Fig. 1 Sriram et al.

Fig. 2 Sriram et al.

Fig. 3 Sriram et al.

Fig. 4 Sriram et al.

Fig. 5 Sriram et al.

Fig. 6 Sriram et al.

Fig. 7 Sriram et al.

Fig. 8 Sriram et al.

Fig799 from fig786 and fig788

Fig. 9 Sriram et al.

Fig. 10 Sriram et al.

Fig. 11 Sriram et al.

Fig. 12 Sriram et al.

Fig. 13 Sriram et al.

Fig. 14 Sriram et al.

Fig. 15 Sriram et al.

Fig. 16 Sriram et al.

Fig. 17 Sriram et al.

Fig. 18 Sriram et al.

Fig. S1 A Sriram et al

Olfactory bulb (OB)

Olfactory bulb (OB)

Fig. S1 B Sriram et al

Hippocampus (HIP)

Hippocampus (HIP)

Fig. S1 C Sriram et al

Striatum (STR)

Striatum (STR)

Fig. S1 D Sriram et al

Cerebellum (CER)

Cerebellum (CER)

Fig. S2 A Sriram et al

Olfactory bulb (OB)

Fig. S2 B Sriram et al

Hippocampus (HIP)

ACTB (46 kDa)		
SYT (60 kDa)	Non-loss fast have not seen that that	and were need to be here the terms to be here to
ACTB (46 kDa)		
SYT (60 kDa)	Box and the son and and the local	
ACTB (46 kDa)		
SYT (60 kDa)		
	AIR	FSD (10 mg/m³)

Hippocampus (HIP)

AIR	ESD (30 mg/m ³)	
tool and tool and and and and and	well have been been ship and and see been	
		0 d
	2	7 d
toro that high site state that had been	And has not find fact that first first	u
		' d
Same man man band band total more man	*** *** *** *** *** *** *** ***	d

Fig. S2 C Sriram et al

Striatum (STR)

Striatum (STR)

Fig. S2 D Sriram et al

Cerebellum (CER)

Cerebellum (CER)

Fig. S3 A Sriram et al

Olfactory bulb (OB)

Olfactory bulb (OB)

Fig. S3 B Sriram et al

Hippocampus (HIP)

Hippocampus (HIP)

Fig. S3 C Sriram et al

Striatum (STR)

Striatum (STR)

Fig. S3 D Sriram et al

Cerebellum (CER)

Cerebellum (CER)

Fig. S4 A Sriram et al

Olfactory bulb (OB)

Olfactory bulb (OB)

Fig. S4 B Sriram et al

Hippocampus (HIP)

Hippocampus (HIP)

Fig. S4 C Sriram et al

Striatum (STR)

Striatum (STR)

Fig. S4 D Sriram et al

Cerebellum (CER)

Cerebellum (CER)

Fig. S5 A Sriram et al

Olfactory bulb (OB)

Fig. S5 B Sriram et al

Hippocampus (HIP)

Hippocampus (HIP)

Fig. S5 C Sriram et al

Striatum (STR)

Striatum (STR)

Fig. S5 D Sriram et al

Cerebellum (CER)

Cerebellum (CER)

