = N, = 1000 and o = 8 = 1.

In simulations of the two-pathway model, the neuron was trained in sequence to perform P classifications.
All of the input patterns were distinct, except for a single pattern that was presented twice during training,
with an interval A¢;.in between presentations. The interval between the second presentation and the testing
phase was Agest- For any Ayegt, smaller values of Ay always led to a lower error rate for the repeated
pattern during testing (Figure 6b).

In addition, we note that repetition of patterns has no significant effect at all in the single-pathway model
without Hebbian weights. In this case, upon the second presentation of the repeated pattern during training,
the weight vector will either not be updated at all (if classification is already correct with sufficient margin)
or will be updated to lie on the correct side of the classification boundary plus a margin (if the classification
is initially incorrect or correct with insufficient margin). In neither of these two cases is there a benefit to
having seen the pattern before, since one of these same things would have happened if the first presentation
had not occurred.

Thus, while the information accumulated in the Hebbian weights of the two-pathway model is an important
ingredient for describing nontrivial effects due to spaced repetition, the single-neuron model appears to be
unable to account for the experimentally observed existence of optimal repetition intervals (Glenberg, 1976),
and thus leaves room for future work on this topic.
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