Brain Region	Group	Dose	DOPAC	HVA	5-HIAA
OB	AIR 1 d	0	100.0 ± 6.3	100.0 ± 7.6	100.0 ± 14.7
	FSD 8 8 1 d	10 mg/m^3	107.3 ± 7.1	104.2 ± 3.8	99.4 ± 16.6
	AIR 7 d	0	100.0 ± 6.2	100.0 ± 4.5	100.0 ± 11.1
	FSD 8 7 d	10 mg/m^3	99.2 ± 6.6	97.5 ± 3.8	92.2 ± 5.6
	AIR 27 d	0	100.0 ± 4.6	100.0 ± 11.9	100.0 ± 7.2
	FSD 8 27 d	10 mg/m^3	84.2 ± 7.8	90.6 ± 13.2	92.2 ± 5.1
	AIR 1 d	0	100.0 ± 7.5	100.0 ± 7.4	100.0 ± 15.0
	FSD 8 1 d	30 mg/m^3	101.3 ± 4.2	89.9 ± 3.5	76.8 ± 9.5
	AIR 7 d	0	100.0 ± 3.7	100.0 ± 5.7	100.0 ± 4.8
	FSD 8 7 d	30 mg/m^3	78.1 ± 4.6 *	79.0 ± 3.3 *	82.5 ± 4.4
	AIR 27 d	0	100.0 ± 4.1	100.0 ± 5.2	100.0 ± 8.5
	FSD 8 27 d	30 mg/m^3	94.3 ± 4.0	85.7 ± 5.4	108.3 ± 8.6
HIP	AIR 1 d	0	100.0 ± 6.8	100.0 ± 9.3	100.0 ± 8.3
	FSD 8 1 d	10 mg/m^3	107.5 ± 10.0	98.5 ± 7.4^{d}	100.9 ± 12.5
		- 8			
	AIR 7 d	0	100.0 ± 5.7	100.0 ± 5.9	100.0 ± 7.8
	FSD 8 7 d	10 mg/m^3	121.4 ± 8.3	137.2 ± 12.4 [#]	114.3 ± 3.7
	AIR 27 d	0	100.0 ± 8.3	100.0 ± 4.3	100.0 ± 3.1
	FSD 8 27 d	10 mg/m ³	84.6 ± 5.5	72.4 ± 6.4	84.6 ± 4.2
	AIR 1 d	0	100.0 ± 3.9	100.0 ± 14.2	100.0 ± 4.4
	FSD 8 1 d	30 mg/m^3	102.7 ± 3.7	83.5 ± 7.4	92.8 ± 3.5
	AIR 7 d	0	100.0 ± 5.1	100.0 ± 11.4	100.0 ± 4.6
	FSD 8 7 d	30 mg/m ³	86.9 ± 3.4	83.8 ± 6.3	80.2 ± 8.4
	A ID 27 1	0	100.0 + 16.2	100.0 + 9.2	100.0
	AIK $27 d$	0	100.0 ± 16.3	100.0 ± 8.3	100.0 ± 6.0
	FSD 8 27 d	30 mg/m^3	95.2 ± 5.1	$1/8.9 \pm 4.0^{\circ}$	93.7 ± 4.2

Table 1: Metabolites of dopamine and serotonin in olfactory bulb and hippocampus

Values were calculated as ng/mg protein and are expressed as percent of corresponding air-exposed

control. Data are mean SE (n = 8/group with the following exceptions: cn = 7 due to one undetected

sample in assay group; ${}^{d}n = 6$ due to two undetected samples in assay group). *Significant decrease from corresponding air-exposed control (P < 0.05). *Significant increase from corresponding air-exposed control (P < 0.05).

Brain Region	Group	Dose	DOPAC	HVA	5-HIAA
STR	AIR 1 d	0	100.0 ± 9.3	100.0 ± 6.2	100.0 ± 8.8
	FSD 8 1 d	10 mg/m^3	93.9 ± 6.2	97.6 ± 3.6	102.8 ± 5.0
	AIR 7 d	0	100.0 ± 4.8	100.0 ± 3.6	100.0 ± 8.0
	FSD 8 7 d	10 mg/m^3	121.1 ± 5.0	118.1 ± 5.9	97.6 ± 4.5
	AIR 27 d	0	100.0 ± 6.1	100.0 ± 7.5	100.0 + 3.6
	FSD 8 27 d	10 mg/m^3	78 4 + 4 6 *	82.2 ± 6.5	873 ± 43
	15D 0 27 d	10 mg/m	70 . 4 ± 4.0	02.2 ± 0.3	02.3 ± 4.3
	AIR 1 d	0	100.0 ± 3.0	100.0 ± 4.8	100.0 ± 4.3
	FSD 8 1 d	30 mg/m^3	109.6 ± 6.4	104.9 ± 6.1	94.9 ± 6.5
	AIR 7 d	0	100.0 ± 5.9	100.0 ± 4.7	100.0 ± 4.5
	FSD 8 7 d	30 mg/m^3	92.4 ± 3.1	92.1 ± 3.9	97.6 ± 4.9
		0	100.0 . 0.0	100.0	100.0 0
	AIR $2/d$	$\frac{0}{20} = \sqrt{2}$	100.0 ± 2.3	100.0 ± 3.6	100.0 ± 6.9
	FSD 8 27 û	50 mg/m ²	97.2 ± 5.1	89.1 ± 0.2	101.8 ± 0.8
CER	AIR 1 d	0	100.0 + 4.0	100.0 + 5.4	100.0 ± 5.6
	FSD 8 1 d	10 mg/m^3	109.5 ± 4.8	100.0 ± 5.1 100.2 ± 5.7	100.0 ± 9.0 111.8 ± 4.7
		8			
	AIR 7 d	0	100.0 ± 4.4	100.0 ± 5.7	100.0 ± 3.4
	FSD 8 7 d	10 mg/m^3	104.9 ± 2.6	103.6 ± 3.2	106.5 ± 3.2
	AIR 27 d	0	100.0 ± 8.3	100.0 ± 9.7	100.0 ± 9.0
	FSD 8 27 d	10 mg/m^3	97.0 ± 5.0	109.2 ± 7.5	96.9 ± 4.7
	AIR 1 d	0	100.0 ± 6.5	100.0 ± 6.5	100.0 ± 4.8
	FSD 8 1 d	30 mg/m^3	100.0 ± 0.0 102.3 ± 5.0	889 + 36	97.8 ± 4.5
	152 0 1 4	00 mg, m	102.0 - 010	0017 - 010	<i>y n</i> o = <i>n</i> o
	AIR 7 d	0	100.0 ± 3.8	100.0 ± 4.4	100.0 ± 3.0
	FSD 8 7 d	30 mg/m^3	$88.4\pm5.2^{\mathbf{a}}$	92.8 ± 3.9	107.4 ± 4.6
	AIR 27 d	0	100.0 ± 9.3	100.0 ± 6.2	100.0 ± 4.8
	FSD 8 27 d	30 mg/m ³	102.4 ± 4.3	92.1 ± 12.6	94.9 ± 6.3

Table 2. Metabolites of dopamine and serotonin in striatum and cerebellum

Values were calculated as ng/mg protein and are expressed as percent of corresponding air-exposed control. Data are mean \pm SE (n = 8/group with the following exception: $a_n = 7$ due to one outlier sample in assay group). *Significant decrease from corresponding air-exposed control (*P* < 0.05).

Brain Region	Group	Dose	DOPAC/DA	HVA/DA	(DOPAC+HVA)/DA	5-HIAA/5-HT
OB	AIR 1 d	0	100 ± 3.9	100 ± 4.2	100 ± 4.0	100 ± 12.6
	FSD 8 1 d	10 mg/m^3	103.1 ± 3.9	99.7 ± 3.9	100.3 ± 3.9	102.1 ± 3.9
	AIR 7 d	0	100 ± 5.4	100 ± 4.9	100 ± 4.7	100 ± 5.3
	FSD 8 7 d	10 mg/m^3	96.6 ± 3.1	96.2 ± 3.1	96.2 ± 2.8	80.8 ± 5.8
	AIR 27 d	0	100 ± 5.7	100 ± 7.1	100 ± 4.8	100 ± 8.6
	FSD 8 27 d	10 mg/m^3	84.0 ± 4.5*	91.0 ± 7.9	88.0 ± 6.0	$138.3 \pm 7.7^{\#}$
	AIR 1 d	0	100 ± 6.2	100 ± 3.8	100 ± 4.2	100 ± 12.4
	FSD 8 1 d	30 mg/m^3	105.6 ± 7.9	93.4 ± 4.8	98.2 ± 6.0	88.3 ± 11.0
	AIR 7 d	0	100 ± 6.4	100 ± 3.7	100 ± 3.6	100 ± 3.6
	FSD 8 7 d	30 mg/m^3	98.7 ± 3.6	102.1 ± 5.0	100.8 ± 3.2	92.2 ± 4.1
	AIR 27 d	0	100 ± 4.0	100 ± 4.5	100 ± 3.7	100 ± 7.3
	FSD 8 27 d	30 mg/m^3	91.9 ± 4.2	83.2 ± 4.6	87.0 ± 4.0	102.7 ± 9.4
HIP	AIR 1 d	0	100 ± 14.3	100 ± 12.6	100 ± 13.7	100 ± 3.5
	FSD 8 1 d	10 mg/m ³	88.1 ± 7.9	$83.9 \pm 10.2^{\text{d}}$	81.9 ± 8.8	85.0 ± 6.5
	AIR 7 d	0	100 ± 17.3	100 ± 13.9	100 ± 15.0	100 ± 2.9
	FSD 8 7 d	10 mg/m^3	$83.9 \pm 14.6^{\text{c}}$	91.3 ± 12.1 ^(c)	87.6 ± 12.8^{c}	$97.9\pm2.0^{\text{c}}$
	AIR 27 d	0	100 ± 8.7	100 ± 6.2	100 ± 6.7	100 ± 4.5
	FSD 8 27 d	10 mg/m^3	127.3 ± 27.2	104.1 ± 16.6	119.3 ± 23.3	93.1 ± 5.4
	AIR 1 d	0	100 ± 8.6	100 ± 9.3	100 ± 7.2	100 ± 3.0
	FSD 8 1 d	30 mg/m^3	114.1 ± 13.0	94.4 ± 7.6	111.9 ± 12.3	97.7 ± 2.3
	AIR 7 d	0	100 ± 9.0	100 ± 9.3	100 ± 8.4	100 ± 4.0
	FSD 8 7 d	30 mg/m^3	100.1 ± 13.8	99.2 ± 13.7	100 ± 13.6	83.5 ± 7.7
	AIR 27 d	0	100 ± 23.3	100 ± 12.5	100 ± 19.0	100 ± 9.3
	FSD 8 27 d	30 mg/m^3	108.9 ± 12.5	$87.9 \pm 10.0^{\circ}$	101.6 ± 12^{c}	108.1 ± 5.0

Table 3: Dopamine and serotonin metabolite ratios in the olfactory bulb and hippocampus

Values were calculated as ng/mg protein. The ratios DOPAC/DA, HVA/DA, (DOPAC+HVA)/DA, and 5-HIAA/5-HT were determined and are expressed as percent of corresponding air-exposed control. Data are mean±SE (n = 8/group with the following exceptions: $c_n = 7$ due to one undetected sample in assay group; $d_n =$ 6 due to two undetected samples in assay group). *Significant decrease from corresponding air-exposed control (P < 0.05). #Significant increase from corresponding air-exposed control (P < 0.05).

Brain Region	Group	Dose	DOPAC/DA	HVA/DA	(DOPAC+HVA)/DA	5-HIAA/5-HT
OB	AIR 1 d	0	100 ± 3.9	100 ± 4.2	100 ± 4.0	100 ± 12.6
	FSD 1 d	10 mg/m ³	103.1 ± 3.9	99.7 ± 3.9	100.3 ± 3.9	102.1 ± 3.9
	AIR 7 d	0	100 ± 5.4	100 ± 4.9	100 ± 4.7	100 ± 5.3
	FSD 7 d	10 mg/m^3	96.6 ± 3.1	96.2 ± 3.1	96.2 ± 2.8	80.8 ± 5.8
	AIR 27 d	0	100 ± 5.7	100 ± 7.1	100 ± 4.8	100 ± 8.6
	FSD 27 d	10 mg/m ³	84.0 ± 4.5 *	91.0 ± 7.9	88.0 ± 6.0	138.3 ± 7.7 [#]
	AIR 1 d	0	100 ± 6.2	100 ± 3.8	100 ± 4.2	100 ± 12.4
	FSD 1 d	30 mg/m^3	105.6 ± 7.9	93.4 ± 4.8	98.2 ± 6.0	88.3 ± 11.0
	AIR 7 d	0	100 ± 6.4	100 ± 3.7	100 ± 3.6	100 ± 3.6
	FSD 7 d	30 mg/m^3	98.7 ± 3.6	102.1 ± 5.0	100.8 ± 3.2	92.2 ± 4.1
	AIR 27 d	0	100 ± 4.0	100 ± 4.5	100 ± 3.7	100 ± 7.3
	FSD 27 d	30 mg/m ³	91.9 ± 4.2	83.2 ± 4.6	87.0 ± 4.0	102.7 ± 9.4
HIP	AIR 1 d	0	100 ± 14.3	100 ± 12.6	100 ± 13.7	100 ± 3.5
	FSD 1 d	10 mg/m ³	88.1 ± 7.9	83.9 ± 10.2 ^(d)	81.9 ± 8.8	85.0 ± 6.5
	AIR 7 d	0	100 ± 17.3	100 ± 13.9	100 ± 15.0	100 ± 2.9
	FSD 7 d	10 mg/m ³	83.9 ± 14.6 ^(c)	91.3 ± 12.1 ^(c)	87.6 ± 12.8 ^(c)	97.9 ± 2.0 ^(c)
	AIR 27 d	0	100 ± 8.7	100 ± 6.2	100 ± 6.7	100 ± 4.5
	FSD 27 d	10 mg/m ³	127.3 ± 27.2	104.1 ± 16.6	119.3 ± 23.3	93.1 ± 5.4
	AIR 1 d	0	100 ± 8.6	100 ± 9.3	100 ± 7.2	100 ± 3.0
	FSD 1 d	30 mg/m^3	114.1 ± 13.0	94.4 ± 7.6	111.9 ± 12.3	97.7 ± 2.3
	AIR 7 d	0	100 ± 9.0	100 ± 9.3	100 ± 8.4	100 ± 4.0
	FSD 7 d	30 mg/m^3	100.1 ± 13.8	99.2 ± 13.7	100 ± 13.6	83.5 ± 7.7
	AIR 27 d	0	100 ± 23.3	100 ± 12.5	100 ± 19.0	100 ± 9.3

Table 3: Dopamine and serotonin metabolite ratios in the olfactory bulb and hippocampus

l

FSD 27 d 30 mg/m³ 108.9 \pm 12.5 87.9 \pm 10.0 ^(c) 101.6 \pm 12.1 ^(c) 108.1 \pm 5.0 DA, DOPAC, HVA, 5-HT and 5-HIAA were measured by HPLC-EC. Values were calculated as ng/mg protein. The ratios DOPAC/DA, HVA/DA, (DOPAC+HVA)/DA, and 5-HIAA/5-HT were determined and are expressed as percent of corresponding air-exposed control. Data are mean \pm SE (n = 8/group with the following exceptions: ^(c) n = 7 due to one undetected sample in assay group; ^(d) n = 6 due to two undetected samples in assay group). * significant decrease from corresponding air-exposed control (P < 0.05). # significant increase from corresponding air-exposed control (P < 0.05).

Brain						
Region	Group	Dose	DOPAC/DA	HVA/DA	(DOPAC+HVA)/DA	5-HIAA/5-HT
STR	AIR 1 d	0	100 ± 5.4	100 ± 4.3	100 ± 4.4	100 ± 3.0
	FSD 8 1 d	10 mg/m^3	91.0 ± 2.9	94.1 ± 2.7	92.6 ± 2.1	87.2 ± 3.4
	AIR 7 d	0	100 ± 4.8	100 ± 3.3	100 ± 3.8	100 ± 8.2
	FSD 8 7 d	10 mg/m^3	99.2 ± 3.2	96.9 ± 4.5	97.9 ± 3.5	83.7 ± 3.0
	AIR 27 d	0	100 ± 4.8	100 ± 5.4	100 ± 4.7	100 ± 3.7
	FSD 8 27 d	10 mg/m^3	91.5 ± 4.4	96.3 ± 7.0	93.6 ± 5.0	96.0 ± 3.9
		-				
	AIR 1 d	0	100 ± 2.3	100 ± 3.2	100 ± 2.3	100 ± 3.4
	FSD 8 1 d	30 mg/m^3	101.5 ± 1.6	97.4 ± 1.2	99.9 ± 1.0	99.9 ± 2.7
		U				
	AIR 7 d	0	100 ± 2.7	100 ± 4.6	100 ± 3.0	100 ± 3.7
	FSD 8 7 d	30 mg/m^3	90.3 ± 1.3	89.0 ± 2.0	89.7 ± 1.3	92.7 ± 3.3
		U				
	AIR 27 d	0	100 ± 3.8	100 ± 5.0	100 ± 4.1	100 ± 3.5
	FSD 8 27 d	30 mg/m^3	98.6 ± 5.1	89.9 ± 5.2	95.1 ± 4.8	96.4 ± 5.7
		U				
CER	AIR 1 d	0	100 ± 4.1	100 ± 3.9	100 ± 3.5	100 ± 3.4
	FSD 8 1 d	10 mg/m^3	95.0 + 7.8	87.9 + 8.2	91.5 + 7.6	90.0 + 7.8
		8,				
	AIR 7 d	0	100 + 5.2	100 + 6.2	100 + 5.0	100 + 4.0
	FSD 87 d	10 mg/m^3	108.4 ± 6.2	106.3 ± 4.1	107.3 + 4.7	108.6 ± 6.2
	1.22 0 7 0	10 1118/111	10001 - 012	10000 - 111		10000 - 012
	AIR 27 d	0	100 + 12.3	100 + 13.3	100 + 10.3	100 + 9.6
	ESD 8 27 d	10 mg/m^3	100 ± 12.0 $100 4 \pm 6.5$	112.7 + 10.5	105 - 105	99.4 + 5.5
	150 0 27 4	10 1116/111	100.1 ± 0.5	112.7 = 10.5	103.2 = 0.3	· · · · = 0.0
	AIR 1 d	0	100 + 5.0	100 + 3.7	100 + 4.3	100 + 4.3
	FSD 81 d	30 mg/m^3	100 ± 0.0 $100 8 \pm 8.7$	87.0 ± 4.8	98.6 + 7.9	902 + 78
	150 014	50 mg/m	100.0 ± 0.7	07.0 - 1.0	<i>y</i> 0.0 <i>± r.y</i>)0 .2 _ 1.0
	AIR 7 d	0	100 + 6.6 (a)	$100 + 4.8^{a}$	$100 + 5.7^{a}$	100 + 5.8
	FSD 87d	30 mg/m^3	895 + 69	945 + 54	903+62	94 1 + 5 6
	152070	50 mg/m	07.5 ± 0.7	71.5 ± 5.4	70.5 ± 0.2	γ i.i \pm 0.0
	AIR 27 d	0	100 + 11.3	100 + 7.4	100 + 10.5	100 + 6.2
	FSD 8 27 4	30 mg/m^3	99.5 ± 11.3	100 ± 7.4 88 0 ± 0 0	985 ± 45	100 ± 0.2 88 3 + 6 8
	15D 0 27 U	Jo mg/m)).J <u>+</u> +.+	00.7 ± 7.7	70.5 ± 4.5	00.5 ± 0.0

Table 4. Dopamine and serotonin metabolite ratios in the striatum and cerebellum

HIAA/5-HT were determined and are expressed as percent of corresponding air-exposed control. Data are mean \pm SE (n = 8/group with the following exception: an = 7 due to one outlier sample in assay group).

Values were calculated as ng/mg protein. The ratios DOPAC/DA, HVA/DA, (DOPAC+HVA)/DA, and 5-